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This article surveys recent research in the area of language modeling (sometimes called statistical
language modeling) approaches to information retrieval. Language modeling is a formal probabilistic
retrieval framework with roots in speech recognition and natural language processing. The
underlying assumption of language modeling is that human language generation is a random
process; the goal is to model that process via a generative statistical model. In this article, we
discuss current research in the application of language modeling to information retrieval, the
role of semantics in the language modeling framework, cluster-based language models, use of
language modeling for XML retrieval and future trends. 

Categories and Subject Descriptors: Information Retrieval and Visualization, Natural Language
Processing

General Terms: Language Modeling, Statistical Language Modeling, Information Retrieval

Additional Keywords and Phrases: Semantic Smoothing, Cluster-based Language Models, XML
Retrieval

1. INTRODUCTION

Language modeling is a formal probabilistic retrieval framework with roots in speech

recognition and natural language processing [Jurafsky and Martin 2000]. The underlying

assumption of language modeling is that human language generation is a random
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process; the goal is to represent that process via a statistical model. Using a language

model, we can calculate the likelihood of a language sequence, such as a sentence,

being generated.

Language models were first successfully applied to information retrieval by [Ponte

and Croft 1998]. In that work, the authors proposed a query-likelihood model [Liu and

Croft 2005] in which a query is considered to be generated from an “ideal” document

that satisfies an information need. The retrieval engine estimates the likelihood that

each document in the corpus is the ideal document, and then ranks the documents

accordingly. The underlying premise to this approach is that each document in the

corpus has a different language model [Manning et al. 2007]. This allows the use of

statistical techniques to both estimate document models and to score documents against

a particular query.

Later works [Song and Croft 1999; Lavrenko and Croft 2001; Zhai and Lafferty

2004] expand on this early research using more sophisticated models that include

topics, phrases and relevance. All confirm that language modeling techniques are

preferred over tf-idf (term frequency-inverse document frequency) weights [Robertson

and Jones 1997], because of empirical performance as well as the probabilistic meaning

that can be formally derived from a language modeling framework. In contrast to the

classic vector space model [Salton and McGill 1986] which produces a geometric

document score, a language model produces a likelihood estimate which is intuitively

easier to understand. The majority of language modeling approaches to information

retrieval can be categorized into one of four groups: (1) the generative query likelihood

approach, which ranks based on the likelihood of a document language model

generating the query, (2) the generative document likelihood approach, which ranks

based on the likelihood of a query language model generating a document, (3) the

comparative approach, which ranks based on the similarity between the query

language model and document language model, (4) translation models, which rank

based on the likelihood of the query being viewed as a translation of a document, and

(5) cluster-based language models. The remainder of this paper will describe the

foundations of statistical language modeling and trace the research that has been

done in each of these categories. In addition, we will also describe extensions to

language modeling that have been developed for XML retrieval and how semantics

can be incorporated into the language modeling framework. This paper will conclude

with a discussion on why language modeling approaches continue to be an active area

in information retrieval research, and future trends for that body of work. 

2. STATISTICAL LANGUAGE MODELING

The roots of statistical modeling date back to the middle of the twentieth century with

the work of Shannon [1951]. Shannon proposed a conceptual framework in which a

subject was asked to guess the next letter in a sequence from a stream of printed

English, given the preceding letters and words in the passage. The subject is informed

if he guessed correctly; if he guessed incorrectly, he is told the correct letter in the

sequence and can then proceed to the next letter. Only the letters that are incorrectly

guessed, that is, the letters where the system must provide the correct letter to the

subject, are written down. The next subject in the experiment would then be asked
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to re-construct the original sequence from the stream of incorrectly guessed letters,

which Shannon calls the “reduced text.” The underlying premise of this experiment,

and the concept which carries through to statistical language modeling, is that a

stripped down or lossy version of a full text can be used to reconstruct the complete

document. This model is very applicable to fields such as speech recognition, where

there is typically some loss in fidelity between a steam of spoken words and its

computer transcription to text.

The work of [Zipf 1949] is also fundamental to statistical language modeling. While

studying statistical word occurrences in natural language texts, Zipf postulated that

the frequency of word occurrences in a document is roughly inversely proportional to

a word’s rank within the document, if the words are sorted by occurrence frequency.

Conceptually, Zipf ’s Law says that “while only a few words are used very often, many

or most are used rarely [Zipf 1949].” Zipf ’s work evidences the applicability of

statistical models to natural language; it should be noted that while his most prominent

work dealt with English language texts, he also successfully applied the same model

to languages such as Chinese, which have a widely divergent grammar from English.

Fundamentally, a statistical language model is a generative pattern of language;

that is, it seeks to estimate the probability of occurrence of a sequence of words.

Language modeling is predictive in nature; the goal of the model is to estimate the

probability of future words, given the pattern of words that we already know [Manning

and Schütze 1999]. Language modeling has been applied to a variety of fields including

natural language processing, speech recognition, machine translation, and information

retrieval. A full survey of statistical language modeling techniques across these

divergent applications is beyond the scope of the current paper, and the reader is

encouraged to review Rosenfeld’s survey on the topic [Rosenfeld 2000] for an overview.

Seminal papers in the field have included the work of [Bahl et al. 1989], which

discusses statistical language modeling in the context of speech recognition, [Jelinek

and Mercer 1980], which presents a method for estimating language model parameters

in a sparse data environment and Katz’s method [Katz 1987] for CPU and storage

efficient language model computation. 

The perplexity metric is commonly used to assess the effectiveness of a language

model [Jelinek et al. 1977]. Perplexity is a type of information entropy measure;

mathematically, perplexity is defined by the formula below, where H is the entropy

measure for a particular random variable X having a probability distribution p(x).

