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Abstract

Let µ and ν = (ν1, . . . , νk) be partitions such that µ is obtained from ν by adding m parts
of size r. Descouens and Morita proved algebraically that the modified Macdonald polyno-
mials H̃µ(X; q, t) satisfy the identity H̃µ = H̃νH̃(rm) when the parameter t is specialized to
an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when
r ≤ νk and r ∈ {1, 2}. This note gives a bijective proof of the formula for all r ≤ νk.

AMS Subject Classification Numbers: 05A19, 05E05, 05A05.
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1 Introduction

Macdonald polynomials [9, 10] have become central objects of study in the theory of symmetric
functions. The modified Macdonald polynomials H̃µ are symmetric polynomials in variables
x1, . . . , xN with coefficients in N[q, t]. This paper deals with a factorization formula satisfied by
the modified Macdonald polynomials when t is specialized to a root of unity. More specifically, fix
m ∈ N+, and let ζ = e2πi/m be a primitive mth root of unity. Suppose ν = (ν1 ≥ ν2 ≥ · · · ≥ νk)
is an integer partition, r ∈ N+, and µ is the partition obtained from ν by adding m new parts
of size r. In [1], Descouens and Morita used symmetric function identities to give an algebraic
proof of the following formula:

H̃µ(x1, . . . , xN ; q, ζ) = H̃ν(x1, . . . , xN ; q, ζ) · H̃(rm)(x1, . . . , xN ; q, ζ). (1)

In [2], Descouens, Morita, and Numata pose the problem of proving (1) bijectively using the
combinatorial formula for modified Macdonald polynomials found by Haglund [4] and proved
by Haglund, Haiman, and Loehr [5, 6]. Descouens et al. are able to solve this problem in the
case where r ≤ νk and r ∈ {1, 2}. In this paper, we give a bijective proof of (1) for any choice
of r ≤ νk. Our bijections restrict to the ones given in [2] when r = 1 or r = 2. We stress
that formula (1) holds in full generality, without the assumption that r ≤ νk. But the bijective
approaches studied here and in [2] cannot yet handle the cases where r > νk.

The rest of the paper is organized as follows. Section 2 reviews the combinatorial definition
of modified Macdonald polynomials from [4, 5, 6]. Section 3 describes the strategy we use
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to develop our bijection. This strategy is implemented in Sections 4 and 5. Final comments
appear in Section 6, including a discussion of the combinatorial difficulties that arise when our
hypothesis r ≤ νk is dropped.

2 Combinatorial Definition of H̃µ

This section reviews the combinatorial formula for H̃µ, which was conjectured in [4] and proved
in [5, 6]. Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µl) be a fixed integer partition, and let [N ] denote the set
{1, 2, . . . , N}. The Ferrers diagram of µ is

dg(µ) = {(i, j) ∈ N+ × N+ : 1 ≤ i ≤ l, 1 ≤ j ≤ µi}.

A filling of µ is a function T : dg(µ)→ [N ]. (Some authors refer to a filling as a tableau, whereas
other authors use the word “tableau” as an abbreviation for “semistandard Young tableau.” To
avoid potential confusion, we use the term “filling” throughout.) Let Fµ be the set of all fillings
of µ. We often visualize dg(µ) as a collection of unit squares, and we visualize T by placing
the number T (c) in the square representing c ∈ dg(µ). For example, the Ferrers diagram of
µ = (5, 3, 3, 3) is pictured (using the French convention) as

dg(µ) = ,

and a typical element of Fµ is

T =

3 5 4
3 3 2
4 1 4
2 5 3 2 1

. (2)

Given T ∈ Fµ, the content monomial of T is xT =
∏
c∈dg(µ) xT (c). For instance, the filling T

pictured in (2) has content monomial x21x
3
2x

4
3x

3
4x

2
5.

