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Quasisymmetric (k, l)-hook Schur functions

Sarah K. Mason1∗ and Elizabeth Niese2†

1Department of Mathematics, Wake Forest University, Winston-Salem, NC, USA
2Department of Mathematics, Marshall University, Huntington, WV, USA

Abstract. We introduce a quasisymmetric generalization of Berele and Regev’s hook Schur functions and prove that
these new quasisymmetric hook Schur functions decompose the hook Schur functions in a natural way. In this paper
we examine the combinatorics of the quasisymmetric hook Schur functions, providing analogues of the Robinson-
Schensted-Knuth algorithm and a generalized Cauchy Identity.

Résumé. Nous introduisons une généralisation quasisymetrique des fonctions “hook Schur” de Berele et Regev et
nous prouvons ces nouvelle fonctions hook Schur quasisymetrique décomposent les fonctions hook Schur. Dans cet
article, nous examinons la combinatoire des fonctions hook Schur quasisymetrique, fournissant des analogues de
l’algorithme de Robinson-Schensted-Knuth et une généralisation d’identité Cauchy.

Keywords: quasisymmetric functions, Schur functions, tableaux, RSK

1 Introduction
Hook Young diagrams became of interest as the classical Schur-Weyl duality was extended to the general
linear Lie superalgebra. Schur [Sch01] determined a one-to-one correspondence between irreducible
representations of the general linear group GL(V ) and subsets of the irreducible representations of Sn.
Weyl’s Strip Theorem [Wey39] states that these irreducible representations of the general linear group
GL(V ) are precisely those obtained from partitions whose Young diagrams lie inside a strip of height
k, where k is the dimension of the vector space V . Schur’s action of Sn on V ⊗n and that from Weyl’s
Strip Theorem are dual. Berele and Regev [BR87] generalize the two actions of Sn on V ⊗n into a single
action by considering a decomposable vector space V = T ⊕ U such that dim(T ) = k and dim(U) = l.
In this new setting, the indexing set is given by partitions which lie inside a hook shape of height k and
width l, called a hook Young diagram, meaning there are at most k parts greater than l. Berele and Regev
use certain fillings of these diagrams to generate polynomials known as (k, l)-hook Schur functions on
two sets of variables, which appear naturally when examining characters of a certain Sn representation of
GL(k)×GL(l), and generalize the classical Schur functions.

Remmel [Rem84] introduces an analogue of the Robinson-Schensted-Knuth (RSK) algorithm for (k, l)-
semistandard tableaux, the objects used to generate (k, l)-hook Schur functions. The insertion algorithm
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underlying this RSK analogue is an important component in the rule for multiplying two (k, l)-hook
Schur functions that is similar to the Littlewood-Richardson rule used to multiply two Schur functions.
Remmel [Rem87] further exploits the rich structure of these objects to prove a number of permutation
statistic identities, including a generalization of the Cauchy Identity [Mac92] which provides a generating
function for products of Schur functions.

The Schur functions (which form a basis for symmetric functions) can be obtained as specializations
of Macdonald polynomials [Mac95]. Similarly, a basis for quasisymmetric functions is obtained through
specializations of nonsymmetric Macdonald polynomials [HLMvW11]. This basis, called the quasisym-
metric Schur function basis, can also be obtained by summing certain collections of Type A Demazure
characters and is of interest due to its combinatorial similarities to the Schur functions as well as its
algebraic significance in the noncommutative character theory of the symmetric group [vW13].

In this paper, we provide a quasisymmetric analogue of the (k, l)-hook Schur functions obtained by
summing the weights of fillings of composition diagrams satisfying certain conditions and prove that this
analogue decomposes the (k, l)-hook Schur functions in a natural way. In Section 2, we describe the
hook composition tableaux used to generate the quasisymmetric hook Schur functions which are obtained
from a combination of quasisymmetric Schur functions and row-strict quasisymmetric Schur functions.
In Section 3 we discuss several properties of the quasisymmetric hook Schur functions. In Sections 4 and
5 we introduce an insertion algorithm and use it to provide an analogue of the Robinson-Schensted-Knuth
algorithm as well as a generalized Cauchy identity. In Section 6 we discuss several avenues for future
research, including a potential method for finding a multiplication rule for quasisymmetric hook Schur
functions.

