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ABSTRACT 

 

Characterization and Differentiation of Peripheral Blood Derived 

Multipotent Adult Progenitor Cells 

by 

 

Hari Satya Shankar Addagarla 

 

Stem cells are populations of undifferentiated cells that are found in most tissues and act as 

precursors for regeneration and maintenance. In the future, they could provide promising 

therapies for diseases which are to date incurable. Our lab developed a novel cell line from the 

peripheral blood of adult transgenic green fluorescent protein swine and designated them as 

Peripheral Blood Derived Multipotent Adult Progenitor Cells (PBD-MAPCs). In this study we 

characterized the mRNA and protein expression profiles of PBD-MAPCs before and after neural 

differentiation and investigated the potential of PBD-MAPCs to differentiate into myocardial or 

neural lineages in vitro. We examined the potential of various cytokines to differentiate PBD-

MAPCs into cardiomyocytes. Also, as an alternative approach, we co-cultured PBD-MAPCs 

with neonatal cardiomyocytes or embryonic cardiomyoblasts, which produce factors to induce 

stem cell differentiation. These experiments did not succeed in differentiating PBD-MAPCs to a 

cardiac lineage. To study the expression profile of PBD-MAPCs before and after neural 

differentiation, we probed for the expression of stem cell marker CD133 in undifferentiated 

PBD-MAPCs and neural markers tyrosine hydroxylase (TH), β-tubulin III and PGP9.5 in 

neurally differentiated PBD-MAPCs using reverse transcription-PCR (RT-PCR) and immunoblot 

assays. Undifferentiated PBD-MAPCs were found to express CD133 and the neural markers TH, 

β-tubulin III and PGP9.5. Upon differentiation, they lost expression of CD133, TH and PGP9.5. 

Finally, we performed 3 dimensional cell cultures on PBD-MAPCs using various biomaterials in   
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neural differentiation medium. We also tested if muscle fibers added to the biomatrix provide 

directional support to the growing cellular processes. This 3 dimensional cell culture research is 

a preliminary study aimed at the development of a bridging transplant for spinal cord injuries. On 

differentiation, cells showed neural morphology with long cellular processes and were 

immunopositive for neural proteins. Cells also grew along the muscle fibers indicating that 

muscle fibers provide support to the growing cells. Taken together, these data suggest that PBD-

MAPCs are stem cells and can be a promising stem cell population for future research in cellular 

therapeutics for spinal cord injury.  
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CHAPTER 1 

INTRODUCTION 

 

STEM CELLS 

 

Stem cells are populations of undifferentiated cells found in most tissues that act as 

precursors for regeneration and maintenance. When maintained in culture, stem cells can 

continue to divide without differentiation, often forming non-adherent spherical aggregates. 

Upon placement into specific conditions, stem cells differentiate into specialized cells with 

defined functions. Stem cells offer great promise for repair and regeneration therapies for 

diseases which are caused by death of cells or loss of function in vital tissues such as liver, heart 

and nerves. Because these organs are vital, the practicality of procuring immunologically 

matching organs or tissues for transplantation is highly challenging and the need always exceeds 

supply. Stem cells have been of great research interest in many diseases like cardiovascular 

diseases (Collins and Russell, 2009), Parkinson’s disease (Deierborg et al., 2008), diabetes 

mellitus (Guo and Hebrok, 2009), spinal cord injury (Louro and Pearse, 2008), liver diseases 

(Navarro-Alvarez et al., 2009), diseases of the retina (Baker and Brown, 2009) and many other 

pathophysiological conditions. Many different types of stem cells have been discovered and 

broadly they can be classified into embryonic stem cells (McDonald et al., 1999) and adult stem 

cells with each kind having their own advantages and disadvantages. Embryonic stem cells have 

a greater ability to differentiate into many different types of specialized tissues (pluripotency), 

and adult stem cells derived from bone marrow (Cudkowicz et al., 1964), skin (Toma et al., 

2001), adipose tissue (Guilak et al., 2004) and other sources, have a relatively limited 

differentiation potential when compared to embryonic stem cells, and can be uni-, bi- or 

multipotent. Embryonic stem cells, in view of their isolation from embryonic sources, have many 
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ethical objections which adult stem cells do not (Strauer and Kornowski, 2003). Also due to their 

pluripotency, embryonic stem cells often form lethal teratomas (Hentze et al., 2009; Nussbaum et 

al., 2007) upon transplant which limits their use in therapy. In this study we investigated the 

potential of a novel type of adult stem cell in the development of therapies for myocardial 

infarction and spinal cord injury (SCI).  

Stem cells typically express certain markers which are characteristic to them and identify 

them from other cell populations. These markers vary on the cell type and origin. Embryonic 

stem cells mainly express Oct4, Sox2, and Nanog (Boyer et al., 2005). Mesenchymal stem cells 

express many markers like CD9 (Cluster of Differentiation), CD29, CD41a, CD44, CD59, 

CD73, CD90, and CD105, while hematopoietic stem cells express markers such as CD14, CD31, 

CD33, CD34, CD133, and the pan-leukocyte marker CD45 (Meng et al., 2007). Stem cells 

typically lose expression of these markers on differentiation. However undifferentiated mouse 

mesenchymal stem cells were shown to express certain neural lineage specific markers like 

nestin, MAP2, GFAP, MBP and CNPase (Lamoury et al., 2006). Furthermore, undifferentiated 

human mesenchymal stem cells were reported to express neural genes (Blondheim et al., 2006). 

These results suggest that certain undifferentiated stem cells might be primed towards a specific 

fate. Also it was reported that mouse bone marrow stromal cells express a wide range of mRNA 

and proteins including those normally reported to be expressed in terminally differentiated 

neurogenic and osteogenic phenotypes. These authors report that when stem cells are subjected 

to osteogenic or neuronal differentiation, the neuronal or osteogenic characteristics disappeared 

from the stem cells indicating a selective silencing or pruning of superfluous gene clusters. They 

suggest that stem cells exhibit nonspecific gene expression and that, once they are directed 

towards a specific lineage, other lineage specific genes are silenced (Egusa et al., 2005).  
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PERIPHERAL BLOOD DERIVED MULTIPOTENT ADULT PROGENITOR CELLS 

(PBD-MAPCS)  

 

Our lab has recently described a novel type of adult stem cell population isolated from 

the peripheral blood of adult transgenic green fluorescent protein (GFP) swine, designated as 

Peripheral Blood Derived Multipotent Adult Progenitor Cells (PBD-MAPCs) (Price et al., 2006).  

PBD-MAPCs are maintained in an undifferentiated form and they grow as spheroids in 

primordial cell media for more than 100 doublings. These cells, being from the peripheral blood, 

are very easy to collect, unlike stem cells from other tissues like adipose tissue and bone marrow 

that involve invasive and sometimes painful collection procedures. Also, as the cells are from 

pigs, whose overall physiology is close to human physiology (Sullivan et al., 2001); they could 

be used for xenotransplantation to humans in future (Ekser et al., 2008; Halperin, 2001). As these 

cells are obtained from adult animals they are less likely to form teratomas after transplantation 

and also will not attract the controversies associated with embryonic stem cells. Besides these 

advantages, the ease of isolating these cells from peripheral blood makes them interesting 

candidates for stem cell research as opposed to cells from other sources. Since the physiology of 

swine is similar to that of humans (Sullivan et al., 2001), we are also exploring the possibility of 

isolating a similar type of stem cells from humans.  

STEM CELLS IN CARDIAC DISEASES 

 

A myocardial infarction (heart attack) is caused by an acute reduction of blood to the 

myocardium with the direct effect of insufficient oxygen supply (Christoforou and Gearhart, 

2007). Because of ischemia and associated anoxia, cardiomyocytes die and the heart tissue is 

replaced by a fibrous scar tissue which dramatically decreases the contractile ability of the heart 

tissue (Zhu et al., 2009). Stem cells are showing a huge hope in repopulating the lost myocardial 
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tissue and improving heart functioning. Many researchers have been working on stem cell 

therapies for myocardial infarctions with different kinds of stem cells. Bone marrow is one of the 

main cell sources that have been investigated extensively for their ability to regenerate the 

myocardium. In a study with bone marrow-derived hematopoietic stem cells transplanted into 

coronary artery ligated mice, significant recovery of heart function was observed by 

echocardiography and hemodynamic parameter assays when compared to sham-operated animals 

(Orlic et al., 2001). Autologous bone marrow-derived mononuclear cells when 

transendocardially injected into adult human patients with ischemic heart disease, significant 

improvement in symptoms and myocardial perfusion was reported after 3 months (Tse et al., 

2003). On the contrary there are reports that hematopoietic stem cells (Murry et al., 2004) and 

skeletal muscle stem cells (Reinecke et al., 2002) do not acquire a cardiac phenotype in adult 

rodent hearts. Such conflicting conclusions still cast doubt on the actual applicability of cell 

therapy in heart diseases and thus the quest for the ideal stem cells in heart repair continues.  

