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Abstract

The Hilbert series F̃µ of the Garsia-Haiman module Mµ can be described com-
binatorially as the generating function of certain fillings of the Ferrers diagram
of µ where µ is an integer partition of n. Since there are n! fillings that gen-
erate F̃µ, it is desirable to find recursions to reduce the number of fillings that

need to be considered when computing F̃µ combinatorially. In this paper, we
present a combinatorial recursion for the case where µ is an n by 3 rectangle.
This allows us to reduce the number of fillings under consideration from (3n)!
to (3n)!/(3!nn!).
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1. Introduction

The Macdonald polynomials {Pµ(x1, x2, . . . , xn; q, t) : µ is a partition} were
first introduced in [9] as a basis for the vector space of symmetric functions in n
variables. The Pµ can be specialized to several of the common bases for symmet-
ric functions. For example, Pµ|q=t = sµ, the Schur functions, and Pµ|t=1 = mµ,
the monomial symmetric functions. A number of algebraic transformations can
be used to obtain several other versions of Macdonald polynomials, including
the modified Macdonald polynomials H̃µ.

The H̃µ can also be thought of from a representation-theoretical standpoint
as the Frobenius series of a particular doubly-graded Sn-module Mµ introduced

by Garsia and Haiman [3]. The coefficient of the monomial x1x2 · · ·xn in H̃µ is

a polynomial denoted F̃µ(q, t), which is the Hilbert series of the Garsia-Haiman
module. In [5] Haglund conjectured, and in [6, 7] Haglund, Haiman, and Loehr

proved, a combinatorial definition of H̃µ. Restricting this definition to stan-
dard fillings (defined in §2) of the Ferrers diagram of µ leads immediately to a

combinatorial definition of F̃µ(q, t) given by

F̃µ(q, t) =
∑
T

qinvµ(T )tmajµ(T ), (1)
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where T is a standard filling and invµ(T ) and majµ(T ) are weights on T . From

the combinatorial definition it follows directly that F̃µ(q, t) is a polynomial.

In [4] Garsia and Haiman study a rational recursion for F̃µ(q, t) based on
the removal of corners from the diagram of µ. Their recursion is

F̃µ(q, t) =
∑
ν→µ

cµ,ν(q, t)F̃ν(q, t), F̃(1)(q, t) = 1 (2)

where the sum is over all partitions ν obtained by removing an inner corner
from µ and cµ,ν(q, t) ∈ Q(q, t) is a quotient of two polynomials determined by
the diagrams of µ and ν. The recursion in (2) is challenging to prove combi-

natorially, and the rational coefficients make it difficult to deduce that F̃µ(q, t)

is a polynomial. Using (2) and setting Fµ(q, t) = tn(µ)F̃µ(q, 1/t), Garsia and
Haiman proved a q-analogue of the classical hook length formula

Fµ(q, q) = fµ
∏
c∈µ

[hc]q (3)

where fµ is the number of standard Young tableaux of shape µ and hc is the
length of the hook of cell c in the Ferrers diagram of µ.

In a more recent paper [2], Garsia and Haglund present a new recursion

for F̃µ indexed by shapes µ with two columns. Their recursion is proved using
representation-theoretical techniques that do not lend themselves easily to a
combinatorial understanding of the recursion. This recursion is again based on
removing corners of µ. In [8], Loehr and Niese present a recursion for two-
column shapes that is based on removing the bottom row of µ. They give a
fully combinatorial proof of the recursion using bijections and combinatorial
operations on the fillings that generate Fµ.

In this paper, we introduce a recursion for µ = (3n) obtained by removing
the bottom row of the fillings. This new recursion allows us to write Fµ as a sum
of (3n)!/(3!nn!) q, t-analogues of 3!nn! rather than enumerating (3n)! standard
fillings. Iteration of the recursion leads to a bijective proof of the fact that
F̃(3n)(q, t) and F(3n)(q, t) are divisible by [n]!t. Note also that the product of
the hook lengths of the cells in the last column of the diagram of (3n) is n!,
and thus, this recursion for F(3n)(q, t) may be a first step toward a bijective
understanding of (3).

In §2, we review the combinatorial definition of Fµ(q, t) and then, in §3
we define and analyze the combinatorial operations required to give a bijective
proof of the recursion. Finally, in §4 we define a new polynomial for fillings with
a fixed bottom row and state a recursion for this polynomial in Theorem 4.3.

2. Combinatorial Definition of Fµ

We first review the combinatorial definition of Fµ, which was conjectured in
[5] and proved in [6, 7]. A partition of an integer n is a sequence µ = (µ1 ≥
µ2 ≥ · · · ≥ µk) such that µ1 + µ2 + · · ·+ µk = n. Let Par(n) denote the set of
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all partitions of n. The diagram of µ is a collection of left justified boxes such
that in row i from the bottom there are µi boxes. For example, the diagram of
µ = (3, 3, 2, 1) is

.

A standard filling of µ ∈ Par(n) is a placement of the integers 1, 2, . . . , n, each
used exactly once, in the diagram of µ. Let Fµ = {T : T is a standard filling of
µ}. A standard filling T of µ = (3, 3, 2, 1) is

T =

3
2 5
4 9 6
8 1 7

. (4)

The ascent set of a word w = w1w2 · · ·wk is Asc(w) = {i : wi < wi+1}. The
comajor index of w is comaj(w) =

∑
i∈Asc(w) i. A column word of T ∈ Fµ is a

word obtained by reading down a column from top to bottom. The µ-comajor
index of T ∈ Fµ, denoted comajµ(T ), is the sum of the comajor indices of the
column words of T . Thus, for T as shown in (4),

comajµ(T ) = comaj(3248) + comaj(591) + comaj(67) = 5 + 1 + 1 = 7.

Given a triple of cells in a filling T ∈ Fµ as shown:

a b
c

where the entry a is directly above the entry c and entry b is somewhere to the
right of a in the same row as a, the cells form an inversion triple if and only if
a < c < b, c < b < a, or b < a < c. This is equivalent to saying that visiting
the entries a, b, and c in increasing order induces a counterclockwise traversal of
the cells. If the cells containing a and b are in the first row of T , we set c =∞.
Then invµ(T ) is the number of inversion triples in T . For T in (4), the inversion
triples are 1 < 8 < ∞, 7 < 8 < ∞, 4 < 8 < 9, 1 < 6 < 9, and 2 < 4 < 5. Thus
invµ(T ) = 5.

The combinatorial formula for Fµ is

Fµ(q, t) =
∑
T∈Fµ

qinvµ(T )tcomajµ(T ). (5)

The filling T in (4) contributes the term q5t7 to F(3,3,2,1).
In the proof of the recursion, we will fix the bottom row of a filling of shape

(3n), and then use certain combinatorial operations to transform the filling into
a “key filling” with certain properties.
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3. Combinatorial Operations

In this section we define several combinatorial operations on standard fillings
which will be used in the proof of the recursion in §4. For a more complete
explanation of the inversion flip and cyclic shift operations, see [1, 8, 10].

Let µ ∈ Par(n) with µ′i = µ′i+1 for some i (so columns i and i+ 1 in µ have
equal height). We define the inversion flip move si : Fµ → Fµ as follows:

• Given T ∈ Fµ, let a (resp. b) be the entry of T at the bottom of column i
(resp. i+ 1) and c (resp. d) be the entry of T directly above a (resp. b).

• Switch entries a and b in the bottom row of T as shown here (note that
only the bottom two rows of columns i and i+ 1 are shown):

c d
a b

→ c d
b a

.

• If a, c, d and b, c, d are either both inversion triples or both not inversion
triples, the move is complete. Otherwise, apply si recursively to the filling
obtained by ignoring the bottom row of T .

Note that si is an involution and si ◦ sj = sj ◦ si when |i − j| ≥ 2. The
effect on the statistics of using the inversion flip on a filling is indicated in the
following lemma.