2 Background
The (k, l)-hook Schur functions introduced by Berele and Regev [BR87] are defined combinatorially
using (k, l)-semistandard hook tableaux. (Frequently the k and l designations are dropped and these
diagrams are referred to simply as semistandard hook tableaux.) Begin with the Young diagram of λ =
(λ1, λ2, . . . , λn), which is given by placing λi boxes (or cells) in the ith row from the bottom of the
diagram, in French notation. A semistandard hook tableau of shape λ is a filling of the Young diagram
of λ with letters from two different alphabets (one primed and one unprimed, where each primed entry is
considered to be larger than all unprimed entries) such that the unprimed entries weakly increase from left
to right along rows and strictly increase from bottom to top in columns while the primed entries strictly
increase from left to right along rows and weakly increase from bottom to top in columns [BR87]. All
rows and columns must be weakly increasing, so in any given column all of the primed entries appear in
a higher row than the unprimed entries, and in a given row all of the primed entries appear to the right of
all of the unprimed entries. (See Figure 2.1 for an example.)

The quasisymmetric Schur functions were introduced in [HLMvW11] as polynomials generated by
composition tableaux, generalizations of semistandard Young tableaux whose underlying shapes are com-
positions instead of partitions. These polynomials form a basis for quasisymmetric functions and decom-
pose the Schur functions in a natural way. A closely related set of polynomials (still given by fillings of
Young diagrams [LMvW13]) is more natural for us to work with for the purposes of this paper, but note
that this new form, denoted here by CSα, is easily obtained from the original definition by a reversal of
the entries in a filling. A slight modification of the definition produces a new basis for quasisymmetric
functions that is generated using a row-strict analogue of the composition tableaux [MR]. (We will again
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T = 1′
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Fig. 2.1: T is a semistandard hook tableau of shape (4, 4, 2, 1) and weight x2
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work with the variation, RSα, of the row-strict quasisymmetric functions obtained by the same reversal
procedure as is employed in [LMvW13]. In fact, we further extend this approach to include skew compo-
sitions as indexing compositions.) Combining these two approaches, we have the following definition for
the composition analogue of a (k, l)-semistandard hook tableau.

LetA be the alphabet 1 < 2 < 3 < . . . and letA′ be the alphabet 1′ < 2′ < 3′ < . . .where each primed
letter is greater than all unprimed letters to give a total ordering of 1 < 2 < 3 . . . < 1′ < 2′ < 3′ < . . . on
A ∪A′. Let α = (α1, α2, . . . , αl) be a composition of n. The diagram associated to α consists of l rows
of left-justified boxes, or cells, such that the ith row from the bottom contains αi cells, as in the French
notation. Given a composition diagram α = (α1, α2, . . . , αl) with largest part m, a hook composition
tableau (HCT), F , is a filling of the cells of α with letters from the alphabets A and A′ such that

1. the entries of F weakly increase in each row when read from left to right,

2. the unprimed (resp. primed) entries of F weakly (resp. strictly) increase in each row when read
from left to right,

3. the unprimed (resp. primed) entries in the leftmost column of F strictly (resp. weakly) decrease
when read from top to bottom,

4. and F satisfies the following triple rule:

Supplement F by adding enough cells with infinity-valued entries to the end of each row so that the
resulting supplemented tableau, F̂ , is of rectangular shape l ×m. Then for 1 ≤ j < i ≤ l, 2 ≤ k ≤ m,
where F̂ (i, j) denotes the entry of F̂ that lies in the cell in the i-th row from the bottom and j-th column
from the left,

(a) if F̂ (j, k + 1) ∈ A and F̂ (j, k + 1) ≥ F̂ (i, k), then F̂ (j, k + 1) > F̂ (i, k + 1), and

(b) if F̂ (j, k + 1) ∈ A′ and F̂ (j, k + 1) > F̂ (i, k), then F̂ (j, k + 1) ≥ F̂ (i, k + 1).

Note that triple rule (a) is identical to the triple rule used to define a standard Young composition
tableau in [LMvW13]. This is due to the fact that the unprimed portion of the filling behaves like a
semistandard Young composition tableau while the primed portion behaves like a row-strict analogue of
a skew semistandard Young composition tableau.

