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Effects of Silvicultural Practices on Soil Carbon and
Nitrogen in a Nitrogen Saturated Central
Appalachian (USA) Hardwood Forest Ecosystem
FRANK S. GILLIAM*
DAVID A. DICK
MICHELLE L. KERR
Department of Biological Sciences
Marshall University
Huntington, West Virginia 25755-2510, USA

MARY BETH ADAMS
USDA Forest Service
Timber and Watershed Laboratory
Parsons, West Virginia 26287, USA

ABSTRACT / Silvicultural treatments represent disturbances
to forest ecosystems often resulting in transient increases in
net nitrification and leaching of nitrate and base cations from
the soil. Response of soil carbon (C) is more complex, de-
creasing from enhanced soil respiration and increasing from
enhanced postharvest inputs of detritus. Because nitrogen (N)
saturation can have similar effects on cation mobility, timber
harvesting in N-saturated forests may contribute to a decline
in both soil C and base cation fertility, decreasing tree growth.
Although studies have addressed effects of either forest har-
vesting or N saturation separately, few data exist on their

combined effects. Our study examined the responses of soil C
and N to several commercially used silvicultural treatments
within the Fernow Experimental Forest, West Virginia, USA, a
site with N-saturated soils. Soil analyses included soil organic
matter (SOM), C, N, C/N ratios, pH, and net nitrification. We
hypothesized the following gradient of disturbance intensity
among silvicultural practices (from most to least intense):
even-age with intensive harvesting (EA-I), even-age with ex-
tensive harvesting, even-age with commercial harvesting, di-
ameter limit, and single-tree harvesting (ST). We anticipated
that effects on soil C and N would be greatest for EA-I and
least with ST. Tree species exhibited a response to the gradi-
ent of disturbance intensity, with early successional species
more predominant in high-intensity treatments and late suc-
cessional species more predominant in low-intensity treat-
ments. Results for soil variables, however, generally did not
support our predictions, with few significant differences
among treatments and between treatments and their paired
controls for any of the measured soil variables. Multiple re-
gression indicated that the best predictors for net nitrification
among samples were SOM (positive relationship) and pH
(negative relationship). This finding confirms the challenge of
sustainable management of N-saturated forests.

Atmospheric deposition of sulfur throughout much
of eastern North America has declined over the past
several years (Likens and others 1996, 2002), whereas
deposition of nitrogen (N) has not (Lynch and others
1999). Holland and others (1999) reported median
changes of �35% and �26% for sulfur dioxide emis-
sions and sulfate concentrations in precipitation, re-
spectively, for the eastern United States from 1989 to
1995, in contrast to only a �8% median change for
nitrate. Long-term precipitation chemistry data at Fer-
now Experimental Forest (FEF), West Virginia, USA,
are consistent with this observation (Figure 1). Nitro-
gen in wetfall at FEF arises from measurable levels of

both nitrate and ammonium, neither of which exhibited
significant change over the � 20-year period, from 1978
to 2000. Elevated inputs of N can disrupt the balance of N
cycling such that forests that once were N-limited experi-
ence a supply of available N in excess of biological de-
mand—a phenomenon called N saturation.

Another current trend of great interest is that of
increasing demand for timber from forests of the east-
ern United States. For example, harvesting in West
Virginia resulted in the removal of approximately
3,100,000,000 m3 of timber in 1996—twice the volume
of wood removed in 1989 (Adams 1999). More inten-
sive forest harvesting has been shown to exacerbate
depletion of forest soil calcium (Federer and others
1989, Huntington and others 2000, Adams and others
2000), something that also occurs under conditions of
N saturation via high mobility of base cations along with
elevated pools of nitrate in N-saturated soils (Johnson
and others 1991, Lawrence and others 1995, Likens and
others 1996, Currie and others 1999). As a result, cation
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depletion represents a serious challenge to sustainable
management of some N-saturated forests (Fenn and
others 1998, Gilliam and Adams 1999, Adams 1999,
McLaughlin and Wimmer 1999, Adams and others
2000). Thus, forest harvesting operations have been
shown to have at least short-term effects on nutrient
cycling that are similar to the more long-term effects of
N saturation (Parker and others 2001), especially re-
sponses of net nitrification, cation export via leaching
of nitrate, and soil carbon (C) (Bormann and others
1968, Vitousek and Matson 1985, Johnson and others
1988, Currie 1999, Gilliam and Adams 1999, Herrmann
and others 2001).

