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Increased Clusterin Expression in Fuchs’
Endothelial Dystrophy

Ula V. Jurkunas,1,2,3 Maya S. Bitar,1,3 Ian Rawe,1 Deshea L. Harris,1,3 Kathryn Colby,1,2,3

and Nancy C. Joyce1,3

PURPOSE. To investigate the differential expression of the gly-
coprotein clusterin/apoJ (CLU) in normal and Fuchs’ endothe-
lial dystrophy (FED) corneal endothelium and to compare the
expression of various forms of CLU in normal and FED tissue.

METHODS. FED and pseudophakic bullous keratopathy (PBK)
corneal buttons were removed during transplantation, and
normal corneas were obtained from tissue banks. Human cor-
neal endothelial cells and Descemet’s membrane (HCEC-DM)
complex was dissected from the stroma. Proteins were sepa-
rated on 2-D gels and subjected to comparative proteomic
analysis. Relative expression of presecretory CLU (pre-sCLU),
secretory (s)CLU, and nuclear (n)CLU were compared between
normal and FED HCEC-DM by Western blot analysis. Expres-
sion of CLU mRNA was compared by using RT-PCR. Subcellular
localization of CLU was compared in corneal wholemounts
from normal eyes and eyes with FED by immunocytochemistry
followed by confocal microscopy.

RESULTS. Proteomic analysis revealed an apparent increase in
CLU expression in FED HCEC-DM compared with the normal
control. Western blot analysis demonstrated that pre-sCLU pro-
tein expression was 5.2 times higher in FED than in normal
samples (P � 3.52E-05), whereas the mature form modified for
secretion (sCLU) was not significantly elevated (P � 0.092).
Expression of nCLU protein was significantly elevated in FED
(P � 0.013). RT-PCR analysis revealed that CLU mRNA was
significantly increased (P � 0.002) in FED samples, but not in
PBK samples. CLU also had a distinctive localization in FED
samples with enhanced intracellular staining around the guttae
and in the nuclei of endothelial cells.

CONCLUSIONS. CLU expression is markedly elevated in FED-
affected tissue, pointing to a yet undiscovered form of dysregu-
lation of endothelial cell function involved in FED pathogenesis.
(Invest Ophthalmol Vis Sci. 2008;49:2946–2955) DOI:10.1167/
iovs.07-1405

Fuchs’ endothelial corneal dystrophy (FED) is the most com-
mon endogenous cause of corneal endothelial dysfunction

and leads to progressive corneal edema and blindness.1 Cur-

rently, there is no effective cure for the disease due to the lack
of therapeutic agents and the only modality available to restore
vision is corneal transplantation. Recently, nuclear labeling and
mRNA analysis techniques showed that apoptosis is involved in
FED endothelial cell death.2–4 FED is characterized by extra-
cellular collagenous deposits called “guttae” that accumulate
posterior to Descemet’s membrane (DM), mainly in the poste-
rior banded layer, and subsequently thicken the DM.5 Ultra-
structurally, the most commonly described DM abnormality in
FED has been excessive and disorganized assembly of collagen
VIII, an extracellular matrix molecule typically secreted by
normal corneal endothelial cells during embryogenesis.6–8 Re-
cently, early-onset FED, leading to corneal transplantation in
the fourth decade, has been linked to a mutation in the
COL8A2 gene, and corresponding alterations in DM structures
have been described.9,10 The same genetic predisposition has
not been elucidated in late-onset FED, a variant that is more
common and accounts for most FED cases.11 Despite the iden-
tification of genetic factors that are linked with the early-onset
disease, the pathophysiology of FED remains unclear. Specifi-
cally, the molecular basis for the formation of characteristic
guttae and subsequent endothelial cell apoptosis is not well
understood.

In this study, we hypothesized that there is a differential
dysregulation of protein synthesis and/or secretion in FED-
affected tissues that leads to abnormal extracellular matrix
(ECM) deposition and cellular apoptosis. To identify proteins
that are differentially expressed in FED, we performed 2-D gel
analysis, and compared the profiles between proteins ex-
tracted from the endothelium-DM of diseased and healthy in-
dividuals. After analysis, special focus was directed to protein
spots at 30 to 40 kDa with the isoelectric point (pI) ranging
from 5.0 to 6.0. One series of spots within this area was
identified by MALDI-TOF (matrix-assisted desorption ioniza-
tion–time of flight) mass spectrometry as clusterin (CLU).