Definition 2.1 The quasisymmetric (k, l)-hook Schur functionHQα(x1, . . . xk; y1, . . . yl) indexed by the
composition α is given by

HQα(x1, . . . xk; y1, . . . yl) =
∑

F∈HCT (α)

xv11 x
v2
2 · · ·x

vk
k y

u1
1 yu2

2 · · · y
ul

l ,
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where HCT (α) is the set of all hook composition tableaux of shape α, vi is the number of times the letter
i appears in F , and ui is the number of times the letter i′ appears in F .

See Figure 2.2 for an example of a quasisymetric (k, l)-hook Schur function and the fillings appearing
in such a function.

3 Properties of the quasisymmetric (k, l)-hook Schur functions
Every Schur function decomposes into a positive sum of quasisymmetric Schur functions. Similarly,
every Schur function also decomposes into a positive sum of row-strict quasisymmetric Schur functions.
In particular,

sλ =
∑
α̃=λ

CSα =
∑
α̃=λ′

RSα

where CSα = HQα(x, ∅) and RSα = HQα(∅, x); that is, CSα is the quasisymmetric Schur function
generated by column-strict composition tableaux of shape α satisfying the first triple condition whileRSα
is the row-strict quasisymmetric Schur function generated by row-strict composition tableaux of shape α
satisfying the second triple condition. The following theorem demonstrates the fact that this behavior
continues as expected in the case of quasisymmetric (k, l)-hook Schur functions.

Theorem 3.1 The (k, l)-hook Schur functions decompose into a positive sum of quasisymmetric (k, l)-
hook Schur functions in the following way:

HSλ(x1, . . . xk; y1, . . . yl) =
∑
α̃=λ

HQα(x1, . . . xk; y1, . . . yl),

where ã = λ indicates that the parts of α rearrange to λ when placed in weakly decreasing order.

Proof: We exhibit a weight-preserving bijection, f , between the set of all semistandard hook tableaux of
shape λ and the set of all hook composition tableaux whose shape rearranges to λ. This map is a general-
ization of the map given in [HLMvW11] between semistandard tableaux and composition tableaux.

Given a semistandard hook tableau T of shape λ, map the entries in the leftmost column of T to the
leftmost column of f(T ) by placing them in weakly increasing order from bottom to top. Map each
remaining set of column entries from T into the corresponding column of f(T ) by the following process:

1. Assume that the entries in the first j − 1 columns have been inserted into f(T ) and begin with the
smallest entry, a1, in the set of entries in the jth column of T .

HQ(1,2,1)(x1, x2; y1, y2) =

1′

2 2

1

1′

2 1′

1

2′

2 2

1

2′

2 1′

1

2′

2 2′

1

2′

1′ 2′

1

2′

1′ 2′

2

2′

1′ 2′

1′

x1x
2
2y1 + x1x2y

2
1 + x1x

2
2y2 + x1x2y1y2 + x1x2y

2
2 + x1y1y

2
2 + x2y1y

2
2 + y21y

2
2

Fig. 2.2: The quasisymmetric (2, 2)-hook Schur function HQ(1,2,1)(x1, x2; y1, y2).
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2. If a1 is unprimed, map a1 to the highest available cell that is immediately to the right of an entry
weakly smaller than a1. If a1 is primed, map a1 to the highest available cell that is immediately to
the right of an entry strictly smaller than a1.

3. Repeat Step 2 with the next smallest entry, noting that a cell is available if no entry has already
been placed in this cell.

4. Continue until all entries from this column have been placed, and then repeat with each of the
remaining columns.

We must show that this process produces a hook composition tableau. The first two conditions are
satisfied by construction, so we must check the third condition. Consider two cells F̂ (j, k+1) and F̂ (i, k)
such that F̂ (j, k+1) ∈ A and F̂ (j, k+1) ≥ F̂ (i, k). We must show that F̂ (j, k+1) > F̂ (i, k+1). Let
F̂ (i, k) = b, F̂ (j, k + 1) = a, and F̂ (i, k + 1) = c. Then the cells are situated as shown, where a ≥ b:

b c

a

.

We must prove that F̂ (i, k + 1) < F̂ (j, k + 1), or in other words, that c < a. Assume, to get a
contradiction, that c > a. (We know c 6= a since a ∈ A and there are no repeated column entries from A.
Then a would be inserted into its column before c. But then the cell immediately to the right of b would
be available during the insertion of a, and therefore a would be placed in that cell since a ≥ b and a ∈ A.
Therefore this configuration would not occur and thus c < a. The case where F̂ (j, k+1) ∈ A′ is similar.