For any word w = w1w2 · · ·wk with each wi ∈ [N ], the major index of w, denoted maj(w),
is the sum of all i < k such that wi > wi+1. Given T ∈ Fµ, we obtain µ1 column words of T by
reading each column of T from top to bottom. We define majµ(T ) to be the sum of the major
indices of these column words. For the example filling shown in (2), we compute

majµ(T ) = maj(3 3 4 2) + maj(5 3 1 5) + maj(4 2 4 3) + maj(2) + maj(1) = 3 + 3 + 4 + 0 + 0 = 10.

Next, suppose T ∈ Fµ and we have a triple of cells in T positioned as shown:

y x
z

(3)

Formally, we have two cells c1 and c2 in the same row of dg(µ), with c1 somewhere to the right
of c2, and a third cell c3 just below c2; and x = T (c1), y = T (c2), and z = T (c3). We allow c1
and c2 to be in the lowest row of dg(µ); in this case, c3 is outside the Ferrers diagram, and we
set z = ∞. This triple of cells is called an inversion triple of T iff x < y ≤ z or y ≤ z < x or
z < x < y. We define invµ(T ) to be the number of inversion triples of T . For the example filling
shown in (2), invµ(T ) = 12.
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Haglund’s combinatorial formula for the modified Macdonald polynomials is

H̃µ(x1, . . . , xN ; q, t) =
∑
T∈Fµ

qinvµ(T )tmajµ(T )xT . (4)

For instance, the filling T pictured in (2) contributes the term q12t10x21x
3
2x

4
3x

3
4x

2
5 to H̃(5,3,3,3).

For later work, it will be helpful to define the inversion table of a filling T : dg(µ) → [N ].
The inversion table of T is a function IT : dg(µ) → N that tells us how many inversion triples
are “caused” by each cell c ∈ dg(µ). More precisely, define IT (c) to be the number of inversion
triples of T in which c is the upper-left cell of the triple (the cell containing y in (3)). For the
example filling T shown in (2), we compute

IT =

2 1 0
1 1 0
0 0 0
1 3 2 1 0

.

Similarly, let Des(T ) be the set of cells (i, j) ∈ dg(µ) such that (i− 1, j) ∈ dg(µ) and T ((i, j)) >
T ((i−1, j)). One may check that majµ(T ) =

∑
c∈Des(T )(legµ(c)+1), where legµ(c) is the number

of squares above cell c in its column. In our example, Des(T ) = {(2, 1), (2, 3), (3, 2), (4, 2), (4, 3)}.

3 Overall Strategy

Fix a partition ν of length k, fix r ≤ νk, and let µ be obtained from ν by adding m parts of size
r. Recall ζ = e2πi/m satisfies ζm = 1. The effect of setting t = ζ in (4) is to reduce the exponent
majµ(T ) modulo m. To prove (1) bijectively (in the case r ≤ νk), it will therefore suffice to find
a bijection G : Fµ → Fν × F(rm) with the following properties. Setting G(T ) = (T1, T2), we
must have:

(i) xT = xT1xT2 ;

(ii) invµ(T ) = invν(T1) + inv(rm)(T2);

(iii) majµ(T ) ≡ majµ(T1) + maj(rm)(T2) (mod m).

Our goal in this paper is to construct an explicit bijection G satisfying (i), (ii), and (iii).
To motivate the construction of G, first consider the map H : Fµ → Fν × F(rm) defined

as follows. Given T ∈ Fµ, let H(T ) = (T1, T2) where T1 is the restriction of T to dg(ν), and
T2((i, j)) = T ((i+ k, j)) for 1 ≤ i ≤ m and 1 ≤ j ≤ r. Informally, we get T1 and T2 from T by
splitting off the last m rows of the filling. For example, suppose ν = (5), r = 3, m = 3, and T
is the filling shown in (2). Then H(T ) = (T1, T2), where

T1 = 2 5 3 2 1 , T2 =
3 5 4
3 3 2
4 1 4

.

