Document Type

Article

Publication Date

Fall 10-2014

Abstract

Improved management of soil carbon (C) and nitrogen (N) storage in agro-ecosystems represents an important strategy for ensuring food security and sustainable agricultural development in China. Accurate estimates of the distribution of soil C and N stores and their relationship to crop yield are crucial to developing appropriate cropland management policies. The current study examined the spatial variation of soil organic C (SOC), total soil N (TSN), and associated variables in the surface layer (0–40 cm) of soils from intensive agricultural systems in 19 counties within Henan Province, China, and compared these patterns with crop yield. Mean soil C and N concentrations were 14.9 g kg-1 and 1.37 g kg-1, respectively, whereas soil C and N stores were 4.1 kg m-2 and 0.4 kg m-2, respectively. Total crop production of each county was significantly, positively related to SOC, TSN, soil C and N store, and soil C and N stock. Soil C and N were positively correlated with soil bulk density but negatively correlated with soil porosity. These results indicate that variations in soil C could regulate crop yield in intensive agricultural systems, and that spatial patterns of C and N levels in soils may be regulated by both climatic factors and agro-ecosystem management. When developing suitable management programs, the importance of soil C and N stores and their effects on crop yield should be considered.

Comments

The copy of record is available from the publisher at http://journals.plos.org/plosone/article/asset?id=10.1371%2Fjournal.pone.0109188.PDF. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

doi:10.1371/journal.pone.0109188