The effects of forest harvesting on ecosystem nutri-
ent cycling have been studied for a variety of forest
types and harvesting practices. Such studies indicate
that response of the biota (recovering vegetation) is
largely responsible for regulating nutrient change as
the forest recovers from the disturbance of the harvest
regime (Tritton and others 1987, Reiners 1992). It also
has been learned, however, that there is great variability
in these responses among sites, precluding broad gen-
eralizations across forest ecosystems. Brais and others
(2002) suggested that whole-tree harvesting could have
long-term effects on N dynamics in conifer forests of
Canada. Piirainen and others (2002) found increased
net nitrification during a three-year period following
clear-cutting in Finnish spruce forests. In a northern
hardwoods forest, Johnson and others (1997) found
that clear-cutting resulted in increased mobilization of
exchangeable cations from the forest floor that accu-
mulated in the spodic B-horizons following clear-cut-
ting.

Because most N storage in forest ecosystems is in the
form of organic N in mineral soil (Binkley 1986), it is

important also to consider effects of forest manage-
ment on soil C and soil organic N. Tree harvesting has
both direct and indirect effects on the biogeochemistry
of forest ecosystems, including a reduction in pools of C
in the forest floor (Parker and others 2001). Johnson
and Curtis (2001) conducted a meta analysis of the
effects of forest management on soil C and N storage.
Although they concluded that harvesting in general
had little or no effect on soil C and N, they found great
variation among harvesting methods and stand types.
Yanai and others (2003) demonstrated that the short-
and long-term effects of harvesting on soil C can be
quite complex with decreasing C from enhanced soil
respiration and increasing C from enhanced posthar-
vest inputs of detritus. Although harvesting effects have
been studied in numerous other forest types, including
hardwood and conifer forests, none has examined such
effects in the context of N saturation, even though
Fenn and others (1998) suggested that such an en-
deavor is a pressing research need.

Nitrogen Saturation Research at Fernow
Experimental Forest

The experimental watersheds of the Fernow Exper-
imental Forest (FEF) in north-central West Virginia
have long been the focus of studies of hydrologic and
nutrient cycling within the central Appalachian forest
region (Aubertin and Patric 1974, Kochenderfer and
Wendel 1983). The initiation of the Fernow Whole-
Watershed Study in 1989 ushered in a new emphasis on
experimental simulations of atmospheric deposition of
acidity associated with inputs of S and N (Adams and
others 1993, Adams and Kochenderfer 1999). Publica-
tions from this study have reported on the effects of

Figure 1. Volume-weighted mean annual
concentrations of SO4-S, NO3-N, NH4-N,
and total mineral N (sum of NO3- and
NH4-N) in wetfall at the Fernow Experi-
mental Forest, West Virginia. NS indicates
a nonsignificant slope at P � 0.10.
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experimental acidification on stream chemistry (Adams
and others 1997, Edwards and others 2002a), soil solu-
tion (Adams and others 1997, Edwards and others
2002b), herbaceous layer composition and cover (Gil-
liam and others 1994), and tree ring chemistry (DeW-
alle and others 1999).

Several published studies based on long-term data
from FEF have included observations of increasing con-
centrations over time of stream nitrate in one of the
undisturbed control watersheds (WS4) (Edwards and
Helvey 1991, Stoddard 1994, Peterjohn and others
1996, Fernandez and Adams 2000). Considering that
increased mobility and leaching loss of nitrate is one of
several symptoms of N saturation (Aber and others
1998), additional research at FEF has focused on the
possible effects of N saturation on plants (Gilliam and
others 1996, Christ and others 2002) and soils (Peter-
john and others 1999, Gilliam and others 2001a) of
these hardwood stands. These studies have provided
compelling evidence to corroborate conclusions based
on stream chemistry from WS4—soils of many forest
stands of FEF have become N saturated. Notable among
these published results is a combination of high rates of
net nitrification (�115–140 kg nitrate N/ha/yr) and
high relative rates of nitrification (i.e., net nitrification
as a percent of net N mineralization) (Gilliam and
others 2001a) (Figure 2).