It is evident that H is a bijection satisfying condition (i) above. Moreover, H satisfies (iii). To
see why, note that descents in the top m− 1 rows of T become descents in the top m− 1 rows
of T2 that give the same contribution to majµ(T ) and maj(rm)(T2), respectively. Descents in the
rows of T belonging to ν become descents in T1. Since the legs of cells in ν differ from the legs
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of the corresponding cells in µ by 0 or m, we see that the descents in this part of the shape give
the same contribution (modulo m) to majµ(T ) and majν(T1), respectively. Finally, any descents
in the mth row from the top of T do not appear in T1 or T2, but these descents contribute a
multiple of m to majµ(T ) and are therefore irrelevant modulo m.

Unfortunately, the map H does not satisfy condition (ii) when r > 1. One readily checks
that the inversion table IT1 is the restriction of the inversion table IT to dg(ν). Similarly, after
an appropriate shift of the indexing of the rows, the top m − 1 rows of the inversion table IT2
match the top m − 1 rows of the inversion table IT . However, the lowest row of IT2 will not
always agree with the corresponding row of IT (which records inversions in the mth row from
the top of T ). In our example, we find that

IT1 = 1 3 2 1 0 , IT2 =
2 1 0
1 1 0
1 0 0

.

To fix this discrepancy, we modify the output of H in two stages. In the first stage (§4), we
calculate (bijectively) a rearrangement of the letters in the mth row from the top of T that will
become the new bottom row of T2. This rearrangement is designed to make the inversion count in
the bottom row of T2 match the inversion count in the corresponding row of T . However, simply
replacing the old bottom row of T2 with this rearrangement might disturb inversion triples in the
second row of T2. So, in the second stage (§5), we implement the desired rearrangement of the
bottom row of T2 by performing a specified sequence of “column-switching” moves. Each such
move interchanges two consecutive symbols in the bottom row of T2 and (sometimes) modifies
further entries in these columns to ensure the preservation of inversion triples and descents above
the bottom row. The pair consisting of T1 and the modified T2 will be G(T ). We will see that
this map G is a bijection satisfying conditions (i), (ii), and (iii) above.

4 Inversion Analysis

4.1 u-Inversions

Given a word w = w1w2 · · ·wn with each wi ∈ [N ], the classical inversion number of w, denoted
inv(w), is the number of pairs i < j with wi > wj . Dually, coinv(w) is the number of pairs i < j
with wi < wj . More generally, given any total ordering ≺ on the set [N ], we can define inversions
relative to this ordering by letting ≺-inv(w) be the number of pairs i < j with wi � wj . When
studying inversion triples of fillings, we will only need to consider total orderings that are cyclic

shifts of the usual ordering on [N ]. More precisely, for each u ∈ [N ], let
u
< be the total ordering

on [N ] given by

(u+ 1)
u
< (u+ 2)

u
< · · ·

u
< N

u
< 1

u
< 2

u
< · · ·

u
< (u− 1)

u
< u.

(The superscript u reminds us that u is the greatest symbol relative to this ordering.) Let

u-inv(w) be the number of pairs i < j with wi
u
> wj . Note that N -inv(w) = inv(w).

Let W = R(1a12a2 · · ·NaN ) be the set of all words that are rearrangements of a1 copies of
1, a2 copies of 2, etc. It can be shown that, for any total ordering ≺ of [N ],∑

w∈W
q≺-inv(w) =

[
a1 + a2 + · · ·+ aN
a1, a2, . . . , aN

]
q

, (5)
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where the right side is a q-multinomial coefficient [7]. Thus, the N statistics u-inv (for u =
1, 2, . . . , N) are all equidistributed on W . We will require an explicit bijective proof of this fact.

Lemma 1. Let u ≤ s ∈ [N ], and let W = R(1a12a2 · · ·NaN ). There is a bijection f =
fu,s = fs,u : W → W (defined below) such that for all w ∈ W , s-inv(f(w)) = u-inv(w) and
u-inv(f(w)) = s-inv(w). In fact, f is an involution.