(1)

Conceptually, perplexity can be thought of as a confidence measure of the predictive

properties of the model. At a word or passage level, the perplexity measure defines

how confidently we can define the next word in a sequence given the context of the

previous words. Language models can be evaluated against one another by comparing

their perplexity measures. It should be noted that perplexity is domain dependent; a

given language model will typically have much lower perplexity (better performance)

in a highly specialized domain than in general English.

The simplest form of language model is the “bag of words” or unigram model, which

examines each word independently of its context [Manning et al. 2007]. There are

perplexity = 2
H p( )

 = 2
Σ– p x( )log2p x( )
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many other more complex types of language models such as bi-gram models or

tri-gram models which condition the existence of the next word based on the previous

word or two words; words are considered as sets of two or three, respectively in these

approaches [Jurafsky and Martin 2000]. Many modern approaches [Rosenfeld 2000]

have used large corpora to train language models; these approaches have typically

used simple models such as unigram or bi-gram approaches to language models,

relying on the large quantities of training texts of various types to improve

performance.

The fundamental problem of language modeling is that we never have a clear

confirmation of the specific model that we are assigning to any given document

[Manning et al. 2007]. This is because the language model is an estimate of word

occurrence probabilities based on the text of a document; we treat each document as

a piece of representative text from its underlying language model. Thus, the creation

of a language model for a given document is essentially the problem of deriving a

complete word occurrence probability model from an incomplete or lossy sample (the

document text). In this situation, there are often cases where words which ought to

be included as a part of the language model for a document are, in fact, not present

in the actual text, even if the size of the text is huge. For example, a document about

healthful eating ought to have a high probability of occurrence for the words “diet”

and “nutrition” as a part of its language model even if those words are not in the text

of the document. However, a document about healthful eating is less likely to contain

the word “alligator” since it is less likely that a document about healthful eating will

be related to alligators. From these examples one can see that it is problematic to use

estimates such as the Maximum Likelihood Estimate which are based strictly on term

counts for language model construction. This is often referred to as the “zero

frequency problem” or the “sparse data problem [Witten and Bell 1991].” 

Smoothing is a set of techniques used to address the “sparse data” issue. Smoothing

is so called because it attempts to raise low or zero word-occurrence probabilities and

lower high word-occurrence probabilities, based on prior knowledge about a passage,

document or corpus [Zhai and Lafferty 2004]. Smoothing is a fundamental part of the

language modeling paradigm; “in the language modeling approach, the accuracy of

smoothing is directly related to performance [Zhai and Lafferty 2004].” In the sections

below the smoothing techniques which are applied by each of the language modeling

approaches will be explicitly described.

3. LANGUAGE MODELING APPROACHES TO INFORMATION RETRIEVAL

Since the introduction of language modeling to information retrieval (IR) by Ponte and

Croft [Ponte and Croft 1998], there have been a number of IR approaches based on

language modeling techniques As stated earlier, this paper categories IR research

using language modeling techniques into four broad categories: (1) generative query-

likelihood models, (2) generative document-likelihood models, (3) model comparison

approaches, (4) statistical translation methods and (5) cluster-based language models.

The remainder of this section explores the research that has been performed in each

of these categories in detail. 
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3.1 Query-Likelihood Models

The premise of the query-likelihood approach is that each document in a collection can

be thought of as having an individual document language model, and document

language models within the collection can be ranked by their probability of being able

to generate a particular query. The earliest work in the query-likelihood family of

approaches can be considered to be that of Kalt [Kalt 1996]. Kalt considered that term

probabilities for documents related to a single topic can be modeled by a single

stochastic process; documents related to different topics would be generated by different

stochastic processes. Kalt’s model treats each document as a sample from a topic

language model. Since the problem he considered was text classification, queries were

derived from a training set rather than traditional query strings. Kalt’s approach was

based on the Maximum Likelihood Estimate (MLE) [Manning and Schütze 1999], and

incorporated collection statistics, term frequency and document length as integral

parts of the model. Although later query-likelihood approaches are more robust in

that they consider that each document (vs. a group of documents) is described by an

underlying language model, Kalt’s early work is clearly a pre-cursor to language

modeling in information retrieval.

The Ponte and Croft query-likelihood model [Ponte and Croft 1998] assumes a

unigram language model and, like Kalt’s model, starts from the basis of the MLE.

Mathematically, MLE is defined below where p(t|d) is the probability of a term given

a document d, tf is the term frequency of the given term t, and dl is the total number

of terms within the document, which can also be thought of as the document length.

Ponte and Croft equate MLE to the probability of the term given the document’s

language model, or p(t|Md).

(2)

To smooth the zero probability terms in the MLE, the authors take the background

probability of all terms in the collection into account; that is, they augment the

probability of the term appearing in any specific document with the probability of the

term across the entire document collection. However, as not all the documents in the

collection come from the same language model, a geometric risk function is incorporated

into the smoothing methodology. This risk function essentially minimizes the impact

of documents which might be “outliers” for a given term; in other words, it reduces the

impact of those documents which have term frequencies which diverge from the

normalized mean of the collection by reducing their contribution to the language

model. Ponte and Croft incorporate the risk function into their approach by using it

to modulate the influence of the term frequency within the specific document as well

as the average occurrence of the term within the corpus. 

In a later work, [Song and Croft 1999] apply a more generic view to the language

modeling problem based on the same query-likelihood viewpoint; they evaluate a

number of approaches to language modeling and propose a set of improvements that

can either be used independently or in conjunction with one another. Specifically, they

focus on smoothing document language models with the Good-Turing estimate

[Manning and Schütze 1999] and curve fitting, expanding a document model with the

p t|Md( ) = 
tf

dl
------
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corpus document model, modeling a query as a sequence (rather than a set) of terms,

and finally combining the unigram language model with a bi-gram language model.