CLU (also known as apolipoprotein J, testosterone-re-
pressed prostate message-2, SP 40-40, complement lysis inhib-
itor, gp80, glycoprotein III, or sulfate glycoprotein-2) is a
widely expressed heterodimeric, disulfide-linked glycoprotein
found in many tissues and body fluids.12–14 Expression of the
CLU gene results in the synthesis of several different forms of
CLU protein, located in different subcellular compartments.
After translation, CLU exists in an unglycosylated 60-kDa form,
known as presecretory CLU (pre-sCLU). This form is targeted
to the endoplasmic reticulum and subsequently to the Golgi,
where it is glycosylated and then proteolytically cleaved to
form different, but similarly sized �- and �-subunits before
secretion.15,16 Mature, secreted clusterin (sCLU) is a 70- to
80-kDa glycosylated heterodimer, composed of both �- and
�-subunits joined by disulfide bonds. sCLU appears on poly-
acrylamide gels as a 30- to 40-kDa protein smear under reduc-
ing conditions.17 The ability of sCLU amphipathic domains to
bind hydrophobic molecules supports its role as a molecular
chaperone in clearing cellular debris and scavenging denatured
extracellular proteins.16,18,19 Secretory CLU is overexpressed
in many tissues undergoing stress, including those in cancers
and neurodegenerative disorders, and aids in cell survival un-
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der cytotoxic conditions.20–22 Because of its cytoprotective
and antiapoptotic properties, sCLU acts as a prosurvival factor
for most cells.23,24

Several studies have demonstrated that there is another
form of CLU, nuclear CLU (nCLU) that does not undergo �- and
�-cleavage or extensive glycosylation.25 This 49- to 55-kDa
form has been shown to be located primarily in the nucleus.
Although the exact role of nCLU is unclear, it is thought to bind
Ku-proteins, which are involved in DNA repair.15 In response
to stressors, such as ionizing radiation (IR) or conditions in-
volving TGF-� upregulation, nCLU translocates to the nucleus,
where it binds Ku-proteins, promoting apoptosis in stressed
cells, hence acting as a proapoptosis protein.15,25,26 Although
some investigators have proposed that nCLU is synthesized
from an alternatively spliced CLU mRNA, lacking exon II, there
is no clear consensus as to whether nCLU and pre-sCLU/sCLU
are the products of two different mRNAs.27,28 Nevertheless,
multiple studies have shown that there are important func-
tional differences in CLU forms, based on their subcellular
localization and that the differential identification of those
forms can be reliably performed on the protein level by West-
ern blot analysis and immunocytochemical studies.20,27

In the present study, we first used a two-dimensional (2-D)
gel electrophoresis to aid in protein profiling. Then, based on
the findings, we investigated the relative expression of the

various CLU forms in normal and FED-affected corneal endo-
thelial cells on both the protein and mRNA levels. Immunocy-
tochemistry was performed to compare cellular localization of
CLU in normal and diseased tissues.

MATERIALS AND METHODS

Human Tissue

Donor confidentiality was maintained according to the Declaration of
Helsinki. This study was approved by the Massachusetts Eye and Ear
Institutional Review Board. Informed consent was obtained from pa-
tients undergoing corneal transplantation for FED and pseudophakic
bullous keratopathy (PBK). The FED and PBK corneal buttons were
placed in corneal preservative (Optisol-GS; Bausch & Lomb, Rochester,
NY) immediately after surgical removal and stored at 4°C before sam-
ple preparation (Table 1). Two-thirds of each FED and PBK corneal
button was used for the study and one-third of the button was used for
histopathologic confirmation of the diagnosis. Normal human corneal
buttons were obtained from the New England Tissue Bank (Boston,
MA) and National Disease Research Interchange (Philadelphia, PA) and
were used as control corneas. To assure donor tissue suitability, the
current studies used exclusion criteria previously published from this
laboratory.29 Since normal corneal buttons were stored in preservative
at 4°C before sample preparation, FED and PBK corneas were also

TABLE 1. Donor Information

Pooled
Sample

FED HCEC-DM*
Normal HCEC-DM and/or

Stroma/Epithelium

Use of SamplesAge Sex

Time in
Optisol

(d) Age Sex

Death-to-
Preservation,

(hours)†

Time in
Optisol

(d)‡

1 64 F 10 77 M 5.8 10 2-D gel
72 F 10 78 M 17 12
77 F 3

2 59 F 8 53 F 19 14 Western blot analysis
67 F 1 64 F 19 8

3 85 M 2 52 M 20 14
73 M 1 64 F 23 14
49 F 1 80 M 6 1
77 M 6
62 F 1

4 81 M 9 72 M 10 14
67 M 1 67 M 11 15
69 M 1

5 69 M 3 72 F 11 14
66 F 7 67 F 11 15

6 75 F 1 73 M 4 3
7 55 F 1 68 M 7 1

8 41 F 1 53 M 4 1 RT-PCR
9 57 F 6 56 M 8 8

10 82 F 7 72 F 15 6
11 78 F 4 77 F 11 7

84 M 10 5
12 77 M 6 72 M 9 6
13 63 M 1 66 M 12 1

14 46 M 2 49 M 21 8 Immunohistochemistry
15 83 M 1 69 M 15 6
16 64 F 1 65 F 5 2

PBK HCEC-DM Normal HCEC-DM RT-PCR

17 70 M 1 70 F 8 16
18 44 M 1 53 M 4 1

* FED specimens taken during keratoplasty were placed in Optisol-GS at 4°C immediately.
† Time (hours) between death and placement of the cornea in Optisol-GS at 4°C.
‡ Time (days) from preservation in Optisol-GS to experimental use.
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stored in preservative at 4°C to negate any effects of storage conditions
on protein expression.

