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ABSTRACT

The primary focus of this work is to discuss the mechanical action of the Marshall

Differential Analyzer (“Art”) in a mathematical context. Differential Analyzers are

primarily used to calculate the solutions to Differential Equations. A full account of

the uses of Marshall’s Differential Analyzer is given. Furthermore, a pure mathemati-

cal justification of how the machine integrates (mechanical integration) is provided via

an application of the Riemann Integral. Many simple example problems are detailed

ultimately leading up to the calculation of nonlinear problems, more specifically, a

nonlinear oscillator.



1. INTRODUCTION

Why do people dislike mathematics? Why does math seem to be a majority of

people’s worst subject? Why do some people think that they can’t learn mathemat-

ics? Persons who have taught or enjoyed mathematics have asked themselves these

questions. It is the belief of many that the reason some people are discouraged by

mathematics is that there is a disconnect between the physical world and mathemat-

ical theory. Nothing could be farther from the truth. Theory is based on a certain

set of assumptions in order to provide undeniable truth, and it is the application

of this theory to the physical world that provides the missing link between theory

and practice. The illusion of a disconnect from theory to practice exists due to the

fact that some assumptions are not always plausible in practice. For example, some

mathematical models of the environment may disregard wind resistance and this is a

very important factor in the real world. Perhaps the underlying assumptions involved

in mathematical theory are elements of little interest to many and even less inter-

esting to those in the various sub-disciplines of applied science. However, from an

educational perspective, making natural assumptions is necessary because classroom

and textbook are not always representative of the real world. It is the task of the

teacher, especially in mathematics, to provide a link from theory to practice for those

who are not so inclined to enjoy the theoretical aspects of a particular subject. To

do this some instructors use what is called a manipulative and they incorporate it in

their lectures.

A manipulative is a physical model, or analog, that is used to clarify a person’s

intuition through visual and tactile interpretation. For quite some time, Dr. Bonita

1
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Lawrence, at Marshall University, has been using one such manipulative to teach cer-

tain theoretical points in applied and pure mathematics. This manipulative is called a

differential analyzer and was designed to solve differential equations. The differential

analyzer is an analog computer that uses mechanical interrelationships to represent

dynamical systems; it is literally a physical interpretation of a differential equation.

One nice property that most manipulatives possess is that they are confined within

a set of constraints or assumptions. So, by using a manipulative like the differen-

tial analyzer to teach concepts in mathematics, one may observe why an assumption

needs to made and alternatively what happens when the assumption is ignored. A

full account of the construction and current uses of Marshall’s Differential Analyzer

(called “Art” for Dr. Arthur Porter) and the finer mathematical points therein, is

the focus of this work. The differential analyzer is used as a tactile teaching tool, but

some students in the graduate program at Marshall University are using the machine

to study more sophisticated dynamical systems. Because the differential analyzer of-

fers a perspective not available using numerical techniques implemented by a digital

computer, it can be a useful tool for advanced level research.

I am one such graduate student. My interest is in the calculation of solutions

to nonlinear ordinary differential equations that do not possess closed form solutions.

The Marshall Differential Analyzer is a means by which one can create solutions of

up to a fourth order nonlinear differential equation. As an addition to using modern

standard methods, such as a fourth order Runge-Kutta method, using the differential

analyzer provides alternative insight into the abstract nature of a differential equation.

Moreover, some of this insight is in the form of “real-time” knowledge about the

subsequent derivatives, starting from the highest order for a particular differential

equation. This type of information about the derivatives and other terms arising in

a specific problem becomes especially interesting if a term in this sequence is not

explicitly available in the differential equation itself. Since the differential analyzer
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uses a strict analog process, the “real-time” calculation of solutions to nonlinear

problems may be observed through systematic mechanical processes. Ultimately, this

visualization of mathematics is the appeal of using such a machine in the analysis

and solving of differential equations.

The Marshall Differential Analyzer was formally revealed to the public in May of

2009. The primary construction of the machine was complete and “Art” was suitable

to run up to fourth-order linear ODE’s. Since the Grand Opening of “Art,” “he”

has been modified in several ways and can now solve certain nonlinear ODE’s. This

thesis concerns the transition of using a differential analyzer to solve various types of

differential equations beginning with simple types and leading up to more complex

problems including a final showcase of “Art’s” programmability with a nonlinear

example of an ODE that does not possess a closed-form solution.

In this first section, a brief account outlining the history of the differential an-

alyzer and the chain of events leading to the conception of Marshall’s Differential

Analyzer is presented. In Section 2, the construction of Marshall’s Differential An-

alyzer is detailed including pictures and descriptions of possible future components

that may be added to the machine to enhance its capabilities. The third section is a

mathematical justification of mechanical integration theory through an application of

the Riemann integral. The discussion in Section 4 concerns the particulars of using

the machine to solve certain types of differential equations; this section could be used

as an operations manual for Marshall’s Differential Analyzer. Finally, Section 5 gives

an example of using the machine to solve a nonlinear differential equation that doesn’t

possess an explicit closed-form solution. Additionally, a discussion of the advantages

and disadvantages of using a differential analyzer for this type of nonlinear analysis

can be found in this section, along with a summary of this thesis.
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The goal of this work is to provide a mathematical description of the theoretical

principles described by the motion of a differential analyzer. Because the differen-

tial analyzer is a physical model of mathematical concepts, a link from the theoretical

world to the physical world can be made through the study of the theory of a differen-

tial analyzer and its practical uses. These mathematical concepts include simple math

operations, such as addition and multiplication. Other concepts include the study of

functions, equations, integration, differentiation, solutions of systems of equations,

parametric representations of relations, etc. Among the more rigorous mathematics

that a differential analyzer can model are certain types of dynamical systems, such as

differential equations and dynamic equations on time-scales. Along with representing

mathematical ideas, a differential analyzer can provide solutions to these complicated

dynamical systems so that they may be studied qualitatively. Using the differential

analyzer to study dynamical systems is certainly not without its limitations, however.

These limitations are discussed throughout this paper and, ideally, any reader may

benefit by learning from one who has worked with such a machine and whose com-

ments and conclusions are based on first-hand experience. “There are moments in

our lives, especially if we are poets or painters or scholars or engineers or scientists,

when in a figurative sense we ‘strike pay dirt.’ I don’t mean this in a pejorative

sense, but rather in the sense of revelation. Such a moment occurred when the model

d.a. (differential analyzer) produced for the first time a series of graphs of, for me,

unsurpassed beauty...” (Arthur Porter [14]).

These words spoken by Arthur Porter express his feelings about the first set of

solution curves produced by a differential analyzer of his own design. There are many

who have worked on Marshall’s Differential Analyzer, including myself, who have had

similar feelings about viewing a solution plot for the first time. The point should

be well taken that despite using a tool made popular some 70 years ago and later

considered to be obsolete, there yet still exists something elegant and beautiful about
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the way it works. This feeling can only be fully appreciated by the most patient of

people who can observe and understand the inner workings of the machine with their

own eyes.

1.1. HISTORY OF THE DIFFERENTIAL ANALYZER

The rise and fall of the popularity of the differential analyzer is unknown to

most. A brief account of the advances in calculating machines leading up to the first

mechanical integrating machine is presented in this section. A short description of

the first fully capable differential analyzer, invented and built by Vannevar Bush,

and its applications is outlined. The role the differential analyzer played in the

development of technology leading up to the advent of modern computers is the

missing link connecting the 19th and 20th centuries, at least from a technological and

computational perspective.

Many differential analyzers were built in the era of the World War II, primarily

in the U.S. and throughout Great Britain. They proved to be invaluable tools in the

calculation of ballistics tables for example. Unfortunately, the differential analyzer

vanished soon after the war, but its technology is not forgotten.

1.2. MECHANICAL INTEGRATION

Although using a wheel to measure arc-length was a technique employed by the

ancient Greeks, the first mechanical integrating devices were planimeters. Planimeters

are tools used to calculate the area of two-dimensional shapes, their use justified by

an application of Green’s theorem. Many inventors of the early 1800s attempted to

construct a workable model, but it was the inspiring model constructed by Johann

Martin Hermann in 1818 that sparked a revolution of the planimeter mechanism [3].

The interesting point of fact is that Hermann’s model was a physical representation of
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the definite integral of a function. Unfortunately, for the time, this complex design was

not suitable for accurate calculation of the area of two-dimensional irregular shapes.

However, this design would be later realized into the common form, the mechanical

integrator. With the aim of a new planimeter design, Tito Gonnella, invented a model

that operated under a concept similar to Hermann’s. After his first design Gonnella

invented a disk and wheel planimeter that has been redesigned several times and is

similar to a mechanical integrator. These simple machines were the start of what

would be the age of the continuous calculating machines [3].

Mechanical integrators have designs that vary from wheel and disk, to disk globe

and cylinder, to a wheel and cone like Hermann’s design. Nonetheless, all mechanical

integrators have in common three very specific movable parts. First, a rotating surface

that governs the rotation of another circular surface so that the former literally turns

the latter like a gear. The two are orthogonal to each other. In a mathematical context

these can be interpreted as the differential and the integral motions respectively. The

third movable part is the most complex and may be interpreted as the integrand.

This part will displace one of the other two movable parts so that it governs the ratio

of turns between them, ultimately determining the angular velocity of the second part

with respect to the first. Note that if this third movable part does not turn, then

the integral is that of a linear function, as the rate of change of a linear function is

a constant. Moreover, by the Fundamental Theorem of Calculus, if the third part

represents a derivative of a function with respect to the first part, then the second part

is the function itself. This concept will be discussed in great detail throughout this

entire work. It is this fundamental relationship that allows a mechanical integrator

to calculate the solutions of differential equations in general.

The next significant advance for the mechanical integrator was its implementa-

tion in the calculation of linear differential equations. It was known that planimeters
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could calculate the definite integral of a function and several scientists were experi-

menting with the use of a mechanism of this type to solve various problems in com-

putational science. William Thomson (Lord Kelvin) and his brother James Thomson

conceived the idea of using a mechanical integrator to solve differential equations.

James Thomson published the first paper of its kind, describing his design for a new

type of mechanical integrator, using a disk, globe and cylinder. Lord Kelvin published

a second paper, an extension of the first, that showed how his brother’s calculating

machine could be used to solve linear nth order differential equations. Later William

Thomson invented a “harmonic analyzer” that would predict the tides [15].

Thomson’s calculating machine consisted of several disk, globe and cylinder

mechanical integrators connected together by rotating shafts. The idea was to create

a closed system of equality, interrelating the various rates that were available from

each integrator. This closed system of equality represented a differential equation.

Finding the solution on a closed domain was a matter of tabulating values taken

from shaft rotations relative to certain movable parts of an integrator. For its time

Thomson’s machine was very sophisticated (See Figure 1.1).