 

In vitro, many types of stem cells ranging from embryonic stem cells (Yoon et al., 2006) 

to adult mesenchymal stem cells (Rangappa et al., 2003) were shown to differentiate into 

cardiomyocytes when cultured in presence of defined growth factors like Wnt proteins, Gsk-3β 

inhibitor II, Oxytocin, DMSO (dimethyl sulfoxide) or 5-aza-2'-deoxycytidine. Many other 

studies have also reported differentiation of stem cells into cardiac lineage when co-cultured with 

cardiomyocytes (Li et al., 2006). We wanted to determine if PBD-MAPCs could be 

differentiated into cardiomyocytes in vitro in presence of specific cytokines and in co-culture 

with neonatal cardiomyocytes and embryonic cardiomyoblasts.  
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CHARACTERIZATION OF PBD-MAPCs 

 

Though PBD-MAPCs were shown to differentiate into endothelial, smooth muscle, 

osteocyte, adipocyte and neural lineages (Price et al., 2006), we have not examined their 

expression profile to see if they express standard stem cell markers. We wanted to check their 

expression profile to prove that they not only differentiate into various lineages under specified 

culture conditions but also express stem cell markers. Stem cells from other sources, when 

cultured in defined neural differentiation media with specific cytokines will lose expression of 

stem cell markers and start expressing neural markers. In this study we are testing to see if PBD-

MAPCs on neural differentiation express neural marker proteins and lose expression of stem cell 

markers.  

STEM CELLS IN SPINAL CORD INJURY 

 

SCI causes damage to white matter or myelinated fiber tracts that carry signals to and 

from the brain (Li et al., 1999). It also damages gray matter in the central part of the spine and 

the surrounding axonal tracts because of mechanical trauma and secondary ischemia (Tator and 

Koyanagi, 1997). It is accompanied by irreversible tissue damage and permanent loss of motor, 

sensory and autonomic function (Louro and Pearse, 2008). Inflammatory processes in spinal cord 

injury dramatically decrease the chance of regeneration in the injured area (Fawcett and Asher, 

1999; Gris et al., 2007). Extensive research is being done for the development of a 3 dimensional 

(3D) plug of differentiated neural cells in various biologically compatible materials. This plug 

can be transplanted into the injured area by resecting the injured area and implanting the plug of 

neurally differentiated stem cells to regain the lost nervous function (Fouad et al., 2005; Kamada 

et al., 2005). It was reported that Schwann cells, in a poly-β-hydroxybutyrate (PHB) scaffold 
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plug, when implanted in spinal cord injured rats, survived and neurofilament-positive axons were 

observed in the biomaterial conduit which promoted axonal regeneration (Novikova et al., 2008).   

We wanted to determine if PBD-MAPCs could be differentiated into neural lineage cells in a 3 

dimensional (3D) culture system. We also wanted to probe whether addition of muscle fibers 

into the biomatrix would provide a directional support for the growth of PBD-MAPCs. This 

particular technique of using muscle fibers was successfully used in peripheral nerve damage 

(Roganovic et al., 2007; Weber et al., 2000; Norris et al., 1988). It was shown that muscle basal 

lamina works as a temporary scaffold to guide axonal regrowth and organization (Tos et al., 

2007). Our long term goal in this project is to develop a 3D plug of neurally differentiated PBD-

MAPCs which can be used in the therapy of spinal cord injuries. 
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CHAPTER 2 

PBD-MAPCs DO NOT DIFFERENTIATE INTO CARDIOMYOCYTES IN CULTURE 

 

INTRODUCTION 

 The human heart has a limited regeneration potential. A heart attack (myocardial 

infarction) is the most serious form of heart disease and it is vital to discover novel therapies 

against this potentially fatal disease. Cardiomyocytes lost due to a myocardial infarction are 

replaced by non contractile fibrous tissue which leads to reduced functional ability and finally 

results in heart failure. The current treatment options for an acute myocardial infarction are very 

few and organ transplantation is often the only option (Zhu et al., 2009). However, this solution 

is limited due to a lack of donor organs and complications resulting from immune rejections. 

Because of these setbacks, cellular therapy has been investigated as a potential alternative. Many 

different types of stem cells from embryonic and adult sources are currently being investigated 

for their potential use in therapies for myocardial infarction. Human embryonic stem cells (Yoon 

et al., 2006), activated hematopoietic stem cells from adult murine hearts (Matsuura et al., 2004), 

an embryonic carcinoma cell line P19 (Paquin et al., 2002), skeletal myoblasts (Taylor et al., 

1998), bone marrow cells (Orlic et al., 2001), mesenchymal stem cells (Toma et al., 2002; 

Rangappa et al., 2003; Wang et al., 2004), and adult-derived liver stem cells (Muller-Borer et al., 

2004) have all been shown to differentiate into cardiomyocytes in culture.   

 In vitro differentiation of stem cells into cardiomyocytes occurs in response to specific 

cytokines including Wnt proteins (Wnt3A, recombinant human Dkk-1and recombinant mouse 

Frizzled 8/Fc) (Naito et al., 2006), Gsk-3β inhibitor II (Naito et al., 2006), oxytocin (Paquin et 

al., 2002), 5-aza-2'-deoxycytidine (Rangappa et al., 2003; Oh et al., 2003) or DMSO (Paquin et 
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al., 2002; Oh et al., 2003). Wnt proteins were reported to have a biphasic role in 

cardiomyogenesis. Activation of the Wnt pathway during the early phase enhances cardiac 

differentiation, whereas inhibition of Wnt signaling in the late phase enhances cardiac 

differentiation (Naito et al., 2006). Gsk-3β inhibitor II mimics the effects of Wnt3A. We 

examined the potential of these compounds to differentiate PBD-MAPCs into cardiomyocytes.  

 As an alternative to adding cytokines, stem cells can be co-cultured with neonatal 

cardiomyocytes which release factors that induce stem cell differentiation. This technique has 

been successful with liver stem cells (WBF344) (Muller-Borer et al., 2004), mesenchymal stem 

cells (Li et al., 2006), endothelial embryonic cells (Condorelli et al., 2001) and endothelial 

progenitor cells (EPCs) (Badorff et al., 2003). Embryonic rat cardiomyoblasts (H9C2 cells) 

(Murasawa et al., 2005) also induce development of a myocardial lineage from endothelial 

progenitor cells (EPCs) in co-culture.  

 When stem cells differentiate into cardiac lineage they contract spontaneously in culture 

because of the intrinsically contractile nature of cardiomyocytes (Planat-Benard et al., 2004). For 

assay of differentiated PBD-MAPCs we used mouse monoclonal antibodies for cardiac Troponin 

T (cTnT) (Toma et al., 2002), cardiac Troponin I (cTnI) and cardiac Myosin heavy chain 

(cMHC) (Min et al., 2002) which were all shown to be specific cardiac markers.   

 Our lab has isolated a novel type of adult stem cell from blood, Peripheral Blood-Derived 

Multipotent Adult Progenitor Cells, (PBD-MAPCs). Earlier findings showed that PBD-MAPCs 

can be differentiated into endothelial, smooth muscle, osteocyte, adipocyte and neuron like cells 

(Price et al., 2006).  The goal of these experiments was to determine if PBD-MAPCs can 

differentiate into cardiomyocytes when grown in the appropriate conditions.  
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Specific Aims 

We examined the potential of Wnt proteins, Gsk-3β inhibitor II, oxytocin, 5-aza-2'-

deoxycytidine and DMSO to induce cardiomyocyte differentiation in primordial PBD-MAPCs. 

We also co-cultured primordial PBD-MAPCs with neonatal rat cardiomyocytes or H9C2 cells to 

test the cardiomyocyte differentiation potential of this unique population of adult stem cells.  In 

order to assess differentiation, we looked for spontaneous beating behavior and expression of 

cardiac specific proteins, cTnT, cTnI and MHC.   

Hypotheses   

Hypothesis 1: Wnt proteins, Gsk-3β inhibitor II, oxytocin, DMSO or 5-aza-2'-deoxycytidine in 

cell culture will induce PBD-MAPCs to spontaneously beat in culture and express cardiac 

specific proteins.  

Hypothesis 2:  Neonatal rat cardiomyocytes or embryonic rat cardiomyoblast cells (H9C2 cells) 

when co-cultured with PBD-MAPCs induce PBD-MAPCs to spontaneously beat in culture and 

express cardiac specific proteins.  