Sample Preparation

Table 1 presents information regarding the tissue samples used in these
studies. For 2-D gel electrophoresis and Western blot analysis, samples
were prepared by pooling protein extracts from two or more donors
(Table 1, samples 1–5) and by analyzing samples from individual
donors (Table 1, samples 6 and 7). For RT-PCR studies, samples from
individual donors were analyzed, except for one pooled sample (Table
1, sample 11). Samples 14 to 18, which were used for immunocyto-
chemistry and RT-PCR, were from individual donors. Normal donors
were decade-matched with FED and PBK donors. Corneal buttons
were recovered from preservative and briefly rinsed in PBS. Under a
dissecting microscope, Descemet’s membrane along with the endothe-
lial cell layer (HCEC-DM complex) was dissected from the stroma and
washed with 10 mM HEPES buffer (pH 7.4) before protein extraction.
Samples used for 2-D gel electrophoresis were subjected to an addi-
tional washing step with HEPES buffer (10 mM, pH 7.4) to reduce the
concentration of salts. Protein extraction buffer ER3 (Bio-Rad, Her-
cules, CA), containing 5 M urea, 2 M thiourea, 2% CHAPS, 2% SB 3-10,
40 mM Tris, 0.2% 3:10 ampholyte (Bio-Lyte; Bio-Rad), and 1 mM
tributyl phosphine (TBP), was added to the HCEC-DM sample. Proteins
were solubilized by pipetting up and down to promote adequate
mixing and then incubating the samples at room temperature for 30
minutes, followed by ultracentrifugation at 40,000 rpm, 21°C for 1
hour. HCEC-DM protein samples were used for 2D-gel electrophoresis
and Western blot analysis. The protein concentration of the samples
was determined by a modified Bio-Rad protein assay.

2-D Gel Electrophoresis and
Protein Identification

Equal amounts of protein from both the normal endothelium and FED
samples (Table 1, sample 1) were loaded onto immobilized, pH 3 to 10
linear gradient, 17-cm IPG strips (Bio-Rad) for passive rehydration for
14 hours. Isoelectric focusing was performed with an IEF cell (Protean;
Bio-Rad) with a gradual voltage increase up to 10,000 volts for a total
of 60,000 volt-hours. Second-dimensional separation was performed
using 8% to 16% precast gradient polyacrylamide gels (Bio-Rad). The
gels (193 � 183 � 1.0 mm) were run at 350 volts until the bromo-
phenol blue dye disappeared. Gels were then fixed in 10% methanol
and 7% acetic acid, stained overnight (Sypro Ruby Protein Gel Stain;
Invitrogen, Carlsbad, CA), and washed in water for 1 hour before
imaging. Protein spots from the 2-D gel were imaged (ProExpress
Proteomic Imaging System; PerkinElmer, Boston, MA) using optimized
excitation (480/80) and emission (650/150) filters for the stain. Of
special interest was a series of protein spots at 30 to 40 kDa, with pI
ranging from 5.0 to 6.0. Gel plugs from these spots were excised by
direct picking using a spot-picking robot equipped with a charge-
coupled device (CCD) camera (ProXcision; PerkinElmer) and filter sets
for the stain. Gel pieces were placed in a plate (ZipPlate; Millipore,
Billerica, MA) and processed as described in the manufacturer’s pro-
tocol. In brief, the gel plug was washed in 25 mM ammonium bicar-
bonate/5% acetonitrile for 30 minutes and destained with ammonium
bicarbonate/50% acetonitrile twice for 30 minutes each time. Gel plugs
were then dehydrated with 100% acetonitrile for 15 minutes, rehy-
drated in 15 �L of 25 mM ammonium bicarbonate containing 100 ng

mass-spectrometry grade trypsin (Trypsin Gold; Promega, Madison,
WI) and then incubated at 30°C overnight. The C18 resin of the plate
(ZipPlate; Millipore) was then activated with 9 �L acetonitrile for 15
minutes at 37°C. Peptides were then washed out of the gel plug with
180 �L 0.1% trifluoroacetic acid (TFA) for 30 minutes and then bound
to the C18 resin using low vacuum followed by washing twice with 100
�L TFA under high vacuum. Peptides were then directly eluted onto a
disposable MALDI (matrix assisted laser desorption ionization) target
plate (PerkinElmer) by direct vacuum elution with matrix �-cyano-4-
hydroxy cinnamic acid (�-CHCA at 10 mg/mL; LaserBiolabs, Sophid-
Antipolis, France) in 50% acetonitrile/50% TFA. Matrix was air dried,
allowing crystals to form. The MALDI plate was then loaded into a
MALDI-TOF system (prO-TOF 2000; PerkinElmer). The instrument was
calibrated with a two-point calibration method. Sample data were
acquired with a mass range of 750 to 4500 Da. Proteins were identified
by searching a local copy of the NCBI (provided in the public domain
by the National Center for Biotechnology Information, Bethesda, MD;
www.ncbi.nih.gov/) protein database using the ProFound search en-
gine (Rockefeller University, New York, NY).