The problem with using a mechanical integrator to drive the movable parts

of other mechanical integrators was that the output operated at a very low torque.

The range of problems that could be solved by Thomson’s machine was limited. As

seen in Figure 1.1, the machine was big and heavy because the globes had to be of

considerable weight in order to apply the needed torque. Furthermore, the globes

were aligned to allow the smooth rolling about the surface of the disk. Note that

the cylinders will only pick up a strict rotational motion. Then the rotation of the

cylinder could be picked up by another movable part of an integrator.

The Thomson’s inventions, led to a string of continuous calculating machines.

Some of the most famous were the bombsights used in air-craft during World War

I, the mechanical computers of Hanabil Ford for the U.S. Navy, and Author Pollen
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Figure 1.1. A picture of Thomson’s integrating machine, Author: Andy Dingley;
taken from his own work

for the British Navy [3]. All of these mechanisms were capable of integrating data

obtained in “real time” such as velocity in order to calculate distance for artillery
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type trajectories. These mechanisms led to the development of the first differential

analyzer fully capable of solving a vast range of nonlinear problems.

1.3. BUSH’S DIFFERENTIAL ANALYZER

Vannevar Bush coined the term “Differential Analyzer” when he used a combi-

nation of several technologies (some of which were of his own invention, for instance,

the product intergraph) to develop the first analytical analog computer, the Differ-

ential Analyzer. Although Bush credits Leibnitz “the inventor of calculus itself” [1],

as the inspiration for using mechanical interrelationships to solve equations, it was

the use of mechanical integrators along with mechanical torque amplifiers that would

offer the capability of solving nonlinear differential equations. The mechanical torque

amplifier was invented by H.W. Niemann (a colleague of Bush) and was based on a

capstan principle. (The apparatus will be discussed in a later section.) Basically, a

torque amplifier provides the output of an integrator with enough rotational force to

drive heavy loads, such as an integrator disk, without causing slippage in the system.

As previously mentioned, torque amplification was a limiting factor in previous cal-

culating machines. The ability to drive an integrator disk with something other than

a primary motor drive, such as using the output of an integrator to drive the disk of

another integrator, was necessary. With such a setup we are able to integrate with

respect to something other than the independent variable. For instance, if the output

of an integrator represents y, where y is a function of x, then if we integrate y with

respect to y it will lead to a the square of y, provided the insertion of an appropriate

gear train (the square of y, a nonlinear term, has been created). Mechanically, we

have used the output of one integrator to drive both the rate of change drive and the

disk drive of another integrator.

Bush describes the first differential analyzer in his paper “The Differential An-

alyzer, A New Way to Solve Differential Equations” [1]. In this paper Bush provides
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several diagrams of the primary components that comprise the differential analyzer.

The primary difference in Bush’s machine and the mechanical integrating machines

prior to that was the extensive section of interconnection and the torque amplifiers.

The section of interconnection is a pathway by which the movable parts of the various

integrator units could be interconnected with one another. This addition makes the

differential analyzer the perfect tool for solving different types of differential equa-

tions. Because the section of interconnection was so versatile, terms contained in

nonlinear problems were easily interconnected on the new differential analyzer.

The Bush-type analyzer was a model that would be built at several universities

in both the U.S. and Great Britian during the pre-World War II era. These machines

became important tools in the calculation of ballistics tables during the war. Both

U.S. and British military leaders had differential analyzers at their disposal for the

purpose of supporting the war effort. Actually, the term computer literally means

one who computes; so the people performing calculations on the differential analyzer

and other calculating machines were the computers of World War II.

One of the most famous uses of the differential analyzer for military purposes

was modeling the bouncing bomb. The bouncing bomb was used to disable the hydro-

electric dams in Germany. On May 16th and 17th 1943, “Operation Chastise” was the

mission carried out by the Royal Navy, where Möhne and Edersee Dams were targeted

by the “dambusters” [13]. It would be interesting to determine which differential

analyzer was primarily used for the conception of the bouncing bomb built by Barnes

Wallis. That information, along with the extent at which a differential analyzer was

actually used during the planning of the experiments, would be an interesting study.

One fact is certain; if a differential analyzer was extensively used, it was a Bush-type

differential analyzer.

Bush went on to build a more elaborate machine called the “Rockefeller DA.”

The goal in building the Rockefeller DA was to make the differential analyzer more
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automatic. But there was a need for a more efficient way to perform complex compu-

tations. For this reason the differential analyzer was replaced by digital computing

machines, the first of which was the E.N.I.A.C. As for the Rockefeller DA it was

dismantled shortly after the war due to fear of technology leakage. There is no doubt

that advancement in technology provided an advantage in war times and thereafter.

The differential analyzer played a very important role in this technological advance-

ment. It is unfortunate that the analyzer was lost to time because, as Vannevar Bush

himself said, a differential analyzer could be used as a teaching tool.

Although the differential analyzer was not efficient enough to sufficiently carry

out calculations with required time demand, it provided a perspective that is not

otherwise available from the conventional methods of today. The method a differential

analyzer uses to model differential equations is a pure analog of the dynamic as it

occurs in real-time, and each movable part represents a piece of the dynamical puzzle

that comprises the differential equation. This perspective on dynamic equations is

the attraction for the re-creation of Bush’s invention, from a mathematical point of

view.

1.4. DR. PORTER AND THE DA

Dr. Arthur Porter was an original contributor to computer science. In his

day the latest technology of “computers” was the differential analyzer of Bush type.

Porter was first exposed to the idea of a differential analyzer by Dr. Douglas Hartree

when Hartree was in need for a student to do research related to the machine. Hartree

had recently visited M.I.T. and saw Bush’s differential analyzer. It was after his re-

turn from the U.S. that Hartree suggested a small workable model could be built out

of Meccano parts. As the cost for a full scale differential analyzer would be too high,

building one out of Meccano parts would be perfect to start a research project within



12

Figure 1.2. Dr. Douglas Hartree on the left and Dr.Arthur Porter on the right, work-
ing on the Manchester DA

reasonable financial means. The deal was that if Porter could qualify for the Mas-

ter’s program, then he could work under Professor Hartree receiving an assistantship.

It turned out that Porter did qualify by building a model torque amplifier in com-

pletion of his undergraduate degree and by taking comprehensive examinations. In

fact, Porter was ranked number one in his class, thus receiving the Samuel Bright

Scholarship and Graduate Research Scholarship [14]. It was clear who would be Pro-

fessor Hartree’s assistant and who would be building the model differential analyzer.

Porter soon began to design a model differential analyzer, primarily out of Meccano

parts. The completion of the first Manchester Machine marked Porter’s completion

of his Master’s Degree. Porter’s thesis concerned the wave function of the hydrogen

and chromium atoms. The Manchester Differential Analyzer was used to calculate

the atomic structures of the hydrogen and chromium atoms in the form of a several

plots. The results in Porter’s thesis can still be found to this day in, as he states in

his memoir, “Calculation Machine Section of the National Science Museum in South

Kensington, London” [14].
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Due to the success of the Meccano model differential analyzer, Hartree soon

sought funding to build a full-sized differential analyzer. It was 30 feet long by 15 feet

wide and was equipped with eight integrator units. Additionally, the new machine

had a special input table built for it. This table could handle special functions

with a “time-lag.” That is, non-homogeneities which were defined on delayed time

intervals. Porter’s Ph.D. dissertation was concerned with problems in control theory

that implemented this special input table.Hartree and Porter’s work sparked a trend

of universities building differential analyzers. The fact that the Manchester Machine

was the first differential analyzer outside of the U.S. provided other universities, such

as Cambridge, with the idea of using such calculating machines for research.

After Porter completed his Ph.D., he was accepted for post doctoral work at

M.I.T, working under the direction of Vannevar Bush. The opportunity was a great

honor for Dr. Porter. His primary task was to design a “function unit” which was a

device used to eliminate the human error element in empirical data input. This com-

ponent was used to enhance the capability of the famous Rockefeller DA. This most

advanced differential analyzer must have been a marvelous sight, consisting of 2000

vacuum tubes and incorporating over 100 electric motors. As previously mentioned,

the Rockefeller DA was designed to be more automatic than previous models. In

addition to the electronic torque amplification and automatic control restart motors,

the machine used a type of punch card incorporated with a large telephone-exchange

for more variable programmability. The Rockefeller DA was the first analog/digitial

hybrid computer and its conception started a computing revolution leading up to the

advent modern of computers.

Dr. Porter was a member of the differential analyzer staff at M.I.T. under Bush

for two years (1936-38). During his time at M.I.T. Porter was an integral part of the

staff. Although Dr. Porter, being the most modest of men, would have said he served

a small purpose in the completion of the Rockefeller DA, Bush wrote to Professor
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Hartree addressing the great pleasure he enjoyed while working with Dr. Porter “He

proved to be a very valuable member of the group....carried on one particular aspect

of the work on his own responsibility, making the analyses and some of the engineering

designs and supervising one part of the work” [14].

Dr. Porter went on to have a very successful career working for the Military

College of Science, the Imperial College of Science and Technology, the University

of Saskatchewan, and the University of Toronto. Porter and Hartree remained good

friends throughout the rest of Hartree’s life. Although working with differential ana-

lyzers represents a small subset of Porter’s life and many accomplishments throughout

his career, Porter refers to those times as “the most exciting times of my life.” Dr.

Arthur Porter passed on in February 2010, at the age of 99. For most, Dr. Porter is

remembered as a loving father, loyal friend, and an original computer pioneer. For

me, Dr. Porter is an icon who will forever stand in my thoughts as the “lighthouse”

that marks my own journey on a new path in my life.

1.5. THE MARSHALL DA TEAM

The Marshall Differential Analyzer Team (DA Team) began with a classroom

announcement of a research opportunity. It was in an entry-level undergraduate

proof-writing course where I first met Dr. Bonita A. Lawrence. On the first day

of class, she said she had seen a static display of a machine that solves differential

equations. I was very intrigued that a mechanical machine could be used for the

calculation of solutions to differential equations, a subject that was of interest to me

at the time. I teamed up with two other students and we decided to work with Dr.

Lawrence and try to get some extra course credit. At the time we would have never

imagined what would become of the original trio. Our first task was to find a working

model of some type of differential analyzer so that we could learn about it. It didn’t

take much time to search and find Tim Robinson’s differential analyzer. Tim is a
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Meccano enthusiast and electronics engineer who decided to build his own differential

analyzer out of Meccano parts for sport. We quickly e-mailed him and asked him

about his machine, more specifically we asked a question about how an integrator

works. He referred us to a nice webpage that describes the various components of his

machine. Upon browsing through Tim’s webpage, we went to Dr. Lawrence and told

her of our success. She quickly got in touch with Tim Robinson who then told her

of Dr. Arthur Porter, an original computer pioneer who had worked on differential

analyzers in the time their inception. Dr. Porter was 94 years old at the time and

Tim told us he lived in Advance, North Carolina. Needless to say, our first trip as

the DA Team was to visit Dr. Porter at his home in North Carolina.