Lemma 3.1. Given µ ∈ Par(n) with µ′i = µ′i+1 for some i, and given T ∈ Fµ
with entries a and b in the first row of columns i and i+ 1, respectively, then

(a) comajµ(si(T )) = comajµ(T ), and

(b) invµ(si(T )) = invµ(T ) +

{
1 if a < b;

−1 if b < a.

Proof. See [8, Proposition 3.4].

Fig. 1 shows the result of successive inversion flips.

7 8 2
4 1 5
9 3 6

s2−→
7 2 8
4 5 1
9 6 3

s1−→
7 2 8
4 5 1
6 9 3

q5t7 q6t7 q5t7

Figure 1: Example of s1 ◦ s2.

The second combinatorial operation used to prove the recursion is cyclic
shifting. Given T ∈ Fµ, define the cyclic shift of T , denoted cyc(T ), to be the
filling obtained by replacing each entry c in T with c + 1 (mod n) where we
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use the convention that a (mod n) ∈ {1, 2, . . . , n}. Cyclic shifting preserves
the inversion statistic and increases the comajor index by 1 when n is not in
the bottom row of T . Moreover, the cyclic shift and inversion flip operations
commute with each other.

Example 3.2. Let µ = (4, 3, 3, 1). Then, the result of cyclic shifting can be
seen in Fig. 2.

11
4 8 2
10 9 3
5 1 6 7

cyc−−→
1
5 9 3
11 10 4
6 2 7 8

cyc−−→
2
6 10 4
1 11 5
7 3 8 9

q5t6 q5t7 q5t8

Figure 2: Successive cyclic shifts.

We summarize the above discussion in the following theorems.

Theorem 3.3. Let µ ∈ Par(n). For T ∈ Fµ, where n is not in the bottom row,

(a) comajµ(cyc(T )) = comajµ(T ) + 1;

(b) invµ(cyc(T )) = invµ(T ).

Proof. See [8, Proposition 5.3].

Theorem 3.4. Let µ ∈ Par(n) with µ′i = µ′i+1 for some i. Then si ◦ cyc =
cyc ◦si.

Proof. See [8, Lemma 5.5].

When µ = (3n), consisting of 3 columns of equal height n, and 3n is in the
first row of T , then comajµ(cyc(T )) = comajµ(T )− (n− 1) as seen in the cyclic
shift operation in Fig. 3. We can use the inversion flip move to compensate for
the change in the inversion statistics, as illustrated in Fig. 3 and made explicit
in the following definition.

Definition 3.5. Let T ∈ F(3n) for some n ≥ 2. The first row in T can be
written as σ(a) = aσ(1)aσ(2)aσ(3) where σ ∈ S3 and a = (a1, a2, a3) with
1 ≤ a1 < a2 < a3 ≤ 3n. Then C : F(3n) → F(3n) is defined by

C(T ) =


cyc(T ) if 3n is not in row 1 of T ;

s1 ◦ s2 ◦ cyc(T ) if 3n is in row 1 and σ = 123, 231, or 312;

s2 ◦ s1 ◦ cyc(T ) if 3n is in row 1 and σ = 132, 213, or 321.

Given a statement A, χ(A) = 1 if A is true, and χ(A) = 0 if A is false.
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8 2 4
1 5 3
9 6 7

cyc−−→
9 3 5
2 6 4
1 7 8

s2−→
9 3 5
2 6 4
1 8 7

s1−→
9 3 5
2 6 4
8 1 7

q5t7 q3t5 q4t5 q5t5

Figure 3: An example of C(T ).

Theorem 3.6. Let T ∈ F(3n). Let the first row of T be σ(a) where a =
(a1, a2, a3) and σ ∈ S3. Then for 0 ≤ i < 3n,

(a) comaj(3n)(C
i(T )) = comaj(3n)(T ) + i − n(χ(i > 3n − a1) + χ(i > 3n −

a2) + χ(i > 3n− a3));

(b) inv(3n)(C
i(T )) = inv(3n)(T ).

Proof. Let T ∈ F(3n) with first row σ(a) as above. Since cyc ◦sk = sk ◦ cyc

for any k, Ci(T ) = s ◦ cyci(T ) where s is some sequence of s1’s and s2’s. For
0 < j ≤ i, when 3n is not in the first row of cycj−1(T ), comaj(3n)(cycj(T )) =

comaj(3n)(cycj−1(T )) + 1. If 3n is in the first row of cycj−1(T ) for some j, then

a1+(j−1) = 3n, a2+(j−1) = 3n, or a3+(j−1) = 3n and comaj(3n)(cycj(T )) =

comaj(3n)(cycj−1(T ))− (n−1). The sequence s of inversion flips does not affect
the comaj(3n) statistic, so

comaj(3n)(C
i)(T ) = comaj(3n)(T ) + i

− n(χ(i > 3n− a1) + χ(i > 3n− a2) + χ(i > 3n− a3)).

To show that inv(3n)(C
i(T )) = inv(3n)(T ) by Theorem 3.3(b) it is sufficient to

show

(i) inv(3n)(s1 ◦ s2 ◦ cyc)(T ) = inv(3n)(T ) when σ = 123, 231, or 312 and
a3 = 3n, and

(ii) inv(3n)(s2 ◦ s1 ◦ cyc)(T ) = inv(3n)(T ) when σ = 132, 213, or 321 and
a3 = 3n.

Since a3 = 3n, the first row of cyc(T ) is τ(ã) where τ = τ1τ2τ3 with τi = σi+1
(mod 3) and ã = (1, a1+1, a2+1). All inversion triples above the first row remain
unchanged after cyc, so it is sufficient to show that the inversions in the first
rows of the fillings T and (s ◦ cyc)(T ) are the same, where s is either s1 ◦ s2 or
s2 ◦s1. First consider s1 ◦s2 ◦ cyc(T ). The first row of cyc(T ) is a′1 a

′
2 a
′
3 where

a′j = (aσ(j) + 1) mod 3n. Then the first row of s1 ◦ s2 ◦ cyc(T ) is a′3 a
′
1 a
′
2 .

When σ = 123, the first row of T is a1 a2 a3 , which has no inversions, and
a′3 a

′
1 a
′
2 = 1 ã1 ã2 where ãj = aj + 1, so the first row of s1 ◦ s2 ◦ cyc(T )

also has no inversions. When σ = 231, the first row of T is a2 a3 a1 , which

has two inversions, and a′3 a
′
1 a
′
2 = ã1 ã2 1 , which also has two inversions.
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Finally, when σ = 312, the first row of T is a3 a1 a2 , which has two inversions,

and a′3 a
′
1 a
′
2 = ã2 1 ã1 , which also has two inversions. Thus inv(3n)(s1 ◦

s2 ◦ cyc(T )) = inv(3n)(T ). A similar case analysis of s2 ◦ s1 ◦ cyc(T ) leads to
inv(3n)(s2 ◦ s1 ◦ cyc(T )) = inv(3n)(T ).

The last operation we need is called a-augmentation. Given a filling T ∈
F(3n−1), and a vector a = (a1, a2, a3) with 1 = a1 < a2 < a3 ≤ 3n, form a new
filling Aa(T ) ∈ F(3n) by replacing each entry c in T by c+ 1 if c < a2 − 1, c+ 2
if a2 − 1 ≤ c < a3 − 2, and c+ 3 if c ≥ a3 − 2, and then placing the result over
a new first row 1 a2 a3 . Denote the set of fillings with first row a by Fµ,a. For
example, given

T =
4 2 8
5 1 7
9 6 3

and a = (1, 4, 6),

Aa(T ) =

7 3 11
8 2 10
12 9 5
1 4 6

.

Note that inv(33)(T ) = 7, comaj(33)(T ) = 5, inv(34)(Aa(T )) = 7, and
comaj(34)(Aa(T )) = 8.