The inverse map, f−1, is given by arranging the entries from each column of a hook composition
tableau U so that the unprimed entries are strictly increasing from bottom to top, and above them the
primed entries are weakly increasing from bottom to top. We must prove that if two entries, x and y, are
in the same row with x immediately to the left of y, then either x < y or {x = y and x = y is unprimed}.
Argue by contradiction. Assume first that there exists a row in which x is immediately to the left of y
but x > y. Choose the leftmost column c in which such an x exists, and the lowest row r containing
this situation with x in column c. Then column c contains only r − 1 entries which are less than or equal
to y while column c + 1 contains r entries less than or equal to y. Since the column entries in the hook
composition tableau U are the same as the column entries in f−1(U), this implies that one of the entries
less than or equal to y in column c+ 1 of the hook composition tableau must lie immediately to the right
of an entry that is greater than y, which contradicts the definition of a hook composition tableau.

Next assume there exists a row in which x is immediately to the left of y and x = y but x = y is primed.
Again, select the leftmost column c containing such an x, and the lowest row r containing this situation.
Again, the column c contains only r−1 entries which are less than y while column c+1 contains r entries
less than or equal to y. Since the column entries in the hook composition tableau U are the same as the
column entries in f−1(U), this implies that one of the entries less than or equal to y in column c + 1 of
the hook composition tableau must lie immediately to the right of an entry that is greater than or equal to
y, which contradicts the definition of a hook composition tableau. 2

Notice that each hook composition tableau appearing in a given quasisymmetric hook Schur function
can be broken into its row-strict portion and its column-strict portion. We may therefore decompose each
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1′

1′ 2′ 4′

2 2 3′ 4′

1 1 3 1′

−→ 1′ 2′ 3′ 4′

1′

2 2 3 1′

1 1 4′

Fig. 3.1: The bijection f maps a semistandard hook tableau of shape (4, 4, 3, 1) to a hook composition tableau of
shape (3, 4, 1, 4).

quasisymmetric hook Schur function into a sum of products of quasisymmetric Schur functions and skew
row-strict quasisymmetric Schur functions as follows:

HQα(x, y) =
∑
β⊆α

CSβ(x)RSα//β(y).

This is analogous to the similar decomposition of the hook Schur functions into sums of products of
Schur functions and skew Schur functions given by

HSλ(x, y) =
∑
µ⊆α

sµ(x)sλ′/µ′(y).

However, some other quasisymmetric analogies of straightforward results about hook Schur functions
do not carry through as easily. For example, one can see that

HSλ(x, y) = HSλ′(y, x) (3.1)

by taking the transpose of each generating semistandard hook tableau. However, taking the transpose of a
composition (which rearranges to a partition λ) using the standard method (writing it as a ribbon and then
transposing the ribbon and recording the underlying composition) does not produce a composition which
rearranges the transpose of the partition λ. Other possible choices for the transpose of a composition yield
shapes whose fillings do not contain the appropriate weights. Thus the obvious analogs to (3.1) in the
quasisymmetric setting fail.

4 An insertion algorithm for hook composition tableaux
We give an analogue of the composition tableau insertion algorithm [Mas08] for hook composition
tableaux. Note that this algorithm also gives insertion algorithms for column- and row-strict composi-
tion tableaux if restricted to just one alphabet.

Given a hook composition tableau F and x ∈ A ∪ A′, we insert x into F , denoted F ← x, in the
following way:

1. Read down each column of F̂ , starting from the rightmost column and moving left. This is the
reading order for F̂ .

(a) If x ∈ A, bump the first entry F̂ (i, j) such that F̂ (i, j) > x and F̂ (i, j − 1) ≤ x and j 6= 1.
If there is no such entry, then insert x into the first column, in between the unique pair F̂ (i, 1)
and F̂ (i+1, 1) such that F̂ (i, 1) < x < F̂ (i+1, 1). If x < F̂ (1, 1), insert x at the bottom of
the first column.
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(b) If x ∈ A′, bump the first entry F̂ (i, j) such that F̂ (i, j) ≥ x and F̂ (i, j − 1) < x and j 6= 1.
If there is no such entry, then insert x into the first column, in between the unique pair F̂ (i, 1)
and F̂ (i + 1, 1) such that F̂ (i, 1) < x ≤ F̂ (i + 1, 1). If x ≤ F̂ (i, 1) for all i, insert x at the
bottom of the first column.