Meeting Dr. Porter was one of the many great pleasures I have had as a DA

Team member. At the time I didn’t know the magnitude of the scientist I was about

to meet. It is only now that I can appreciate the great honor that was given to

me when I shook the hand of Dr. Arthur Porter. At his home, Dr. Porter and

his wonderful wife Patricia greeted us with the warmest hospitality. He told us of

his endeavors as a computer pioneer and told us how the differential analyzer was

a direct precursor to the modern day digital computer. Dr. Porter also devoted an

entire day to explaining how a differential analyzer worked. It was funny that when

he first started to explain the concept of a Bush schematic to us via an example of

simple harmonic motion, he said “Oh... I have done this so many times before.”

The experience was one which has proved to have a remarkable impact on my life.

During our goodbye’s Dr. Porter signed a copy of his memoir, which he had recently

completed, and then we were on our way back with a great deal of inspiration.

The next adventure for the DA Team was a trip to California to see Tim Robin-

son and his machine in action. When we arrived, Tim greeted us and we went to

his lovely home in the hills south of San-Francisco. Down in Tim’s basement, in the

billiards room, was a differential analyzer built entirely out of Meccano parts. Tim
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also devoted several full days to try to explain the concept of a differential analyzer

to us. Later he took us on a tour through the Computer History Museum, where he

works as a docent. In the Museum was an electronic differential analyzer that was

build in the 1950s. Surprisingly, the machine still worked and Tim ran a phase plot

that produced a Cornu Spiral. Although we still by no means fully understood how

the differential analyzer worked, our confidence was renewed when we saw a workable

model. Tim and his wife Lisa are a lovely couple and both are considered to be an

integral part of the DA Team.

Our first task, when we returned to Marshall, was to build a scaled-down and

workable model differential analyzer. We named the small machine “Lizzie” after

the “Tin Lizzie” of automobiles. It took us less than a semester to build the model

and, after a quick visit from Tim Robinson, it was workable within a few days.

Building Lizzie was just the exercise we needed to learn the finer principles of how

a differential analyzer works. Although Lizzie runs much slower than a full-scale

differential analyzer, watching the machine allowed us to observe the mechanical

interrelationships as they represent mathematical principles.

The DA Team, at this point, had grown to about 15 members, and Dr. Lawrence

was planning several conferences where our undergraduate research could be pre-

sented. The first of these conferences was a trip to New Orleans, for the National

Mathematics Meetings. We presented Lizzie along with a poster display in a session

of about 170 different mathematics research topics. The problem set up to run was

dampened harmonic motion and Lizzie ran gracefully. The next journey for Lizzie

was a trip to Washington D.C. for the “Posters on the Hill” session. I had the distinct

pleasure of explaining the workings of the machine to U.S. Senator, Jay Rockefeller.

It was quite an experience to explain the machine to Senator Rockefeller because

the most famous and elaborate differential analyzer ever built was funded by the

Rockefeller Foundation. Additionally, the DA Team had the opportunity to meet
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Congressman Nick J. Rahall, and several education advisors for U.S. senators repre-

senting West Virginia, Ohio, and Kentucky. We also displayed Lizzie in the poster

session with 400 other undergraduate posters on various subjects.

The most exciting time for me was the building of “Art”, a four integrator

differential analyzer that has the capacity of solving nonlinear problems. We started

building in the fall semester of my final year as an undergraduate and were finished

with the construction by the end of the spring semester. Soon after the primary

construction was complete Tim Robinson came for another visit. Tim had designed

a new means of torque amplification based on a previous design of servo-mechanisms.

The DA Team built the necessary components to complement the design, then Tim

programmed a micro-processor to control the servo-mechanisms, that is, the torque

amplification. Although I wasn’t enrolled as a graduate student yet, the DA Team

spent long hours in the summer working out the kinks in the new machine. One

full year later, “ART” was displayed for “his” Grand Opening, a highlight for the

Mathematics Department at Marshall University.

The DA Team has had a varying number of members over the years, from as few

as 3 up to 15. I am proud to say that I have been an active member of the DA Team

since its beginning. The completion of this paper marks the end of this era in my life.

As all other members have, it is time to graduate and start the next chapter. However,

my hands have not seen their last differential analyzer. The project continues, Dr.

Lawrence and Tim Robinson continue, and the spirt of Dr. Arthur Porter lives on

with the Marshall DA Team.



2. CONSTRUCTION DETAILS OF THE MARSHALL DIFFERENTIAL ANALYZER

This section concerns the specific details of the mechanical operation of the

Marshall Differential Analyzer. It is necessary for the reader to pay close attention

to this section, because, the correlation between movable parts and mathematical

principle is often hidden within the details of design. The goal of this discourse is to

provide a visual for the machine. Many schematic drawings are provided and actual

pictures of Marshall’s machine are available here along with a specific description of

the picture in the caption. Although there are no precise blueprints provided, there is

enough builder-specific information for enthusiastic readers to build these components

themselves.

2.1. INTRODUCTION

The Marshall Differential Analyzer is equipped with all the major components

required to solve up to fourth order problems. There are four integrator units, all

of which have a corresponding servo-mechanism that operate individually, for torque

amplification. Additionally, the machine includes a 6 by 1 by 0.5 foot section of

interconnection, four adders, an Input Table and an Output Table. A description of

a Multiplier is also given and a description of its construction can be found in Section

2.12. It took the DA Team less than one semester to build our first model “Lizzie”

(Refer to Figure 2.1), and at that point we were on our way to understanding how to

operate a differential analyzer. Now it was time to build a full-scale model that had

the capacity to solve nonlinear problems.

18
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Figure 2.1. The First Differential Analyzer Built by Marshall’s DA Team.

All of the main components in a differential analyzer operate in unison if the

problem being solved requires those parts. For example, some problems like simple

harmonic motion require the use of two integrators so the other two integrators are

static for this problem. The integrators in use all work together. Among these

components, four integrators, the section of interconnection, the adders and the input

and Output Tables, the integrators are the primary components. They are used to

relate various rates of change that are described by a given differential equation. This

relation is essentially the differential equation itself and its particular parameters. The

section of interconnection, along with the adders is used to connect the integrators

together. The Input Table is used to input certain special functions into the section.

Last, the Output Table plots the desired result.

It is important to stress the fact that all the parts move at the same time as

this is a key difference between mechanical integration and numerical integration.

The motion of the machine, beyond limited mechanical properties, is a continuous

analog computer. Moreover, a digital computer operates discretely using boolean
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logic, which restricts a numerical method to computing one calculation at a time, as

opposed to an analog machine, which can compute multiple calculations at any given

time. The continuous nature of the differential analyzer has to be maintained very

carefully using mechanical intuition. Limited mechanical errors, such as backlash

and slippage, can be made negligible by careful consideration of the tolerances of the

parts. For instance, to make a minor adjustments in the vertical height for two angle-

girders, the extra space in a slot can be used. To avoid slippage, the two heights must

be precisely aligned. Suppose two pieces of angle need to be lined up at the exact

same height so that a rod may be journaled through them and spun freely. Both

pieces of angle can be adjusted about an eight of an inch in either direction on some

vertical axis, but when the measurement is taken the two pieces may not line up.

The difficulty arises because it is hard to make very small adjustments on something

that is designed to move an eighth of an inch when it needs to be adjusted perhaps a

sixty-fourth of an inch. This small tolerance of adjustment is simply not available in

the design of the parts. The solution is to loosen the adjustments on the angle girder

(nuts and bolts) so there is some play in the adjustment. Next journal (pass or guide)

the rod through the two pieces of angle and spin the rod until it spins freely. This

rod will spin freely now because the adjustments are loose. Now ever so gradually

tighten the adjustments. Which must be done essentially while the rod is spinning.

What this procedure does is precisely align the two pieces of angle so the rod can

spin with very little play. Note that if the angle girder measurements are taken a

second time then the marks will seem nearly unchanged. However, “nearly” is the

key word. One might not be able to discern the difference with the naked eye and say

a set of Vernier calipers. Nonetheless, the rod does spin freely now. By spinning the

rod and loosening the adjustments a very precise alignment is forced, one so precise

that it could not be measured feasibly. These types of situations occur often in the
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construction processes as well as in maintenance. In a lot of cases it is best to adopt

a more mechanical approach instead of a theoretical one.

2.2. PARTS DESCRIPTION

The parts for the machine were ordered from India via an independent distribu-

tor, Ashok Banerjee. Ashok machines parts that are reproductions of the the original

Meccano. Although these parts are very simple, in most cases they prove to be sturdy

and reliable. The framework of the machine is mostly constructed from angle-girders.

That is, a strip of metal bent 90 degrees that has half-inch spaced holes on one side

and half-inch spaced slots on the other. The slots are convenient because they allow

minor adjustments to be made in the alignment of the various components.

Other parts that are essential to the construction are tiny set-screws, gears, and

couplings. The couplings connect the steel rods or bus shafts together and the set-

screws allow the gears to be attached to the rods. The gears are bored through the

center so that the rod may pass freely through them. The gear also has a hole tapped

in its surface that is perpendicular to the hole for the rod. Basically, a set-screw is

fitted into this tapped hole in the gear. When the set-screw is tightened down it

makes contact with the rod and fixes the gear in place to the rod. Now when the rod

is turned so is the gear.

Although there are many more parts that are necessary for the construction,

gears, rods, sets-screws and angle-girders are the basic building blocks of Marshall’s

machine. Other parts will be mentioned as needed.

2.3. HOW AN INTEGRATOR WORKS.

The integrator units are the primary components on any differential analyzer.

Their function is to integrate any derivative term in a differential equation, thus
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reducing the order of the derivative by one. An integrator consists of a rotating

disk mounted on a movable carriage and a wheel that rests on the surface of the

disk perpendicular to its surface. Hence, as the disk is rotates so does the wheel.