MATERIALS AND METHODS 

 

Cardiac differentiation with cytokines 

 PBD-MAPCs were maintained in the primordial stage as previously described (Price et 

al., 2006). We have different clones of PBD-MAPCs, designated clone 45 and 100. For cardiac 

differentiation with cytokines, dissociated PBD-MAPCs were washed in PBS and resuspended in 

DMEM/F12 (Gibco), 10% FBS (Hyclone), Penicillin/Streptomycin (Gibco) and GlutaMAX 

(Invitrogen). Cells in culture medium were seeded into a 24 well tissue culture plate (Corning) 
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coated with gelatin (Sigma) (10uL of 2% gelatin was applied per well and left to dry) or 

Collagen IV (R&D Systems) (500uL of 0.4% Collagen is added per well and left to dry and 

washed with distilled water). Medium was changed once every 3 days. Cells were allowed to 

grow for 4 days and then recombinant mouse Wnt3A (R&D Systems) or Gsk3β inhibitor II 

(Calbiochem) were added at 100ng/ml and 0.2µM concentrations respectively. Cells were treated 

with Wnt3A or Gsk3β inhibitor II for 4 days, changed to regular medium for 2 days and again 

Wnt inhibitors, recombinant human Dkk-1 (R&D Systems) and recombinant mouse Frizzled 

8/Fc Chimera (R&D Systems) were added at a concentration of 500ng/ml and 200ng/ml 

respectively. Cells were maintained in Wnt inhibitors for another 5 days and later probed for 

expression of cardiac markers.  

 For differentiation with oxytocin (Calbiochem) and DMSO (Fisher Scientific), cells were 

cultured in αMEM (Gibco) medium with 7.5% bovine serum (Gibco), 2.5% FBS, 

Penicillin/Streptomycin and GlutaMAX.  PBD-MAPCs were initially seeded in non tissue 

culture plates with 10
-7

M oxytocin (Calbiochem) or 1% DMSO and were kept rocking for 4 

days. After 4 days, cells were changed to a plain medium into a tissue culture plate and were not 

rocked.  Medium was changed once every 2 days. The culture was maintained for 14 days and 

later probed for cardiac specific markers using immunoblots and immunocytochemistry. 

 For differentiation with 5-aza-2'-deoxycytidine (Sigma) cells were cultured in 

DMEM/F12 with 10% FBS, Penicillin/Streptomycin and GlutaMAX. Cells were seeded on 

tissue culture plates coated with rat tail collagen type I (BD Biosciences). Two days after 

seeding, medium with 9µM of 5-aza-2'-deoxycytidine was added and cells were allowed to grow 

for 2 days. The medium was then replaced with plain medium and the cells cultured for 

additional 5 weeks and later probed for expression of cardiac markers.  
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Co-culture – Neonatal rat cardiomyocytes  

  For cardiac differentiation using co-culture technique, a 24 well tissue culture plate was 

coated with 2% gelatin. Neonatal rat cardiomyocytes (NRCM) (Lonza) were resuspended in 

DMEM/F12 with 7.5% FBS, 7.5% horse serum (Lonza), 50 mM HEPES and 

Penicillin/Streptomycin. NRCM were seeded into 10 wells at a density of 4x10
5
 cells per well. 

PBD-MAPCs were added to six wells on day 0 and the remaining 4 wells were kept as controls. 

Medium was changed once every 2 days. The culture was maintained for 7 days and on the 8
th

 

day serum content was reduced to 5% in half the wells. Cells were maintained at 5% serum until 

the 19
th

 day, at which point the experiment was terminated and immunocytochemistry 

performed.  

Co-culture – Embryonic rat cardiomyoblasts (H9C2 cells) 

 For cardiac differentiation using H9C2 cells, a 24 well tissue culture plate was coated 

with rat tail collagen type I. Embryonic rat cardiomyoblasts (H9C2 cells) (generously provided 

by Dr. Eric Blough, Marshall University) were seeded on culture plates in DMEM-high glucose 

(Gibco) with 10% FBS. Cells were allowed to settle and grow for 4 days after which PBD-

MAPCs were added. Medium was changed once every 2 days for 10 days and on the 11
th

 day 

half of the wells were serum starved to 1% FBS. Cells were allowed to grow until the 18
th

 day, at 

which point the experiment was terminated and immunocytochemistry performed.  

Immunoblots 

Immunoblots were performed as previously described (Price et al., 2006). Briefly, after 

the culture period, cells in individual wells were washed with PBS and lysed using Laemmli 

sample buffer (2% sodium dodecyl sulfate, 6M urea, 62.5 mM Tris-Cl, pH 6.8, 160 mM 
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dithioerythritol, 0.005% Bromophenol Blue). Equal amounts of protein were loaded on 4-12% 

Bis-Tris gel (Nupage/Invitrogen) and electrophoresed at 200 mV for 1hr. The gel was transferred 

onto polyvinylidene fluoride (PVDF) (Millipore) membranes at 250mA for 1hr 30 min. in 

transfer buffer containing 0.7M glycine and 25mM Tris. Membranes were blocked for an hour in 

Tris-buffered saline with 0.1% Tween 20 and 5% powdered milk. The membranes were probed 

with a mouse monoclonal antibody specific for cardiac Troponin T (cTnT) (34/41kDa) 

(Santacruz Bioreagents) at a 1:200 concentration. Membranes were treated with the primary 

antibody overnight followed by incubation with a horseradish peroxidase conjugated goat anti-

mouse secondary antibody for 1 hour (Sigma). Bands were visualized with chemiluminescence 

Amersham ECL Western blotting detection reagents (GE health care) and recorded on film 

(Kodak). 

Immunocytochemistry 

For immunocytochemistry, cells were washed with PBS and fixed in 4% 

paraformaldehyde for 30 min, after which they were washed and permeabilized in 0.1% Triton X 

100 for 20 minutes. Again they were washed and incubated in 0.1% BSA for 30 min. Later they 

were incubated in blocking buffer containing 5% BSA, 5% goat serum and 0.1% Micro-O-

Protect for 2 hours. Antibodies to cardiac Troponin I (cTnI) (Santacruz Bioreagents), cardiac 

Myosin heavy chain (MHC) (Affinity bioreagents) were diluted at 1:200 concentrations in a 1:10 

blocking buffer in PBS and incubated in a humidified chamber overnight. After thorough 

washing, cells were incubated with Alexa Fluor conjugated secondary antibodies (Invitrogen) for 

4 hours. Cells were washed thoroughly and incubated with 0.002% DAPI to stain the nuclei 

(Santa Cruz Biotechnology) for 10 minutes and then mounted in Prolong Gold (Invitrogen) and 

observed under an epifluorescence microscope. Micrographs were obtained with a Zeiss 
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AxioExplorer epifluorescent microscope using 10x and 20x air interface Neoplan objectives and 

the accompanying Zeiss image acquisition software. All deconvolution images were obtained 

with default settings. Brightness adjustments and image cropping was performed in ImageJ 

(NIH) and figures were assembled using Microsoft Powerpoint.  

RESULTS 

 

PBD-MAPCs in a cardiac differentiation culture do not contract spontaneously.  

 PBD-MAPCs were cultured in different culture conditions using the cytokines Gsk3β-

inhibitor II, Oxytocin and 5-aza-2'-deoxycytidine (Fig. 2.1A-C) (n=3).  Cell cultures were 

observed on a daily basis and assessed for spontaneous contractions, but none were observed up 

to 5 weeks of culture although the cells appeared healthy. Cells in culture with Wnt3A also did 

not contract (data not shown). When PBD-MAPCs were co-cultured with rat embryonic cardiac 

myoblasts (H9C2 cells), they did not contract spontaneously, as expected H9C2 cells also did not 

contract in culture (Meyer and Lubo, 2007). In co-culture experiments with neonatal rat 

cardiomyocytes, the cardiomyocytes formed foci of spontaneously contracting cells (data not 

shown), but none of the PBD-MAPCs exhibited such contracting foci.  

Immunoblot analysis for cardiac proteins on PBD-MAPCs after cardiac differentiation 

with cytokines does not show cardiac specific proteins. 

 Fig 2.2A shows an immunoblot probed for cardiac Troponin T (cTnT) in samples after 

cardiac differentiation on two different extracellular matrices, gelatin and collagen (n=3).  In 

each matrix we used cytokines Wnt 3A, Gsk3β-inhibitor II or oxytocin. Only the positive control 

(rat heart) expressed the expected cardiac Troponin T (cTnT) band at 34/41 kDa. The other 

treatment groups cultured on gelatin, Wnt3A, Gsk3β-inhibitor II, oxytocin and untreated, did not 
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express cTnT. Similarly the experimental groups cultured on collagen, Wnt3A, Gsk3β-inhibitor 

II, oxytocin or untreated, did not express cTnT. All the experimental samples, but not the rat 

heart control, showed an unexpected cTnT reactive doublet of about 70kDa.  