Proof. For fixed u ≤ s, we define f : W → W as follows. Given w = w1w2 · · ·wm, first define
x = x1x2 · · ·xm by setting xi = 0 if u < wi ≤ s and xi = 1 otherwise. (Intuitively, x relabels

“small” letters relative to
u
< by 0 and “large” letters relative to

u
< by 1. Passage to

s
< will

interchange the roles of small and large letters.) Let y (resp. z) be the subword of w consisting
of symbols in the positions where xi = 0 (resp. xi = 1). Let x′ be the reversal of x. Use
x′ to form w′ = f(w) by replacing the zeroes by the symbols in y and replacing the ones by
the symbols in z (scanning y, z, and x′ from left to right). For example, take u = 3, s = 6,
N = 7, and w = 25431167521745. Then x = 10011101011100, y = 546545, z = 23117217,
x′ = 00111010111001, so w′ = f3,6(w) = 54231615721457. Since the reversal x 7→ x′ is an
involution, it readily follows that f is also an involution, hence a bijection. It now suffices to

show that s-inv(w′) = u-inv(w). First observe that, by the definitions of x and
u
<, we have

u-inv(w) = u-inv(y) + u-inv(z) + inv(x).

Similarly,
s-inv(w′) = s-inv(y) + s-inv(z) + coinv(x′).

We complete the proof by noting that inv(x) = coinv(x′), u-inv(y) = s-inv(y), and u-inv(z) = s-

inv(z). The last two equalities follow since the orderings
u
< and

s
< agree on the set of u-small

letters (resp. the set of u-large letters).

4.2 Rearrangement of the Critical Row

For any filling Z ∈ F(rm) with bottom row consisting of the word z = z1z2 · · · zr, the number of
inversion triples in the bottom row of z is precisely inv(z), as one readily checks. Now, suppose
T ∈ Fµ and H(T ) = (T1, T2) as in §3, where µ = (ν1, . . . , νk, r, . . . , r). Suppose row k of T
consists of the word u = u1u2 · · ·ur · · · and row k+ 1 of T consists of the word w = w1w2 · · ·wr.
Call row k + 1 of T (which is the mth row from the top) the critical row of T (or of µ). For
example, suppose ν = (6, 5), r = 4, and m = 3, so that µ = (6, 5, 4, 4, 4). The critical row of µ
is shaded in the following picture:

Define ni = IT ((k + 1, i)) for 1 ≤ i ≤ r, so n1, . . . , nr count the inversion triples caused by the
symbols w1, . . . , wr (respectively) in T . To accomplish stage 1 of our strategy in §3, we will use
the bijection g appearing in the following lemma.

Lemma 2. For fixed u = u1u2 · · ·ur · · · , there is a bijection g = gu : [N ]r → [N ]r such that, for
all w ∈ [N ]r: (i) g(w) is a rearrangement of w; (ii) inv(g(w)) = n1 + · · ·+ nr.
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Proof. We give an algorithm defining g. Start with the input word w = w1w2 · · ·wr. For j = r−1
down to j = 1, take the current subword wj+1wj+2 · · ·wr and replace it by fuj ,uj+1(wj+1 · · ·wr).
At the end, replace the current word w1 · · ·wr by fN,u1(w1 · · ·wr). Output this word.

It is evident that g satisfies (i), since each fu,s satisfies (i). Since u is fixed and known, we
can invert g by performing the steps in the algorithm backwards. So g is a bijection. To prove
(ii), let wr be the input word w, let wi be the value of the word just after the j = i iteration of
the for-loop (for r − 1 ≥ i ≥ 1), and let w0 be the output word. We will show, by backwards
induction, that ui-inv(wii · · ·wir) = ni+ · · ·+nr for r ≥ i ≥ 1. This holds for the base case i = r,
since ur-inv(wr) = 0 = nr. Now assume r > i ≥ 1 and

ui+1-inv(wi+1
i+1 · · ·w

i+1
r ) = ni+1 + · · ·+ nr.

The j = i iteration of the for-loop applies fui,ui+1 to the subword wi+1
i+1 · · ·wi+1

r to produce the
subword wii+1 · · ·wir. By Theorem 1 and the induction hypothesis, we must have

ui-inv(wii+1 · · ·wir) = ni+1 + · · ·+ nr.