Theorem 3.7. Let n ∈ N, T ∈ F(3n−1), and a = (a1, a2, a3) where 1 = a1 <

a2 < a3 ≤ 3n for a2, a3 ∈ N. Let the first row of T be denoted b1 b2 b3 and

the second row of Aa(T ) be denoted b′1 b′2 b′3 . Then

(a) b′j < ai if and only if bj + (i− 1) < ai for all i, j ∈ {1, 2, 3},
(b) inv(3n)(Aa(T )) = inv(3n−1)(T )+χ(b2 < a2−1 ≤ b3)−χ(b3 < a2−1 ≤ b2),

and

(c) comaj(3n)(Aa(T )) = comaj(3n−1)(T ) + (n − 1)(χ(b2 < a2 − 1) + χ(b3 <
a3 − 2)).

Proof. To prove part (a), first suppose b′j > ai. Then, if a2 < b′j < a3, b′j = bj+2
by definition, and if b′j > a3, b′j = bj + 3, so bj + i > ai if i = 2 or i = 3. Next,
suppose that bj + i− 1 ≥ ai. If a2 ≤ bj + i− 1 < a3, then b′j = bj + 2 > a2. If
a3 ≤ bj + i− 1, then b′j = bj + 3 > a3.

For parts (b) and (c), we analyze what happens to inversions and ascents
when a new first row is added. First, notice that all ascents above the first
two rows of Aa(T ) are in the same positions as the ascents of T , and that all
inversion triples inAa(T ) that don’t involve the first two rows are the same as the
inversion triples in T above the first row. There is an ascent in Aa(T ) between
row one and two in column i if and only if b′i < ai. By part (a), this holds if and
only if bi+i−1 < ai. Thus comaj(3n)(Aa(T )) = comaj(3n−1)(T )+(n−1)(χ(b2 <
a2 − 1) + χ(b3 < a3 − 2)).
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To analyze the number of inversion triples in Aa(T ), we need only to consider
the triples

b′1 b′2

1
,
b′1 b′3

1
, and

b′2 b′3

a2
.

Note that the first two triples have the same inversion status as b1 b2 and
b1 b3 , so the only triple of concern is the third. If b2 > b3 in T , then b′2 > b′3
in Aa(T ). If a2 < b′3 < b′2 or b′3 < b′2 < a2, then the triple is an inversion triple in
Aa(T ) and inv(3n)(Aa(T )) = inv(3n−1)(T ). On the other hand, if b′3 < a2 < b′2,
the triple is not an inversion triple. This occurs if and only if b3 < a2 − 1 ≤ b2.
In this case, inv(3n)(Aa(T )) = inv(3n−1)(T )−1. Similarly, if b2 < b3 in T , b′2 < b′3
in Aa(T ). If a2 < b′2 < b′3 or b′2 < b′3 < a2, the triple is not an inversion triple
and inv(3n)(Aa(T )) = inv(3n−1)(T ). If b′2 < a2 < b′3, the triple is an inversion
triple, b2 < a2 − 1 ≤ b3, and inv(3n)(Aa(T )) = inv(3n−1)(T ) + 1.

We combine a-augmentation with cyclic shifting by defining a new operation.

Definition 3.8. For n ∈ N, define cyc : F(3n),a → F(3n),a by cyc(T ) = Aa ◦
cyc ◦A−1a (T ). Similarly, define si = Aa ◦ si ◦A−1a for i = 1, 2.

Theorem 3.9. Let n ∈ N with n ≥ 2, T ∈ F(3n−1), and a = (a1, a2, a3) where

1 = a1 < a2 < a3 ≤ 3n. The first row of T can be denoted bσ(1) bσ(2) bσ(3)
where 1 ≤ b1 < b2 < b3 ≤ 3(n− 1) and σ ∈ S3. Then for 0 ≤ j ≤ 3(n− 1)− b3,

(a) comaj(3n)(cycj(Aa(T )))=comaj(3n−1)(T )+j
+(n− 1)(χ(j<a2−bσ(2)−1)+χ(j<a3−bσ(3)−2));

(b) inv(3n)(cycj(Aa(T )))=inv(3n−1)(T ) +χ(bσ(2)+j<a2−1≤bσ(3)+j)
−χ(bσ(3)+j<a2−1≤bσ(2)+j).

Proof. Let n ∈ N with n ≥ 2 and T ∈ F(3n−1) with first row bσ(1) bσ(2) bσ(3)
as above. Let a = (a1, a2, a3) with 1 = a1 < a2 < a3 ≤ 3n. Then, for
0 ≤ j ≤ 3(n− 1)− b3,

comaj(3n)(cycj(Aa(T ))) = comaj(3n)(Aa(cycj(T )))

= comaj(3n−1)(cycj(T ))+(n− 1)(χ(bσ(2)+j < a2 − 1)

+ χ(bσ(3) + j < a3 − 2))

by Theorem 3.7

= comaj(3n−1)(T ) + j + (n− 1)(χ(j < a2 − bσ(2) − 1)

+ χ(j < a3 − bσ(3) − 2))

by Theorem 3.3.
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Similarly,

inv(3n)(cycj(Aa(T ))) = inv(3n)(Aa(cycj(T )))

= inv(3n−1)(cycj(T )) + χ(bσ(2) + j < a2 − 1 ≤ bσ(3) + j)

− χ(bσ(3) + j < a2 − 1 ≤ bσ(2) + j)

by Theorem 3.7

= inv(3n−1)(T ) + χ(bσ(2) + j < a2 − 1 ≤ bσ(3) + j)

− χ(bσ(3) + j < a2 − 1 ≤ bσ(2) + j)

by Theorems 3.1 and 3.3.

We would also like an augmented version of the operation C in Definition
3.5 that increases the comajor index without changing the inversion statistic.
It is not enough to simply use the composition Aa ◦C ◦A−1a , because the triple

bσ(2) bσ(3)

a2

creates problems if bσ(2) or bσ(3) are equal to a2 − 1.

Definition 3.10. For n ≥ 2 and a = (1, a2, a3) with 1 < a2 < a3 ≤ 3n, we
define C : F(3n),a → F(3n),a as follows. Let U ∈ F(3n),a. Denote the bottom row
of A−1a (U) by σ(b) = (bσ(1), bσ(2), bσ(3)) where b = (b1, b2, b3) with b1 < b2 < b3
and σ ∈ S3. Then, when a2 6= 2 and a2 6= 3n− 1,

C(U) =



cyc(U) if b3 6=3n− 3 and not C1

s2 ◦ cyc(U) if b3 6=3n− 3 and C1

s1 ◦ s2 ◦ cyc(U) if b3 =3n− 3, σ=123, 231, 312, and not C2

s2 ◦ s1 ◦ s2 ◦ cyc(U) if b3 =3n− 3, σ=123, 231, 312, and C2

s2 ◦ s1 ◦ cyc(U) if b3 =3n− 3, σ=132, 213, 321, and not C3

s1 ◦ cyc(U) if b3 =3n− 3, σ=132, 213, 321, and C3

where

(C1) bσ(2) = a2 − 2 or bσ(3) = a2 − 2;

(C2)
(1) σ = 123, b1 < a2 − 2 and b2 6= a2 − 2;
(2) σ = 231, b2 < a2 − 2 or b1 ≥ a2 − 1;
(3) σ = 312, b1 6= a2 − 2 and b2 ≥ a2 − 1;

(C3)
(1) σ = 132, b2 < a2 − 2 or b1 < a2 − 2 < b2;
(2) σ = 213, b1 ≥ a2 − 1 or b2 < a2 − 2;
(3) σ = 321, b1 6= a2 − 2 and b2 ≥ a2 − 1.

If a2 = 2 or a2 = 3n− 1, then C(U) = Aa ◦ C ◦A−1a (U).
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To show that C is a bijection, it is sufficient to define an inverse function

C
−1

.