2. If F̂ (i, j) =∞, the insertion terminates. If F̂ (i, j) 6=∞, set x = F̂ (i, j) and continue to scan cell
entries in reading order, starting at cell (i, j).

3. Continue likewise until the insertion terminates.

In Figure 4.1 we show the insertion algorithm for several valus of x ∈ A ∪A′.

1′ 2′ 3′ 4′

1′

2 2 3 1′

1 1 1′

insert 2−−−−→ 1′ 2′ 3′ 4′

1′

1′

2 2 2 1′

1 1 3

1′ 3′

1′

3 3 3 1′ 2′

2 1′ 2′

1 1 2 2′ 3′

insert 2′−−−−→ 1′ 2′

1′ 3′

3 3 3 1′ 2′

2 1′ 2′

1 1 2 2′ 3′

Fig. 4.1: Row-insertion into a hook composition tableau with bumping paths in bold.

Lemma 4.1 Let F be a hook composition tableau and let c1 = (i1, j1) and c2 = (i2, j2) be cells in
F such that (i1, j1) appears before (i2, j2) in reading order, F (c1) = F (c2) = a, and no cell between
c1 and c2 in reading order has label a. In F ← k, let (i1, j1) and (i2, j2) be the cells that the entries
F (c1) and F (c2) (respectively) are bumped to. Then (i1, j1) appears before (i2, j2) in reading order and
if a ∈ A then j1 > j2.

The proof of Lemma 4.1 is a straightforward case-by-case argument left to the reader.

Lemma 4.2 The result of the insertion algorithm is a hook composition tableau.

Proof: Suppose the sequence of labels bumped during the insertion F ← x is x0 = x, x1, . . . , xm
with each xi bumped from cell ci for i ≥ 1. We prove by induction that the result of each bump is
a hook composition tableau. Any triple of cells not involving the bumped entry will be unaffected by
the insertion, so it is sufficient to consider only those triples involving the bumped entry. Assuming that
x0, x1, . . . , xj−1 have been placed by the insertion algorithm, consider what occurs when xj bumps xj+1

from cell cj+1. We suppose that xj , xj+1 ∈ A, noting that the cases where xj ∈ A with xj+1 ∈ A′ and
xj , xj+1 ∈ A′ are similar. When xj is inserted, bumping xj+1 from cell cj+1, we consider three possible
locations of the cell cj+1 in the triple

b c

a

.

First we consider when cj+1 is in position a. Note that it is impossible for F (b) ≤ xj < F (c) since if
this were the case, xj would have been bumped from a cell above c by induction and hence would end up
bumping F (c) instead of xj+1. Thus, the triple condition is satisfied.



236 Sarah K. Mason and Elizabeth Niese

Next we consider when xj bumps xj+1 from position b in the triple. We must show that if xj ≤ F (a),
then F (a) > F (c), so assume xj ≤ F (a). Note that by Lemma 4.1, xj cannot be equal to a so in fact
we may assume that xj < F (a). For any cell d, let d indicate the cell directly to the left of d. Given cells
arranged as in the diagram

b b c

a a

,

recall that xj bumps the entry xj+1 from position b. Since the triple condition was satisfied prior to
inserting xj either xj+1 ≤ F (a) and F (a) > F (c) or xj+1 > F (a). If xj+1 ≤ F (a) and F (a) > F (c),
then we are done, so assume xj+1 > F (a). Then xj+1 > F (a), since F (a) ≥ F (a). Therefore, by
the triple condition, F (b) > F (a). Then, by the insertion rules, since xj ≥ F (b), we have xj > F (a).
Since F (a) < xj < F (a), if xj was bumped from a cell earlier in the reading order than a, then xj
would bump F (a) rather than xj+1. Thus xj must be bumped from a cell between a and b in the reading
order. Since F (a) < xj < F (a), xj could not have been bumped from a cell in the same column and
below a or else the triple condition would not have been satisfied. Thus, xj must have been bumped from
the same column as b. However, in this case, since xj > F (a), we know that F (cj) > F (a) since the
triple condition was satisfied prior to xj being bumped from cell cj , so xj−1 > F (a), since the triple
condition is satisfied after xj is bumped from cell cj . Similarly, xi > F (a) for all 0 ≤ i ≤ j and each
of x1, x2, . . . , xj is bumped from the same column. But, since x0 > F (a) and x0 < F (a), x0 must have
bumped F (a) instead of x1. Therefore xj < F (c) < F (a) and the triple condition is satisfied.