Consider the effect on ui-inv when we add the next symbol wii = wi to the left end of the
displayed subword. This symbol will cause new ui-inversions with each symbol to its right that

is strictly less than wi relative to
ui
<. On the other hand, the definition of invµ(T ) shows that the

symbol wi in the filling T (and ui directly below it) will cause an inversion triple for each symbol

to the right of wi in the critical row that is strictly less than wi relative to
ui
<. The definition of

inversion tables tells us that there are ni such symbols. Since wii+1 · · ·wir is a rearrangement of
wi+1 · · ·wr, we must also get ni new ui-inversions when adding wi to the left end of the subword
above. We therefore have

ui-inv(wiiw
i
i+1 · · ·wir) = ni + ui-inv(wii+1 · · ·wir) = ni + ni+1 + · · ·+ nr,

completing the induction step. Finally, since g(w) = w0 = fN,u1(w1), we get

inv(g(w)) = N -inv(w0) = u1-inv(w1) = n1 + · · ·+ nr,

so (ii) is indeed true.

Example 3. Suppose r = 7, N = 4, u = 2344312, and w = 1211332. We compute (n1, . . . , n7) =
(2, 2, 0, 0, 1, 1, 0). The following table shows the words wi computed by the algorithm and the
ui-inversion count of each underlined subword wii · · ·wir. The answer in each case is ni+ · · ·+nr,
in accordance with the lemma. (By convention, u0 = N and n0 = 0.) The output is gu(w) =
1213312.

i ui wi ui-inv(wii · · ·wir)
7 2 1211332 0
6 1 1211332 1
5 3 1211332 2
4 4 1211332 2
3 4 1211332 2
2 3 1211332 4
1 2 1233112 6

0 4 1213312 6
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Example 4. Suppose r = 7, N = 4, u = 3442131 and v = 2311234. The following table
shows the steps in computing g−1(v) = w. We use the notation v0 = v, v1 = fN,u1(v0), and
vi = vi−11 · · · vi−1i−1fui−1,ui(v

i−1
i · · · vi−1r ) for 2 ≤ i ≤ r.

i ui vi ui-inv(vii · · · vir)
0 4 2311234 5

1 3 4231123 5
2 4 4231123 5
3 4 4231123 3
4 2 4233112 0
5 1 4233211 0
6 3 4233211 0
7 1 4233211 0

The output is w = 4233211. Note that (n1, . . . , n7) = (0, 2, 3, 0, 0, 0, 0).

5 Column Switching

5.1 The Inversion Flip Operation

To implement stage 2 of our strategy, we require the following general combinatorial operation
on fillings.

Definition 5. Suppose µ is a partition such that µ′i = µ′i+1 for some i (so columns i and i+ 1
of dg(µ) have equal height). Define the inversion flip move si : Fµ → Fµ as follows:

• Given T ∈ Fµ, let a (resp. b) be the entry of T at the bottom of column i (resp. i+ 1).

• Switch entries a and b in the bottom row as shown here:

c d
a b

→
c d
b a

.

• If a, c, d and b, c, d are either both inversion triples or both not inversion triples, the move
is complete. Otherwise, apply si recursively to the filling T ′ of (µ2, µ3, . . .) obtained by
ignoring the bottom row of T .

A similar operation for standard fillings was studied in [8, 11]. For two-column rectangles,
the inversion flip move s1 is equivalent to an operation used in [2] to prove the r = 2 case of (1)
(although those authors use different notation to describe the operation).

Lemma 6. Given a partition µ and i, j ∈ N+ with µ′i = µ′i+1 and µ′j = µ′j+1,

(a) s2i = si ◦ si = idFµ;

(b) si ◦ sj = sj ◦ si when |i− j| ≥ 2.

Proof. Both properties follow directly from the definition of si.