Because all the wheel’s weight rests on the surface of the disk, the force of friction

between wheel and disk is the driving force of the wheel. When the carriage is moved

back and forth, the distance from the edge of the wheel to the center of the disk is

changed, thus changing the revolutions per minute of the wheel. From a mechanical

perspective, an integrator is simply a variable gear train where the corresponding

radius of the wheel and its position on the disk from the center represent the gear

ratio. Note that the force of friction from the contact between the surface of the disk

and the edge of the wheel is the only driving force from disk to wheel so that the

output of the wheel operates at a very low torque. Nonetheless, with a very light load

this force of friction is enough to maintain a continuous connection between disk and

wheel. (Heavier loads will be discussed later.) Usually (in a variable speed motor, for

example) gears are made of teeth, and the ratio of two gears is the number of teeth

on one gear divided by the number of teeth on the second gear. The gear turned by

direct drive determines the dividend of the quotient. In the case of the integrator,

the two gears (disk and wheel) don’t have teeth. So in order to find the gear ratio

of the two, one must consider the radius of each. Because the disk is mounted on a

carriage, it may be moved back and forth in a strict linear path with the wheel being

centrally located on it. This movement changes the distance from the center of the

disk to the edge of the wheel. This distance is the radius that is used for determining

the ratio of disk to wheel. The radius of the wheel is fixed so we shall denote it by

a. Also because the disk has the direct drive connection, the ratio of disk to wheel

is the radius on the disk divided by the radius of the wheel. So in order to calculate

the number of turns of the wheel with respect to the number of turns of the disk, we

must fix the radius of the disk. Denote the distance from the center of the disk to
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the edge of the of the wheel, which is the radius on the disk, by y. Now let ∆x be

any portion of a turn of the disk. The total number of turns of wheel is

(y ∗∆x)

a
,

where ∆x is a portion of a turn of the disk, y is the radius on the disk and a is the

radius of the wheel. Hence, the ratio of disk to wheel is y : a, or y
a
.

Keep in mind that the value of y can be changed while the disk is turning the

wheel. In fact, this will be the case when solving most problems. At this point, one

may note that the integrator wheel adds up consecutive differences in gear ratios in the

form of tiny “arc-lengths” as prescribed by the disk. But for further interpretation

consider the bird’s-eye view of the integrator disk, in three discrete cases with a

fixed y displacement for each case (Refer to Figure 2.2). Note: We will return to

this diagram in Section 3, where a pure mathematical justification of mechanical

integration is given.

Again, y denotes the displacement from the center of the disk to the edge of

the wheel (in the diagram, the edge of the wheel is the starting point in each discrete

“arc-length”), and now let ∆x denote any portion of a turn of the disk, which is

essentially some angle θ and si denotes the arc that is the result of turning the disk

through this angle θ. Moreover, since θ is represented by ∆x and y is represented

by the radius on the disk, then si = yi ∗ ∆xi. The wheel rests at distance yi from

the center of the disk and the the arc-length is picked up by the wheel as the disk

is turned. Note: For the three cases shown in Figure 2.2, the distances y1, y2, y3 are

changed in a discrete manner before the next ∆xi+1 occurs. That is, the wheel is set

in place at a fixed y1 then the disk is rotated through some portion of a turn ∆x1,

and s1 is created. Then the distance from the edge of the wheel to the center of the

disk is changed to y2 and again the disk is rotated through ∆x2, yielding, s2, and so
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Figure 2.2. This is the “Bird’s-Eye-View” of three discrete cases of arc-lengths picked-
up by the wheel. Each sector depicted in the circle represents a discrete
case respectively. The distance y is not labeled, however. yi is the radius
that corresponds to each si (arc-length) in each discrete case. Note: the
implicit function “f” will be explained in Section 3.

on. The total arc-length is then s1 + s2 + s3 or

n∑
i=1

si,

or as by the definition of arc length defined above, the total arc-length is,

n∑
i=1

yi ∗∆xi.
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In Section 3 we verify that as ∆x approaches zero this sum approaches the Riemann

integral.

2.4. THE CONSTRUCTION OF AN INTEGRATOR

The original Bush design, of a wheel and disk integrator, is comparable to the

integrator’s at Marshall University, because the machine was, in essence, modeled

after Bush’s machine. Tim Robinson modeled his machine after the Bush design and

the DA Team modeled Marshall’s machine from Tim Robinson’s design. As a matter

of fact, Tim Robinson’s machine on the surface looks much like Marshall’s machine.

Robinson’s machine is made from original Meccano parts (he is quite the Meccano

enthusiast), and the Marshall DA was made from reproduction parts. However, there

are many instances where the two machines are very different. For example, the

torque amplification systems are different.

The carriage, made from angle-girders and flat plates, has dimensions of ap-

proximately 5 by 6 inches. It is very important that the carriage be made as sturdy

as possible, so gussets are placed in each of the four corners. These are in place so

that the angle of the carriage at each corner is maintained at exactly 90 degrees. On

both ends of the carriage a six-inch rod is journaled through the two pieces of angle

girders on opposite ends of the carriage. Then two 1 inch pulleys are fixed to both

ends of each rod. This makes the square box look like a cart. (See Figure 2.3).

A cart or carriage is an appropriate name for this piece, because it carries the

disk in a strict linear path. This path is made of 11 inch angle girders, connected

on top of a frame, so that the girders act like rails for the carriage. Next there must

be some apparatus that drives this motion. This motion is achieved by a long screw

called a lead screw that is fixed to the carriage by a small threaded boss. The carriage

is able to be pulled or pushed via the lead screw. The threaded boss is tapped to

match the pitch of the lead screw so the boss acts like a nut. Instead of a screw and
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Figure 2.3. An Integrator cart riding along its rails made from angle girders.

a nut holding two pieces of frame together, the screw and nut work together so that,

when the screw is turned, the nut is displaced toward one end of the screw. Because

the nut or boss is fixed to the carriage, the carriage is displaced. For Marshall’s

machine the pitch of all threads is 32 threads per inch. When the lead screw is fixed

to a rod via a coupling, the carriage is allowed to ride on the rails. As the lead screw

rod is turned, the carriage moves back and forth along the rails at a rate proportional

to the angular velocity of the lead screw rod. Because the pitch of the lead-screw is

32 threads per inch, when the lead screw rod is turned 32 times, the carriage will be

displaced one inch.

All quantities of the machine are measured in terms of shaft rotations. To

keep track of this, a revolution counter is placed in the back of each integrator and

connected to the lead-screw shaft through a gear train of 3:1. And because the

counter is geared to read 10 for every shaft rotation, the counter reads 10/3 for every

one revolution of the lead-screw shaft (See Figure 2.4).
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Figure 2.4. Back View of an Integrator Unit

When mounting the disk to the movable carriage, the disk must be fixed on a

shaft, and that shaft must be held in some kind of bushing so that the disk cannot

move up and down in the bushing but can rotate freely. This task is achieved by

another simple yet necessary part, the dog collar (or collar). The name couldn’t fit

the part any better, because it acts like a collar for a dog. The collar is a thick spacer,

like a washer, but has an added feature of set screw hole tapped into its surface. When

the set screw is tightened the collar is fixed to the shaft. When a collar is attached to

a shaft, the rod can’t slip out of a bearing as it is being turned. Conversely, a gear,

or bushing may be held in place by two collars so that it does not slide on the rod.

These collars are used in 1,000 different places throughout the machine.

The disk is made out of pane glass and cut to a diameter of 11 inches. Once the

center is found, a concave red plate is glued to the surface of the disk. The plate must

be centered on the disk. Additionally, the plate has holes drilled at four points on

a circle with a radius of one inch from the center of the plate. These are convenient

because a screwed rod socket can be attached to the plate. It is important to note
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Figure 2.5. Integrator Disk made from pane glass. The rod-socket attachment and
connecting plate are shown.

that the plate is conical with the concave side glued facing the disk so that there is

some space between the disk and the plate. This extra space is necessary in order for

the screwed rod socket to be attached the the plate (See Figure 2.5).

The purpose of the screwed rod socket is to provide a fixture for the disk, in

the form of a male end piece, by inserting tiny rods in the sockets. Now a female

connection must be built in the carriage so the two pieces can connect. In the very

center of the carriage is a bushed wheel, and inside the bushing of this wheel is a

rod approximately four inches long. Making sure the rod is permanently fixed, via a

set-screw in the bushed wheel, a gear is journaled on the rod so that it can spin freely.

This is a 2.5 inch helical gear, and, conveniently, there are holes drilled around four

points on the circle of half inch radius from the center of the gear. These holes are

used as the connecting piece for the rods in the rod sockets of the disk fixture. Tiny

half-inch rods inserted into the two rod sockets are fixed to the disk-plate. The disk

is lined up so that the center hole on the disk plate fits over the top of the extending

rod protruding from the carriage. Note that the center hole in the plate is a guide
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for the disk axial rod that extends upward, orthogonal to the plane of the carriage.

Additionally, the tiny rods extending from the rod sockets line up with the holes in

the disk gear. When the rods are lined up, the rotation of the disk gear will turn

these rods, which rotate coaxial with the disk itself. So the disk drive has a little

more torque, coming from a gear that spins freely on a rod, as opposed to a rod that

turns a fixed gear. Also the other two half-inch rods inside the adjacent rod sockets

provide a rigid driving force so that the helical gear may turn the disk. Also collars

are positioned to stop the disk gear from moving up its axial rod.

In general, helical gears mesh orthogonally, which is convenient because we want

the disk drive to extend in the same direction as the lead screw drive. A small helical

gear is set in place via a three-holed angle girder and then fixed to a rod that extends

outside the perimeter of the carriage so that a portion of a turn of that rod results in

some portion of a turn of the disk. The gear ratio between the two helical gears is 2:5,

that is, for every five turns of the small gear the big gear turns twice. The rotation

of the disk is geared down, so now the output of the wheel has changed. This pair

of gears is called the reduction gear of the disk, and this ratio is of great importance

when quantifying the integrator unit in Section 4 (See Figure 2.6, and 2.7).

The wheel must be mounted on top of the disk in such a way that, when the disk

is displaced on the rails, the edge of the wheel must remain collinear with the center

of the disk. This alignment is achieved by centering the wheel’s edge on the center of

the disk (See Figure 2.8.). The fact that the carriage rails are in a straight line keeps

the wheel’s edge in-line with the center of the disk. Once the wheel has been centered

on the disk, a perpendicular bridge is built across the top of the disk, constructed

approximately one inch above the surface of the disk. The bridge is made out of a 11

inch piece of angle girder and is placed slots down. The wheel is a conical disk with a

radius of 15/16 of an inch and is fixed to a rod with a collar against the beveled side

and a bushed wheel fixed in place on the concave side (See Figure 2.8). The wheel is
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Figure 2.6. Inner components of an Integrator. The large helical gear attached to the
orthogonal axis normal to the plane of the carriage is shown. Also the
small helical gear the goes to the spline-shaft. This gear is driven by the
differential shaft.

therefore trapped in place on the rod. The wheel rod is journaled through the middle

slot on the angle-bridge constructed above the disk. The wheel is held in place so

that the only motion picked up by the wheel is the rotation of the disk. The slots

are used to restrict the horizontal movement but allow a small vertical adjustment so

that the wheel may freely rest on the surface of the disk. Hence, the only force that

holds the wheel to the disk is the force of gravity against the mass of the wheel and

connecting rod. Additionally, there is a rotator bearing on the connecting wheel rod

that provides extra weight for the force of friction between the disk and the wheel’s

edge. It is important not to make the force of friction between the disk and wheel’s

edge too large because, in addition to being turned, the wheel must also slide on top

of the disk’s surface so that the gear ratio from disk to wheel can be changed. The

rotator bearing also serves another purpose that will be discussed in the next section.
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Figure 2.7. Showing the Integrator Disk being connected to the carriage by lining
up the rods in the rod sockets with the holes in the helical gear in the
carriage.