Silviculture Research at Fernow Experimental
Forest

Experimental watershed studies represent one of
two main areas for research at FEF. Elklick Run is a
perennial stream that drains the entire experimental
forest and divides it into two roughly even areas. As

early as the late 1940s and early 1950s forest stands on
the side of Elklick Run opposite from the experimental
watersheds were divided into compartments of varying
size. These compartments were subjected to numerous
silvicultural treatments used commercially in central
Appalachian forests, including even-age silviculture
(clear-cut harvesting), uneven-age silviculture (diame-
ter limit harvesting), single-tree harvesting, group se-
lection, and patch cuts (Trimble and Fridley 1963,
Smith and Miller 1987, Miller and Smith 1993). These
compartments generally range in size from �2 to �25
ha. Although they also vary in site quality, they are
mostly of a medium to high site index.

By utilizing some of these timber management com-
partments, our study examined the responses of soil C
and N to a variety of commercially used silvicultural
treatments within the FEF, a site documented as being
N saturated based on watershed studies. We addressed
the following questions regarding potential biogeo-
chemical responses to silvicultural practices of N-satu-
rated stands of hardwood forests: (1) What is the effect
of silvicultural practices on C and N stores in mineral
soil? (2) How do rates of net N mineralization and
nitrification vary with the various disturbances repre-
sented by contrasting silvicultural treatments? (3) What
soil factors best predict spatial patterns of net nitrifica-
tion among sites? We envisioned the following gradient
of disturbance intensities among silvicultural practices
(from most to least intense): even-age with intensive
harvesting (EA-I), even-age with extensive harvesting,
even-age with commercial harvesting, diameter limit,
and single-tree harvesting (ST). Thus, we hypothesized
that effects on soil C and N would be greatest for EA-I
and least with ST.

Figure 2. Annual net nitrification versus
annual net N mineralization for various sites,
based on literature values. Data for three
watersheds at Fernow Experimental Forest
are also indicated. Symbols are as follows:
closed circles, hardwood-dominated stands;
open circles, conifer-dominated stands; and
triangles, stands with experimental N addi-
tions. Lines shown represent relative nitrifi-
cation rates of 50% and 100%.
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It should be noted that we are considering differ-
ences among silvicultural treatments, if found, to be
legacy effects, i.e., responses of the system long after the
harvest disturbance (e.g., Arthur and others 1993). In
doing so, we are assuming the conditions at the time of
sampling to be typical of long-term status of the site as
a result of forest management for the past 40–50 years.
This does not consider the more transient responses of
soil processes to the discrete events of timber harvest-
ing, something that is proposed for future work.

Methods

Study Site

The Fernow Experimental Forest (FEF), a �1900-ha
area of largely montane hardwood forests in the Allegh-
eny Mountain section of the unglaciated Allegheny
Plateau, is located in Tucker County, north-central
West Virginia, USA. Mean annual precipitation is ap-
proximately 1430 mm/yr, with most precipitation oc-
curring during the growing season (Gilliam and Adams
1996). Topography is mountainous, ranging in eleva-
tion from 534 to 1113 m above mean sea level.

Most soils at FEF are relatively thin (� 1 m in
depth), acidic, sandy-loam Inceptisols (Typic Dystro-
chrepts) of Berks and Calvin series (Gilliam and others
1994). However, some soils are Typic Normudalfs of
the Belmont series, derived from limestone parent ma-
terial (Madarish and Schuler 2002). Soils at FEF are
generally acidic, but are high in organic matter, result-
ing in high cation exchange capacity.