Definition 3.11. For n ≥ 2 and a = (1, a2, a3) with 1 < a2 < a3 ≤ 3n, define

C
−1

: F(3n),a → F(3n),a. Let U ∈ F(3n),a. Denote the bottom row of A−1a (U) by
σ(b) = (bσ(1), bσ(2), bσ(3)) where b = (b1, b2, b3) with b1 < b2 < b3 and σ ∈ S3.
Then, when a2 6= 2 and a2 6= 3n− 1,

C
−1

(U) =



cyc−1(U) if b1 6= 1 and not I1;

cyc−1 ◦ s2(U) if b1 6= 1 and I1;

cyc−1 ◦ s2 ◦ s1(U) if σ = 123, 231, or 312, and not I2;

cyc−1 ◦ s2 ◦ s1 ◦ s2(U) if σ = 132, 213, or 321, and I2;

cyc−1 ◦ s1 ◦ s2(U) if σ = 132, 213, or 321, and not I3;

cyc−1 ◦ s1(U) if σ = 123, 231, or 312, and I3;

where

(I1) bσ(2) = a1 − 1 or bσ(3) = a2 − 1;

(I2)
(1) σ1 = 1, b2 < a2 − 1 and b3 6= a2 − 1;
(2) σ1 = 2, b3 < a2 − 1 or b2 ≥ a2;
(3) σ1 = 3, b2 6= a2 − 1 and b3 ≥ a2;

(I3)
(1) σ1 = 1, b3 < a2 − 1 or b2 < a2 − 1 < b3;
(2) σ1 = 2, b2 ≥ a2 or b3 < a2 − 1;
(3) σ1 = 3, b2 6= a2 − 1 and b3 ≥ a2.

If a2 = 2 or a2 = 3n− 1, then C
−1

(U) = Aa ◦ C−1 ◦A−1a (U).

One can check each case to see that C
−1 ◦C = idF(3n),a

and C ◦C
−1

=
idF(3n),a

.

Theorem 3.12. For C as in Definition 3.10 and T ∈ F(3n),a,

(a) comaj(3n)(C(T )) = comaj(3n)(T ) +

{
1

−(n− 2)
and

(b) inv(3n)(C(T )) = inv(3n)(T ).

Proof. Note that (b) follows directly from the construction of C. To prove (a),
let T ∈ F(3n),a and consider two cases: b3 6= 3(n− 1) and b3 = 3(n− 1), where
b3 is the largest entry in the bottom row of A−1(T ), as in Definition 3.10. We
use the labels shown in Fig. 4 for the entries in the second rows of T and C(T ).

We first suppose b3 6= 3(n − 1). Note that C sends x to x′ in this case and
comaj(3n−1)(A

−1(C(T ))) = comaj(3(n−1))(A
−1(T )) + 1 by the definition of C. It

remains to show that C(T ) cannot have more ascents between the bottom two
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rows than T , and that T has at most one more ascent between the bottom two
rows than C(T ).

Suppose first that T has no ascents between the bottom two rows. Then
y > a2 and z > a3 in T and y 7→ y′ and z 7→ z′ in C(T ), so C(T ) also has no
ascents between the bottom two rows.

Now consider T with exactly one ascent between the bottom two rows. Sup-
pose that y > a2 but z < a3. If z > y or a2 < z < y, then y 7→ y′ and z 7→ z′

since inv(3n)(T ) = inv(3n)(C(T )). The only way to lose an ascent is if z = a3−1.
There is no way for y′ < a2 since y′ > y > a2. If y > a2, but z < a2, then y 7→ y′

and z 7→ z′ provided z 6= a2−1, and the number of ascents between the bottom
two rows of T is the same as in C(T ). However, if z = a2 − 1, then z < a2 < y
is not an inversion triple in T , and to preserve the number of inversion triples
between T and C(T ), z 7→ y′ and y 7→ z′ in C(T ). Note that if y ≥ a3 − 1,
then there is one more ascent between the bottom rows of T than in C(T ), but
if a2 < y < a3 − 1, T and C(T ) have the same number of ascents between the
bottom two rows. One can do a similar analysis of the case where y < a2 and
z > a3.

If T has two ascents between the bottom two rows, we have y < a2 and
z < a3. Note that if y < a2−1 and z 6= a2−1, then y 7→ y′ and z 7→ z′ in C(T ).
Then, if z = a3 − 1, T has one more ascent between the bottom two rows than
C(T ). Otherwise, they have the same number of ascents. On the other hand,
if either y = a2 − 1 or z = a2 − 1, then y 7→ z′ and z 7→ y′ in C(T ) in order
to preserve the number of inversions. This immediately leads to T with either
the same number of ascents or exactly one more ascent between the bottom two
rows than C(T ).

Now consider what happens if b3 = 3(n−1). Then it follows, by the definition
of C and properties of the cyclic shift move, that comaj(3(n−1))(A

−1(C(T ))) =

comaj(3(n−1))(A
−1(T )) − (n − 2). To show that (a) holds, we show that either

the number of ascents between the bottom two rows is preserved by applying
C, leading to comaj(3n)(C(T )) = comaj(3n)(T ) − (n − 2), or that exactly one

ascent is introduced between the bottom two rows, leading to comaj(3n)(C(T )) =
comaj(3n)(T )− (n− 2) + (n− 1) = comaj(3n)(T ) + 1.

Suppose that T has no ascents between the bottom two rows. Then y > a2
and z > a3 and we must show that the bottom two rows of C(T ) do not have
two ascents. If a2 = 2, there is no possible way for C(T ) to have more than
one ascent between the bottom two rows, so we assume a2 6= 2. If x = 3n and
y < z in T , then z 7→ x′ in C(T ). Since a2 < y < z is not an inversion triple
in T , we must have z′ = 2 and y 7→ y′ in C(T ). Thus, y′ > y > a2, so C(T )
has only one more ascent between the bottom two rows than T has. If instead,
y > z in T , then z 7→ y′ or z 7→ z′ in C(T ), so C(T ) has at most one more
ascent between the bottom two rows than T . Similarly, if y = 3n and z > x in
T , then z 7→ y′ or z 7→ z′, so again, C(T ) has at most one more ascent between
the bottom two rows than T has. Likewise, if x > z, then x 7→ y′ or x 7→ z′ and
since x > z > a3, there is at most one more ascent in C(T ) than in T . The case
where z = 3n is similar.

11



T =
x y z
1 a2 a3

C(T ) =
x′ y

′
z′

1 a2 a3

Figure 4: The bottom two rows of T and C(T )

Suppose that T has exactly one ascent between the bottom two rows. Then
either y > a2 and z < a3 or y < a2 and z > a3. We first consider y > a2 and
z < a3 in T . Note first that if a3 = 3n, z′ < a3 in C(T ), so no ascents can be
lost as a result of applying C to T . Thus, we assume that a3 6= 3n. Then either
x = 3n or y = 3n. Suppose x = 3n. If a2 = 2, then either y′ = 3 or z′ = 3.
If z′ = 3, the number of ascents between the bottom two rows of T and C(T )
are the same. If y′ = 3, then z > y in T , so z 7→ x′ in C(T ) and thus y 7→ z′

in C(T ), so z′ < a3. Once again, the number of ascents is preserved. If a2 6= 2,
then either y′ = 2 or z′ = 2, and again, at most one ascent is gained, and none
are lost between the first two rows as a result of applying C to T . Suppose then
that y = 3n and x < z. Then x′ = 2 (or 3 if a2 = 2) and x 7→ z′ or x 7→ y′

in C(T ). If x 7→ z′, then z′ < a3 since x < z < a3. If x 7→ y′, then z 7→ z′

and, since the number of inversions are preserved, z > a2 and thus y′ < a2. A
similar argument holds for the case where y < a2 and z > a3.