 Fig 2.2B shows an immunoblot probed for cardiac Troponin T (cTnT), on two different 

clones of PBD-MAPCs (clone 45 and clone 100) in two treatment conditions; 5-aza-2'-

deoxycytidine and untreated. Again, only the positive control (rat heart) expressed a cardiac 

Troponin T (cTnT) band at 34/41 kDa. The PBD-MAPC samples, regardless of treatment 

conditions did not express cTnT. Again, all PBD-MAPC samples were immunoreactive for the 

70kDa doublet observed in Fig. 2.2A. All membranes were stained with Coomassie blue and 

found to have equal loading of protein (data not shown).   

PBD-MAPCs after cardiac differentiation with cytokines do not express cardiac proteins in 

immunocytochemistry. 

 Immunocytochemistry to detect cardiac myosin heavy chain (MHC) expression was 

performed on PBD-MAPCs cultured with the cytokines oxytocin (Fig. 2.3A), DMSO (Fig. 

2.3B), or a combination of oxytocin, Gsk3β inhibitor II, DMSO, Dkk and Fz/F8 (Fig. 2.3C) 

(n=3).  None of these treatments gave rise to PBD-MAPCs immunoreactive to MHC (red), 

although cultured neonatal rat cardiac cells processed with the same ICC protocol showed strong 

immunofluorescence for MHC (Fig 2.3D).  The inherent green fluorescent protein (GFP) 

fluorescence of PBD-MAPCs allowed their visualization and nuclei were stained with DAPI.  
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Figure 2.1  
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Figure 2.2 
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Figure 2.3 
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PBD-MAPCs co-cultured with neonatal rat cardiomyocytes do not express cardiac proteins 

in immunocytochemistry. 

 PBD-MAPCs were co-cultured with neonatal rat cardiomyocytes and probed for 

expression of cardiac proteins (n=3). Immunocytochemistry to detect myosin heavy chain 

(MHC) (Fig 2.4A), showed that none of the PBD-MAPCs were positive for this cardiac marker 

protein, only the neonatal rat cardiomyocytes were strongly immunoreactive for MHC. PBD-

MAPCs and neonatal cardiac cells were in close contact with each other. Nuclei stained with 

DAPI were observed in PBD-MAPCs and neonatal rat cardiomyocytes. When probed for another 

cardiac specific marker protein, cardiac troponin I (cTnI) (Fig. 2.4B), only the neonatal cells and 

no PBD-MAPCs showed immunoreactivity to cTnI.  

PBD-MAPCs co-cultured with embryonic rat cardiomyoblast cells (H9C2) do not express 

cardiac proteins. 

 PBD-MAPCs co-cultured with embryonic rat cardiomyoblast cells (H9C2 cells) (n=3) in 

two different conditions, serum starved (1% FBS) (Fig. 2.5 A) and with media containing 10% 

FBS (Fig. 2.5B), were probed for the expression of MHC. On immunocytochemistry, none of the 

PBD-MAPCs cultured in different serum concentrations were immunoreactive for MHC. Only 

the H9C2 cells were positive for MHC regardless of serum concentration. Nuclei were stained 

with DAPI and observed in both PBD-MAPCs and H9C2 cells. The H9C2 cells served as an 

internal control for the immunostaining procedure as they expressed high levels of the cardiac 

protein MHC.   
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Figure 2.4 
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Figure 2.5 
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DISCUSSION 

 

 Earlier findings showed that PBD-MAPCs can be differentiated into endothelial, smooth 

muscle, osteocyte, adipocyte and neuron like cells (Price et al., 2006) but cardiomyocyte 

differentiation was not attempted. In this study we used cytokines, shown to cause differentiation 

of stem cells into cardiomyocytes, to test the ability of PBD-MAPCs to differentiate into 

cardiomyocytes. Cardiomyocytes are intrinsically contractile and develop spontaneously 

contracting foci in culture. Whenever stem cells differentiate into cardiac lineage they also 

contract spontaneously in culture (Planat-Benard et al., 2004). In none of our experiments could 

we observe any spontaneously contracting foci of cells. Though we used various methods, none 

of the method employed caused apparent differentiation of PBD-MAPCs into cardiac myocytes. 

In this study, we establish that PBD-MAPCs are not likely to differentiate to a cardiomyocyte 

lineage from the primordial state in which we maintain them. Our choice of markers cTnT for 

immunoblots and cTnI and cardiac MHC for immunocytochemistry was due to the fact that 

cTnT antibody was not reactive to the positive control cardiomyocytes in immunocytochemistry 

and cTnI and cardiac MHC were not reactive to the heart lysate used as positive control in 

immunoblots. Regardless of the cytokines added, PBD-MAPCs did not express the expected 

34/41 kDa cTnT band. However all PBD-MAPC cell extracts contained a cTnT-reactive doublet 

of about 70kDa. We could not find mention of such a doublet at that molecular weight in the 

literature. The doublet was not found in the positive control samples and hence could represent a 

cell culture induced protein expression. Immunocytochemistry on PBD-MAPCs after 

differentiation culture with cytokines or co-culture also did not show any cells immunoreactive 

to cardiac specific proteins cTnI and cardiac MHC. These results are similar to a few other 

published findings that mesenchymal stem cells do not differentiate into cardiomyocytes 
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(Martin-Rendon et al., 2008). Certain other findings also showed that co-culture did not cause 

differentiation or caused very limited differentiation of rodent mesenchymal stem cells (Rose et 

al., 2008; Gallo et al.), human endothelial progenitor cells (Gruh et al., 2006)and human bone 

marrow stem cells (Koninckx et al., 2009) into a cardiac lineage. In this study we did not probe 

to see if undifferentiated PBD-MAPCs express certain cardiac markers as was advocated by the 

nonspecific gene expression theory (Egusa et al., 2005) and was seen in later part of this current 

research in relation to neural markers. This could be a future study of interest to further validate 

the concepts of nonspecific gene expression.  

In summary, primordial PBD-MAPCs when cultured with Wnt proteins, Gsk 3β inhibitor 

II, oxytocin, DMSO or 5-aza-2'-deoxycytidine under appropriate culture conditions do not 

differentiate into cardiomyocytes. In addition, primordial PBD-MAPCs, when co-cultured with 

H9C2 cells or neonatal rat cardiomyocytes, do not differentiate into cardiomyocytes.  PBD-

MAPCs may not be sufficiently primordial to differentiate into a myocardial lineage or perhaps 

these cells require additional specific factors that may play a crucial role in cardiomyogenesis. 

Finally, by injecting PBD-MAPCs into an ischemic heart (Van't Hof et al., 2007); we could 

determine if paracrine signals within the heart milieu might cause differentiation of PBD-

MAPCs into cardiomyocytes. This may lead to the identification of additional signaling factors 

required for differentiation of PBD-MAPCs to a cardiomyocyte lineage in vitro. In conclusion 

our data does not support our hypotheses that Wnt proteins, Gsk-3β inhibitor II, oxytocin, 

DMSO or 5-aza-2'-deoxycytidine and co-culture with neonatal rat cardiomyocytes or H9C2 cells 

will induce PBD-MAPCs to spontaneously beat in culture and express cardiac specific proteins.  
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CHAPTER 3 

COMPARING THE EXPRESSION PROFILES OF PRIMORDIAL AND NEURALIZED 

PBD-MAPCs 

INTRODUCTION 

 

 Our lab has isolated a new kind of stem cell population from the blood of transgenic 

green fluorescent protein (GFP) swine and named them as Peripheral Blood Derived Multipotent 

Adult Progenitor Cells (PBD-MAPCs) (Price et al., 2006). In vitro these cells were shown to 

differentiate into endothelial, smooth muscle, osteocyte, adipocyte and neuron like cells (Price et 

al., 2006) which indicate that the newly discovered cells are a stem cell population. In general, 

stem cells express typical marker proteins which identify them from other cell populations. 

Prominin-1/CD133 (originally termed as AC133) is a plasma membrane marker found in 

hematopoietic stem cells. It is also found in several types of somatic stem cells, including neural 

stem cells (Kania et al., 2005). Though our PBD-MAPCs differentiate into many different 

lineages, the stem cell markers which PBD-MAPCs express were not probed to date. Since PBD-

MAPCs are a novel population of blood derived stem cells and have a few advantages over 

traditional sources of stem cells, we wanted to examine their protein expression profiles to 

determine if they express the hematopoietic stem cell marker CD133. 