Western Blot Analysis

HCEC-DM samples from normal donors and FED patients (Table 1,
samples 2–7) were loaded on 10% Bis-Tris gels for SDS-PAGE. Peptides
were then electrophoretically transferred to a polyvinylidene difluo-
ride (PVDF) membrane (Millipore). Nonspecific binding was blocked
by incubation for 1 hour at room temperature in 5% nonfat milk diluted
in PBS. Membranes were incubated overnight at 4°C with rabbit poly-
clonal anti-CLU (H-330; Santa Cruz Biotechnology, Santa Cruz, CA)
diluted 1:400, and mouse monoclonal anti-�-actin (Sigma-Aldrich, St.
Louis, MO) diluted 1:6000 in blocking solution. Blots were rinsed,
reblocked, and exposed for 1 hour to horseradish peroxidase (HRP)–
conjugated donkey anti-mouse IgG for �-actin and anti-rabbit IgG for
CLU. All secondary antibodies were obtained from Jackson Immuno-
Research Laboratories, Inc. (West Grove, PA) and diluted 1:2000 in
blocking solution. After they were washed in 0.1% Triton X-100, the
peptides were detected with a chemiluminescent substrate (Pico Su-
perSignal; Pierce Biotechnology, Rockford, IL). Images were digitally
scanned and analyzed with NIH Image software, version 1.61 (devel-
oped by Wayne Rasband, National Institutes of Health, Bethesda, MD,
available by ftp at http://rsb.info.nih.gov/nih-image). Protein was nor-
malized according to �-actin content. Experiments were repeated at
least two times. The results were averaged and the standard deviation
calculated. Statistical analysis was performed with Student’s unpaired
t-test (Excel 2002 for Windows XP; Microsoft, Redmond, WA). P �
0.05 was considered to be significant.

RT-PCR Detection of CLU mRNA

Total RNA was extracted from normal, FED, and PBK HCEC-DM com-
plexes (Table 1, samples 8–13, 17, 18) as recommended by the man-
ufacturer (TRIzol; Invitrogen). RNA quantity and quality were assessed
by spectrophotometric analysis. For all samples, cDNA was prepared
by reverse transcription from equal amounts of RNA in a volume of 40
�L using a commercially available kit (Promega). Table 2 provides
information regarding the sequences of the upstream and downstream
primers used for RT-PCR and specific PCR conditions for CLU and
�2-MG (�2-microglobulin).27,30 The PCR was performed in a 50-�L
reaction mixture containing equal amounts of normal, FED, or PBK

TABLE 2. Oligonucleotide Primer Sequences and PCR Conditions

Amplified
Fragments Sense Primers Antisense Primers PCR Conditions

CLU 340 bp27 5�-ACAGGGTGCCGCTGACC-3� 5�-TTAGAGCTCCTTCAGCTTTGTCTCTG-3� 94°C for 30 s, 55°C for 30 s,
72°C for 45 s

�2-MG 335 bp30 5�-CTCGCGCTACTCTCTCTTTCTG-3� 5�-GCTTACATGTCTCGATCCCACTT-3� 94°C for 30 s, 50°C for 30 s,
and 72°C for 45 s
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cDNA and 0.2 �M of each of the upstream and downstream primers,
plus reagents from a commercially available kit (Invitrogen). Specificity
and yield of the PCR products were enhanced by using the hot-start
approach.31 The linear range of amplification reaction for CLU and
�2-MG was tested by using serial cDNA dilutions and by varying the
number of cycles. For CLU, the PCR reaction was run for 25, 28, 30,
and 35 cycles. At 35 cycles, the cDNA level was still within the
exponential range. Thirty cycles was found to be optimal for �2-MG. A
10-minute extension was added at the end of all PCRs. PCR products
and 100-bp DNA ladder molecular weight markers were electropho-
resed in 1.5% agarose gels containing 0.5 �g/mL ethidium bromide and
then photographed. �2-MG was used for normalization of cDNA load
based on published papers30,32 and on personal communication (2007)
with Alexander V. Ljubimov (Ophthalmology Research Laboratories,
Cedars-Sinai Medical Center, Los Angeles, CA). Negative control exper-
iments consisted of the PCR reaction mixture, including primers, but
without cDNA. To ensure that the total RNA samples were not con-
taminated with genomic DNA, a negative control was used where
cDNA of each sample was replaced by the same amount of total RNA
in the PCR reaction mixture, along with 0.2 �M each of �2-MG
upstream and downstream primers. Images of PCR gels were obtained
with an image-analysis system (Gel Doc 2000; Bio-Rad). Semiquantita-
tive analysis of the images was made using NIH Image-J version 1.37v
(http://rsb.info.nih.gov/ij/download.html). The experiments were re-
peated at least two times. The results were averaged and the standard
deviation calculated. Statistical analysis was performed with Student’s
unpaired t-test (Excel 2002 for Windows XP; Microsoft). P � 0.05 was
considered to be significant. The specificity of the amplified CLU cDNA
PCR product was confirmed by sequencing at the DNA Sequencing
Center for Vision Research (DSCVR) at Massachusetts Eye and Ear
Infirmary.