When the wheel is mounted properly, one should be able to turn the helical

disk-gear, turning the disk, thus turning the wheel. The ratio of turns of the disk to

turns of the wheel is proportional to the distance from the center of the disk to the

edge of the wheel and wheel’s radius. For example, if the distance from the edge of

the wheel to the center of the disk is 15/16 of an inch, then one turn of the disk gives

one turn of the wheel, or a 1:1 ratio. Because the radius of the wheel is 15/16 of an

inch, any multiple of this radius set as the distance from the edge of the wheel to the

center of the disk yields integer multiple gear ratios; 1:2 for a distance set twice the

radius, etc.

There are two input shafts and one output shaft for each integrator unit; the two

inputs are the disk drive and the carriage drive (lead screw), and the wheel-shaft is

the output. The disk may be turned by one shaft, and the gear ratios may be changed

by the carriage drive or lead-screw shaft. As a result, when the two input shafts are

being turned at the same time, the disk drive moves with the carriage as the disk drive
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Figure 2.8. Behind View of an Integrator Wheel. On the back of red conical wheel is
the bushed wheel used to trap the wheel in place on the rod, along with
a collar on the reverse side.

is a direct-drive connection. This mechanical contradiction poses a problem when the

disk drive is rigidly connected to a continuous motor drive. Thus, the shaft that

connects the disk drive needs to move back and forth while maintaining its rotation.

The freedom to rotate the disk and displace displace the carriage, through its driving

mechanism, at the same time can be achieved several different ways. One way to

achieve a “duel-drive” is by means of a key-way rod. A key-way rod is a rod that has

a grove cut into the length of the rod at a depth which is approximately the radius of

the cylindrical rod. A set-screw is specially designed so that when a gear is tightened

down and fixed to the rod; the setscrew fits specifically into the grove of the key-way

rod. Hence, the setscrew is the “key” and the grove is the “way.” When the disk

input shaft is a key-way rod, and when the two input shafts are turned at the same

time, the key-way rod will pass through the connecting gear, while maintaining its

rotation as the carriage is moved by the lead-screw displacement. Marshall’s machine,
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Figure 2.9. Side View of an Integrator, the weight of the disk has extra support using
four rubber wheels attached to the frame of an integrator carriage via
pivot bolts.

or “Art” as we like to call him, uses another technique, the spline-shaft modeled after

Tim Robinson’s design.

2.5. SPLINE-SHAFT

Dr. Arthur Porter designed the original spline-shaft [9]. A spline-shaft assembly

consists of at least four rods of the same length (See in Figure 2.10 the four rods at the

bottom right). On Art, two of the rods are held in place by two 1 1/2 inch gears, but

they are not journaled through the center of the bushing in the gear. They are held by

the adjacent holes drilled into the outer circumference of the gear between the edges

of the teeth and the center of the gear-bushing. Moreover, the rods are prevented

from sliding through these holes by two collars pressed against both surfaces of the

gear and attached to each of the four ends on both rods (eight joints total). When the

two holding gears are rotated the two rods spin coaxial with the center of the gears.

Additionally, in a similar fashion, the two coaxial rods carry a bushed wheel that is
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Figure 2.10. Half View of spline-shaft. The connection to the disk drive gear train
and the spur gears connecting the assembly are depicted on the left.

visible in the center of Figure 2.11. A third rod is journaled through the center of one

of the gears but not set in place by a setscrew; the gear bushing acts like a bearing

for this center rod. The center rod passes through the center of the assembly and is

fixed into the center of the bushed wheel, via a setscrew, so that the two coaxial rods

act as guides for the bushed wheel and center rod. Moreover, when the center-rod

is turned, so is the bushed wheel; thus, the two coaxial rods are rotated about that

center. Now the center rod is able to be turned and be displaced along the guide-rods

at the same time. Figure 2.10, and Figure 2.11 show the spline-shaft assembly on

“Art.”

The center rod is directly attached to the small helical gear in the disk drive,

and the other end of the assembly is held by a flat plate attached to the frame via a

small rod fixed to the gear on that same end. The idea is that the center rod attached

to the bush wheel and the disk drive is able to move back and forth with the carriage

because the bushed wheel can slide along the guide-rods. At the same time those

guide rods rotate coaxially with the center rod essentially rotating the disk. The only
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issue left is how to drive the coaxial rods. Remembering that those coaxial rods are

held in place by gears, a fourth rod is journaled through the frame parallel to the

center rod. This fourth rod (the lowest rod seen in Figure 2.10) is equipped with two

1 1/2 inch gears that will mesh with the gears fixed to the two coaxial rods so that

the fourth rod is the input rod for the disk. It is important to note that the input rod

turns two gears at the same time, so the drive for the spline-shaft assembly is a direct

drive at two places simultaneously. This design is necessary so that the spline-shaft

assembly will not twist causing extreme backlash. Backlash occurs when there is a

significant time-lag between the rotation of two rods that are connected through a

gear train. (This is sometimes called “slop” or “play” in the gears.) As the input

rod is turned, so are the gears fixed to it. Those gears are meshed with the gears on

the spline-shaft assembly, and, therefore, the assembly is rotated coaxially with the

center rod. The two coaxial rods rotate the bushed wheel, which is fixed to the center

rod, which is, in turn, fixed to the helical gears that rotate the disk. All the while,

the carriage may be moved back and forth with the bushed wheel moving back and

forth along the two coaxial rods acting as guides for the bushed wheel. Hence, the

rotation of the disk drive is maintained while the carriage is displaced. The gears on

the spline-shaft have a 1:1 ratio so the reduction gear from input shaft to the actual

rotations of disk itself remains a 5:2 gear ratio. And again, if the input shaft is turned

five times the disk rotates twice.

The integrator unit is designed so that two inputs yield one output. If the

lead-screw input remains stationary (i.e., the lead-screw does not turn) then, for

any number of turns of the disk input shaft, the wheel output shaft will turn some

constant multiple of that particular number of turns depending on the distance the

wheel’s edge is from the center of the disk. However, if both the lead-screw input

shaft and disk input shaft turn at the same time (which is most generally the case

when solving DE’s) the number of rotations of the wheel output shaft, with respect to
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Figure 2.11. Spline-shaft Assembly; the length between the two connecting frames
are consistent with the diameter of the disk.

the number of rotations of the disk, is not so easily quantified. It is in this case, when

the lead-screw input is non-stationary, that the spline-shaft assembly is necessary.

This allows the disk to be turned while the carriage moves back and forth.

2.6. TORQUE AMPLIFICATION

When both disk and lead-screw input shafts rotate simultaneously, the mathe-

matics and the mechanics become much more complicated to quantify and maintain,

respectively. From a mechanical point of view, when the lead-screw shaft does not

turn, the wheel remains at some fixed distance from the center of the disk. But if

the lead-screw turns simultaneously with the disk, then the wheel must slide on top

of the surface of the disk. So, if the lead-screw is to move the carriage while the disk

turns, then the force of friction between the wheel and the disk must be relatively

low. This lack of significant torque poses an obvious problem if the force of friction

between the disk and wheel is the only driving force for the rotations of the wheel

and subsequent gear trains. Also note that, if the force of friction was increased (for
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example, using a rubber wheel, or adding weight to the wheel) the lead-screw would

be more difficult to turn. The force of friction must not be too large because that

force must be overcome for the wheel to slide. So the driving force (force of friction or

torque of the wheel) must be relatively low for the integrator to operate properly. To

solve nonlinear differential equations using the mechanical integration technique, the

wheel-shaft (or integral shaft) must often displace a heavy load (the displacement of

another integrator, for instance). So the problem with the machine has always been

the amplification of torque.

Bush and Niemann were the first to provide an answer for this problem. To-

gether they designed a torque amplifier based on the concept of a capstan. The

mechanical torque amplifier essentially consisted of friction bands wrapped around

oppositely rotating drums and fixed to two armatures rotating coaxial with these

drums. The idea was that, one armature is rotated, one of the friction bands is tight-

ened against the drum as the other is loosened; thus, the slack in that band is then

instantaneously corrected by the rotation of the armatures, causing the latter arma-

ture to rotate with an increased torque. The latter armature, fixed to a shaft, would

essentially have the same rotation as the former armature fixed to the integrand shaft.

As long as the rotation of the armature did not exceed the rotation of the drums, the

correction process was instantaneous. Hence, the output of the wheel would be able

to turn a considerably heavier load without causing the wheel to slip.

Dr. Bush had much success with his mechanical torque amplifier, but others

who used them in the operation of a differential analyzer were not so satisfied with

their stability and reliability. Scientists sought a new method to amplify torque. Dr.

Author Porter, one such pioneer, was one of the first scientists to design electronic

servo-mechanisms to address the torque amplification problem. A servo-mechanism

is a device used in control systems to adjust a particular mechanism by means of an
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error-sensing feedback. A differential analyzer type servo needs an error sensor, po-

tentiometer, control-loop, and servomotor. The error sensor detects the displacement

of the wheel, the potentiometer measures the error, the control-loop takes the error

signal and re-sends it to an H-bridge that regulates voltage, and the servomotor turns

by an amount consistent to that of the wheel.

The Marshall differential analyzer has such a device to amplify the output torque

of the wheel. It was designed by the project’s technical advisor, Mr. Tim Robinson,

and is at least conceptually similar to Porter’s first designs. The primary difference

in Tim Robinson’s design is a micro-processor (called a Motor-Vater) that is used

to interpret the error signal as a digital number and then relay that signal to the

servomotor. The error of the displacement of the wheel is proportional to the deriva-

tive of the error, the integral of the error, and the error itself. The Motor-Vater is

convenient because when one tries to get the servomotor to mimic the rotation of

the wheel in “real-time,” these proportionality constants are parameters of a dynam-

ical system of three equations and three unknowns. Using the Motor-Vater as the

control-loop provides a programable environment so that these parameters may be

easily adjusted with the use of a computer instead of soldering new wiring connections

on a circuit board. Although the Motor-Vater is a micro-processor and the torque

amplification is semi-digitally controlled, the solving of differential equations by the

differential analyzer is strictly an analog and continuous process. It is worth noting

that the purpose of the servo-system is to track the motion of wheel in “real-time.”