Stem cells, when cultured in defined media with specific cytokines such as EGF, bFGF, 

BDNF and retinoic acid will differentiate into neuronal cells (Dasari et al., 2007; Karimi-

Abdolrezaee et al., 2006; Nistor et al., 2005). Our lab has shown that PBD-MAPCs differentiate 

into neuron like cells in culture, in a manner similar to other described stem cells (Spitzer and 

Price, 2008). After differentiation, cells attain a typical neuronal morphology with long cellular 

processes, lose expression of primordial markers and express neuronal specific markers such as 
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β-tubulin III, tyrosine hydroxylase (TH) and Protein gene product 9.5 (PGP9.5). The goal of 

these experiments was to determine the mRNA and protein expression of undifferentiated PBD-

MAPCs and PBD-MAPCs after undergoing neural differentiation. 

Specific Aim 

The specific aim of this project was to compare the protein expression profiles of PBD-

MAPCs before and after neural differentiation. We expected that primordial PBD-MAPCs would 

express the stem cell marker CD133 and that after neural differentiation; they would switch their 

expression to neural markers such as TH, β-tubulin III and PGP9.5.  

Hypotheses 

Hypothesis 1: Using RT-PCR, we expect to see expression of the primordial marker CD133, and 

not the neuronal marker TH before subjecting PBD-MAPCs to differentiation; this expression 

profile is expected to reverse after neuronal differentiation.  

Hypothesis 2: Using immunoblots, we expect neuralized PBD-MAPCs and not the primordial 

PBD-MAPCs to express the neuronal markers β-tubulin III and PGP9.5. 

  

MATERIALS AND METHODS 

 

Reverse transcription-polymerase chain reaction (RT-PCR) 

PBD-MAPCs were maintained as previously described (Price et al., 2006). For neural 

differentiation, PBD-MAPCs were cultured in neuronal-specific medium as previously described 

(Spitzer and Price, 2008). Briefly, cells were seeded onto poly-lysine coated culture plates and 
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allowed to grow for 8 days in neurobasal medium with B27, N2, EGF, bFGF, FGF8b and Shh. 

Media was changed once every two days. For control cells we used porcine umbilical vein 

endothelial cells (PUVECs), which were harvested from umbilical cords of endothelial nitric 

oxide synthase (eNOS) over-expressing piglets (Hao et al., 2006). They were allowed to grow on 

tissue culture plastic in EGM-2 complete medium (Lonza) and passaged once every 5-6 days. 

After the culture period mRNA was isolated from cells using Trizol reagent (Invitrogen), and 

cDNA was synthesized with Superscript III (Invitrogen). We designed swine-specific primer sets 

to detect CD133, and TH to synthesize PCR products and ordered from Invitrogen. Human β-

Actin primer set was ordered from Stratagene. Primers used for amplification and sequencing are 

shown in table 3.1. Amplified PCR products were separated by agarose or 8% polyacrylamide 

(Invitrogen) gel electrophoresis and DNA bands on the gel were visualized with ethidium 

bromide and UV light. 

 

Sequencing 

PCR products were purified with a QIAquick PCR purification kit (Qiagen). DNA 

concentration and purity were determined by measuring absorbance at 280 and 260nm with a 

Nanodrop spectrophotometer. Samples were submitted to the Marshall University DNA Core 

facility with the primers used for amplification and sequencing was performed there with a ABI 

3130 Genetic Analyzer. Sequencing data was compared with porcine sequences in NCBI 

BLAST  
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Table 3.1 

RT-PCR primers, expected product size and PCR program used for the amplification of 

CD133, tyrosine hydroxylase (TH) and β-actin. 

 

 

In CD133 primers, I (Inositol) represent A/T/G/C and N represents A/T/G/C.  

  

        Expected Annealing temp.  

                                 5’→ 3’ primers product size 
Extension time, 

Cycles 

  PCR 1 Fw CCIGCIA(T/C)IAA(T/C)TA(T/C)GA(A/G)ACNAA(A/G)GA     

CD133   Rv GC(T/C)TCNGCCATNGC(T/C)TT(A/G/T)AT 678bp 60
o
C, 1', 40  

  
Nested 

PCR 
Fw CCTGGGGCTGTTTATTATCC                                       

    Rv GACATATCACCAAGAGGGAAACG                       159bp 57
o
C, 1', 40  

  PCR 1 Fw GACCTTCGCCCAGTTCTCGC     

TH   Rv AGCGTGTACGGGTCGAACTT 367bp 57
o
C, 1', 40  

  
Nested 

PCR 
Fw AGTTTGGGCTCTGCAAACAGAACG     

    Rv TGTCCTTGGCGTCACTGAAAACTCT 218bp 62
o
C, 1', 40  

β-actin PCR 1 Fw TGACGGGGTCACCCACACTGTGCCCATCTA           

    Rv CTAGAAGCATTTGCGGTGGACGATGGAGGG       661bp 60
o
C, 1'30", 40 
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Immunoblots 

Immunoblots were performed as described previously (Price et al., 2006). Briefly, after 

the culture period, cells (primordial PBD-MAPCs and newly differentiated cells) were dissolved 

using a Laemmli sample buffer (2% sodium dodecyl sulfate, 6M urea, 62.5 mM Tris-Cl, pH 6.8, 

160 mM dithiothreitol, 0.005% Bromophenol Blue). Pig brain lysate (Abcam) was used as a 

positive control. Protein amounts were quantified using NanoOrange protein quantitation kit 

(Invitrogen). Equal amounts of protein were loaded in a 4-12% Bis-Tris gel (Nupage/Invitrogen) 

transferred onto polyvinylidene fluoride (PVDF) (Millipore) membranes using 0.7M glycine and 

25mM Tris as a transfer buffer. Membranes were blocked for an hour in Tris-buffered saline 

with 0.1% Tween 20 and 5% powdered milk.  The membranes were probed for mouse anti β-

tubulin III monoclonal antibody (Chemicon) and rabbit anti PGP9.5 polyclonal antibody 

(Abcam) at a 1:500 concentration. Membranes were treated with the primary antibody overnight 

followed by horseradish peroxidase conjugated secondary antibody (Sigma) for 1 hour. Bands 

were visualized using the Amersham ECL Western blotting detection reagents (GE healthcare) 

using chemiluminescence and recorded on a film (Kodak).  

RESULTS 

 

Primordial PBD-MAPCs express mRNA for the stem cell marker CD133 and tyrosine 

hydroxylase (TH) while neuralized cells do not express TH.  

 RT-PCR for CD133, a hematopoietic stem cell marker (Fig. 3.1A), resulted in 

amplification of a fragment of the correct size (159bp) from porcine control cells, PUVECs (C+) 

and primordial PBD-MAPCs (P+) (n=1). In PBD-MAPCs, this expression is lost upon neural 

differentiation (N+).  RT-PCR of tyrosine hydroxylase (TH), a dopaminergic neuron marker (Fig 
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3.1B) surprisingly showed that primordial PBD-MAPCs (P+) express mRNA for TH while 

neuralized PBD-MAPCs (N+) do not (n=1). β-actin, a housekeeping gene, was amplified to 

control for cDNA integrity and sample loading (n=2). Appropriately sized bands (661bp) were 

observed in porcine control cells (C+), primordial PBD-MAPCs (P+) and neuralized PBD-

MAPCs (N+). No bands were observed in the no RT control (P-, N-) or the PCR no template 

control (-) samples in all experiments. 

Nucleotide sequences of PCR products amplified from PBD-MAPCs are 100% identical to 

porcine sequences of CD133 and tyrosine hydroxylase (TH) 

 When the amplified RT-PCR products of CD133 (Fig. 3.2A) and TH (Fig. 3.2B) were 

sequenced and compared with porcine sequences in NCBI BLAST, we found them to be 100% 

identical (n=1). The CD133 sequence had 87% similarity to Equus caballus (horse) and 84% 

similarity to Bos taurus (cattle) whereas the TH sequence had 91% similarity to Homo sapiens, 

96% similarity to Bos taurus (cattle) and 94% similarity to Canis familiaris (dog) sequences. 

This establishes that the PCR products are true porcine sequences and not from human or other 

species contamination and primordial PBD-MAPCs do indeed express CD133 and TH.  

Immunoblot analysis for neural marker proteins in primordial and neuralized PBD-

MAPCs, show expression of neural markers. 