Immunocytochemical Localization of CLU

Normal and FED corneas (Table 1, samples 14–16) were washed in PBS
and then fixed with 100% methanol for 10 minutes at �20°C. All

subsequent steps were performed at room temperature. Corneas were
washed three times in PBS for 10 minutes each, then permeabilized for
10 minutes with 1% Triton X-100 in PBS, and washed again three times
in PBS for 10 minutes each. Nonspecific binding was blocked using 4%
bovine serum albumin (BSA; Fisher Scientific, Pittsburgh, PA) in PBS for
10 minutes. Corneas were incubated for 2 hours in rabbit polyclonal
anti-CLU (H-330) diluted 1:50 in 4% BSA in PBS. The corneas were
washed three times in PBS for 10 minutes each and then incubated for
1 hour with fluorescein (FITC)–conjugated donkey anti-rabbit IgG
(Jackson ImmunoResearch) diluted 1:100 in 4% BSA in PBS. Negative
controls consisted of secondary antibody alone. After being washed in
PBS three times for 10 minutes each, corneas were placed endothelial-
side up on slides in mounting medium containing PI for nuclear
staining (Vector Laboratories, Burlingame, CA). Digital images were
obtained with a confocal microscope (TSC-SP2; Leica, Bannockburn,
IL). A z-series through the tissue was captured with a step size of 0.2
�m per image. Images were created by using a single series or by
collapsing z-series images onto a single-image plane by projecting the
maximum pixel intensity of the images.

RESULTS

Differential CLU Expression in FED Corneas

To identify potential differences in protein expression be-
tween normal and FED human corneal endothelium, HCEC-DM
samples were obtained from three FED patients and two de-
cade-matched normal donors (Table 1; sample 1). Comparison
of the two protein patterns (Figs. 1A, 1B) indicated that there
were several similar protein spots; however, closer examina-
tion revealed several interesting differences. Among the pat-
terns noted was a series of spots migrating in the 30- to 40-kDa
range with a somewhat different pI (Figs. 1C, 1D). MALDI-TOF
identified each spot in this series as CLU. Although MALDI-TOF
did not distinguish between the subunits, these CLU spots

FIGURE 1. 2-D gels (Spyro Ruby
stain; Invitrogen) of HCEC-DM pro-
teins from normal (A) and FED do-
nors (B). Boxes show protein spots
that were identified by MALDI-TOF.
An enlarged view of these areas is
shown in (C) for the normal donor
sample and in (D) for the FED sam-
ple. Proteins were identified as CLU,
�IG-H3 (ellipses), and �-actin (ar-
rows).
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most likely correspond to the �- and �-subunits of the secreted
form of CLU. The observed differences in pI most likely rep-
resent different posttranslational modifications of these sub-
units. Comparison of the CLU spot patterns demonstrated the
presence of a greater number of CLU spots in the FED sample
compared with that of normal endothelium. As indicated ear-
lier, gel electrophoresis normally reveals the presence of pre-
cursor forms of CLU at higher molecular weights; however,
these higher-molecular-weight forms were not clearly distin-
guishable in the stained 2D gels (Sypro Ruby stain; Invitrogen)
and, therefore, were not identified by MALDI-TOF. Within the
30- to 40-kDa region of the 2-D gels was an additional series of
protein spots located above CLU. This series of spots, migrat-
ing at �38 kDa, was identified as �IG-H3 protein. Although
�IG-H3 appeared to show differences between the normal and
FED gels, subsequent studies focused only on relative CLU
expression. Differences in the relative expression of �IG-H3
will be investigated in a future study. �-Actin (42 kDa) was also
identified in both the normal and FED gels.

Western Blot Characterization of CLU Forms in
Normal and FED Samples

Western blot analysis was performed to characterize further
and compare the expression of the various forms of CLU in
HCEC-DM samples from normal and FED donors. Western blot
analysis was performed on four pooled normal and four pooled
FED samples (Table 1, samples 2–5), and on two individual

samples (Table 1, samples 6 and 7). The data obtained from the
pooled and individual samples were identical. The patterns and
expression levels of CLU were consistently reproducible and
did not change between pooled and individual samples or with
variable storage times of specimens in preservative (Optisol-
GS; Bausch & Lomb). Figure 2A shows a representative blot
from a pooled FED and normal sample, and Figure 2B presents
the densitometric comparison. It was established previously
that the polyclonal anti-CLU antibody (H-330) used for this
analysis is able to detect all forms of CLU.33 Molecular weights
of the different CLU-positive bands observed on the Western
blot analysis closely corresponded with previously published
Western blot data by Pucci et al.20 A protein band, migrating at
approximately 60 kDa, was identified as the precursor form of
soluble CLU (pre-sCLU). Densitometric analysis indicated that
pre-sCLU was expressed an average of 5.2-fold higher in the
FED samples than in normal controls (P � 3.52E-05). A band
migrating at approximately 49 kDa was consistently observed
in the FED-affected cells, but yielded only a very faint band or
no band in normal controls. This band has been shown to
correspond to the nuclear form of CLU (nCLU) in lysates from
several different cell types. The average density of the nCLU
band was 23.7-fold higher in FED samples than in samples from
normal donors (P � 0.013). The 30- to 40-kDa form of CLU
corresponding to the � and � chains of soluble CLU tended to
be expressed at higher levels in FED samples, but did not show
a statistically significant difference (P � 0.092).