Macdonald factorization formula 7



Theorem 7. Given a partition µ ∈ Par(n) and i ∈ N+ with µ′i = µ′i+1, let T ∈ Fµ have entries
a and b in the bottom row of columns i and i+ 1, respectively. Then:

(a) majµ(si(T )) = majµ(T );

(b) invµ(si(T )) = invµ(T ) +


1 if a < b;
0 if a = b;
−1 if b < a.

Proof. Since every column contributes independently to majµ, to prove (a) it is sufficient to
consider a filling T of shape µ = (2n) and i = 1. By Lemma 6(a) we may also assume that
a ≤ b. Note that if a = b, s1(T ) = T , so we consider only a < b. This result is true when n = 1.

When n = 2, we can write

T = c d
a b

.

If

s1(T ) = d c
b a

,

column words are preserved, so majµ(s1(T )) = majµ(T ).
It is also possible that

s1(T ) = c d
b a

.

If a, c, d formed an inversion triple in T , then b, c, d forms an inversion triple in s1(T ). If
a < b < d < c, d < c ≤ a < b, or c ≤ a < b < d, then the location and number of the descents
are preserved, so majµ(s1(T )) = majµ(T ). If a < d < c ≤ b, the number of descents is preserved,
but the column in which the descent is located changes. However, since the columns are of equal
height, majµ(s1(T )) = majµ(T ). Similarly, if a, c, d is not an inversion triple in T , then b, c, d is
not an inversion triple in s1(T ). If a < b < c ≤ d, c ≤ d ≤ a < b, or d ≤ a < b < c, the location
and number of descents are preserved. If a < c ≤ d ≤ b, the number of descents are preserved,
but the column in which the descent is located changes. As before, since the columns are of
equal height, majµ(s1(T )) = majµ(T ). By induction, this result holds for any number of rows.

To show that invµ(si(T )) = invµ(T ) + 1, we must show that the inversion flip does not
affect the total number of inversion triples, excluding the triple a, b,∞. By the definition of the
inversion flip, it is sufficient to consider triples positioned as shown:

c d
a b

· · · z

since all other triples in T will be preserved. Once again, there are two possibilities. First, if

si(T ) = d c
b a
· · · z

the inversion triples themselves are preserved. On the other hand, if

si(T ) = c d
b a
· · · z ,

to show that the total number of inversion triples is preserved requires a tedious case analysis.
We present several cases here and leave the remainder to the reader. First, suppose z ≤ a < b <

Macdonald factorization formula 8



c < d. Then none of z ≤ a < c, z < b < c, z ≤ a < d, and z < b < d are inversion triples. Next,
if a < z ≤ b < c < d, then a < z < c is an inversion triple in T , and z ≤ b < c is not an inversion
triple in si(T ). On the other hand, z ≤ b < d is not an inversion triple in T , but a < z < d is an
inversion triple in si(T ). Thus, the total number of inversion triples is preserved. The remaining
cases are similar.

Example 8. The following picture illustrates successive applications of inversion flip moves on
a filling in F(44):

3 4 2 2
3 4 1 3
4 5 2 3
2 3 2 4

s3−→
3 4 2 2
3 4 3 1
4 5 3 2
2 3 4 2

s1−→
3 4 2 2
3 4 3 1
4 5 3 2
3 2 4 2

s2−→
3 2 4 2
3 3 4 1
4 3 5 2
3 4 2 2

q12t7 q13t7 q14t7 q15t7

.

In this case, each move increases the q-power by 1 while preserving the t-power.

5.2 The Map G

We are now ready to define the bijection G : Fµ → Fν ×F(rm) with properties (i), (ii), and (iii)
from §3. Given T ∈ Fµ, let H(T ) = (T1, T2), where H is the “splitting map” discussed in §3.
Let u = u1 · · ·ur · · · be the word in the top row of T1 (the kth row of T ), and let w = w1 · · ·wr
be the word in the bottom row of T2 (the (k + 1)th row of T ). Let v = v1 · · · vr = gu(w), where
gu is the map from §4.2.