Finally, suppose y < a2 and z < a3. We must show then that y′ < a2 and
z′ < a3 in C(T ). Note that a2 6= 2 in this case. If a3 6= 3n, then x = 3n in
T , so one of y′ or z′ must be 2 in C(T ). If y′ = 2 and y < z, then y 7→ z′, so
z′ < a3 also. On the other hand, if y′ = 2 and y > z, then z < a2 and z 7→ z′,
so z′ < a3. Similarly, if z′ = 2 and y < z, then y 7→ y′. If y < a2 − 1, then
y′ < a2. Note that if y = a2 − 1, then z > a2 > y forms an inversion triple in
T , so y must map to z′. If instead, z′ = 2 and z < y, then z 7→ y′, so y′ < a2.
Thus, T and C(T ) have the same number of ascents between the first two rows.
If a3 = 3n, then z′ < a3 and it remains to show that y′ < a2. If a2 = a3−1, the
result follows immediately. If x = 3n − 1 in T , the argument is similar to the
previous case. We consider the case where z = 3n−1. If x < y in T , then x′ = 2
in C(T ). Then, if y < a2 − 1, x 7→ z′ in C(T ) in order to preserve inversions.
Thus y 7→ y′ and y′ < a2. If y = a2 − 1, then x 7→ y′ and y′ < a2. Thus, if
x < y, T and C(T ) have the same number of ascents between the first two rows.
We can analyze the case where x > y similarly. Thus, ascents present between
the first two rows of T are present between the first two rows of C(T ). This
leads immediately to property (a).

From the case analysis in the proof of Theorem 3.12 and the definition

of C, we can identify fillings T with the property that comaj(3n)(C
−1

(T )) =
comaj(3n)(T ) + (n − 2). We call fillings with this property key fillings. There
are six basic types of key fillings that are displayed in Table 1. In the table,
X,Y, Z are the entries in the first row of the filling A−1(Ak) with X ′, Y ′, Z ′ the
corresponding entries in Ak for each k.
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Table 1: Key fillings.

Filling Conditions

A1 =

...
...

...

X′ Y ′ a3 + 1

1 a2 a3

1. X′ 6= 2, Y 6= a2 − 1, a2 6= 3n− 1

2. X′ 6= 2, Y > a3 − 2, a2 = a3 − 1

A2 =

...
...

...

X′ a2 + 1 Z′

1 a2 a3

1. X′ 6= 2, a2 6= 2, Z < a2 − 1

2. X′ 6= 2, a2 6= 2, Z ≥ a3 − 2

A3 =

...
...

...

X′ Y ′ a2 + 1

1 a2 a3

X′ 6= 2, a2 6= 2, a2 − 1 < Y < a3 − 1

A4 =

...
...

...

X′X′X′ Y ′ Z′

1 a2 a3

1. a2 = 3n− 1, X = 1

2. 1 = X < Y < Z, Y ≥ a2−1 and Z ≥ a3−2,
or Y ≥ a2 − 1 and a3 = 3n, or Z = a2 − 1 =
a3 − 2, or Z = a2 − 1 and a3 = 3n

3. 1 = X < Z < Y , a3 = 3n and Z < a2 − 1
and Y 6= a2−1, or Y = a2−1, or Z ≥ a2−1
and Y < a3 − 1, or Z ≥ a3 − 2

A5 =

...
...

...

X′ Y ′ Z′Z′Z′

1 a2 a3

1. a2 = 3n− 1, Z = 1

2. 1 = Z < X < Y , Y ≥ a2 − 1 and X < a2,
or X ≥ a2 and a3 = 3n, or Y < a2 − 1 and
a3 = 3n, or a2 = 2 and X < a3 − 1, or
a3 = 3.

3. 1 = Z < Y < X, Y 6= a2−1 and X < a3−1,
or X ≤ a2 − 1, or Y = a2 − 1

A6 =

...
...

...

X′ Y ′Y ′Y ′ Z′

1 a2 a3

1. a2 = 3n− 1, Y = 1

2. 1 = Y < Z < X, Z = a2 − 1 = a3 − 2, or
Z = a2 − 1 or X ≤ a3 − 2, or X < a2, or
a2 6= 2 and X ≥ a2 and Z 6= a2 − 1 and
Z = a3 − 2, or a2 = 2 and X ≤ a3 − 2

3. 1 = Y < X < Z, a2 6= 2 and X ≤ a3 − 2 ≤
Z, or X < a2, Z ≥ a2 − 1 and a3 = 3n,
or a2 = 2 and Z ≥ a3 − 2, or a2 = 2 and
a3 = 3n
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4. Three-column Recursion

We first define a new polynomial for m,n ∈ N and a = (a1, a2, . . . , am) with
1 = a1 < a2 < · · · < am ≤ mn by setting

R(mn),a(q, t) =
∑

T∈F(mn),a

qinv(mn)(T )tcomaj(mn)(T ). (6)

Note that R(mn+1),(1,2,...,m)(q, t) = F(mn)(q, t). We now show that, when
m = 3, a factor of [n− 1]t can be extracted from (6).

Lemma 4.1. For n ≥ 2 and a = (a1, a2, a3) with 1 = a1 < a2 < a3 ≤ 3n, let
T(3n),a be the set of key fillings. Then

R(3n),a = [n− 1]t
∑

T∈T(3n),a

fT (q, t) (7)

where fT (q, t) is some polynomial determined by T .

Proof. We will prove Lemma 4.1 by using C to decompose the set of fillings,
F(3n),a, into cycles with a constant number of inversions. After these cycles are
identified, we group fillings in a given cycle into sets of n − 1 fillings identified
by the key fillings from Table 1.

Let A ∈ F(3n),a. Since cyc3(n−1)(A) = A, there exists some positive integer

k such that C
3(n−1)k

(A) = A. Note that k might not be equal to 1 since

si ◦ sj ◦ si 6= sj ◦ si ◦ sj in general. In the set {Bi ∈ F(3n),a : Bi = C
i
(A) for

0 ≤ i ≤ 3(n− 1)k − 1}, there must be 3k values of i for which comaj(3n)(Bi)−
comaj(3n)(Bi−1) = −(n−2)), and 3k(n−2) values of i for which comaj(3n)(Bi)−
comaj(3n)(Bi−1) = 1.

For each i with 1 ≤ i ≤ 3(n − 1)k − 1, represent Bi with a left parenthe-
sis if comaj(3n)(Bi) = comaj(3n)(Bi−1) + 1 and with n − 2 right parentheses if
comaj(3n)(Bi) = comaj(3n)(Bi−1)− (n− 2). For i = 0, represent B0 with a left
parenthesis if comaj(3n)(B0) = comaj(3n)(B3(n−1)k−1) + 1, and by n − 2 right
parentheses if comaj(3n)(B0) = comaj(3n)(B3(n−1)k−1)− (n− 2). Note that this
means fillings represented with n − 2 right parentheses are key fillings. Create
a word by writing these parentheses in sequence starting with the parenthesis
representing B0. Since there are the same number of left and right paren-
theses, this word can be cyclically shifted to form a Dyck word with balanced
parentheses[11, §5.3]. Given a pair of matched parentheses, let m be the number
of right parentheses between the matched parentheses. Then the difference in
comajor index between the fillings represented by the matched parentheses is
given by

∆ comaj(3n) = −[(n− 2)−m (mod n− 2)].

This allows us to decompose the set {B0, B1, . . . , B3(n−1)k−1} into 3k disjoint
sets {Sj1 , Sj2 , . . . , Sj(n−1)

}, 1 ≤ j ≤ 3k with the property that

comaj(3n)(Sji+1
) = comaj(3n)(Sji) + 1
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by letting each Sj1 be a filling denoted by right parentheses, and the remaining
Sji be the fillings denoted by left parentheses that are matched with Sj1 , labeled
from left to right. Then, for each j,

n−1∑
i=1

qinv(3n)(Sji )tcomaj(3n)(Sji ) = [n− 1]tq
inv(3n)(Sj1 )tcomaj(3n)(Sj1 ).

We illustrate the method of proof of Lemma 4.1 with the fillings shown in
Fig. 5. This cycle gives the Dyck word

(( ) ) (( ) (( ) ) )
B0 B1 B2 B3 B4 B5 B6 B7 B8

.

Matching balanced parentheses gives three sets of fillings {B0, B1, B2},
{B3, B4, B8}, and {B5, B6, B7}. The factor of [3]t can be seen in the sum of the

monomials qinv(34)(T )tcomaj(34)(T ) for the fillings in each of these three sets.
We rewrite the recursion in terms of the first row of the unaugmented fillings

by determining how many times the operation C must be applied to obtain a
key filling from Table 1. First, notice that there is not a unique way to express
this recursion, as seen in Theorem 4.2.