The Good-Turing estimate adjusts the raw term frequency scores tf in the following

manner:

 (3)

Here, Ntf represents the number of terms that have term frequency tf, and E(Ntf) is

the expected value of the number of terms that have a term frequency of tf. Intuitively,

the Good-Turing estimate states that the ratio of two adjacent term frequencies will

be equivalent to the ratio of the expected values of the number of terms that have

those frequencies. Practically, however, it is difficult to determine the number of

terms that have specified frequencies due to the limited data available within a

document; too many terms may have frequencies close to zero to make the Good-

Turing estimate useful. Song and Croft adopt a curve fitting approach that uses a

geometric distribution with a nested logarithmic exponent to approximate E(Ntf).

Song and Croft use the Good-Turning estimate to create a smoothed language

model for both the individual document as well as the corpus. Then, they apply a

weighted sum to combine the document language model with the corpus language

model. The weighted sum approach is represented below:

 (4)

The weighting parameter w is a number between 0 and 1, and the weighted sum

approach of combining probabilities has the advantage of always producing a

normalized result; in other words, the weighted sum approach will always produce a

number between 0 and 1 for p(t|d). 

Interpolation is also used to combine the unigram document model with a bi-gram

document model. This is represented below:

(5)

Here, the weighting parameters λ1 and λ2 should be set so that λ1+λ2 is equal to

1 for every term t. This is done empirically by Song and Croft; however, the Expectation

Maximization algorithm [Dempster et al. 1977] can be used to set these parameters

using a training corpus.

In terms of query processing, Song and Croft [1999] treat the query as a sequence

of terms, as opposed to the set of terms approach adopted by Ponte and Croft [1998].

This can be represented as follows:

(6)

[Hiemstra 1999] presents a related approach which applies statistical language

modeling to information retrieval. Hiemstra’s approach emphasizes the importance of

the ordering of the terms in the document. That is, “the most important modeling

assumption we make is that a document and a query are defined by an ordered

sequence of words and terms [Hiemstra 1999].” In this framework, text is modeled as

tf = tf 1+( )
E Ntf+1( )

E Ntf( )
---------------------

p t|d( ) = wPdocument t|d( ) + 1 w–( )Pcorpus t( )

p ti,ti 1– |d( ) = λ1p ti|d( ) + λ2p ti,ti 1– |d( )

Psequence Q|d( ) =  

i

∏ p ti|d( )
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an ordered sequence of n random variables, one for each unique term which appears

in the document. This is represented by the following models for documents and queries:

 and (7)

where D and Q are the documents and queries, respectively, and Ti is the event that

term i occurred in document D or query Q. The matching process between a query

and a document are represented by the following formula:

(8)

Here τ represents the set of all possible term sequences T1, T2,..., TN. 

Hiemstra also addresses the sparse data problem. “We believe,” he states, “that the

sparse data problem is exactly the reason that it is hard for information retrieval

systems to obtain high recall values without degrading values for precision.” Hiemstra

smoothes the probability distribution for each term using a linear interpolation of

term frequency and document frequency. This is represented by the equation below:

(9)

Here, df(ti) is the number of documents in which term ti appears, which is also

known as the document frequency and tf(ti,d) is the number of times term ti that

appears in document d, which is also known as the term frequency. The document

frequency component (i.e., the first component) in the equation above can be thought

of as the smoothing contribution coming from the document corpus, while the second

component can be thought of as the contribution coming from an individual document.

α1 and α2, are the weighting coefficients for the document frequency and term frequency

contribution to the smoothing model, respectively. Hiemstra does not specifically

proscribe a method for setting α1 and α2. “In general,” he says, “one wants to find the

combination of weights that works best, for example, by optimizing them on a test

collection consisting of documents, queries, and corresponding relevance judgments

[Hiemstra 1999].” It should be noted that this smoothing approach can be directly

related to the well-known tf-idf approach.

Hiemstra’s smoothing model is similar to Song and Croft’s smoothing model in that

both approaches are fundamentally a linear combination of a corpus document model

(Hiemstra’s document frequency component) and an individual document model

(Hiemstra’s term frequency component). However, there is one fundamental differences

between the two approaches: Song and Croft smooth the document and corpus language

model (via the Good-Turing estimate) prior to the linear interpolation; Hiemstra

combines the two models without smoothing [Song and Croft 1999].

A two-stage Hidden Markov Model forms the basis for the query-likelihood language

model presented by [Miller et al. 1999]. A discrete Hidden Markov Model is defined

by “a set of output symbols, a set of states, a set of probabilities for transformations

between the states, and a probability distribution on output symbols for each state

[Miller et al. 1999].” The Hidden Markov Model is referred to as “hidden” because the

P T1,T2,..., TN|D( ) =  

i

∏ P Ti|D( ) P T1,T2,..., TN|Q( ) =  

i

∏ P Ti|Q( )

P D|Q( ) =  

τ
∑ P τ|Q( )P D|τ( ), τ = T1,T2,..., TN

P Ti = ti|d( ) = α1

df ti( )

 

t

∑ df t( )

--------------------- + α2

tf ti,d( )

 

t

∑ tf t,d( )

-------------------------
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state transition process itself is never directly observed; it can only be inferred based

on observed events. Hidden Markov Models are widely used in natural language

processing and speech recognition [Jurafsky and Martin 2000].

The first stage in the proposed two-stage Hidden Markov Model represents the

probability that a given query term will be found within the document; the second

stage in the proposed Hidden Markov Model represents the probability that a given

query term will be found within General English but is unrelated to the document

The proposed model makes the simplifying assumption that a given query term will

move to either the first or second stage; thus only two stage changes are considered

to be part of the model. 

[Miller et al. 1999] make simplifying assumptions similar to [Ponte and Croft 1998]

and [Hiemstra 1999]. Rather than using the Expectation Maximization (EM) algorithm

[Dempster et al. 1977] to compute transition probabilities and output distributions,

the simpler MLE (Maximum Likelihood Estimate) method is used. In this model, the

“General English” stage of the Hidden Markov Model provides a smoothing function.