Finally, if xj bumps xj+1 from position c in the triple, then F (b) ≤ xj < xj+1. Thus, since the triple
condition was satisfied in F , we know that either F (a) < F (b) or xj+1 < F (a). In either case, the triple
condition is satisfied after the insertion of xj . 2

We note that this insertion procedure commutes with the bijection f used in the proof of Theorem 3.1.
That is, given a semistandard hook tableau T and x ∈ A ∪ A′, f(T ← x) = f(T )← x where T ← x is
computed using the row-insertion algorithm in [Rem84].

5 An analogue of the Robinson-Schensted-Knuth Algorithm
The Robinson-Schensted-Knuth (RSK) Algorithm is a bijection between matrices with non-negative inte-
ger entries and pairs of semi-standard Young tableaux. This correspondence utilizes an intermediary step
which sends the matrix to a two-line array (a bi-word) satisfying certain properties and can be used to
obtain information about the bottom line of this array, such as the length of the longest increasing subse-
quence in this word. When restricted to permutation matrices, the Robinson-Schensted-Knuth algorithm
provides an elegant proof that the number of pairs of standard Young tableaux with n cells is equal to n!.

Berele and Remmel [BR85] extend this algorithm to a bijection between members of a certain class of
matrices and pairs of semistandard hook tableaux. They use this to prove several important identities for
Hook Schur functions including the following analogue of the Cauchy identity:

∑
λ

HSλ(x; s)HSλ(y; t) =
∏
i,j

(
1

1− xiyj
)
∏
i,j

(
1

1− sitj
)
∏
i,j

(1 + xitj)
∏
i,j

(1 + yisj). (5.1)
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0 1 0 1 0
0 0 1 0 0
0 0 1 0 2
1 0 0 2 0

 −→ (
1 1 2 1′ 1′ 1′ 2′ 2′ 2′

2 1′ 3 2′ 2′ 3 1′ 1′ 1

)
−→ 2′

1′ 2′

1′

2 3 3 1′

1

, 2′

2′

1′

2 1′

1 1 1′ 2′

Fig. 5.1: Example of the RSK analogue for M ∈ M(k1, l1, k2, l2)

We use the insertion procedure described in Section 4 to introduce an analogous bijection between
members of a certain class of matrices and pairs of hook composition tableaux. This algorithm can be
used to prove a generating function identity for quasisymmetric hook Schur functions.

Definition 5.1 Let M be a (k2 + l2)× (k1 + l1) matrix. Then M ∈ M(k1, l1, k2, l2) ⇐⇒ M satisfies
the conditions given in the following diagram:

k2 × k1
nonnegative

integers

l2 × l1
nonnegative

integers

l2 × k1

0 or 1

k2 × l1

0 or 1

This definition is identical to the definition given by Berele and Remmel [BR85] and the Theorem
below provides a bijection from this same set of matrices to a different collection of tableau diagrams;
namely to pairs of hook composition tableaux instead of pairs of semistandard hook tableaux. The process
is similar to that of Berele and Remmel; the hook composition tableaux diagrams appear because we use
the insertion process described in Section 4 rather than the insertion given by Berele and Remmel.

Theorem 5.2 There exists a weight preserving bijection between matrices in the collectionM(k1, l1, k2, l2)
and pairs of hook composition tableaux with the same underlying partition.

The proof of Theorem 5.2 involves sending a matrix from the collectionM(k1, l1, k2, l2) to a biword
using the Berele-Remmel procedure and then mapping this biword to a pair of composition tableaux using
the insertion procedure described in Section 4. In particular, the bottom line of the biword is inserted into
an empty diagram to form a hook composition tableau while the top line records the locations of the
inserted letters, where entries inserted into the leftmost column possibly appear in a different row than in
the insertion tableau to maintain the decreasing condition on the leftmost column.

The following analogue of the Cauchy identity is a corollary to Theorem 5.2 but we prove it using
Equation 5.1 and Theorem 3.1.
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Corollary 5.3∑
λ

∑
α̃=β̃=λ

(
HQα(x; s)HQβ(y; t)

)
=
∏
i,j

(
1

1− xiyj
)
∏
i,j

(
1

1− sitj
)
∏
i,j

(1 + xitj)
∏
i,j

(1 + yisj),

where α and β are compositions and α̃ = λ means that when the parts of α are arranged in weakly
decreasing order, the resulting partition is λ.