 An immunoblot analysis for the cell lysate samples before and after neural differentiation 

showed that both primordial and neuralized PBD-MAPCs express certain neural markers. Fig 

3.3A shows an immunoblot probed for β-tubulin III, a neural marker (n=2). The positive control 

(pig brain lysate) expressed β-tubulin III. Also both the neuralized (N) and primordial (P) cell 

samples showed an immunopositive β-tubulin III band at 50kDa. In addition, a second clear band  
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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of around 60kDa was observed only in the neuralized sample but not in the positive control or 

the primordial PBD-MAPC samples. Fig 3.3B shows an immunoblot probed for protein gene 

product 9.5 (PGP9.5), a neural marker (n=2). The positive control (pig brain lysate) expressed 

PGP9.5. Surprisingly only the primordial (P) cells expressed PGP9.5 while the neuralized (N) 

cells did not. All membranes were stained with Coomassie blue stain and found to have equal 

loading of protein.   

DISCUSSION 

 

 In this study we compared the expression profiles of primordial and neuralized PBD-

MAPCs. Our choice of CD133 was made on the basis that PBD-MAPCs are blood derived and 

CD133 is a hematopoietic stem cell marker (Kania et al., 2005). Also due to non-availability of 

porcine specific antibody for CD133 we could not probe for CD133 protein expression in 

immunoblots. Expression of CD133 mRNA, a marker commonly found in several types of 

somatic stem cells, including hematopoietic and neural stem cells (Kania et al., 2005), clearly 

shows that PBD-MAPCs have stem cell characteristics. The fact that primordial PBD-MAPCs 

expressed CD133 and lost this expression after culture in neural differentiation medium confirms 

that they are no longer primordial and have begun their journey towards a specific lineage, in this 

case a neural lineage. A similar result showing loss of CD133 expression in neural stem cells 

from fetal brain after differentiation was shown previously (Ji et al., 2006). Also, CD133 marker 

expression has been reported to be lost upon terminal differentiation of endothelial progenitor 

cells into mature endothelial cells. (Hristov et al., 2003). CD133 was also reported to be 

expressed by multipotent adult progenitor cells (MAPC) from human bone marrow (Reyes et al., 

2002). 
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 Our positive control cells for RT-PCR analysis were PUVECs from piglets (porcine 

umbilical vein endothelial cells), which also expressed CD133. The CD133 marker is absent on 

mature endothelial or differentiated hematopoietic cells, however CD133 is expressed in a small 

population of circulating endothelial cells (Peichev et al., 2000; Salven et al., 2003). It was also 

reported that mature microvascular endothelial cells from human lungs express CD133 (Kahler 

et al., 2007) which are endothelial cells as PUVECs. Also it could be that PUVECs express 

CD133 because they are from a neonatal source. It was reported that late outgrowth endothelial 

cells derived from Wharton’s jelly in human umbilical cord express CD133 and also that very 

few tissues such as placenta express CD133 (Wang et al., 2009). Hence this might explain 

PUVECs expressing CD133. 

  We found that primordial PBD-MAPCs expressed TH, a dopaminergic neuron 

marker before differentiation. Similarly, expression of neural genes by mesenchymal stem cells 

has been previously reported (Blondheim et al., 2006; Deng et al., 2006; Tondreau et al., 2004; 

Lamoury et al., 2006). Other findings report that mouse bone marrow stromal cells express a 

wide range of proteins including those expressed in terminally differentiated cells and suggest 

the theory of non specific gene expression by stem cells.  In this theory it is suggested that stem 

cells exhibit nonspecific gene expression and when once they are directed towards a specific 

lineage, other lineage specific genes are silenced. Primordial cells may therefore simply express 

various proteins nonspecifically until they receive differentiation signals (Egusa et al., 2005). 

These earlier studies explain expression of TH by PBD-MAPCs. Interestingly after 

differentiation, neuralized PBD-MAPCs did not express TH. This might be due to insufficient 

signals from the culture medium or due to the TH gene silencing. Signals from the culture 

medium might not be sufficient to differentiate PBD-MAPCs into specialized neurons like the 
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dopaminergic neurons which express TH, due to this the TH genes which were being expressed 

by undifferentiated PBD-MAPCs might be silenced after the differentiation.     

 The nucleotide sequence of PCR products were observed to be identical to porcine 

sequences of CD133 and TH, which establishes that our PCR products are true porcine 

sequences and not products of human contamination.  

 β-tubulin III, a general neuronal marker was found to be expressed by both neuralized 

and primordial PBD-MAPCs. It was expected that β-tubulin III would be expressed only by 

differentiated cells. However, undifferentiated mesenchymal stem cells have been reported to 

express neural proteins, including β-tubulin III, in culture (Deng et al., 2006; Tondreau et al., 

2004). This supports the theory of nonspecific gene expression in PBD-MAPCs as explained 

earlier. As expected, PBD-MAPCs expressed β-tubulin III on differentiation.  Also primordial 

PBD-MAPCs expressed PGP9.5, a neural marker. This expression might be explained by the 

theory of nonspecific gene expression in PBD-MAPCs. However neuralized cells not expressing 

PGP9.5 might be due to gene silencing in differentiated PBD-MAPCs. In conclusion our data 

does not completely support our hypotheses. In our first hypothesis we hypothesized that PBD-

MAPCs would only express CD133 and would lose its expression on differentiation. However 

PBD-MAPCs were seen to express both CD133 and TH. On differentiation PBD-MAPCs lost 

CD133 expression as expected but did not express TH. In our second hypothesis we 

hypothesized that only neuralized PBD-MAPCs would express neural markers, on the contrary 

primordial PBD-MAPCs were found to express β-tubulin III and PGP9.5. However on 

differentiation PBD-MAPCs expressed β-tubulin III but did not express PGP9.5.  
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CHAPTER 4 

DIFFERENTIATION OF PBD-MAPCS INTO NEURAL LINEAGES IN A 3 

DIMENSIONAL CELL CULTURE MATRIX 

 

INTRODUCTION  

  

Injury to the spinal cord can result in damage to the neuronal axons and causes 

demyelination of surviving axons, severely hampering neuronal conductance along the spinal 

cord (Karimi-Abdolrezaee et al., 2006; Barnabe-Heider and Frisen, 2008; Wrathall and Lytle, 

2008). This greatly reduces the motor and sensory abilities of an affected person and 

dramatically affects his/her quality of life (Louro and Pearse, 2008). Much work is being done to 

regenerate the lost functional abilities due to injury, and stem cells currently offer a great 

promise in this direction. Many different types of stem cells from embryonic and adult sources 

are currently being studied, including olfactory ensheathing cells (Li et al., 1997), embryonic 

stem cells (McDonald et al., 1999), mesenchymal stem cells (Yang et al., 2008), Schwann cells 

(Xu et al., 1995) and adult rat spinal cord stem/progenitor cells (Parr et al., 2007). Stem cells 

have been implanted into the injury site in laboratory animals (Keirstead et al., 2005; Karimi-

Abdolrezaee et al., 2006) and partial restoration of motor abilities has been reported. Recently 

the FDA has approved the use of stem cells in human clinical trials for spinal cord injuries. 

Immediately following injury, an inflammatory process begins, resulting in the formation of a 

glial scar that drastically reduces the possibility of regeneration or remyelination of spared fibers 

at the injury site (Fawcett and Asher, 1999; Gris et al., 2007). This has prompted the 

development of bridging transplants which consist of various biomaterials, molded into a 3 

dimensional (3D) shape and are impregnated with undifferentiated stem cells, Schwann cells or 

cells that have been pre-differentiated into neurons (Xu et al., 1997). In this technique the injured 
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region is excised and replaced with the cellular plug (Novikova et al., 2008; Fouad et al., 2005; 

Kamada et al., 2005). In a study conducted with Schwann cells in a poly-β-hydroxybutyrate 

(PHB) scaffold plug implanted in spinal cord injured rats, cells survived and neurofilament-

positive axons were observed in the biomaterial conduit and promoted axonal regeneration 

(Novikova et al., 2008).  

 Various biomaterials such as collagen, laminin, matrigel and fibrin have been employed 

in bridging transplants for spinal cord injury (Nomura et al., 2006; Cao et al., 2005). These 

biomaterials offer support for the growth of transplanted cells and endogenous axons. In addition 

to these types of biomatrices, skeletal muscle fibers have been used in nerve grafts to treat 

human cases of peripheral nerve damage (Roganovic et al., 2007; Weber et al., 2000; Norris et 

al., 1988) allowing regeneration of the lost neuronal conductance pathways and functional 

improvement (Brunelli et al., 1993). In this technique muscle fibers act as a guide for the growth 

of endogenous axons across the lesion.  