This stage is approximated by using the entire document corpus as an approximation

for the full English language. 

Mathematically, the two-stage Hidden Markov Model is represented by the following

equation:

(10)

where P(Q|D) is the likelihood of the query being a representation of the document,

P(q|D) is the probability that an individual query term q will be found in the

document stage of the HMM, and P(q|GE) is the probability that the query term will

be found in the General English stage of the HMM, but not in the document stage.

The coefficients a1 and a0 are used to weight the respective components of the equation.

3.2 Document-Likelihood Models

The premise of the document-likelihood approach is that a language model can be

generated for the query, and documents within the collection can be ranked by their

probability of having been generated by the query’s language model. In practice, this

approach is most often used to enable expansion-based feedback as the terms in a

query are generally too sparse to produce a reliable language model. [Zhai and Lafferty

2001] first introduce the idea of a query language model, and propose two methodologies

for query language model construction: 1) a generative model of feedback documents

and 2) a model that minimizes divergence over feedback documents. The generative

model is a mixture model that generates a feedback document by mixing the query

terms with a collection language model, which is taken to be a reasonable model of

irrelevant content in a document. A document can then be generated from the resulting

language model if it contains either the query terms or the collection language model.

Conceptually, the divergence minimization language model estimates the query model

by minimizing the average divergence between the query terms and the feedback

documents. The estimated resulting query model is close to each feedback document

model; however, in order to minimize the effect of general terms that may be common

P Q|D( )  

q Q∈

∏ a0P q|GE( ) + a1P q|D( )
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to all the feedback documents, a regularization term is added to prefer documents

that have a greater divergence from the collection language model.

The relevance model proposed by [Lavrenko and Croft 2001] can also be thought of

as a document-likelihood model. Conceptually, the relevance model is a description of

a user’s information need which manifests itself in the form of a query. Given a

collection of documents and a user’s query, there exists a set of documents that are

relevant to that query in the user’s judgment. The ideal relevance model for a given

query run on a specified document collection would be constructed from only the set

of relevant documents within the collection; the relevance model in this framework is

assumed to be a language model to which word probabilities are assigned. Each

document relevant to the user’s query then simply becomes a sample from the underlying

relevance model.

The problem with this scenario is that in a typical retrieval environment we do not

know the full set of relevant documents to a query and furthermore, we may not have

any examples of documents which are relevant to the query. Lavrenko and Croft

[2001] suggest a methodology that constructs a relevance model from a set of top

ranked documents returned from a query. A relevance model is formally defined as

the probability of observing a word w in a set of relevant documents R, or p(w|R). The

query q is also treated as a sample from R, although the sampling process that

produces q is not necessarily the same as the process that generates w. Lavrenko and

Croft formally derive a process whereby p(w|R) can be estimated via p(w|MD), where

MD is the document model for a limited set of top-ranked documents returned from

the query. They describe p(w|MD) as follows:

(11)

Here tf(w,D) is the number of occurrences of w in D, Σvtf(v,D) is the total number of

occurrences of all terms v in D, and P(w|G) is the collection frequency of w divided

by the total number of terms in the collection. The smoothing parameter λ is set

empirically. This approach is elegant in that it can easily incorporate common

information retrieval procedures which would not otherwise fit cleanly into a

language modeling framework such as pseudo-relevance feedback or true relevance

feedback. A linear interpolation method is used to smooth the MLE document models

with the background model of English; smoothing parameters are set experimentally.

Subsequent work in relevance models by [Li 2005] treats a query as a short, special

document and includes it in the documents that are used to approximate the relevance

model to improve the robustness of the relevance modeling approach. In addition,

instead of using a uniform prior as in the original relevance model, documents are

assigned different priors based on their lengths and the probability of a term in the

language model is adjusted by its probability in the language model of the corpus.

This variant of the relevance modeling approach was applied to both a pseudo

relevance feedback and true relevance feedback environment, and compared with the

[Ponte and Croft 1998] query-likelihood approach as well as against the original

[Lavrenko and Croft 2001] relevance model.

In later works, [Lavrenko et al. 2002] extend the relevance modeling approach to

p w|MD( ) = λ
tf w,D( )

Σvtf v,D( )
------------------------ + 1 λ–( )P w|G( )
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Cross-Language Information Retrieval (CLIR). The proposed method “constructs an

accurate relevance model in the target language, and uses that model to rank the

documents in the collection [Lavrenko et al. 2002].” Their approach discusses two

estimation strategies: one that assumes a parallel corpus (e.g., documents discussing

the same topic in both query and target languages), and the other that assumes the

existence of bilingual lexicon. In the former case, a joint probability model of word

observations across the two languages is constructed; that is, a probability model is

constructed that describes co-occurrence of words across languages that exist in

documents related to the same topic. In the latter case, it is the lexicon which provides

translation probabilities between words across the two languages. For cross-language

information retrieval, the authors diverged from their earlier approach of ranking

retrieved documents by the Probability Ranking Principle; instead they use Kullback-

Leibler divergence [Kullback and Leibler 1951] as they found that this is “a more

stable metric.” 

3.3 Model Comparison Approaches

The model comparison approach is first introduced by [Lafferty and Zhai 2001]. In

their risk minimization framework, “queries and documents are modeled using

statistical language models, user preferences are modeled through loss functions, and

retrieval is cast as a risk minimization problem [Lafferty and Zhai 2001].” Within this

context, a query is viewed as the output of a probabilistic process associated with a

user U and a document is viewed as the output of a probabilistic process associated

with an author or document source S. A user first selects an internal model ΦQ having

a probability distribution p(ΦQ|U). A particular query q is then generated based on

the parameters of that internal model with a probability of p(q|ΦQ). Similarly, a

document source selects an internal model ΦD according to probability p(ΦD|S), and

then the probability of a generation of a particular document is given by the

probability p(d|ΦD). 