Forest stands within the study compartments are
dominated by mixed hardwood species. Two species,
Acer saccharum and Liriodendron tulipifera, are found
across all treatments (Table 1). Early-successional spe-
cies, such as Prunus serotina and Robinia pseudoacacia, are
dominant in more-intense treatments, whereas late-suc-
cessional species, such as Fagus grandifolia and Quercus

rubra are dominant in less-intense treatments (Table 1).
Dominant herbaceous layer species for other areas at
FEF include Laportea canadensis, Viola spp., and several
ferns, including Dryopteris marginalis and Polystichum
acrostichoides (Gilliam and others 1995).

Silvicultural Treatments

The following describes the five silvicultural treat-
ments used in our study. These are presented in their
hypothesized order of disturbance intensity, from high-
est to lowest.

1. Even-age silviculture, intensive management (EA-
I): This silvicultural practice includes two precommer-
cial operations: (a) a liberation cutting at three years
where stems of advanced reproduction from the previ-
ous stand between 2.5 to 12.7 cm dbh were killed, and
(b) a crop tree release harvest at seven years. Compart-
ment establishment (clear-cut harvesting) was in 1960,
with subsequent thinning harvests in 1964 and 1981.

2. Even-age silviculture, extensive management (EA-
E): This silvicultural practice differs from even-age sil-
viculture with intensive management in that it involves
only one precommercial operation—a crop tree release
harvest at seven years. Compartment establishment and
subsequent thinning harvests are the same as with the
previous treatment.

3. Even-age silviculture, commercial thinning (EA-
C): The term “commercial” refers to an activity that it is
associated with a timber sale. This compartment was
established in 1960. Although there were no precom-
mercial operations, there have been heavy, infrequent
commercial thinning harvests in 1964 and 1981.

4. Diameter-limit harvesting (DL): This is a silvicul-
tural practice wherein all trees above a set minimum
diameter are harvested. The compartment was estab-
lished in 1954. Harvests include all trees �43 cm dbh
and have occurred in 1954, 1970, 1984, and 2001.

Table 1. Importance values for important tree species in each of the silvicultural treatments: even-age intensive
(EA-I), even-age extensive (EA-E), even-age commercial (EA-C), diameter limit (DL), and single-tree (ST)

Species EA-I EA-E EA-C DL ST

Acer saccharum 4.1 12.2 19.0 33.7 36.6
Betula lenta 7.8
Fagus grandifolia 5.7
Liriodendron tulipifera 30.4 28.7 31.3 11.4 8.8
Prunus serotina 34.1 14.9 11.7 17.6
Quercus rubra 9.5 24.5
Robinia pseudoacacia 18.9 10.1
Tilia americana 12.8 14.5 6.4
Other 12.5 21.3 15.6 33.3 12.5
Total 100.0 100.0 100.0 100.0 100.0
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5. Single-tree selection (ST): As the name implies,
single-tree silviculture involves harvesting of individual
trees based on preestablished criteria. This compart-
ment was established in 1952 and has been harvested
with the following criteria: (a) maximum tree diameter
at breast height (dbh) of 81.3 cm, (b) residual posthar-
vest basal area of 14.9 m2/ha for trees � 27.9 cm dbh,
and (c) a Q factor of 1.3. Q factors determine the
change in density of stems across consecutive diameter
classes, often to specify stand structural goals in uneven-
aged management. The Q factor of 1.3 indicates that
each consecutively smaller 5-cm-diameter class contains
1.3 times higher density than the preceding class for
the range of 80 cm down to 30 cm. Single-tree harvests
have taken place in 1968, 1973, 1977, and 1987.

For controls, all compartments have untreated areas
adjacent to them that serve as controls. In the case of
the ST and EA-I treatments, there was a single un-
treated area that served simultaneously as control for
both treatments. Thus, in all, there was a total of nine
areas for the establishment of plots and sampling. All
sampled compartments were between 10 and 20 ha in
area.

Field Sampling

We located five sample points within each of these
areas, for a total of 45 sample points. These were lo-
cated at random intervals along a 50-m transect that was
parallel with the topographic contour to avoid con-
founding potential effects of elevation. At each point,
mineral soil was taken to a 5-cm depth and divided into
two sub-samples. The first sub-sample was placed into
paper bag to allow for air-drying and analysis for total C
and N (see below). The second subsample was placed
in a polyethylene bag for organic matter analysis and
net N mineralization and nitrification following labora-
tory incubation.