The Motor-Vater sends the signal to the servo motor, but the Motor-Vater gets all

of its information from the rotation of the wheel, and it is the wheel’s rotation that

governs the servo-motor.

The set-up for the error detection component consists of an L.E.D. light emitter

and sensor, which is wired to a potentiometer. Placed in between the emitter and the

sensor are two circular plates of polarized material. The polarization of these plates
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Figure 2.12. L.E.D. Error Detection assembly; The circular polarized plates and the
light sensor and emitter are shown.

is such that, when the two of them are superimposed, some of the light is able to pass

through the two plates. Furthermore, the amount of light that passes through them

depends on the angular displacement of one plate with respect to the other plate. For

example, suppose Plate 1 rests at some equilibrium position that is a fixed point in

the polar plane of the plate. There is a constant amount of polarization at that point.

Now let Plate 2 turn through some portion of a turn in the clockwise direction. As

Plate 2 is rotated, the amount of light passing through the two Plates will increase.

So the polarization of the two plates increases when the angle increases. When one

plate is rotated 180 degrees with respect to the other plate no light passes through,

and with another 180 degree rotation of that same plate all light passes through.

The equilibrium position of the two plates occurs when the two plates are at the

same degree of polarization. So when one plate is rotated clockwise more light passes

through, and when that plate is rotated counter-clockwise less light passes through.

Figure 2.12 is the side view of the error-detection system; both plates are glued

to two separate pulleys that are socket-coupled with their own 60 tooth gear wheel.
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These two assemblies have a single rod journaled through their center with the rod

fixed so that it may not be rotated; it is held in place by a conjoining rod-socket

attached to a flat plate mounted on the frame of the integrator. The two plate

assemblies are free to rotate independent of one another. For additional support

another rod coming from the wheel bridge is connected to the assembly rod via a

three hole connector. (This support structure can be seen in Figure 2.8 to right of

the wheel.) This structure helps hold the assembly parallel to the wheel rod so the

the 60 tooth gear on it may be properly meshed with the gears on the wheel rod.

Journaled on the wheel rod is a 15 tooth pinion gear placed so that it will mesh

with the 60 tooth gear on the Plate 1 assembly. Another rod journaled through the

assembly plate carries another 15 tooth pinion gear that meshes with the second 60

tooth gear on the Plate 2 assembly. These two rod are lined up end to end but rotate

independently. It looks as though they are one, but the wheel rod simply rests in the

lip of the second pinion, which acts as bearing for the wheel rod. Behind the Plate 2

assembly apparatus is another flat plate, providing support for the rod carrying the

second pinion. Also attached to this rod is a 57 tooth gear wheel meshed to another

57 tooth gear wheel attached to a rod extending beyond the spline-shaft area to a

133 tooth gear wheel mounted on another flat plate structure. The large black 133

tooth gear wheel is driven directly by the servomotor (7:1 gear ratio) meshed with a

19 tooth pinion attached to the motor sprocket. The servomotor is also mounted on

this same flat plate structure (See Figure 2.13).

The brass pulley seen behind the wheel in Figure 2.9 acts as a rotator-bearing

for the wheel rotation. There is a break between the rotator bearing and the wheel

rod. That is, they are essentially two separate rods. The rotator bearing rod is

connected to the 133 tooth black gear wheel through a set of 1:1 gear trains. When

the servomotor rotates the 133 tooth gear it also turns the rotator-bearing. The
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Figure 2.13. Back View of the Servo Motor.

wheel rod rests in the lip of the rotator-bearing, and as the wheel rotates the rotator-

bearing rotates with the wheel, however. The rotator-bearing is being driven by the

servomotor. Because the rotation of the wheel and the servomotor are designed to be

the same, the rotation of wheel is essentially frictionless.

To recap, when the wheel turns, the Plate 1 assembly turns with a 4:1 ratio

to that of the wheel. When Plate 1 turns there is a change in light (positive or

negative). This change in light is measured by the potentiometer; the potentiometer

sends that signal to the micro-processor; the micro-processor turns that signal into a

digital number; that number is relayed to an H-bridge that regulates voltage; and that

voltage is sent to the servomotor. When the servomotor is turned, the big 133 tooth

gear is turned and its connecting rod is turned as well. The connecting rod turns

a 57 tooth gear, meshed to another 57 tooth gear, which turns the pinion meshed

with a 60 tooth gear attached to Plate 2 assembly. Hence, the change in light is now

corrected and the polarized plates are again at their equilibrium position, now at a

different reference degree of polarization. Also note that the rotator-bearing turns at
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the same rate as the big 133 tooth gear driven by the servomotor, and again the wheel

is essentially frictionless. The reason this system works properly is that the process

happens very fast; the reaction time of the servomotor is nearly instantaneous, due to

the fact that we are measuring the error as a change in light. As far as reaction time

is concerned, if there was a time lag from wheel to output shaft, all other integrators

would presumably have that same time lag. Since the machine operates relative to

itself, those differences could be quantified and subtracted out of a particular solution.

When a considerable time lag occurs, such as when a reversal of the wheel

takes place, a frontlash unit can be installed in most integrators after the torque

amplification. The frontlash unit adds a shaft rotation or two to the output before the

reversal takes place, compensating for the time lag. The Marshall DA team has plans

to build a frontlash unit because a considerable lag does occur when an integrator

wheel passes through the center and reverses direction. All things considered, the

error that a single integrator produces, from input to servomotor output, is small

enough to be considered negligible; and, if need be, the scale of a unit variable may

be expanded so as to get more precise results. This concept is discussed in further

detail in Section 4.

2.7. CLUTCHES

The motion of the 133 tooth gear now tracks the motion of the wheel and

hence is the output for the integrand shaft. One very convenient component on the

integrand shaft is the spring-loaded clutch assembly which is geared to it. The flat

plate structure to which the tracking gear is mounted has a 1:1 gear train meshed

to it. This transfers the motion of the output shaft to the same vertical plane as

the differential and integrand shafts. The gear ratio is 50:57 from input shaft to the

actual integrand shaft that is coupled to the lead-screw (See Figure 2.14).
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The addition of a clutch allows easy disconnection of the integrand shaft from

the rest of the machine. This is convenient because the initial displacement of the

integrator wheel from the center of the disk represents an initial condition for a

particular differential equation. An initial displacement is also the lower limit for the

definite integral calculated by the integrator. (If the clutch was not there the 50:57

gear train would have to be disconnected via the loosening of a setscrew each time

an initial condition is changed.)

In front of the flat plate structure where the tracking gear is mounted is a

rectangular box structure where the clutch assembly is mounted. The box acts as a

traveling medium for all three primary integrator shafts, integrand, differential, and

integral shafts. The box is constructed using four equal sized flat plates connected

together by four double angle strips, and the base of the box is rigidly fixed to the

base of the integrator frame. The actual clutch assembly, a Tim Robinson design,

consists of one 50 and one 57 tooth gear, meshed on a diagonal (1 hole apart) with

the center of the smaller 50 tooth gear in the same vertical plane as the other two

primary integrator shafts.

Journaled through the box and holding the clutch gears in place, are two in-

dependently rotating rods. The lower rod carrying the 57 tooth gear also carries a

bushed wheel, socket-coupling, small spring, and several collars. The socket-coupling

is connected to the 57 tooth gear so that the socket-coupling and gear rotate to-

gether; neither is attached to the rod. The bushed wheel is in front of the socket

coupling assembly and is attached to the rod with a setscrew. Hence, when the rod

is turned so is the bushed wheel; but the gear socket-coupling assembly is allowed to

spin freely on the rod. Extending from the holes drilled in the outer circumference of

the 57 tooth gear are two rod adapters. Because the boss head on the rod adapter is

threaded, it is easily fixed to the outer circumference of gear via a bolt. In addition

to spinning freely on the rod, the gear socket-armature may be slid along it. Hence,
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the rod adapters are able to slide in and out of the collinear holes in the bushed

wheel. A collar and spring are in place behind the gear socket-coupling armature

such that the spring applies constant sliding force to the gear assembly, in the for-

ward direction, by pressing against the collar that is fixed to the rod. So when the

gear socket-coupling assembly is slid backwards, the rod adapters slide back through

the holes in the bushed wheel but are not free from them. The holes in the bushed

wheel act as a guide for the 57 tooth gear, keeping the gear and the bushed wheel in

the same angular alignment, as well as the assembly rod. But when the assembly is

slid backwards, the 50 and 57 tooth gears are now out of mesh and disconnect the

rod that that turns the lead-screw (assembly rod) from the rod carrying the 50 tooth

gear.

So now the lead-screw may be turned and an initial condition adjusted without

affecting any other motion of the machine. When the gear assembly is released, the

rod adapters snap forward through the holes in the bushed wheel so that the 50 tooth

gear, in the fixed position on the adjacent rod diagonal to the assembly rod, is back

in perfect mesh with with the 57 tooth gear journaled on the assembly rod. Hence,

when the assembly is released the motion of the lead-screw is transferred through the

gears so as its motion may be governed via the gears that feed it. Another rod is

journaled through the box one hole directly above the assembly rod. Its purpose is

to carry a lever that will move the gear socket-coupling assembly back and hold it in

place so that the gears remain out of mesh. The lever is made out of a three-holed

rod coupling with the center hole on the lever rod and two other short rods extending

downward from the other two holes in the rod coupling, orthogonal to the socket-

coupling assembly. These two rods snag the lip of the socket-coupling assembly, so

that, when the lever-rod slides back and forth through the holes in the box, the gear

socket-coupling assembly slides with the lever on the assembly rod and pulls the gears

in and out of mesh. Collars are fixed to the lever rod to provide a stop, and a double
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Figure 2.14. Top view of clutch assembly.

arm crank is in place next to the lever rod so that it is able to hold the lever rod in

place by catching the lip of the stop collar (See Figure 2.14).

The clutch assembly, very important and necessary, was an addition that the

Team added to the machine. Having a clutch makes resetting an integrator a quick

and easy procedure. The use of a clutch also saves wear and tear on various parts

that would result in replacement.

2.8. SECTION OF INTERCONNECTION

A section of interconnection is analogous to a grid-pathway on a circuit-board.