In the Bayesian decision framework, there is an expected risk associated with every

action of a given system. In this context, the particular action that the system

performs is returning a document di in response to a query. The risk function for an

action a can be modeled by understanding the loss L(a) associated with that function.

The function R(di,q) which describes the risk associated with returning a particular

document di, in response to a query is shown in the equation below:

(12)

This is the basic retrieval formula based on risk minimization proposed by Lafferty

and Zhai, which is used to calculate the ranking of documents di, returned in response

to a query q. Lafferty and Zhai show how this risk minimization framework can be

used to derive the “special cases” of the classical probabilistic model using a relevance-

based loss function, and the query-likelihood language modeling approach using a

distance-based risk function. The Kullback-Leibler (KL) divergence model, which is

later elaborated in [Zhai and Lafferty 2001], is presented as a special case of the more

general risk-minimization framework. In the KL-divergence model, the relevance

R di,q( ) =  

R 0 1,{ }∈

∑  

φQ

∫  

φD

∫ L φQ,φD,R( ) p× φQ|q,U( )p φD|di,S( )p R|φQ,φD( )dφDdφQ
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value of a document with respect to a query is measured by the probabilistic

Kullback-Leibler divergence between the query model and document model. The

problem of matching a query to a document thus reduces to a similarity or “distance”

comparison which is similar to the classic vector-space model.

To address the sparse data problem, the authors explore an approach to query and

document language model expansion based on Markov chains which is motivated by

statistical translation methods of [Berger and Lafferty 1999]. The intent of the

Markov chain is to model the user’s browsing process, and the chain proposes a random

walk alternating between queries and documents. Conceptually, the user is “surfing”

through the word index for a given document collection, viewing the documents which

contain that word, and then refining their information need as they go along.

Practically, this approach calculates “the posterior probabilities of words according to

the translation model for generating the query and a prior distribution on initial

terms selected by the user [Lafferty and Zhai 2001].” Mathematically, this approach

can be represented by the following formula describing the probability of occurrence

for a word w in a query q:

(13)

Here, p(w|Φq) is an estimate for the language model, t(qi|w) is the translation model

which describes the likelihood of translation between query term qi and word w, and

p(w|U) is the likelihood that the user will start their “surfing” from the initial word

w. The analogous formula for document expansion is shown below:

(14)

3.4 Statistical Translation Models

In their statistical translation model, [Berger and Lafferty 1999] propose that the

formulation of a query is really the distillation of a user’s information need into a

succinct form. The distillation from a “fat” document to a “skeletal” query, the authors

propose, “is a form of translation from one language to another [Berger and Lafferty

1999].” Berger and Lafferty represent this document to query translation process

using a statistical model. They characterize the translation process as having two

stages. In the first stage, the translation analyst chooses a word w from the document

according to a distribution l(w|d) which is called the document language model. In

the second stage, that word w is translated into a word or phrase q using a

translation model t(q|w). Thus, the statistical translation model for a single query

term q can be described by the following equation:

(15)

This model must be applied n times to account for a query containing n terms; the

number n in this model is chosen according to a sample size model Φ(n|d). Berger

and Lafferty propose that a Poisson distribution with mean λ(d ) can be used to

calculate the sample size model.

p w|φq( )  

i

∑∝ t qi|w( )p w|U( )

p w|φd( ) t∝ d|w( )p w|U( )

p q|d( ) =  

w d∈

∑ l w|d( )t q|w( )
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(16)

Applying this assumption leads to the complete statistical translation model, which

Berger and Lafferty call Model 1:

(17)

It should be noted that if each word can be translated only to itself (e.g., p(q|t)=1 only

when q=t) this model decomposes into the query-likelihood model proposed by Ponte

and Croft [1998]. Berger and Lafferty call this simplest version of the translation

model Model 0.

The parameters for the translation model were set empirically using the Expectation

Maximization (EM) algorithm [Dempster et al. 1977]. A simple linear mixture model

is used to combine the background unigram model for the corpus and the EM-trained

translation model. The smoothing parameters were derived empirically by optimizing

the algorithm on the TREC Spoken Document Retrieval data. While significant

improvements over a baseline tf-idf approach were reported by this method, the

experiments required a large corpus of training data which may not be practical in all

cases. An interesting corollary to this approach is that it is naturally extensible to the

problem of multi-lingual information retrieval. 

[Murdock and Croft 2004] extend the translation model approach to sentence

retrieval. The motivation for this application of translation models stems from a

Question Answering (QA) application; in general, most QA systems use a passage

retrieval system for the first stage of processing. The more accurately a passage

retrieval system can retrieve succinct segments of text, the better the QA system is

likely to perform overall. A high-quality sentence retrieval system would be a strong

candidate for application to the QA domain. However, sentences, which are much

smaller, than documents are too short to accurately estimate a language model.

Murdock and Croft approach this problem by using a translation model to judge

similarity between a words in query and words in a candidate sentence. The

translation model allows for a looser matching strategy which identifies the

relationships between corresponding terms which mean the same thing or are related

to one another, but which are not the same term. Murdock and Croft make use of the

IBM translation Model 1 [Brown et al. 1990] to rank documents according to their

translation probability, given the query. IBM Model 1 assumes that all alignments are

possible between the source sentence and target sentence, and constructs synthetic

training data in the absence of the availability of a training corpus of queries and

relevant documents. 

In related research, Jin and use language models for document title generation.