Laboratory Analyses

Soil samples brought back to the laboratory at Mar-
shall University were extracted to determine preincu-
bations levels of NH4 and NO3 and potential net N
mineralization and nitrification. All soil samples were
incubated under controlled conditions for 14 days at
25°C. Extraction and analysis for NH4 and NO3 fol-
lowed methods described in Gilliam and others
(2001b). Briefly, moist soils were extracted with 1 N KCl
at an extract–soil ratio of 10:1 (v/w). Extracts were
analyzed colorimetrically for NH4 and NO3 with a Bran
� Luebbe TrAAcs 2000 automatic analysis system. Net
N mineralization was calculated as postincubation
(NH4 plus NO3) minus preincubation (NH4 plus NO3);
net nitrification was calculated as postincubation NO3

minus preincubation NO3. Other analyses at the Mar-
shall laboratory included organic matter (loss-on-igni-
tion, 500°C for 5 hr) and pH (glass electrode).

Subsamples of soil originally placed in paper bags
were taken to the USDA Forest Service Timber and
Watershed Laboratory, Parsons, West Virginia. These
samples were air dried and analyzed for C and N with a
Leco CNS analyzer.

Importance values for tree species common among
silvicultural treatments were determined as a percent-
age of total basal area. Personnel at the USDA Forest
Service Timber and Watershed Laboratory provided
data for tree basal area.

Statistical Analyses

For each of the analyzed variables, we used analysis
of variance and multiple range tests to determine sig-
nificance of effects of silvicultural treatments (Zar
1996). We used linear regression to compare soil C
versus soil N across all sample points, and to assess
relative nitrification (i.e., the percent of net N miner-
alization that occurs as net nitrification) by comparing
net nitrification versus net N mineralization.

Factors potentially influencing spatial patterns of
soil N transformations were assessed with two multiple
linear techniques, as described in Gilliam and others
(2001a). First, multiple linear regression was used to
examine the relationship between net nitrification rates
and the following soil variables: C, N, C/N ratio, ex-
tractable pools of NH4, moisture, organic matter, and
pH, following the approach taken by Koopmans and
others (1995). Additionally, backward stepwise regres-
sion was used to identify further which of the indepen-
dent variables may have been more significantly corre-
lated with N transformations. This technique eliminates
variables from the proposed model sequentially until
all the variables remaining in the model produce F
statistics significant at a given probability level, in this
case P � 0.05 (Zar 1996).

Results and Discussion

Tree Species

Yellow poplar had a basal area of 8.5 m2/ha in the
even-age management with intensive harvesting (EA-I)
compartment and had successively lower basal area
along our hypothesized disturbance gradient, with EA-I
followed by even-age management with extensive har-
vesting (EA-E), even-age management with commercial
harvesting (EA-C), diameter limit harvesting (DL), and
a minimum basal area of 2.4 m2/ha for single-tree
harvesting (ST). Sugar maple exhibited the opposite
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pattern, with minimum basal area of 1.2 m2/ha for EA-I
and maximum basal area of 10.0 m2/ha for ST (Figure
3).

The most immediate and obvious effect of silvicul-
tural treatments often is seen in forest vegetation. For-
est managers in the eastern United States employ a
variety of contrasting silvicultural approaches, depend-
ing on both the existing forest type and on the desired
outcome, i.e., the structure and composition of the
forest that will develop (Marquis and Johnson 1989,
Crow and others 2002). Fast-growing, shade-intolerant
tree species that are common early in secondary plant
succession establish quickly in more intense silvicul-
tural treatments, such as even-age management. By
contrast, less intense techniques, such as single-tree
harvesting, are likely to promote rapid growth among
late-successional species already established in the
stand.