The purpose is to transmit the motion of any output to any corresponding input

among the various components in the machine. For example, when solving differential

equations, it is often necessary to use the output of an integrator to displace the

lead-screw input of a second integrator. Within the section of interconnection which

is used to transfer motion, there are 16 helical gearboxes (See Figure 2.16). The

helical gearboxes allow the motion to be transmitted in an orthogonal direction from
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whence it came so that it may be connected to another gearbox, essentially driving

some designated input shaft on another integrator. The majority of the section is

constructed from 36 holed angle-girders connected together by 5 by 5 holed flat plates

at the corners. Two 36-holed angle-girders and two square flat plates create a two

dimensional rectangular structure. Two of these are connected together by two 25

holed angle-girders, one top joint and one bottom joint (See Figure 2.16). This three-

dimensional rectangular structure (sub-section) is 36-by-25-by-5 holes and serves as

the frame for the channel bearings that guide the rods. To create a proper-sized

avenue of connection, we used four of these boxed structures. Any two pieces of angle

may be connected together long-ways by staggering a short third piece of angle in

the break between the two pieces. This construction is done to two sub-sections to

create one-half of the full section of interconnection. The two halves are connected

by another means.

It is convenient to have the availability to shut down half of the section when

it is not necessary for operation. This disconnection is easily achieved by simply not

allowing any rod motions to pass through the guide holes, called channel bearings, at

the break in a half-section. (In this case these bearings are referred to as cross-ways

channel bearings.) The channel bearings for the rods are simply the holes that already

exist in the pieces of angle, although it helps to cover the angle with flat strips, lining

up the corresponding holes, creating a more sturdy and rigid bearing. The two input

shafts and the output shaft of an integrator or any other component are in the same

horizontal plane with a set of channel bearing holes. (These channel bearings are

orthogonal to the cross-ways channel bearings.) When a 15-inch rod is journaled

through the channel bearings in the section, the section rods and the corresponding

component input/output shafts line up perfectly. The two are connected together

with two contrate gears so that, when a component shaft turns, so does the section

rod (or vice-versa) (See Figure 2.21).
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Figure 2.15. This is a view of the channel bearings that carry the cross-shafts in the
section, simply made from angle girders.

The other set of channel bearings (cross-ways channel bearings) are connected

on top of the first set of channel bearings. These cross-ways channel bearings are

double-stacked in that they are mounted on the existing channel bearings that have

already been mentioned. That is, two 25-holed angle-girders are connected together,

one on top of the other by a long bolt and a three holed connector, acting as a spacer,

then fastened down to the section with a nut (See Figure 2.15).

The crossways channel bearings are also supported with corresponding flat

strips. The reason for the double stack is so that a gear train may be meshed on a

diagonal between holes in the two girders in the stacks. The standard mesh space for

a typical pair of gears is one inch. The diagonal could be thought of as a hypotenuse

of a right triangle where the distance, measured from center of hole, between holes on

adjacent horizontal and vertical planes are the legs. Since the spacing of holes on an

angle-girder is 1/2 inch and we want the diagonal to be one inch, we know we need

to make the height between stacks measured from center of hole to center of hole,
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approximately 0.866 inches, by the Pythagorean Theorem. It turns out that using a

three-holed coupling as a spacer provides a proper mesh.

Four double stack channel bearings are mounted in the middle third portion of

each half section, and four single stacks are mounted on the ends. These are arranged

in such a way so that one half section is divided into three 25-holed portions, two 7-

holed portions and two 1-holed portions. So starting from either end there is mounted

a channel bearing structure, then 25 holes down another channel bearing, then 7 holes

down another channel bearing, skip 25 holes, and again; this pattern repeats until

the other end of the section is reached where the last channel bearing is placed.

Each pair of channel bearings has an appropriate rod length journaled through them

that is fixed into place by collars. Note that throughout, all rods journaled through

crossways channel bearings will be called cross-shafts, and the other section rods will

be called bus shafts. So every hole in the lower deck of the crossways channel bearing

will have a cross-shaft journaled through it. However each cross-shaft will not span

the entire length of the section. Instead, each one will only span through a pair of

channel bearings. The cross-shafts need to be long enough to carry a washer, gear,

and female dog clutch on both ends protruding from the channel bearing. So for the

7-holed pairs of available space, the cross-shaft length is 6.5 inches and for the three

holed pairs it is 3.5 inches. There are 23 holes available in each cross-ways channel

bearings, and one cross-shaft is journaled in every other hole in the lower deck (Note

that a cross-ways channel bearing spans the width of the section so that, when any

cross-shaft is journaled through them, the cross-shaft will be orthogonal to any bus-

shaft). All together there are 32 cross-shafts in one half section, including nine 7-inch

rods contained in two 7-holed areas, and six 11-inch rods contain in two 25-holed

areas. Remember that the bus-shafts run orthogonal to the cross-shafts. There are

three bus-shafts placed in the 25-holed area between two pairs of cross-ways channel

bearings corresponding to the inputs and outputs of various components. The setup
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is similar in the other bus shafts in the subsequent 25-holed areas in the rest of the

section. There is space between the height of a bus-shaft and the height of a cross-

shaft. This space allows two helical gears to be meshed from bus-shaft to cross-shaft

so that a bus-shaft may turn a corresponding cross-shaft and vice-versa. Due to the

flexibility of the thin rods, a gear-box is in place so that the helical gears do not slip

out of mesh.

The gearbox design is very simple yet extremely reliable. Tim Robinson’s design

consists of twelve 3-holed flat strips, four threaded bosses, four screwed rod socket

bosses, four 0.5 inch threaded rods, and eight bolts, washers and nuts. One 1.5

inch threaded rod is screwed through the holes tapped in the side of two threaded

bosses. The bosses are spaced about one inch apart on the threaded rod. Two nuts

are in place in between the two bosses on the threaded rod as well. These are to

be tightened against the boss in order to hold it in place. This process is repeated

three more times, making sure that threaded bosses are in pairs together on the same

threaded rod and screwed rod sockets are in pairs together as well. The threaded

bosses must be screwed on all four screwed rod sockets in order to create a box.

Note: This procedure is a very tricky because each threaded boss must be screwed on

a screwed rod socket first and then the threaded rod must pass through the adjacent

holes. Once a box is formed, the 3-holed flat-strips are joined, three at a time, to

make a channel bearing for a cross-shaft and a bus shaft. They are attached to the

holes in the bosses via a washer and bolt (See Figure 2.17).

The gearbox cross-shaft is 11 inches and the gear box bus-shaft is 15 inches. Bus-

shafts are journaled through the local section channel bearings and each gearbox cross-

shaft is journaled through a gearbox. All other cross-shafts are journaled through

cross-ways channel bearings. As there are three bus shafts in each middle third

section, there is a total of nine gear boxes in a one half section. The idea is that

any gear box may slide along the bus-shaft and align with any desired cross-shaft.
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Figure 2.16. View of one subsection with Gear Boxes in place as they are connected
various components.

The gears may be attached to the rod with a set screw. Journaled on the bus-shaft

and cross-shaft of each gear box are helical gears, but they are within the confining

perimeter of the channel bearings. Spaced properly with collars and washers, the

gears mesh perfectly in the center of the gear box. Corresponding cross-shafts, from

section to gear box, are connected with a female and male dog clutch. With this setup,

any corresponding bus-shaft may turn any desired cross-shaft by simply moving the

gear box as needed; thus creating an avenue of interconnection for the inputs/outputs

of various components of the machine.

2.9. ADDER

The adder component resides in the section of interconnection where the 7-holed

area of space is provided. The space is defined by two double stacked cross-ways

section bearings. The adders are placed on the rods that are journaled through the

lower deck of the bearings (See Figure 2.18). An intricate design of differential gears,

the adder is used to combine two shaft rotations as a sum. (This includes variable
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Figure 2.17. Up Close View of the Helical Gear Box; the rod journaled below is a
bus-shaft that goes to the integrator, and the rod journaled above is a
cross-shaft that continues along the section.

shafts.) The adder is also used to create different types of gear ratios by adding

shaft rotations of two rods that are already geared up or down by particular gear

trains. For example, suppose a parameter of 5/6 is needed. Among the gear trains

available, 1/2, 1/3, and 1/4, an operator could create a gear train of 5/6 by adding

a 1/2 gear train to a 1/3 gear train. The adder has two inputs and one output, and,

from its design, when a quantity is imputed, that quantity is negated. (Two gears

naturally provide a negation because the gears in a meshed-pair will turn in opposite

directions.) So if a positive quantity is to be added it must be negated by a gear train

before it is sent into an input.

Among the parts required to build an adder are three 25 tooth bevel gears, two

socket couplings, two 25-tooth pinion gears, two 50-tooth gear wheels, one threaded

coupling, one pivot bolt, and various setscrews, washers, collars, and bolts. First one

25-tooth bevel gear is socket-coupled to one 25-tooth pinion gear, this assembly is

repeated so that there are two pieces. The third bevel gear is attached to the threaded
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Figure 2.18. A view of a differential gear system used as an adder.

coupling with a pivot bolt so that the gear is free to spin on the smooth axle of the

pivot bolt. These three bevel gears are journaled on a rod, with the pivot bolt bevel

in the center to create a differential gear, properly spaced with washers so that the

rotation is smooth.

A differential gear has an interesting property; the rotation of the pivot gear is

determined by the rotations of two socket gears at the same time. The differential in

the adder is analogous to the differential gear that drives the wheels through the axle

on a car or, in the case of the adder, the wheels are the drive for the axle. Because

the two bevel gears are socket-coupled to the pinion gear, the rotation of the socket-

coupling assembly does not affect the rotation of the assembly rod. When a socket

gear is turned so is the pivot gear, and, when both socket gears are turned at the

same time, the rotation of the pivot gear is affected by both gears. Note that when

the two socket gears are turned at the same time and in the same angular direction,

the pivot gear locks and will rotate coaxially with the socket gears along with the
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assembly rod. We will use this property to add the motion of two quantities measured

in terms of shaft rotations.

As a consequence of the design, when the pivot bolt rotates the threaded cou-

pling rotates coaxial with the axle rod. If a set screw is added to the threaded

coupling, when the coupling revolves about the axle rod, the axle rod itself turns as

a result. So the rotation of the coupling and the axle rod have the same magnitude.

Remember that the socket gears are not attached to the rod so the rotation of the

those gears and the rotation of the axle rod are not in conflict. There is a 2:1 ratio

between the socket gears and the rotation of the axle rod. That is, if a socket gear

is turned twice, the axial rod is turned once. Note that if both socket gears are

turned once at the same time, then the axle rod turns once. So one divided by two

plus one divided by two is one; this is good. Now we can cancel out the division by

two by simply multiplying each input by two before it reaches the pivot gear. This

reduction is achieved by meshing the 25-tooth pinion gear on the other side of the

socket-coupling with a 50 tooth gear wheel. (See Figure 2.19.) Two 50-tooth gear

wheels are journaled and attached to rods placed adjacent to the assembly rod (also,

now interpreted as the axial rod) on each side. Both serve as inputs for the adder.