Theorem 4.2. For all n, k,a where n ∈ N, k ∈ {1, 2} and a = (a1, a2, a3) with
1 = a1 < a2 < a3 ≤ 3n, let a(k) = cyc3n−a4−k+1(a) with the entries sorted in
increasing order. Then

R(3n),a(k)(q, t) = t(3−k)n−a4−k+1R(3n),a(q, t).

Proof. Let T ∈ F(3n),a. Note that C3n−a4−k+1 is a bijection from F(3n),a to
F(3n),a(k) . Then, by Theorem 3.6,

inv(3n)(C
3n−a4−k+1(T )) = inv(3n)(T ) and

comaj(3n)(C
3n−a4−k+1(T )) = comaj(3n)(T ) + 3n− a4−k + 1

− n
3∑
j=1

χ(aj + 3n− a4−k + 1 > 3n)

= comaj(3n)(T ) + 3n− a4−k + 1− n(k)

= comaj(3n)(T ) + (3− k)n− a4−k + 1.

Let x+ = max(0, x).

Theorem 4.3. For µ = (3n) and a = (a1, a2, a3) with 1 = a1 < a2 < a3 ≤ 3n,

R(3n),a = [n−1]t
∑

b=(b1,b2,b3) with
1=b1<b2<b3≤3(n−1)

R(3n−1),b(tE1+qtE2+qtE3+q2tE4+q2tE5+q3tE6)
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(( ) )

B0 B1 B2

8 3 2
6 7 11
12 10 5
1 4 9

C−→
10 5 3
7 8 12
11 2 6
1 4 9

C−→
11 6 5
8 10 2
12 3 7
1 4 9

C−→

q5t9 q5t10 q5t11

(( ) ((

B3 B4 B5

11 7 6
10 12 3
8 2 5
1 4 9

C−→
12 8 7
11 2 5
10 3 6
1 4 9

C−→
2 10 8
12 6 3
11 7 5
1 4 9

C−→

q5t9 q5t10 q5t8

) ) )

B6 B7 B8

3 11 10
2 7 5
12 8 6
1 4 9

C−→
5 12 11
3 8 6
10 2 7
1 4 9

C−→
6 2 12
5 10 7
11 3 8
1 4 9

C−→

q5t9 q5t10 q5t11

Figure 5: One cycle of fillings of shape (34) with a = (1, 4, 9).

16



where

E1 =(a2 − b2 − 1)+ + (a3 − b3 − 2− (a2 − b2 − 1)+)+,

E2 =(a3 − b2 − 2)+ − (a3 − b2 + b3 − 3n)− (a2 + b3 − 3n)+)+,

E3 =a2 − 2 + (a3 − b3 − a2)+ − (a2 + b3 − 3n)+

+ (a2 − b2 + b3 + 1− 3n)+,

E4 =a3 − 3 + (a3 − b2 + b3 − 3n)+ − (a3 + b3 − 1− 3n)+

− (a3 − a2 − b2 + b3 + 2− 3n))+,

E5 =a2 − 2 + (a3 − b2 − a2)+ − (a3 − b2 + b3 − 3n)+ − (a2 + b2 − 3n)+

+ (a2 + b3 − 3n)+ − (a2 + b3 − 3n− (a3 − b2 + b3 − 3n)+)+,

E6 =a3 − 3− (a3 + b3 − a2 + 1− 3n)+ − (a2 − b3 + b2 − 2)+

+ (a2 − b3 + b2 − 2− (a3 + b2 − 1− 3n)+)+.

The initial condition is R(3),(1,2,3) = 1.

Proof. Let b = (1, b2, b3), U ∈ F(3n−1),b, and let T ∈ F(3n),a be defined as
T = Aa(σ(U)) where σ is some composition of s1 and s2. We define ∆q =

inv(3n)(C
i
(T ))− inv(3n−1)(U) for 0 ≤ i ≤ 3n− 3 and ∆t = comaj(3n)(C

i
(T ))−

comaj(3n−1)(U).
Case 1: Let σ = idF(3n−1),b

.

Then C
i
(T ) for 0 ≤ i ≤ 3n − 3 will have ∆q = 0 if and only if a2 − 1 ≤ b2

or b3 < a2 − 1. If b2 ≥ a2 − 1 and b3 ≥ a3 − 2, set i = 0 to obtain A4
with ∆t = 0. If, on the other hand b2 ≥ a2 − 1 but b3 < a3 − 2, set i =

a3 − b3 − 2 to obtain C
i
(T ) = A1 with ∆t = a3 − b3 − 2. When b3 < a2 − 1,

set i = max{a2 − b2 − 1, a3 − b3 − 2}. When i = a2 − b2 − 1, C
i
(T ) = A2 with

∆t = a2 − b2 − 1. Note that this holds even if b3 + a2 − b2 − 1 > 3n, since the
resulting filling will have the form

...
...

...

∗ a2 + 1 a2−b2+1

1 a2 a3

and hence ∆t = a2−b2−1−(n−1)+(n−1) = a2−b2−1. When i = a3−b3−2,

C
i
(T ) = A1 with ∆t = a3 − b3 − 2. So, when σ = idF(3n−1),b

and ∆q = 0,

set i = max{(a2 − b2 − 1)+, (a3 − b3 − 2)+}. This can also be written as
i = (a2 − b2 − 1)+ + (a3 − b3 − 2− (a2 − b2 − 1)+)+.

Similarly, C
i
(T ) will have ∆q = 1 if and only if b2 < a2 − 1 ≤ b3. Note

that b2 < a3 − 2. If b3 + a3 − b2 − 2 ≤ 3n − 3, set i = a3 − b2 − 2 to obtain
A1 with ∆t = a3 − b2 − 2. If b3 + a3 − b2 − 2 > 3n − 3 and 3n − 1 − b3 <
a2 − 1, then set i = min{a2 − 2, a3 − b2 − 2}. If i = a2 − 2, C

i
(T ) = A3

with ∆t = a2 − 2 − (n − 1) + (n − 1) = a2 − 2. If i = a3 − b2 − 2, then
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C
i
(T ) = A1 with ∆t = a3 − b2 − 2. If b3 + a3 − b2 − 2 > 3n − 3 and a2 − 1 ≤

3n − 1 − b3, set i = 3n − 2 − b3 to obtain A4 with ∆t = 3n − 2 − b3. Then,
i = (a3 − b2 − 2)+ − (a3 − b2 − 2− (3n− 2− b3)− (a2 − 2− (3n− 2− b3))+)+.
Case 2: Let σ = s2.

Then C
i
(T ) will have ∆q = 0 if and only if b2 < a2 − 1 ≤ b3. Set i =

max{a2− b2−1, (a3− b3−2)+} to obtain either A1 with ∆t = a3− b3−2 or A2
with ∆t = a2− b2−1. Thus, i = (a2− b2−1)+ + (a3− b3−2− (a2− b2−1)+)+.

On the other hand, C
i
(T ) will have ∆q = 1 if and only if b3 < a2 − 1 or

a2−1 ≤ b2. If a2−1 ≤ b2 < a3−2 and b3+a3−b2−2 ≤ 3n−3, set i = a3−b2−2
to obtain A1 with ∆t = a3− b2−2. If a2−1 ≤ b2 < a3−2, b3 +a2−2 ≤ 3n−3,
and b3 + a3 − b2 − 2 > 3n − 3, then set i = 3n − 2 − b3 to obtain A4 with
∆t = 3n − 2 − b3. If b2 ≥ a3 − 2, do nothing to obtain A4 with ∆t = 0. If
b3 < a2 − 1 and b3 + a3 − b2 − 2 ≤ 3n− 3, set i = a3 − b2 − 2 to obtain A1 with
∆t = a3−b2−2. If b3 < a2−1, b3+a2−2 > 3n−3, and b3+a3−b2−2 > 3n−3, set
i = min{a2−2, a3−b2−2} to obtain either A3 with ∆t = a2−2 or A1 with ∆t =
a3−b2−2. Finally, if b3 < a2−1, b3+a3−b2−2 > 3n−3 and b3+a2−2 ≤ 3n−3,
set i = a3− b2−2 to obtain A1 with a3− b2−2. We can combine these cases to
write i = (a3−b2−2)+−(a3−b2−2−(3n−2−b3)−(a2−2−(3n−2−b3))+)+.
Case 3: Let σ = s1.