FIGURE 2. Comparative analysis of
protein expression in HCEC-DM ex-
tracts from FED and normal donors.
(A) Representative Western blot
comparing CLU protein expression
in extracts from FED and normal do-
nors. Pre-sCLU is the uncleaved, pre-
cursor form of secreted clusterin (60
kDa); nCLU is the uncleaved and
nonglycosylated form of CLU that is
targeted for the nucleus (49–55
kDa); and sCLU indicates the �- and
�-subunits of the mature, secreted
form of CLU (30–40 kDa). �-Actin
was used to normalize protein load-
ing. (B) Averaged data showing rela-
tive expression of three CLU forms
from FED and normal samples (Table
1, samples 2–7). Bars, SD; *P � 0.05.
NS, not statistically significant.
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RT-PCR Detection of CLU mRNA

The mRNA expression of CLU was also compared between
normal and FED samples using �2-MG for normalization. As
shown in Figure 3A, a single band corresponding to the ex-
pected weight of the CLU PCR product was observed in both
the normal and FED samples. Densitometric analysis of the PCR
products is shown in Figure 3B. Results indicate that the mRNA
level of CLU was, on average, twofold higher in FED tissue than
in the normal control (P � 0.002). The mRNA expression

differences between normal and FED specimens were not
affected by sample pooling or by the variable time in preser-
vative. Sequencing of the product confirmed that the PCR
transcript was CLU. To evaluate whether CLU overproduction
is specific to FED corneas, mRNA expression of CLU was
compared between normal and PBK samples using �2-MG for
normalization. The comparison was performed between two
sets of age-matched samples (Table 1, samples 17 and 18).
Relative CLU mRNA expression was lower in PBK HCEC-DM
than in normal samples (Fig. 3C).

Immunocytochemical Localization of CLU

Indirect immunofluorescence studies were performed to com-
pare the localization of CLU in the endothelium of normal and
FED donors. Corneal buttons from normal and FED donors
were treated with the polyclonal CLU antibody (H-330) known
to be reactive against all forms of CLU.33 Figure 4 presents
confocal images in which the z-series was collapsed onto a
single image plane. Figures 4A–D present confocal images of
normal endothelium. In normal tissue, a relatively uniform,
punctate distribution of CLU was observed within the cyto-
plasm (Figures 4A, 4C). Negative controls consisted of normal
corneas incubated with secondary antibody only. No CLU-
positive staining was observed under these conditions, indicat-
ing the specificity of primary antibody staining (Fig. 4D). Of
interest, the CLU staining pattern in FED endothelium (Figs. 4E,
4H) was quite different from that of normal HCECs. In FED-
affected corneas, there was a rosette-type clustering of endo-
thelial cells around dark areas containing no CLU- or PI-positive
staining. Since the dark areas did not contain nuclei, they were
considered to represent corneal guttae. CLU staining was
present in a fine punctate pattern throughout the cytoplasm
(Figs. 4E, 4G, 4H). The centers of the guttae appeared to have
some CLU-positive staining, but no nuclear staining was ob-
served (Fig. 4H), suggesting the presence of cell debris in these
areas. To explore CLU localization in the nucleus, we exam-
ined single z-plane images taken through the nuclei of FED and
normal endothelium (Fig. 5). HCECs in the FED specimens
consistently showed increased staining for CLU in the nucleus
compared with that in normal corneas (compare Figs. 5A, 5D).
In addition, the relative intensity of CLU staining in the cyto-
plasm of FED cells appeared increased compared with that in
HCECs of normal donors.

DISCUSSION

CLU is a ubiquitous glycoprotein that is especially abundant in
cells at tissue–fluid interfaces and has been implicated in the
maintenance of normal cell–extracellular matrix interac-
tion.34,35 Studies have shown the presence of CLU in healthy
human corneal endothelium.36,37 In this study, the proteomic
analysis of normal and FED HCEC-DM complexes suggests that
posttranslational processing and expression of CLU differ in
FED tissue. Subsequently, targeted studies were performed to
investigate the differential expression of specific forms of CLU
in normal and FED endothelium. As a result, both the prosur-
vival and proapoptosis forms of CLU were found to be over-
expressed in FED cells. This upregulated CLU synthesis points
to an undiscovered form of dysregulation of endothelial func-
tion involved in FED pathogenesis.