 Different types of stem cells, when cultured in defined media with specific cytokines 

such as EGF, bFGF, BDNF and Retinoic acid, will differentiate into neuronal cells (Dasari et al., 

2007; Nistor et al., 2005; Karimi-Abdolrezaee et al., 2006). Upon differentiation into a neural 

lineage, cells show long cellular processes typical to neuronal morphology and express specific 

neural markers like β-tubulin III (Karimi-Abdolrezaee et al., 2006) NeuN, neurofilament-L (NF-

L) (Joannides et al., 2004) which are neuronal specific markers, O4 and Myelin basic protein 

(MBP), both oligodendrocyte markers and glial fibrillary acidic protein (GFAP) an astrocyte 

marker.        

 We have isolated a novel type of adult stem cells from the peripheral blood of adult 

transgenic green fluorescent protein (GFP) swine, designated as Peripheral Blood Derived 
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Multipotent Adult Progenitor Cells (PBD-MAPCs). Also our lab has shown that PBD-MAPCs 

differentiate into neuron like cells in a 2 dimensional (2D) culture in a manner similar to other 

established kinds of stem cells (Spitzer and Price, 2008).  In this work it was shown that neurally 

differentiated PBD-MAPCs in a 2D culture express β-tubulin III, a neuronal marker. At this 

stage we are examining if the neural differentiation model can be achieved in a 3D culture 

system using various biomatrices. We also embedded skeletal muscle fibers isolated from rat leg 

muscles in the matrices to determine if these provide directional guidance for cellular growth.  

Specific aim 

As a first step towards developing a bridging transplant therapy for spinal cord injury 

(SCI), the specific aim of this study is to determine if PBD-MAPCs can be neurally 

differentiated in a 3D culture system. We also tested the capacity of skeletal muscle fibers 

embedded in the matrices to provide directional guidance for PBD-MAPC growth.  

Hypothesis 

Neural differentiation medium and 3D biomatrices of collagen, laminin, matrigel or fibrin 

will induce primordial PBD-MAPCs into neural cells showing neural morphology with long 

processes and express neuronal (β-tubulin III, NF-L and NeuN) and glial cell markers (O4, MBP 

and GFAP). Also skeletal muscle will provide a support for the growth of cellular processes. 

MATERIALS AND METHODS 

 

Skeletal muscle isolation 

Skeletal muscles were isolated from anesthetized Sprague Dawley rats and dissected into 

physiological rodent saline (PRS) (138mM NaCl, 2.7mM KCl, 1.8mM CaCl2.2H2O, 1.06mM 
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MgCl2.6H2O, 12.4mM HEPES, 5.6mM glucose, pH adjusted to 7.3). Muscle fibers are 

enzymatically treated with 0.2% collagenase in PRS and 10%FBS at 37
o
C and 5% CO2 for 90 

minutes, with occasional shaking. Muscle fibers are thoroughly teased apart and then centrifuged 

and resuspended in DMEM with 10% FBS, GlutaMAX, penicillin/streptomycin and Fungizone 

(Gibco) in a 6 well non-tissue culture plate. Muscle fibers are incubated at 37
o
C and 5% CO2 

until use.     

3D cell culture 

PBD-MAPCs were cultured in neuronal-specific medium (Neurobasal medium (Gibco) 

with Penicillin/Streptomycin 1%, NEAA 1%, GlutaMAX 1%, B27 1%, N2 1%, Matrigel without 

phenol red (BD Biosciences) 0.5%, EGF 60ng/ml, bFGF 10 ng/ml, BDNF 10 ng/ml, Retinoic 

acid 300 ng/ml). We cultured cells in 3D plugs made of collagen type I (Watanabe et al., 2007), 

laminin (Cultrex), fibrin (Sigma) (Ju et al., 2007) or Matrigel (LaPlaca et al., 2005) for 8 days. 

Media was changed every two days. For 3D biomatrices with muscle fibers, a collagen-laminin 

plug was used for culture and skeletal muscle fibers were added to the plug along with PBD-

MAPCs. 

Immunocytochemistry 

After the culture period, the 3D plugs were fixed in 4% paraformaldehyde for 2 hours and 

embedded in 1.5% agarose containing 5% sucrose. The resulting blocks were cryoprotected in 

30% sucrose in PBS at 4
o
C until they were equilibrated. The agarose blocks were cryosectioned 

at 40uM thickness using a Leica CM1950 cryostat and mounted onto Superfrost
TM 

slides (Fisher 

Scientific). Sections were washed with PBS 8 times, 5 minutes each and were blocked with 10% 

goat serum in 0.3% PBTX (0.3% Triton X 100 in 0.1M PBS) for 60 minutes. Later they were 
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again washed with PBS 4 times, 5 minutes each. Sections were incubated in sufficient quantity 

of primary antibody (mouse anti β-tubulin III monoclonal antibody (Chemicon), mouse anti 

NeuN monoclonal antibody (Chemicon), Rabbit anti NF-L monoclonal antibody (Cell 

Signaling), (for neurons), mouse anti GFAP monoclonal antibody (Chemicon) (for astrocytes), 

mouse anti Oligodendrocyte marker O4 monoclonal antibody (Chemicon)  and Rabbit anti 

Myelin basic protein MBP polyclonal antibody (Chemicon), (for oligodendrocytes) diluted at 

1:500 concentrations in 1% goat serum in 0.3% PBTX and incubated in a humidified chamber at 

4
o
C overnight. After thorough washing, sections were incubated with Alexa Fluor conjugated 

secondary antibodies (Invitrogen) diluted at 1:500 concentrations in 1% goat serum in 0.3% 

PBTX and incubated in a humidified chamber at room temperature for 2 hours. Cells were 

washed thoroughly and incubated with 0.02% TOPRO (Invitrogen) for 10 minutes and then 

mounted in Prolong Gold (Invitrogen) and observed under an epifluorescence microscope. 

Micrographs were obtained with a Zeiss AxioExplorer epifluorescent microscope using 10x and 

20x air interface Neoplan objectives and the accompanying Zeiss image acquisition software. All 

deconvolution images were obtained with default settings. Brightness adjustments and image 

cropping was performed in ImageJ (NIH) and figures were assembled using Microsoft 

Powerpoint.  
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RESULTS 

PBD-MAPCs cultured in a 3D collagen matrix with neural differentiation medium express 

neural markers. 

In this study we cultured PBD-MAPCs in four different biomatrices, collagen type I, a 

combination of collagen type I and laminin, Matrigel and fibrin. The fibrin plugs were 

completely disintegrated by day 3, terminating the experiment. All other matrices remained 

intact throughout the culture period. In most cases cells have long and slender processes 

indicative of a neuronal morphology. 

 Immunocytochemistry performed on sections obtained from 3D biomatrices containing 

PBD-MAPCs (n=3), showed that cells expressed O4, an oligodendrocyte marker (Fig. 4.1A), β-

tubulin III (Fig. 4.1B), and NeuN (Fig. 4.1C) both neuronal markers.  In cells expressing O4 

(Fig. 4.1A), co-localization of both GFP and O4 immunofluorescence is clearly visible in the 

long processes of the cells (arrows). Differentiated PBD-MAPCs also expressed GFAP, an 

astrocyte marker (Fig. 4.1 D); MBP, an oligodendrocyte marker, (Fig. 4.1 E) and NF-L, a 

neuronal marker (Fig. 4.1 F). In cells expressing MBP, GFP and MBP immunofluorescence are 

clearly co-localized in the long cellular processes (Fig. 4.1 E, arrows). 

 

PBD-MAPCs cultured in a 3D Matrigel matrix express neural markers when cultured in a 

neural differentiation medium.  

PBD-MAPCs cultured within a 3D Matrigel plug developed long and slender processes 

which were absent in the primordial PBD-MAPCs (n=2). These cells expressed O4 (Fig. 4.2 A), 

an oligodendrocyte marker and GFAP, an astrocyte marker (Fig. 4.2 B). Some PBD-MAPCs  
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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expressed low levels of neural markers (Fig. 4.2 B, arrowheads) compared to others (arrows), 

which were strongly immunoreactive.  

PBD-MAPCs cultured with skeletal muscle fibers in a 3D collagen-laminin matrix in a 

neural differentiation medium grow along muscle fibers and express neural markers.  

PBD-MAPCs were found to be growing along the muscle fibers when observed under a 

microscope (n=4). PBD-MAPCs associated with muscle fibers were immunoreactive to O4 (Fig. 

4.3A), an oligodendrocyte marker, β-tubulin III, a neuronal marker (Fig. 4.3 B), and GFAP, an 

astrocyte marker (Fig. 4.3 C).  

DISCUSSION  

 

In this study we used 3D biomatrices to culture and neurally differentiate PBD-MAPCs. 