Proof: Recall Equation 5.1:∑
λ

HSλ(x; s)HSλ(y; t) =
∏
i,j

(
1

1− xiyj
)
∏
i,j

(
1

1− sitj
)
∏
i,j

(1 + xitj)
∏
i,j

(1 + yisj),

which provides a generating function for products of hook Schur functions. Theorem 3.1 states that:

HSλ(x; y) =
∑
α̃=λ

HQα(x; y);

substitute this refinement of the hook Schurs into the generating function identity to obtain∑
λ

∑
α̃=λ

HQα(x; y)
∑
β̃=λ

HQβ(x; y) =
∏
i,j

(
1

1− xiyj
)
∏
i,j

(
1

1− sitj
)
∏
i,j

(1 + xitj)
∏
i,j

(1 + yisj),

which reduces to∑
λ

∑
α̃=β̃=λ

(
HQα(x; s)HQβ(y; t)

)
=
∏
i,j

(
1

1− xiyj
)
∏
i,j

(
1

1− sitj
)
∏
i,j

(1 + xitj)
∏
i,j

(1 + yisj)

when the summations are combined. 2

6 Future directions
The multiplication of hook Schur functions behaves exactly the same as the multiplication of Schur func-
tions in the sense that the structure constants are the same.

Theorem 6.1 (Remmel) If
sν(x)sµ(x) =

∑
λ

gλν,µsλ(x),

then
HSν(x; y)HSµ(x; y) =

∑
λ

gλν,µHSλ(x; y)

We conjecture that the multiplication of quasisymmetric hook Schur functions similarly mimics the
multiplication of quasisymmetric Schur functions, in so far as such multiplication rules are known. Cur-
rently, the known multiplication rules give a method for writing the product of a quasisymmetric Schur
function and a Schur function as a positive sum of quasisymmetric Schur functions. One method that
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could potentially be used to prove that quasisymmetric hook Schur functions behave similarly is to ex-
pand the product using known rules (and some variants of known rules) and then collapse it back into a
sum of quasisymmetric hook Schur functions as shown below, where the ultimate goal is to prove that the
functions CSγ(x)RSρ(y) are in fact quasisymmetric hook Schur functions.

HQα(x; y)HSλ(x; y) =

∑
β⊆α

CSβ(x)RSα//β(y)

∑
µ≤λ

sµ(x)sλ′/µ′(y)


=

∑
β⊆α

∑
µ≤λ

CSβ(x)sµ(x)RSα//β(y)sλ′/µ′(y)

=
∑
β⊆α

∑
µ≤λ

(∑
γ

Aγβ,µCSγ(x)

)(∑
δ

Bαδ,βRSδ(y)

)(∑
ν

Dλ
µ,νsν(y)

)

=
∑

β⊆α, µ≤λ
γ,δ,ν

Aγβ,µB
α
δ,βD

λ
µ,νCSγ(x)

[
RSδ(y)sν(y)

]

=
∑

β⊆α, µ≤λ
γ,δ,ν,ρ

Aγβ,µB
α
δ,βD

λ
µ,νE

ρ
δ,νCSγ(x)RSρ(y)

One long-term goal is to extend these multiplication results to include a formula for an arbitrary product
of two quasisymmetric hook Schur functions as a sum of quasisymmetric hook Schur functions. Such an
expansion will have both positive and negative coefficients in general, and will involve removal as well as
addition of cells to the diagrams appearing in the factors.

Several other interesting questions about the quasisymmetric hook Schur functions remain unanswered.
In particular, we would like to understand the relationship between these functions and the superization
of Gessel’s Fundamental quasisymmetric functions given by Kwon [Kwo09]. We also seek branching
rules for the enumeration of hook composition tableaux and generalizations of identities such as the
Jacobi-Trudi identity. Finally, it would be valuable to understand the algebraic (representation theoretic)
interpretation of the quasisymmetric hook Schur functions. One important avenue for studying the repre-
sentation theoretic significance of the quasisymmetric hook Schur functions is to work in the dual, as was
done in the case of quasisymmetric Schur functions [vW13].
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