Several techniques were used to characterize the differen-
tial expression of CLU forms between normal and FED speci-
mens. When profiling the differential protein expression be-
tween normal and FED specimens, one of the most striking
differences was the expression of sCLU in the 30- to 40-kDa
range. Even though other protein differences were noted, one

FIGURE 3. Comparative analysis of CLU mRNA expression in
HCEC-DM extracts from FED, PBK, and normal control corneas. (A)
Representative ethidium bromide–stained gels demonstrating PCR
products of the expected size for CLU and �2-MG. On the left are
cDNA markers in 100-bp increments with the bottom band at 100 bp.
C(�): negative control sample containing all reagents except cDNA;
FED: cDNA from a 41-year-old FED donor; N: cDNA from a 53-year-old
normal donor; C(�): cDNA from SW480 cells used as a positive
control. (B) Densitometric comparison of the average amount of cDNA
product for CLU primer from normal and FED samples (Table 1,
samples 8–13). �2-MG was used for normalization. Bars, SD *P � 0.05.
(C) Representative gels demonstrating PCR products of the expected
size for CLU and �2-MG. C(�): negative control sample containing all
reagents except cDNA; PBK: cDNA from a PBK donor; N: cDNA from
a normal donor.
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of them being an increased number of �IG-H3 spots in FED
samples, we postponed the investigation of those differences
for subsequent studies and focused on CLU. The MALDI-TOF
identification of a greater number of sCLU spots in FED sam-
ples within the 30- to 40-kDa molecular mass range indicated
that there were marked differences in the posttranslational
modification of sCLU in FED versus normal samples.

Western blot analysis further investigated CLU protein ex-
pression in both normal and FED endothelium. Expression of
CLU in FED HCECs was significantly higher than in normal
HCECs for both the nuclear and presecretory forms. Of interest
was the finding that the level of the 30- to 40-kDa sCLU, which
is the secreted form of CLU, was not significantly elevated in
FED cells. A study by O’Sullivan et al.28 noted that, in MCF-7
epithelial cells, the proteolytic cleavage required to produce
the mature secretory form of CLU occurs in the Golgi before
extracellular secretion. Stressing the cells with proapoptotic
stimuli, such as TNF-�, blocked the proteolysis of pre-sCLU in
the Golgi and prevented the formation of the secreted � and �
chains. Therefore, it is possible, that FED cells have an alter-
ation in the posttranslational modification of pre-sCLU, pre-
venting a parallel increase in pre-sCLU and sCLU. Similarly,
Nizard et al.38 showed that, under certain stressed conditions,
CLU can evade the secretion pathway altogether and localize
mainly within the cytosol, where it exerts its biological func-
tions. Separate studies have shown that the intracellular 60-kDa
form of CLU, and not the secretory 40-kDa isoform, is respon-
sible for the antiapoptotic effects of CLU by interfering with
Bax activation in mitochondria.39

FED-affected endothelial cells were also found to have ele-
vated levels of nCLU compared with the normal cells. The
nuclear CLU 49-kDa band was consistently present in FED, but
not in normal cells by Western blot analysis. These elevated
levels of nCLU correlated with increased nuclear staining of
CLU in FED-affected cells by confocal microscopy, indicating
that increased production of nCLU is followed by its translo-
cation to the nucleus in the pathologic state, but not in the
normal cells. These data are in agreement with previous studies
that showed induction and translocation of CLU from the
cytoplasm to the nucleus after cytotoxic stimulation with IR
and TGF-� treatment.25,27 Separate studies have shown that
overexpression of nCLU without cytotoxic stimulation leads to
cell death, pointing out its role in apoptosis independent of
exogenous causes.15,40 In the nucleus, nCLU has been shown
to interact with the Ku70 subunit of the Ku70/80 protein,
which is involved in DNA double-strand break repair.15,17,27

When bound to the over-expressed nCLU, Ku70/80 is pre-
vented from DNA end-binding, thus preventing repair of
genomic breaks and leading to genomic instability. Although
additional information is needed regarding how nCLU affects
the DNA repair process, it is known, that overexpression of
nCLU causes diminished cell growth and leads to lethality.15

To investigate whether the mRNA level of CLU increases in
FED cells, RT-PCR analysis was performed. We used a well-
established primer set that amplifies all four CLU exons and
detects the full length form of CLU.27 There was a twofold
increase in CLU cDNA in FED cells versus normal cells, indi-
cating that there was an overall increase in CLU mRNA, as well
as protein, expression in the diseased cells. The RT-PCR and
Western blot data were identical, regardless of storage time
and the use of single or pooled samples. In additional experi-
ments (data not shown), we used a primer set reported to
amplify specifically the nuclear form of CLU,27 but could not
obtain consistent results—a finding similar to that of other
investigators (Michel D, Université de Rennes, Rennes, France,
personal communication, 2007).38 The mRNA analysis of the
tissue taken from the pseudophakic bullous keratopathy spec-
imens revealed a relative decrease in CLU production com-
pared with normal specimens, indicating that a similar increase
in CLU mRNA expression does not occur in PBK. Such findings
indicate that CLU overexpression in FED may be specific to the
pathogenesis of the dystrophy and not seen under other cor-
neal swelling conditions.