Our data suggest that yellow poplar, an early succes-
sional species, increases with increasing intensity of
disturbance, whereas sugar maple, a late successional
species, decreases with increasing disturbance intensity
(Figure 3). This is consistent with results of Gilliam and
others (1995) from experimental watersheds of con-
trasting stand ages that early successional species for
FEF included black locust, black cherry, and yellow
poplar, and that late successional species included
northern red oak, American beech, and sugar maple.

Soil Organic Matter, Carbon, and Nitrogen

In contrast to the gradient response of tree species
to the disturbance gradient of our silvicultural treat-
ments, soil organic matter (SOM) did not exhibit any
consistent pattern among the treatments; furthermore,

only EA-E and DL showed significant differences be-
tween the treatment compartment and their paired
control areas, which had the lowest SOM of �12%
(Figure 4). Mean SOM was highest among EA-E and
EA-C compartments at �17%. These values are compa-
rable to those reported for whole-tree harvesting and
reference stands of Weymouth Point Watershed,
Maine, of 11.6 and 18.9%, respectively (Parker and
others 2001). Lack of a treatment effect in our study has
implications for forest sustainability, considering that
SOM has been shown to provide important mecha-
nisms in conserving loss of essential base cations (John-
son and others 1997). In addition, the lack of consistent
pattern in SOM along the disturbance gradient is fur-
ther evidence of the complexities associated with eval-
uating SOM response to forest harvesting (Yanai and
others 2000, 2003).

Neither soil C nor soil N varied significantly between
any of the silvicultural treatments and paired controls.
Mean soil C ranged from 7.4% for DL to 10.5% for ST
(Figure 5), with mean soil N exhibiting a more limited
range of variation—from 0.6% to just over 0.7% (Fig-
ure 6). As with SOM, neither soil C nor soil N displayed
a gradient response to the treatments. These minimal
effects of forest management on soil C and N stores are
generally consistent with conclusions of Johnson and
Curtis (2001), based on their meta-analysis of 26 stud-
ies. Despite this conclusion, they found great variation
among harvesting methods and stand types. In partic-
ular, they found that whole-tree harvesting decreased
soil C and N by 6% across all studies in the analysis
(Johnson and Curtis 2001).

Because of the importance of soil C/N ratios in
predicting and controlling numerous biogeochemical

Figure 3. Basal area for sugar maple (Acer sac-
charum) and yellow poplar (Liriodendron tulipif-
era) among silvicultural treatments: even-age
with intensive harvesting (EA-I), even-age with
extensive harvesting (EA-E), even-age with com-
mercial harvesting (EA-C), diameter limit
(DL), and single-tree harvesting (ST).

Silviculture Effects on Carbon and Nitrogen S113



processes in forest ecosystems, in addition to assessing
variation in soil C and N separately, it is also necessary
to consider responses of the balance between these two
components. Mean soil C/N ratios were ��15 for all
treatments and controls in our study, and were � 13 for
several of these (Figure 7). Linear regression of soil C
versus soil N across all sample points (all treatments
and controls combined) revealed a highly significant (P
� 0.001, R2 � 0.84) relationship: C � 0.15 � 13.4N
(Figure 8). This indicates that the C/N ratio was �13
across all sites, a value much lower than most found in
the literature, e.g., 20–24 for Bear Brook Watershed,
Maine (Parker and others 2001), 17–20 for White
Mountain National Forest (Goodale and Aber 2001),
17–21 for boreal forest in Quebec (Brais and others

2002). Low soil C/N ratios are among several lines of
evidence indicative of N saturation (Aber and others
1998).

Net Nitrification

Other indicators of N saturation include high abso-
lute and relative rates of net nitrification (Aber and
others 1991). Accordingly, a major emphasis of this
study is on the potential effects of forest management
on nitrification in mineral soil. Similar to results for the
other soil variables in our study, mean rates of net
nitrification neither exhibited a gradient pattern
among treatments, nor differed significantly between
treatments and paired controls (Figure 9). It should be
noted that because they are the result of laboratory

Figure 4. Mean soil organic matter for each
silvicultural practice (see Figure 3 for abbre-
viations) and its paired control. Errors bars
are � 1 standard error of the mean. Means
with the same superscript are not signifi-
cantly different at P � 0.05.