Then C
i
(T ) will have ∆q = 1 if and only if b3 < a2−1. If b3+a2−2 ≤ 3n−3,

set i = max{a2 − 2, a3 − b3 − 2} to obtain either A2 with ∆t = a2 − 2 or A1
with ∆t = a3− b3− 2. If b3 + a2− 2 > 3n− 3, and b3 + a2− b2− 1 ≤ 3n− 3, set
i = 3n− 2− b3 to obtain A5 with ∆t = 3n− 2− b3. If b3 + a2− 2 > 3n− 3 and
b3 +a2− b2− 1 > 3n− 3, set i = a2− b2− 1 to obtain A2 with ∆t = a2− b2− 1.
Then, in this case, i = a2 − 2 + (a3 − b3 − 2− (a2 − 2))+ − (a2 − 2− (3n− 2−
b3))+ + (a2 − b2 − 1− (3n− 2− b3))+.

Similarly, C
i
(T ) will have ∆q = 2 if and only if b3 ≥ a2− 1. If b3 + a3− 3 ≤

3n − 3, set i = a3 − 3 to obtain A1 with ∆t = a3 − 3. If b3 + a3 − 3 >
3n − 3 and b2 + 3n − 2 − b3 ≥ a3 − 2, set i = 3n − 2 − b3 to obtain A6 with
∆t = 3n − 2 − b3 − (n − 2) + (n − 2) = 3n − 2 − b3. If b3 + a3 − 3 > 3n − 3,
b2+3n−2−b3 < a3−2, and b3+a3−b2−2−(3n−3) < a2−1, set i = a3−b2−2
to obtain A1 with ∆t = a3−b2−2. If b3+a3−3 > 3n−3, b2+3n−2−b3 < a3−2
and b3 +a3− b2−2− (3n−3) ≥ a2−1, set i = a2−2 + 3n−2− b3 to obtain A3
with ∆t = 3n− 2− b3 + a2 − 2. Then i = a3 − 3− (a3 − 3− (3n− 2− b3))+ +
(a3 − b2 − 2− (3n− 2− b3))+ − (a3 − b2 − 2− (a2 − 2 + 3n− 2− b3))+.
Case 4: Let σ = s2 ◦ s1.

In this case, C
i
(T ) will have ∆q = 1 if and only if b3 ≥ a2−1. If b3+a2−2 ≤

3n−3, set i = max{a2−2, (a3− b3−2)+} to obtain either A2 with ∆t = a2−2
or A1 with ∆t = a3−b3−2. If b3 +a2−2 > 3n−3 and 3n−2−b3 +b2 ≥ a2−1,
set i = 3n−2−b3 to obtain A4 with ∆t = 3n−2−b3. If b3+a2−2 > 3n−3 and
3n− 2− b3 + b2 < a2− 1, set i = a2− b2− 1 to obtain A2 with ∆t = a2− b2− 1.
Then i = a2 − 2 + (a3 − b3 − 2− (a2 − 2))+ − (a2 − 2− (3n− 2− b3))+ + (a2 −
b2 − 1− (3n− 2− b3))+.

Similarly, C
i
(T ) will have ∆q = 2 if and only if b3 < a2− 1. If b3 + a3− 3 ≤
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3n−3, set i = a3−3 to obtain A1 with ∆t = a3−3. If b3 +a3−3 > 3n−3 and
b2+3n−2−b3 ≥ a3−2, set i = 3n−2−b3 to obtain A6 with ∆t = 3n−2−b3. If
b3+a3−3 > 3n−3 and b2+3n−2−b3+a2−2 < a3−2, set i = 3n−2−b3+a2−2
to obtain A3 with ∆t = 3n−2−b3−(n−1)+a2−2+(n−1) = 3n−2−b3+a2−2.
On the other hand, if b3 + a3 − 3 > 3n − 3, b2 + 3n − 2 − b3 < a3 − 2, and
b2 + 3n − 2 − b3 + a2 − 2 ≥ a3 − 2, set i = a3 − b2 − 2 to obtain A1 with
∆t = a3 − b2 − 2. Then i = a3 − 3− (a3 − 3− (3n− 2− b3))+ + (a3 − b2 − 2−
(3n− 2− b3))+ − (a3 − b2 − 2− (a2 − 2 + 3n− 2− b3))+.
Case 5: Let σ = s1 ◦ s2.

In this case, C
i
(T ) will have ∆q = 2 if and only if b2 < a2 − 1. If b3 +

max{(a3 − b2 − 2)+, a2 − 2} ≤ 3n − 3, set i = max{(a3 − b2 − 2)+, a2 − 2}
to obtain either A1 with ∆t = a3 − b2 − 2 or A2 with ∆t = a2 − 2. If b3 +
max{(a3 − b2 − 2)+, a2 − 2} > 3n− 3, and b2 + a2 − 2 ≤ 3n− 3, set i = a2 − 2
to obtain A2 with ∆t = a2 − 2. If a2 − 2 + b2 > 3n− 3, set i = 3n− 2− b2 to
obtain A6 with ∆t = 3n − 2 − b2 − 2(n − 2) + 2(n − 2) = 3n − 2 − b2. Then
i = a2−2+(a3−b2−2−(a2−2))+−(a3−b2−2−(3n−2−b3))++(a2−2−(3n−2−
b3))+−(a2−2−(3n−2−b3)−(a3−b2−2−(3n−2−b3))+)+−(a2−2−(3n−2−b2))+.

On the other hand, C
i
(T ) will have ∆q = 3 if and only if b2 ≥ a2 − 1.

If b3 + a3 − 3 ≤ 3n − 3, set i = a3 − 3 to obtain A1 with ∆t = a3 − 3. If
b3+a3−3 > 3n−3, a2−2+3n−2−b3 ≤ a3−3, and b2+a2−2+3n−2−b3 ≤ 3n−3,
set i = a2 − 2 + 3n − 2 − b3 to obtain A3 with ∆t = a2 − 2 + 3n − 2 − b3. If
b3 + a3 − 3 > 3n− 3, a2 − 2 + 3n− 2− b3 > a3 − 3, and b2 + a3 − 3 ≤ 3n− 3,
set i = a3 − 3 to obtain A1 with ∆t = a3 − 3. If b3 + a3 − 3 > 3n − 3
and a2 − 2 + 3n − 2 − b3 + b2 > 3n − 3, set i = 3n − 2 − b2 to obtain A6 if
b3 − b2 + 1 = a2 − 1 or A5 if b3 − b2 + 1 6= a2 − 1 with ∆t = 3n− 2− b2. Then
i = a3 − 3− (a3 − 3− (3n− 2− b3)− (a2 − 2))+ − (a2 − (b3 − b2 + 1)− 1)+ +
(a2 − (b3 − b2 + 1)− 1− (a3 − 3− (3n− 2− b2))+)+.
Case 6: Let σ = s2 ◦ s1 ◦ s2.

When σ = s2 ◦ s1 ◦ s2, C
i
(T ) will have ∆q = 2 if and only if b2 ≥ a2 − 1.

If b3 + max{a2 − 2, (a3 − b2 − 2)+} ≤ 3n − 3 set i = max{a2 − 2, (a3 − b2 −
2)+} to obtain either A1 with ∆t = a3 − b2 − 2 or A2 with ∆t = a2 − 2. If
b3 + (a3 − b2 − 2)+ > 3n − 3 and b3 + a2 − 2 ≤ 3n − 3, set i = 3n − 2 − b3 to
obtain A5 with ∆t = 3n− 2− b3. If b3 + min{a2 − 2, (a3 − b2 − 2)+} > 3n− 3
and b2 + a2 − 2 ≤ 3n − 3, set i = a2 − 2 to obtain A2 with ∆t = a2 − 2.
If b3 + min{a2 − 2, (a3 − b2 − 2)+} > 3n − 3 and b2 + a2 − 2 > 3n − 3, set
i = 3n− 2− b2 to obtain A6 with ∆t = 3n− 2− b2 since 3n− 1− b2 < a2. Then
i = a2−2+(a3−b2−2−(a2−2))+−(a3−b2−2−(3n−2−b3))+−(a2−2−(3n−2−
b2))++(a2−2−(3n−2−b3))+−(a2−2−(3n−2−b3)−(a3−b2−2−(3n−2−b3))+)+.