Rather than using the document directly as the knowledge source for the document

title generation, they introduce the idea of a “distilled information source” which is a

sample of important content words from the original document. The optimal title for

the document can then be generated from this distillation. The underlying premise of

this method is that title generation is a “reverse” information retrieval task − in other

φ n|d( ) =  e
λ d( )–

λ d( )
n

n!
---------------

p q = q1,q2,...,qn|d( ) = e
λ d( )–  

i

∏ e
λ d( )p qi|d( )

− 1
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words, the perfect title for a document would be the same as the query for which that

document is an “ideal” response. In an information retrieval paradigm, the generated

titles for each document can be evaluated against the queries that are presented to

the system and the documents ranked accordingly. This approach is novel in that it

provides a bridge from language modeling and information retrieval to the related

tasks of text summarization and categorization.

3.5 Cluster-based Language Models

In the general sense, cluster-based language modeling approaches use document

clustering to organize collections around topics. Each cluster is then assumed to be

representative of a topic, and a language model can be created for the cluster. Cluster-

based language models are most commonly used in the context of Topic Detection and

Tracking, but have been incorporated into other IR frameworks [Liu and Croft 2004]

as well. Although we choose to break out cluster-based language models as a separate

section in this paper, one could just as easily group individual cluster-based modeling

approaches with query-likelihood, document-likelihood or model comparison

approaches, depending on the specific nature of the language model employed to

describe the clusters. (We are not aware of any cluster-based language modeling

approaches to date which have employed statistical translation methods.) In some

sense, one might even say that cluster-based language modeling can trace its roots to

[Kalt 1996], which focused on statistical models for topics as opposed to individual

documents.

One of the earliest cluster-based language modeling approaches was employed in

the context of distributed information retrieval. [Liu and Croft 2004] propose that “the

task of a distributed retrieval system is first to determine which topics are best for a

query and then to direct the searching process to those collections containing the

topics.” They consider that the problem of determining the most suitable topics for a

given query can be addressed using a generative model; that is, the best topics for a

given query are those which have a language model that is most likely to generate the

query. Collection selection for distributed IR is then performed by selecting the

collections which contain the best topics. 

Later work by [Liu and Croft 2004] proposes the use of cluster-based language

models in the context of an ad-hoc retrieval framework. Liu and Croft propose two

language models for cluster-based retrieval: the first is used in ranking and retrieving

clusters and the other uses cluster language models to smooth individual document

language models within the cluster. These cluster-based models are then integrated

into both a query-likelihood and relevance model framework. Empirical results show

that cluster-based retrieval can potentially be more effective than document based

retrieval. It is specifically interesting to note the success of the cluster-based

smoothing methods, and that “clusters generated by static clustering tend to produce

better-quality cluster models for smoothing purposes than those generated by query-

specific clustering [Liu and Croft 2004].” Static clustering, performed without query

text, looks at all documents in the collection and generates clusters that provide better

coverage for all aspects of a given topic. The authors believe that the static clustering

methods outperform query-based clustering methods as query-based clusters may



156 Protima Banerjee and Hyoil Han

Journal of Computing Science and Engineering, Vol. 3, No. 3, September 2009

contain an inherent bias to a specific interpretation of a query term. 

In a more recent approach, Kurland [Kurland et al. 2005] proposes that a document

retrieved as a part of pseudo-relevance feedback may be considered as a “rendition”

of the original query. Documents which are good renditions of the query may be

considered to be pseudo-queries and considered to be a wholesale replacement for the

original query itself. Kurland’s approach proposes that once we have created an initial

set of pseudo-queries, the process can be repeated so that in the next iteration the

algorithm is searching for the documents that are the best rendition of the pseudo-

queries. After the process is complete, the result should be a set of distilled pseudo-

queries which are optimally informative of the user’s information need. Kurland

proposes three algorithms (the Viterbi Doc-Audition algorithm, the Doc-Audition

algorithm, and the Cluster-Audition algorithm) to score documents as candidate

renditions of the pseudo-query. 

• The motivation behind this approach is to increase the “aspect recall” of the system.

The problem of “aspect recall” is described in [Buckley 2004; Harman and Buckley

2004] and can be categorized in one of four ways:

• The IR system emphasizes one aspect of a query, and misses other required terms

in the query 

• The IR system emphasizes one aspect of a query, but misses other aspects 

• The IR system fails to properly combine aspects in a query when returning query

results

• The IR system emphasizes an irrelevant aspect

Query drift is an issue that this particular algorithm is particularly prone to. “Query

drift” [Mitra et al. 1998] is a problem encountered by many automatic query expansion

approaches; when expanding a query if non-relevant terms are included as a part of

the expansion the resulting query may “drift” from the original information need.

Kurland addresses this problem by using re-scoring techniques to periodically re-align

the pseudo-queries with the original queries. The empirical results obtained from this

methodology are promising when compared against the baseline relevance modeling

approach [Song and Croft 1999].

Other cluster-based language modeling approaches include Zhang [Zhang et al.

2005], who models the generation of clusters using a Dirichlet process mixture model,

where the base distribution can be treated as the prior of general English model and

the precision parameter which controls the random generation process for creating

new clusters.

4. SMOOTHING STUDIES

Each of the approaches discussed in this paper makes use of smoothing techniques.

Smoothing is an integral part of the language modeling paradigm and the performance

of the smoothing component of a language model is essential to the overall performance

of the model. Several classes of smoothing strategies have been proposed; the most

common has been described as parameter smoothing [Liu and Croft 2005], and uses

linear interpolation to influence the roles that multiple knowledge sources play in

smoothing out the probability distributions of a language model. [Zhai and Lafferty

2004] studied three approaches to smoothing: Jelinek-Mercer smoothing, Dirichlet
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priors and absolute discounting, as well as the backoff versions of these methods. Five

test collections were used to examine the effects of each of these smoothing mechanisms.

For title queries (short queries), there was a clear ordering among the methods in

terms of precision results; Dirichlet priors performed better than absolute discounting,

which performed better than Jelinek-Mercer. Overall, Dirichlet priors had an average

precision performance that was significantly better than the other two methods. For

longer queries, both Jelinek-Mercer and Dirichlet priors have a better performance

than absolute discounting. 