Figure 5. Mean soil carbon for each silvicul-
tural practice (see Figure 3 for abbrevia-
tions) and its paired control. Errors bars are
� 1 standard error of the mean. Means with
the same superscript are not significantly
different at P � 0.05.
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incubations under controlled conditions, these data
reflect potential net nitrification, rather than actual
field values. Despite this possible limitation, the daily
rates of net nitrification found in this study are compa-
rable to daily rates based on monthly in situ incubations
in a three-year study across three experimental water-
sheds at FEF (Gilliam and others 2001b).

Linear regression of net nitrification versus net N
mineralization across all sample points (all treatments
and controls combined) produced a highly significant
(P � 0.001, R2 � 0.85) relationship: Nit � 0.21 �
0.89Nmin (Figure 10). The slope of 0.89 indicates that,
for all treatment and control soils combined, nitrifica-
tion as nearly 90% of N mineralization. Most points
were on or near the 100%, indicating that nitrification

was essentially 100% of N mineralization for a majority
of the soils of the study. These high values for relative
nitrification are consistent with results for experimental
watersheds at FEF (Figure 2, Gilliam and others 2001a).

Factors that potentially influence spatial patterns of
net nitrification among our sites were examined with
multiple linear regression. This was highly significant
(R2 � 0.52, P � 0.001) for a model of net nitrification
versus soil C, N, C/N ratios, OM, pH, NH4 pools, and
soil moisture. Of these factors, however, only SOM and
pH accounted significantly (R2 � 0.49, P � 0.005) for
variability in the final stepwise model (Table 2). The
coefficient for SOM (0.32) indicates a positive relation-
ship between SOM and net nitrification, whereas the
coefficient for pH (�2.30) indicates a negative relation-

Figure 6. Mean soil nitrogen for each silvi-
cultural practice (see Figure 3 for abbrevia-
tions) and its paired control. Errors bars are
� 1 standard error of the mean. Means with
the same superscript are not significantly
different at P � 0.05.

Figure 7. Mean soil C/N ratio for each silvi-
cultural practice (see Figure 3 for abbrevia-
tions) and its paired control. Errors bars are
� 1 standard error of the mean. Means with
the same superscript are not significantly
different at P � 0.05.
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ship. The lack of a relationship for C/N ratio is in
contrast to published results of studies suggesting that
soil C/N ratios exert a significant control on nitrifica-
tion (Goodale and Aber 2001, Ollinger and others
2002).

Aber and others (1991) used the VEGIE model to
predict the effects of timber harvesting on N mineral-
ization and the time required for a northern hardwood
stand to reach N saturation, using a net N mineraliza-
tion rate of 95 kg/ha/yr as the level indicating N satu-
ration. They found that harvesting had a transient ef-
fect on mineralization, which increased abruptly
following harvesting, then returned close to preharvest
levels within �50 years. They also concluded that har-
vesting hastened the onset of N saturation (Aber and

others, 1991). Similarities between results of this
study and previous work on experimental watersheds
at FEF (Gilliam and others 2001a,b) suggest that soils
of these silvicultural treatments and their paired con-
trols are already well above the threshold level used
by Aber and others (1991) as in indicator of N satu-
ration. In addition, low C/N ratios (Figure 7) and
high relative net nitrification (Figure 10) are further
evidence of N saturation for our sites. Finally, the
relationship between SOM and net nitrification con-
firms the challenge of sustainable management of N-
saturated forests. That is, it is possible that management
practices designed to improve levels of SOM could further
exacerbate base cation loss by increasing nitrification and
soil nitrate leaching.

Figure 8. Soil carbon (C) versus soil
nitrogen (N) for all plots and treat-
ments combined. Line shown is the
following: C � 0.15 � 13.4N, R2 �
0.84, P � 0.001.

Figure 9. Mean rates of net nitrification
for each silvicultural practice (see Figure
3 for abbreviations) and its paired con-
trol. Errors bars are � 1 standard error
of the mean. Means with the same super-
script are not significantly different at P
� 0.05.
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