Confocal microscopy revealed an unusual CLU staining pat-
tern in the FED endothelium. CLU exhibited mostly intracellu-

FIGURE 4. Representative confocal images of normal (A–D) and FED
(E–H) endothelium in wholemounts of corneal tissue. (A) Uniform,
punctate clusterin (CLU) staining (green) was present in normal cor-
neal endothelium. (B) PI staining of nuclei (red) in the same tissue; (C)
an overlay of the two images. (D) Negative control, incubated in
secondary antibody only, showed no discernible staining for CLU. (E)
CLU staining in FED-affected cells formed a rosette pattern around the
dark areas, which represent corneal guttae (✱ ). (F) PI-stained nuclei in
the same tissue; (G) overlay of the two images. (H) Magnified view of
FED endothelium shows a clustering of CLU-positive cells around a
gutta and some positive CLU staining not associated with nuclei in the
center of the gutta (arrow), suggesting the presence of cellular debris.
Final magnification: (A–G) 400� with 4 zoom; (H) 400� with 8 zoom.
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lar staining, which was highlighted at the edges of the cell
membranes next to dark circular areas suggestive of guttae.
The central fluorescence within those dark areas could repre-
sent CLU expression in the remnants of dying cells. It is also
possible that the unusual staining pattern in those areas signi-
fies the propensity of CLU to associate with dead cells lacking
intact cell membranes, as shown to occur in L929-pRc.clus
cells in response to TNF-� stimulation.41 The physiological
relevance of such an interaction is not known.

In FED tissue, endothelial cell nuclei clustered densely
around the guttae, and those cells had an enhanced CLU
staining at the cell membrane borders next to guttae. Such a
staining pattern most likely represents CLU’s essential role in
eliciting endothelial cell clustering under stressed conditions.
Previous studies showed that CLU induced cell aggregation in
response to oxidant injury due to hydrogen peroxide. The
resultant CLU-induced cell aggregation was shown to protect
the cells against injury by decreasing the amount of cell mem-
brane accessible to oxidant injury and by maintaining better
cell-to-cell contacts, that, when disrupted, can lead to apopto-
sis.42,43

The finding that CLU is overexpressed in FED appears to be
important in elucidating its pathophysiology. Overexpression
of pre-sCLU may be a stress-induced response to protect the
cells from apoptosis. Numerous studies have shown that levels
of CLU are often elevated in response to a variety of tissue
insults.24,44,45 The prevailing thought is that CLU can act as an
intracellular and extracellular chaperone and protect a variety
of proteins from stress-induced precipitation by affecting their
folding state.18,19 CLU has been shown to play a role in pro-
tection of kidney from ischemic glomerular injury46,47 and
cancer cells from apoptosis induced by chemotherapeutic
agents.39,45 CLU is also overexpressed in many pathologic
conditions, two of which are Alzheimer’s disease (AD) and
ARMD.21,48 Similar to FED, both of these disorders manifest
with high amounts of extracellular membrane deposits (i.e.,
drusen and amyloid plaques) and concomitant dysfunction and
apoptosis of the cells next to the deposits. Initial studies of AD
showed that CLU protects neurons from amyloid plaque for-
mation in vitro47,49; however, in a mouse model of AD, CLU
promoted amyloid plaque accumulation and neuron toxicity.50

Similarly, in the ARMD model, large amounts of CLU found in

drusen were thought to promote the formation of these �-amy-
loid-like deposits.51 Although the exact function of CLU is not
clear, the findings of CLU dysregulation in numerous patho-
logic states point to a potentially common downstream path-
way in these processes. Most studies arrive at the same con-
sensus though, and that is that CLU’s chaperone-like properties
may induce alterations in the equilibrium between the depos-
ited and cleared material.50

The relationship between the levels of sCLU and nCLU is
not completely understood, especially how it can promote and
inhibit cell death, depending on the isoform expression. In
colorectal carcinoma, there is a diminished expression of nCLU
and increasing expression of sCLU with increasing cancer
grade.20 Other studies have shown that proapoptotic stimuli,
like IR, increase the levels of both nCLU and pre- and sCLU
proteins, the latter two forms showing a much higher increase
than the former.15,52 In the IR model, pre-sCLU and sCLU levels
increase with low, nontoxic, growth stimulatory levels of IR,
and nCLU levels increase with much higher levels of the cyto-
toxic stress.15 Similar to the IR-induced CLU overexpression,
both presecretory and nuclear isoforms were elevated in FED.
Although the driving force for CLU production in FED is yet to
be elucidated, one of the potential factors may be oxidative
stress. Numerous studies have shown that oxidative stress and
reactive oxygen species can induce CLU overproduction and
that CLU can render the cells resistant to reactive oxygen
species-mediated cellular injury.24,42,53 There is mounting evi-
dence in the current literature that oxidative stress plays a role
in FED.54,55 Therefore, it is possible that dysregulation of CLU
production indirectly points to the mechanism of FED patho-
genesis involving oxidative stress-induced damage to the cor-
neal endothelium.
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FIGURE 5. Representative confocal
images taken through a single, 0.2-
�m-thick z-plane of normal (A–C)
and FED (D–F) corneal endothelium
in wholemounts of corneal tissue.
Images were taken after immuno-
staining for clusterin (CLU; green: A,
C) and PI-staining of nuclei (red: B,
E). Comparison of overlaid images in
(C) and (F) indicate the presence of
CLU within nuclei. The punctate
CLU staining pattern in the nuclei of
FED cells (D) appears to be more
concentrated than the CLU staining
in the nuclei of cells from normal
donors (A). Nuclear images taken im-
mediately above and below showed
similar staining patterns and indicate
that the images were taken within
the center of the nuclei. Final magni-
fication: �400 with 8 zoom.
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