A later study by [Smucker and Allan 2007] investigate the causes behind the

improved performance yielded by Dirichlet prior smoothing over Jelinek-Mercer

smoothing for short queries. Short queries are especially important as they are to be

most characteristic of a typical query that would be posed by a user. Both Dirichlet

prior and Jelinek-Mercer linearly combine the maximum likelihood estimated (MLE)

document model with the MLE model of the collection. Both are discounting

smoothing methods that reduce the probability of the words seen in the document and

reallocate the probability mass to words not seen in the document. The only difference

between the two smoothing methods that can be observed is that Dirichlet prior

smooths longer documents less and Jelinek-Mercer smooths all documents to the

same degree. Intuitively this makes sense since it stands to reason that the MLE

model of a short document contains less observed information than the MLE model of

a long document. Smucker and Allan found that Dirichlet prior’s performance

advantage comes more from its penalization of shorter documents rather than from

its estimation process for long documents; in other words, Dirichlet prior is able to

correctly reduce the scores of short documents. This research points to the importance

of factors such as document length in the language modeling process. 

5. SEMANTICS AND THE LANGUAGE MODELING FRAMEWORK

Semantic smoothing [Liu and Croft 2005] is one area in which there are significant

opportunities for the integration of context-sensitive semantic knowledge into the

language modeling framework. Translation models may be thought of as one form of

semantic smoothing, since a translation model provides a mechanism for mapping

based on document-query training sets. However, translation models do not provide

any mechanism for sense disambiguation; as such, terms that appear with high

likelihoods in two different senses will be mixed together. For example, the term

“apple” may appear in conjunction with the word “computer” and the word “pie” both

with high likelihoods.

[Zhou et al. 2006] proposes a context-sensitive semantic smoothing as a part of the

language modeling framework, which introduces the concept of a topic signature for

a document or query and then uses these topic signatures to train the translation

model. Zhou defines a topic signature to be an order-free relationship between two

concepts, where a concept represents a set of synonymous terms within a domain. For

the biomedical domain, the Unified Medical Language System (UMLS) Metathesaurus

(http://www.nlm.nih.gov/research/umls) is one source for concept definitions.

Incorporation of semantic information by way of topic signatures alleviates the sense

disambiguation (synonymy and polysemy) problems that are incurred with previous
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translation model approaches. This approach presents a different view of a document

representation within the language modeling framework; a document is presented as

a weighted set of topic signatures and concepts. An Expectation-Maximization (EM)

[Dempster et al. 1977] based training method is used to train the context-sensitive

model. The empirical results of this semantic approach showed significant improvements

over the baseline on TREC Genomics 2004 [Hersch 2004] and 2005 [Hersch 2005]

data. One drawback to this ontology-based approach, however, is that it requires the

existence of domain-specific ontological resources which are not often available. This

may make such an approach difficult to apply to a broad range of fields.

Another approach that may lend itself to incorporation within a semantic smoothing

framework is Probabilistic Latent Semantic Analysis (PLSA) [Hofmann 1999]. The

foundation of the PLSA approach is an underlying Aspect Model which proposes that

we can define words and documents in terms of “aspects” which are associated with

a latent class variable. The Aspect Model has several intuitively appealing features.

First, by conditioning words and documents on a latent variable, the zero-frequency

problem is addressed. Secondly, a priori knowledge is not required about the concepts

within the corpus for the algorithm to work effectively. And finally, the usage of

probabilistic methods defines a generative model of the data which is better able to

address common text processing issues such as synonymy and polysemy. Recent

papers by [Banerjee and Han 2008; Banerjee and Han 2009a; Banerjee and Han 2009c]

explore the incorporation of PLSA into the language modeling framework. Specifically,

they use PLSA to derive an Aspect-Based Relevance Language Model, which is then

used to model a semantic Question Context.

6. LANGUAGE MODELING AND XML RETRIEVAL

[Ogilvie and Callan 2003] believe that the information contained in the structure of

an XML document can be used to improve document retrieval for structured knowledge

sources. In order to leverage this information, they model document structure as an

integral part of a document language model. Specifically, XML documents are

modeled as trees where each node in the tree correspond directly with tags present

in the document. For each document node in the tree, a language model can then be

estimated. Language models for leaf nodes with no children are estimated directly

from the text of the node. The language models for other nodes in the tree are

estimated by taking a linear interpolation the language model of the text contained

in that node alone with the language models of all child nodes. The language models

for each node are then smoothed via an interpolation with a collection language

model. The collection model used for the interpolation may be specific to the node

type, which provides some measure of context sensitive smoothing, or the collection

model may be one large model estimated from everything in the corpus, which gives

a larger sample size.

In a subsequent work, [Ogilvie and Callan 2006] focus on the problem of parameter

estimation for the hierarchical language model for XML documents. Specifically, the

parameters that are considered are the interpolation parameters which are used to

combine the language models at a given node with the language models of the node’s

children. Unlike their previous work [Ogilvie and Callan 2003], Ogilvie and Callan
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make a simplifying assumption; they do not recursively smooth the language models

when they traverse the structure of the XML document. Instead, they linearly

interpolate the parent’s unsmoothed language model, each child’s unsmoothed language

model, the document’s unsmoothed language model, and the collection language model.

This simplification allows for a cleaner formulation of the parameter estimation

problem which enables application of a modified version of the EM algorithm which

the authors call Generalized Expectation Maximization (GEM). The proposed approach

first trains the EM algorithm, but observes that using positive examples alone places

the most weight on the document language model which results in very poor retrieval

performance. To counter this effect, negative examples are included in the model;

negative examples are non-relevant components that come from documents that contain

relevant components. Conceptually, the GEM algorithm maximizes the probability

that the language models of the positive samples will generate the query term while

minimizing the likelihood that the language models of the negative samples will not

generate the query term. The approaches presented in [Ogilvie and Callan 2003;

Ogilvie and Callan 2006] are validated empirically on data from the INEX CO tasks,

with performance that is mixed but shows promise for further development. 