Our ultimate goal is to develop a bridging transplant consisting of a plug of differentiated cells 

that can be implanted at the site of a spinal cord injury. This bridge will replace the glial scar and 

provide a substrate and cells for regeneration of neural conduction pathways which may lead to 

regain the lost function.   

 PBD-MAPCs could not be cultured in fibrin as the fibrin plugs disintegrated. This may 

be because we did not include protease inhibitors which would prevent degradation of fibrin by 

the enzymes secreted from cells (Sieminski and Gooch, 2004; Kang et al., 2005; Willerth et al., 

2006). Collagen has been reported to be a biomaterial of low immunogenicity and it supports 

neural cell growth (O'Connor et al., 2000). PBD-MAPCs cultured in a 3D collagen biomatrix 

developed long and slender processes which were absent in the primordial PBD-MAPCs clearly 

indicating morphological changes due to differentiation, cells also expressed neural proteins (O4, 



45 
 

β-tubulin III, NeuN, GFAP, MBP and NF-L) after differentiation. A similar result was reported 

with neural stem/precursor cells (NSPCs) from rat embryos in a collagen type I biomatrix, where 

NSPCs differentiated into neurons, astrocytes and oligodendrocytes (Watanabe et al., 2007). 

Neural differentiation was also reported for rhesus monkey embryonic stem cells with a collagen 

type I biomaterial (Chen et al., 2003; Michelini et al., 2006). Laminin was reported to be an 

important component of the extracellular matrix and is important for proper brain development 

(Brannvall et al., 2007). Differentiation of murine neural stem cells into neurons has also been 

achieved using amphiphillic nanofibers functionalized with the laminin-derived peptide IKVAV 

as a scaffold (Silva et al., 2004).  

 When PBD-MAPCs were cultured in a 3D biomatrix with muscle fibers, cells 

grew along the muscle fibers. The muscle fibers appeared to act as a scaffold and provided a sort 

of directional guidance to the growth and extension of cellular processes. Muscle grafts have 

been used in repair of peripheral nerve damage (Roganovic et al., 2007) and these experiments 

are the first steps in developing a similar approach to therapy of spinal cord injury. Skeletal 

muscles are an optimal addition to the 3D biomatrix bridging transplant because they provide a 

longitudinally oriented basal lamina and extracellular matrix components that direct and enhance 

regeneration of nerve fibers (Meek et al., 2004). These preliminary data indicate that PBD-

MAPCs do indeed differentiate into neural lineages and grow towards and along muscle fibers in 

3D biomatrix cultures. Future experiments will determine if the neuralized cells can generate and 

transmit action potentials, which are a key physiological function of neurons (Ban et al., 2007). 

Finally the data supports our hypothesis that primordial PBD-MAPCs can differentiate into 

neuronal cells in vitro in 3D biomatrices and express neuronal (β-tubulin III, NF-L and NeuN) 

and glial cell markers (O4, MBP and GFAP). Also, on differentiation, cells showed growth along 
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skeletal muscle fibers. These results indicate that a bridging transplant can be developed with 

PBD-MAPCs and skeletal muscle fibers embedded in biomaterials act as a scaffold and allow 

growth of cellular processes. Studying the possible muscle to cellular process contacts can be a 

potential future study to decipher the actual cell-cell interactions.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

CHAPTER 5 

DISCUSSION 

 

In view of our specific aims we could show that PBD-MAPCs do not differentiate into a 

cardiac lineage in the present culture conditions. We were also able to show that PBD-MAPCs 

express the stem cell marker CD133 and are stem cells; we also demonstrated that 

undifferentiated PBD-MAPCs express neural markers like TH, β-tubulin III and PGP9.5. 

Furthermore we established that PBD-MAPCs lose expression of the stem cell marker CD133 

upon differentiation. In addition, for the first time, we demonstrated neural differentiation of 

PBD-MAPCs in a 3D biomatrix and that PBD-MAPCs grow along muscle fibers when cultured 

with skeletal muscle fibers. Because of these results PBD-MAPCs are an interesting population 

of stem cells and show a great amount of promise for future research in spinal cord injuries. They 

might show cardiac differentiation with different factors and extra cellular matrices (ECM). 

Also, as PBD-MAPCs have been shown to differentiate into many cell types, there might still be 

a scope to achieve cardiac differentiation with these cells under optimal conditions which can be 

a promising future study.  

Our attempts to differentiate PBD-MAPCs towards a cardiac lineage, regardless of the 

differentiation protocols used with various cytokines and co-culture, were not successful. PBD-

MAPCs in culture perhaps need additional specific factors that may play a crucial role in 

cardiomyogenesis. Injecting PBD-MAPCs into an ischemic rat heart (Van't Hof et al., 2007), to 

check whether cardiac milieu induces differentiation of PBD-MAPCs towards a cardiac lineage, 

may help to identify additional signaling molecules required for cardiac differentiation. Future 

experiments could also be directed towards testing additional cytokines which have been 

reported to cause cardiac differentiation in stem cells such as 3,5,3’-Triiodo-L-Thyronine (T3) in 
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embryonal carcinoma cell line P19 (Rodriguez et al., 1994), Trichostatin A in monkey 

embryonic stem cells (Hosseinkhani et al., 2007). Finally, in the present study we used only 

gelatin and collagen as ECM in cardiac differentiation culture. It was reported in embryonic stem 

cells that interaction of cells with the ECM via integrins determines differentiation into 

mesodermal and neuroectodermal lineages. Also it was reported that loss of β1 integrin function 

resulted in retardation of cardiac differentiation (Czyz and Wobus, 2001). It was also reported 

that interactions of cells with the ECM are critical for the establishment and maintenance of stem 

cell self-renewal and differentiation. In a study on human embryonic stem cells (hESCs) cultured 

on Poly-D-Lysine (PDL), PDL/fibronectin, PDL/laminin, type I collagen and Matrigel, it was 

shown that laminin is a key ECM molecule and enhances neural progenitor generation, 

expansion and differentiation into neurons from hESCs (Ma et al., 2008). Future studies 

addressing the use of different ECMs would be useful in furthering our understanding of the 

effects of ECM and cardiac differentiation of PBD-MAPCs. 

 

In this study involving a novel type of stem cell population, we showed that PBD-

MAPCs, like many other stem cells, express CD133, a stem cell marker. Previously, it was 

reported that PBD-MAPCs differentiate into endothelial, smooth muscle, osteocyte, adipocyte 

and neuron like cells (Price et al., 2006). Hence we strongly conclude that PBD-MAPCs are stem 

cells and are multipotent in nature and can differentiate into various lineages when proper culture 

conditions are provided. Furthermore, since we found undifferentiated PBD-MAPCs to be 

expressing some neural markers (TH, β-tubulin III and PGP9.5) this supports the theory of 

nonspecific gene expression in PBD-MAPCs. Primordial cells may therefore simply express 

various proteins nonspecifically until they receive differentiation signals (Egusa et al., 2005). 
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However, expression of specific markers for other lineages like smooth muscle, osteocyte and 

adipocytes in undifferentiated cells was not tested. Future studies to test expression of additional 

stem cell markers by PBD-MAPCs may also aid in characterizing these cells. Future research 

could also be directed towards isolating a comparable type of peripheral blood derived 

multipotent adult progenitor cells from humans and to study its expression profile. This may lead 

to autologous stem cell therapies. In this study we also showed that PBD-MAPCs can be 

differentiated into a neural lineage and they lose expression of stem cell markers after 

undergoing neural differentiation.  

 

Additionally in this study we have demonstrated for the first time that PBD-MAPCs, 

when cultured in a 3D biomatrix, differentiate into neural cells with slender processes that are 

typical to a neural morphology. Also we were able to show that PBD-MAPCs in a 3D biomatrix 

with muscle fibers grow along the fibers, supporting the idea that muscles can provide 

directionality to the growing cellular processes. These are preliminary data towards the 

development of a novel transplant therapy for spinal cord injury. Potential future experiments 

should be aimed at examining the ability of differentiated cells to generate and transmit action 

potentials, which is a key physiological function of neurons (Ban et al., 2007; Bjorklund et al., 

2002; Benninger et al., 2003). When functional, active neurons can be generated from PBD-

MAPCs, research should be aimed at the development of a bridging transplant for spinal cord 

injury. The development of a bridging transplant can eventually be tested in a rat model of spinal 

cord injury where the extent of regeneration of neuronal functions can be studied. In conclusion, 

PBD-MAPCs are an easily accessible non-controversial population of stem cells from adult 

porcine blood. In view of our findings that they are multipotent (Price et al., 2006) and can 
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differentiate into neural lineages in a 3D culture, these cells can be a promising stem cell 

population for further investigations in the development of cellular therapies for spinal cord 

injury.    
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