Similarly, C
i
(T ) will have ∆q = 3 if and only if b2 < a2 − 1. In this case,

if b3 + a3 − 3 ≤ 3n − 3, set i = a3 − 3 to obtain A1 with ∆t = a3 − 3. If
b3+a3−3 > 3n−3, b2+(3n−2−b3+a2−2) > 3n−3 , and b2+a3−3 ≤ 3n−3,
set i = a3 − 3 to obtain A1 with ∆t = a3 − 3− (n− 1) + (n− 1) = a3 − 3, since
b3+a3−3−(3n−3) < a2−1. If b3+a3−3 > 3n−3 and b2+(3n−2−b3+a2−2) ≤
3n− 3, then a3− 3 > 3n− 2− b3 + a2− 2, and thus, set i = 3n− 2− b3 + a2− 2
to obtain A3 with ∆t = 3n − 2 − b3 + a2 − 2. When b3 + a3 − 3 > 3n − 3,
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b2+(3n−2−b3+a2−2) > 3n−3, and a3−3 ≥ 3n−2−b2, set i = 3n−2−b2 to
obtainA5 sinceA = 3n−1−b2 < a3−1 with ∆t = 3n−2−b2−2(n−1)+2(n−1) =
3n− 2− b2. Then i = a3− 3− (a3− 3− (3n− 2− b3)− (a2− 2))+− (a2− (b3−
b2 + 1)− 1)+ + (a2 − (b3 − b2 + 1)− 1− (a3 − 3− (3n− 2− b2))+)+.

Setting a = (1, 2, 3) in Theorem 4.3 yields

F(3n)(q, t) = R(3n+1),(1,2,3)(q, t) = [n]t[3]!q
∑

b=(b1,b2,b3)
1=b1<b2<b3≤3n

R(3n),b(q, t).

Iteration of the recursion shows that F(3n)(q, t) is divisible by [n]!t. This
recursion allows us to reduce the computation of F(3n)(q, t) from requiring the
enumeration of (3n)! standard fillings to a summation involving (3n)!/(3!nn!)
q, t-analogues of n!3!n.

5. Future Work

Extending the recursion in [8] from two-column shapes to three-column
shapes involved exceptionally intricate combinatorics. In the two-column case,
there are no true triples between the bottom two rows since the bottom left
entry is a 1. The addition of a third column introduces a triple between the
bottom two rows, which proves difficult to accommodate. The general idea of
decomposing the set of standard fillings into sets based on the number of in-
versions and their relation to some key fillings is promising, but the presence of(
m−1
2

)
triples between the first two rows of an n-column shape pose significant

difficulties. The final recursion for (mn) should have the basic form

R(mn),a(q, t) = [n− 1]t
∑

b=(b1,...,bm)
1=b1<b2<···<bm≤m(n−1)

R(mn−1),b(q, t)
∑
σ∈Sm

ttstat(σ,a,b)qinv(σ)

(8)
where tstat is some statistic dependent on σ, a, and b, that tracks the change in
the comajor index when decomposing the filling. The exponents E1, . . . , E6 in
Theorem 4.3 are special cases of tstat. It is probable that the general definition
of tstat will be algorithmic, rather than an algebraic formula, and that much of
the complexity of E1, . . . , E6 may disappear once this alternative definition is
discovered.

Progress in this direction is the extension of C to fillings of shape (mn) with
increasing first row.

Definition 5.1. For m,n ∈ N with m,n ≥ 2 and a = (a1, a2, . . . , am) with
1 ≤ a1 < a2 < · · · < am ≤ mn, define C : F(mn),a → F(mn) by

C(T ) =

{
cyc(T ) if am 6= mn;

s1 ◦ s2 ◦ · · · ◦ sm−1 ◦ cyc(T ) if am = mn.
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It was shown in [10] that, for 0 ≤ i < mn, and T ∈ F(mn),a where a =
(a1, . . . , am) with 1 ≤ a1 < a2 < · · · < am ≤ mn,

(a) inv(mn)(C
i(T )) = inv(mn)(T ), and

(b) comaj(mn)(C
i(T )) = comaj(mn)(T ) + i− n

m∑
j=1

χ(i > mn− aj).

Using this extended definition of C, we can use a parentheses matching
argument similar to the proof of Lemma 4.1 to establish a formula for F(mn)(q, t)
that exhibits a factor of [n]t.

Theorem 5.2. Let m,n ∈ N, with m,n ≥ 2. Then

F(mn)(q, t) = [m]!q[n]t
∑

a=(a1,...,am)
1=a1<a2<···<am≤mn

∑
T∈F(mn),a

qinv(mn)(T )tcomaj(mn)(T ).

(9)

Proof. It is shown in [8] that

F(mn)(q, t) = [m]!q
∑

T∈F(mn) with
increasing bottom row

qinv(mn)(T )tcomaj(mn)(T ).

It remains to show that the factor of [n]t can be extracted combinatorially from
the set of fillings of shape (mn) with increasing bottom row. Let T ∈ F(mn),a

where a = (a1, . . . , am) with 1 = a1 < a2 < · · · < am ≤ mn. As before, for
some k, Cmnk(T ) = T , so we generate a sequence of fillings A0, A1, . . . , Amnk−1
where Ai = Ci(T ) for each i, 0 ≤ i ≤ kmn − 1. We construct a word us-
ing the following rules: for i = 0, represent A0 with a left parenthesis if
comaj(mn)(A0) = comaj(mn)(Amnk−1) + 1 and with n − 1 right parentheses
if comaj(mn)(A0) = comaj(mn)(Amnk−1) − (n − 1). For 1 ≤ i ≤ kmn − 1, rep-
resent Ai with a left parenthesis if comaj(mn)(Ai) = comaj(mn)(Ai−1) + 1 and
with n−1 right parentheses if comaj(mn)(Ai) = comaj(mn)(Ai−1)−(n−1). Note
that any Ai represented by n − 1 right parentheses must have a1 = 1. Since
there are an equal number of left and right parentheses, the resulting word can
be shifted to obtain a Dyck word.

Given a pair of matched parentheses, let t be the number of right parentheses
between the matched parentheses. The difference in comajor index between the
fillings represented by these matched parentheses will be

∆ comaj(mn) = −[(n− 1)− t (mod n− 1)].

We can now decompose the set {A0, A1, . . . , Amnk−1} into mk disjoint sets
{Sj1 , Sj2 , . . . , Sjn}, 1 ≤ j ≤ mk, where each Sj1 is a filling represented by right
parentheses (and thus has increasing first row a = (a1, . . . , am) with a1 = 1)
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and the remaining Sji are the fillings represented by left parentheses that are
matched with Sj1 , labeled from left to right. Then, for each j,

n∑
i=1

qinv(mn)(Sji )tcomaj(mn)(Sji ) = [n]tq
inv(mn)(Sj1 )tcomaj(mn)(Sj1 ).

It should be noted that, when a = (1, 2, . . . ,m), Theorem 5.2 also immedi-
ately leads to the formula

R(mn),a(q, t) = [m]!q[n− 1]t
∑

b=(b1,...,bm)
1=b1<···bm≤m(n−1)

R(mn−1),b(q, t).

In order to find a recursion of the form in (8), C must also be extended
to fillings of shape (mn) with fixed bottom row, and an algorithm to compute
tstat(σ,a,b) must be determined. This will involve figuring out how to handle
the

(
m−1
2

)
triples between the first two rows of such a shape.
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