For i = 1 to r − 1, do the following: Say the current bottom row of T2 contains the word
w′ = w′1 · · ·w′r. By induction, we can assume that w′1 · · ·w′i−1 = v1 · · · vi−1. Find the least index
j ≥ i such that w′j = vi. Perform inversion flip moves sj−1, sj−2, . . . , si (in this order) to bring
the symbol w′j to position i of the bottom row of T2. After completing all loop iterations, the
pair consisting of T1 and the current value of T2 is defined to be G(T ).

To see that G is a bijection, we describe how to compute G−1(T1, T2). Let u be the word
in the top row of T1, and let v be the word in the bottom row of T2. Compute w = g−1u (v).
Knowing w and v, we can deduce which ordered sequence of inversion flip moves was used in
the previous paragraph to convert w into v. Perform these same moves in the reverse order on
the given filling T2 to obtain a new filling T ′2. Finally, set T = H−1(T1, T

′
2). It is evident that

this construction reverses the effect of G, so G is a bijection.
Since all constituent steps act by rearranging entries in fillings, we see that G satisfies

condition (i). Similarly, since H satisfies (iii) and inversion flip moves preserve maj(rm)(T2),
G satisfies (iii). Finally, consider condition (ii). For the initial pair (T1, T2) = H(T ), we have
already remarked that all inversion triples in T correspond to inversion triples in T1 or T2, except
for the inversion triples in the critical row of T . However, the computation of v = gu(w) ensures
that the number of inversion triples in T contributed by the word w in the critical row will equal
the number of inversion triples in T2 (i.e., ordinary inversions) contributed by the new word v
in the bottom row. The loop above converts w to v by a sequence of inversion flips, and each of
these moves does not affect the total number of inversion triples occurring in rows 2 and higher
of T2. So (ii) does indeed hold.

Macdonald factorization formula 9



Example 9. Let µ = (6, 6, 5, 5, 5), r = 5, m = 3, and

T =

4 2 1 5 1
2 4 5 2 3
3 2 2 4 1
2 4 3 1 2 5
1 2 3 1 1 4

.

(Entries in the critical row of T appear in bold type.) Then u = 243125, w = 32241, v = g(w) =
22314, and

H(T ) = (T1, T2) =

(
2 4 3 1 2 5
1 2 3 1 1 4

,
4 2 1 5 1
2 4 5 2 3
3 2 2 4 1

)
.

Set U = s4 ◦ s2 ◦ s1(T2). Then

U =
4 2 1 5 1
2 4 5 2 3
2 2 3 1 4

,

and G(T ) = (T1, U). Note that invµ(T ) = 20 = 10+10 = inv(62)(T1)+inv(53)(U) and majµ(T ) =
27 ≡ 4 + 8 (mod 3) = maj(62)(T1) + maj(53)(U).

Example 10. Let ν = (6, 6), (rm) = (53), µ = (6, 6, 5, 5, 5),

T = 3 2 1 1 5 4
1 3 3 4 2 5

and U =
4 1 3 4 1
3 2 2 5 2
2 5 1 4 2

.

Then

G−1(T,U) =

4 1 3 4 1
3 2 5 2 2
2 5 2 1 4
3 2 1 1 5 4
1 3 3 4 2 5

.

Note that invµ(G−1(T,U)) = 20 = 12 + 8 = invν(T ) + inv(53)(U) and majµ(G−1(T,U)) = 22 ≡
2 + 8 (mod 3) = majν(T ) + maj(53)(U).

When r = 1, the map G is the same as the map H. When r ≤ 2, one may verify that
our map G has the same effect on fillings as the bijections constructed by Descouens, Morita,
and Numata in [2]. However, that paper uses the terminology of “attack inversions” instead of
“inversion triples” when discussing the statistic invµ(T ).