7. FUTURE TRENDS

[Allan et al. 2003] presents a comprehensive discussion of near and longer term

challenges in Information Retrieval to which language modeling may be applied.

These challenge areas include “retrieval models, cross-lingual retrieval, Web-search,

user modeling, filtering, Topic Detection and Tracking (TDT), classification, summarization,

question answering, meta-search and distributed retrieval, and multimedia retrieval,

information extraction and testbeds.” Although this paper was written several years

ago, the majority of the challenges and issues presented are still pertinent to state-

of-the-art Information Retrieval systems today. It is beyond the scope of this paper to

discuss each of the challenge areas in detail; instead we will focus on three areas that

are of particular interest to us: retrieval models, cross-language information retrieval

and question answering.

Empirically, retrieval models that incorporate relatively simple language modeling

techniques have produced promising results over the past decade. The majority of

these approaches have used a unigram language model, although a few have explored

approaches based on bi-gram and tri-gram models. This relatively simplistic view of

the document as a “bag of words” is an opportunity for future research. In his survey

of statistical language modeling techniques, [Rosenfeld 2000] says, “Ironically, the

most successful statistical language modeling techniques use very little knowledge of

what language really is … only a handful of attempts have been made to date to

incorporate linguistic structure, theories or knowledge.” The incorporation of these

types of formalized structures into a language modeling framework may help to

increase the effectiveness of language modeling approaches. In addition, further

improvements in the language modeling paradigm “are likely to require a broad range

of techniques in addition to language modeling [Allan et al. 2003].” This is especially

true if one considers the changing landscape of information resources; grass-roots

innovations such as wikis, blogs, social bookmarking and even social networking
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applications such as MySpace and Facebook present unique challenges and opportunities

for modeling language. Hierarchical models such as those proposed by Ogilvie [Ogilvie

and Callan 2003] are promising when one considers retrieval applications that merge

unstructured and semi-structured data; it may be likely that future approaches build

on this foundation when considering language data from diverse sources.

A second challenge area is cross-language information retrieval research. [Allan et

al. 2003] states that “though initially the Web was dominated by English speakers,

now less than half of existing web pages are in English.” If this statement was true

in 2002, today the importance of cross-language information retrieval is even more

evident. From a humanitarian standpoint, one may consider that we have a social

responsibility to ensure that cross-language information search and retrieval techniques

are not limited to those languages for which large amounts of data are available −

such as English, Spanish, French, Arabic, and Chinese. In order to effectively extend

language modeling techniques to languages for which less data is available, existing

methods should look to develop techniques for which little or no training data is

required. If such research is not undertaken, the distinction between those who have

access to information and those who do not will be made along language boundaries,

and the information gap will widen as time goes on. 

A final challenge area for language modeling that is of particular interest is

Question Answering (QA). Recent developments in Question Answering research have

started to address many of the topics that were discussed in [Allan et al. 2003].

Recent TREC conferences [Voorhees 2006; Voorhees 2005a; Voorhees 2005b; Voorhees

and Harman 2005] have considered reliable factoid QA, interactive QA, development

of user and session models which require that a given question be cognizant of the QA

dialogue that preceded it and novelty detection within a QA setting (e.g. “Tell me

something interesting about the topic that I have not seen yet.”). In addition, recent

QA approaches [Hovy et al. 2002] have considered merging of structured and semi-

structured information (such as information from knowledge sources such as

Wikipedia and WordNet) to improve the QA reliability. The TREC Genomics Track

[Hersh et al. 2006] can also be thought of as a QA exercise; in those experiments,

researchers must return the answers to broad questions with some source document

context. Despite the recent focus in this area, however, there are still many aspects

of QA that require development or improvement. Within the QA application area,

language modeling has largely been used to improve the first stage of processing

which collects candidate documents and passages that are then passed on to an

Information Extraction (IE) engine which determines the specific response words or

phrases. A future goal for language modeling may be to provide for extensions that

allow for integration with the second stage of QA − either by the incorporation of

knowledge patterns or via statistical mechanisms that can be integrated into the IE

or Natural Language Processing (NLP) techniques commonly used in downstream QA

processing. 

One QA research area which is promising for the application of language modeling

techniques is Answer Validation. In recent years, Answer Validation has become a

topic of significant interest within the QA community. In the general sense, one can

describe Answer Validation as the process that decides whether a Question is
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correctly answered by an Answer according to a given segment of supporting Text. In

the seminal work on Answer Validation, [Magnini et al. 2002] presents an approach

that uses redundant information sources on the Web; they propose that the number

of Web documents in which the question and the answer co-occurred can serve as an

indicator of answer validity. [Banerjee and Han 2009] propose the use of language

modeling methodologies for Answer Validation, using corpus-based methods that do

not require the use of external sources. Specifically, they propose the development of

an Answer Credibility score which quantifies reliability of a source document that

contains a candidate answer. To insert this model into the Answer Validation process,

they propose an interpolation technique that modulates the answer score during the

process using Answer Credibility.

8. CONCLUSION

Statistical language modeling is a technique that has been in use in natural language

processing and speech recognition for several decades. The recent application of

statistical language modeling to information retrieval has proven to be immensely

successful, and yielded empirical results that have surpassed earlier retrieval engines.

Smoothing is an integral part of the language modeling framework and no language

modeling approach can be discussed without discussing the smoothing approaches

that are taken in conjunction. There are, however, many challenges ahead if statistical

language modeling is to become an integral part of related domains such as cross-

lingual information retrieval, question answering and user-context modeling. We

expect significant research to be done in these areas in the years ahead which will,

hopefully, contribute to a globally-integrated information environment.
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