6 Final Comments

6.1 Connection to q-Multinomial Coefficients

Suppose m = 1 = ζ, so we are looking at the t = 1 specialization of H̃µ. Applying the map G
repeatedly to remove the rows of µ one at a time, we obtain a bijective proof of the well-known
formula

H̃µ(x1, . . . , xN ; q, 1) =

`(µ)∏
i=1

H̃(µi)(x1, . . . , xN ; q, 1).
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More generally, let Fµ(aij) be the set of fillings T ∈ Fµ such that, for 1 ≤ i ≤ `(µ), row i of T
is in R(1ai12ai2 · · ·NaiN ). Repeated use of G and (5) proves that

∑
T∈Fµ(aij)

qinvµ(T ) =

`(µ)∏
i=1

[
ai1 + · · ·+ aiN
ai1, . . . , aiN

]
q

. (6)

(This formula was first observed in unpublished notes of Haglund, Haiman, Loehr, and Warring-
ton; the special case of a two-row shape is stated without proof as Lemma 2 in [4].) Similarly,
let F ′µ′(aij) be the set of fillings T ∈ Fµ′ such that, for 1 ≤ i ≤ µ′1 = `(µ), the ith column word
of T is in R(1ai12ai2 · · ·NaiN ). Since each column contributes independently to majµ(T ), we get

∑
T∈F ′

µ′ (aij)

qmajµ(T ) =

`(µ)∏
i=1

[
ai1 + · · ·+ aiN
ai1, . . . , aiN

]
q

. (7)

6.2 Symmetry

Adding (6) and (7) over all choices of aij , we obtain the univariate symmetry

H̃µ(X; q, 1) = H̃µ′(X; 1, q).

This proof can be made completely bijective using Foata’s bijection onR(1a1 · · ·NaN ) that sends
inv to maj [3]. However, it is an open problem to give a bijective proof of the joint symmetry
property

H̃µ(X; q, t) = H̃µ′(X; t, q),

which is known to be true by algebraic properties of Macdonald polynomials.
By combining joint symmetry with (1), we see that the modified Macdonald polynomials

must also satisfy the identity

H̃µ(x1, . . . , xN ; ζ, t) = H̃ν(x1, . . . , xN ; ζ, t) · H̃(mr)(x1, . . . , xN ; ζ, t) (8)

where ζ = e2πi/m and µ, ν are integer partitions such that dg(µ) is obtained from dg(ν) by
adding m new columns of height r. To shed some light on the combinatorial meaning of joint
symmetry, it would be interesting to find a bijective proof of this identity. Such a bijection
would likely be quite different from the maps considered here, since we are now reducing the
inversion statistic mod m. Even in the case r = 1, constructing a bijection proving (8) appears
to be a difficult problem.

6.3 The Case r > νk

As remarked in the Introduction, the factorization formula (1) is valid for all r, but our bijective
proof only works under the hypothesis r ≤ νk. The following example illustrates the difficulties
that arise in the case where r > νk.

Example 11. Take ν = (5, 2), m = r = 3, µ = (5, 3, 3, 3, 2) and let T ∈ Fµ be the filling shown
here.

T =

3 2
2 4 3
3 2 2
2 1 3
4 2 3 1 4
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We compute majµ(T ) = 10 and invµ(T ) = 9. Again, starting with the naive step of removing
the filling of (33) yields

T1 = 3 2
4 2 3 1 4

and T2 =
2 444 3
3 222 2
2 1 3

.

Note that maj(5,2)(T1) = 0 and maj(33)(T2) = 6, but 10 is not congruent to 0 + 6 (mod 3).
Observe that the descent in bold in T2 contributes 1 less to the total major index compared
to the corresponding descent in T . On the other hand, the italicized descent causes the same
contribution to the major index in both T and T2. Thus, one of the challenges when r > νk is
how to maintain property (iii) from Section 3.

The other main challenge is that now there are really two critical rows, and adjacent cells
in these rows may not have columns of equal height above them. An example of this appears in
the partition diagram below, where ν = (7, 6, 3, 2, 1), r = 4, m = 3, µ = (7, 6, 4, 4, 4, 3, 2, 1), and
the two critical rows are shaded. The unequal column heights prohibit the use of the inversion
flip move to rearrange the critical rows, so it is no longer evident how to “fix” changes in the
inversion table caused by excision of the m rows of size r.
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