Now because we have accounted for the division by two of the differential gear, by

simply multiplying each input by two, one rotation of both adder inputs at the same

time, and in the same direction results in two rotations of the axle rod. A sum is

produced in terms of shaft rotations. Note that a sum is the result of the two input

shafts for any portion of a turn at any moment in time. Also if the two input shafts

are rotated at the same time, at the same speed, but in opposite directions, the two

inputs cancel each other out and the axial rod does not turn. This cancelation is

due to the fact that the pivot gear is a differential gear. Another way of interpreting

this is that the motion of one socket gear is passed through the differential (pivot

gear) and received by the second socket gear. In this case, the differential gear is a
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Figure 2.19. Two Adders as they are available inside the section.

medium that preserves magnitude but reverses direction for the motion of the two

socket gears.

2.10. INPUT TABLE

The Input Table is designed to convert a graph, plotted in a Cartesian coordinate

system, into an analogous quantity in terms of shaft rotations so that it may be sent
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into the interconnection of the machine and represent some non-homogeneity of a

particular differential equation. The concept is similar to an Etch-a-Sketch, where

rotational quantities correspond to horizontal and vertical motions. The plotting

surface of the table is an 11 by 17 inch piece of 3/4 inch plywood. The plywood is

attached to a primordial frame so that the plotting surface rests on the 45 degree

angle formed by two surfaces perpendicular to each other. The surface is literally

held in place by the hypotenuses of the two right triangles that define the ends of

the primordial frame. The frames base is built out of angle-girders. At its base two

7-holed angle-girders are connected with two 36-holed angle-girders with one hole

extending from each end. This makes a rectangular base. The 25-holed angle-girder

is attached up-right to the base perpendicular to it. This construction is repeated on

both ends creating two surfaces orthogonal to each other. A final 15-holed angle-girder

connects the indices of the two surfaces to complete the primordial frame. Several

36-holed girders are attached to the back of the plywood, connected to the girders

that connect the indices of the frame. This frame also acts as a carriage so there are

three axle rods journaled through the base of the frame. On the axle rods are pulleys,

creating a moveable carriage. The rails act like the rails for the integrator carriage,

but are made out of 36-holed pieces of angle. Also on this frame is a threaded boss

that will drive the table carriage, similar to that of the integrator. (See Figure 2.20.)

Because the table needs to be displaced 17 inches in both directions, some care

was taken in the placement of the rods in the frame carriage. The rods need to be

journaled in the end holes in the carriage so that the wheels don’t have to roll over

a break in rail road because two 36-holed girders are used to cover the entire 34

inches required for the displacement of the carriage. Additionally, the third axle rod

is journaled through the center hole of the base of the frame carriage, so it needs just

one girder to displace the full range of the carriage. Note that there are only three

wheels riding on rails that support the frame carriage, two in the front and one in the
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Figure 2.20. A Side View of the Input Table Cart.

back. This configuration is designed to account for any discrepancy in the alignment

of the two parallel rails, because several pieces of angle had to be pieced together to

make the rail road and the angle ends are beveled.

Once a movable surface in the direction of abscissa (horizontal axis) is estab-

lished, an ordinate (vertical axis) direction must be established. Another movable

carriage is mounted above the surface of the table, also on a 45 degree tilt, to serve

as the ordinate. Located behind the frame carriage, mounted on the rail road frame,

is a rectangular tower, also made from 15-holed girders and supported by flat strips

along its height for rigidity. The tower extends over the height of the frame carriage;

at the peak of the tower is a rod across its width, journaled through two flat truions,

mounted on each end of the top of the tower. On this rod is one screwed eye bolt

that pivots on the rod. At the bottom, in front of the frame carriage, is a box made

from 5-holed angle girders and large bushed wheels. One rod is journaled through

the bushings in the large bushed wheels and another is journaled through the girders
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Figure 2.21. The Input Table frame is comprised of a tower located behind a hand
crank (Black Gear) drive mechanism. The tower carries the ordinate
rails on which the Input Table carriage rides. The helical gear train
drives the ordinate carriage.

that connect the bushed wheels. The two rods journaled through the box are orthog-

onal to each other so that one rod is parallel to the cross-section and the other is

parallel to the surface of the table. Two helical gears are on these rods and in mesh

with one another as well. Additionally, on the rod parallel to the table is a threaded

coupling. Attached to the coupling is a long threaded rod that is in line with the

center threaded eye bolt at the top of the tower (See Figure 2.21).

The structure of the carriage is simple; it’s made from two three-holed couplings

connected with a three holed flat strip. In the center hole of the flat strip is a

threaded boss. This simple carriage is journaled on two long rods, held in place by a

bushed wheel and collars, one on each end of the two rods similar to the spline-shaft

assembly. The carriage assembly serves a much different purpose than the spline-

shaft. The bushed-wheels act as bearings for the long threaded rod that lines up with

the eyebolt at the top of the tower, and that same threaded rod is screwed through
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Figure 2.22. This is the Ordinate Carriage Assembly for the Input Table.

the threaded boss in the carriage. Once everything is lined up, the boss head in the

upper bushed wheel of the assembly is fitted overtop of the eyebolt on the tower rod.

The eyebolt is fixed to the tower rod, via a set screw, so that it no longer pivots (See

Figure 2.22).

A reference pointer, or pen attachment, is also mounted to the vertical carriage

so that the Input Table may also be used as an Output Table. Two rods are added

from the top of the tower to the rail frame to provide extra support for the tower.

There is a revolution counter mounted to both horizontal and vertical shafts with

the same 10/3 ratio reduction, and a clutch box separates the horizontal and vertical

shafts from the section. This design is similar to the integrator clutch boxes. The rod

that essentially displaces the vertical shaft also leads to a train of gears that leads to

a hand crank. This configuration allows the operator to move manually the carriage

up and down the vertical axis of the table. The hand-crank shaft goes through several

1:1 gear trains, through the clutch box and into the section where it may be connected

to a bus shaft on the machine to which the counter is connected (See Figure. 2.23).
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Figure 2.23. Full view of the Input Table as a whole unit; the black gear in front
is the hand crank used to control the ordinate carriage and essentially
transfer motion to the appropriate cross-shaft in the section.

In order to create a function on the table, it is best to let the differential analyzer

do the drawing. An operator simply sets up an equation designed to provide a solution

to a desired function. Once a solution is provided by the machine, an operator resets

the carriage to its initial reference point, the origin, and an operator turns the black

crank located in the front of the table in Figure 2.23. The independent variable for

the function moves the table in the horizontal direction and as the table is displaced

an operator turns the crank in order to keep the pointer on the pre-drawn curve. As

long as the pointer stays on the curve, the number of turns of the crank represents

the behavior of the function plotted on the table in terms of shaft rotations. The
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Input Table is most convenient when a piece-wise continuous function is needed, but

the concept of inputting functions will be discussed further in a later section.

2.11. OUTPUT TABLE

Conceptually, an Output Table is similar to an Input Table. The only differences

are both the horizontal and vertical motions come from the machine and the reference

pointer is replaced with a pen. The purpose is to plot a solution or phase plot of a

differential equation. The Output Table is designed to have a horizontal surface as

opposed to the upright angled Input Table, making the construction of an Output

Table much simpler. The table’s plotting surface is an 11 by 17 inch piece of 3/4

inch plywood. A rectangular cart or carriage is built from 36 and 25 holed girders

and the plywood is screwed to the frame. Three axle rods are in place in each end of

the carriage, and one is also journaled through its center. Three pulleys are fixed to

the axle rods, one on the middle axle on one side and one on each end axial rod on

the other side, allowing the plane of the carriage to be governed by only three points.

This arrangement is designed to avoid potential minor discrepancies in the alignment

of the rail road frame as it will be pieced together like the rail road frame for the

Input Table described in the last section (See Figure 2.24).

The rail road frame is an elaborate joining of 36 and 25 holed angle girders, the

dimensions of which are 72 by 36 inches. Several 25 holed girders are in place along

the length of the frame in order to make the structure more sturdy along the width

and to reinforce the 90 degree angles of the frame. The primary rails on which the

carriage rides are two 36-holed girders, placed end to end. This design allows the side

of the cart with two pulleys to ride along and span a full 17 inch distance without

rolling over the break in the girders. For the side of the cart with one pulley, one

36-holed girder is centered on the break 21 holes from the adjacent rail (See Figure

2.25). The square perimeter of the rails are centered on the frame, so that the plotting
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Figure 2.24. Side View of an Output Table Cart; its surface lies flat as opposed to
the Input Table Cart.

table will also be centered on the frame. These rails are in the direction of abscissa,

and there is in place a bridge that spans the center width of the frame that will carry

another set of rails, 25 holes across, high above the former set. These rails are called

the ordinate rails, carrying another carriage with a pen mount in the direction of the

ordinate with respect to the plotting surface. For clarification, the direction along the

width of the table is the ordinate (dependent variable/vertical axis) and the direction

along the length of the table is the abscissa (independent variable/horizontal axis)

(See Figure. 2.26).

The structure on top of the bridge above the ordinate rails was originally de-

signed for stability for the bridge frame. Although, its dimensions are 11 by 17 inches,

it serves well as a standard sized paper tray. A train held in place by two adjacent

rods journaled through the frame of the tower appears on the left side of the bridge

tower. These gears, starting from the bottom up, are two 1 1/2 inch spur gears and

two bevel gears. The upper spur gear rod also carries one of the bevel gears as well as

a three holed coupling journaled so that the length of the coupling is perpendicular
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Figure 2.25. Under View of the Output Table Cart. The axial attachments for the
wheels and the lead-screw driving rod are depicted.

to the rod at the couplings center and acts as a bearing for the second bevel gear.

In the protruding space available in the three way coupling there is fitted a small

rod, carrying the second bevel gear and a threaded coupling. The two bevel gears

mesh orthogonally and the motion of the gear trains are sent in the same direction

as the ordinate. The three-way coupling on the spur gear rod actually pivots on the

rod that is screwed in the threaded coupling. Essentially connected to the three way

coupling is a long threaded rod held in place by two lock nuts. This threaded rod

will drive the ordinate carriage that carries the pen and rests in the center between

the ordinate rails. (See Figure. 2.26.)

The ordinate carriage is a combination of three-way couplings, two-way cou-

plings, and small rods pieced together with setscrews. A three way coupling is very

versatile; there are two setscrew holes tapped into each end of the coupling and one

available in the center. Additionally, there is a cylindrical rod hole drilled in the

center of its length and three more orthogonal rod holes bored through the side of

the coupling along its length. Two way couplings are similar. These various holes
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Figure 2.26. The frame of the Output Table. The tower and rail road are shown,
where the above rails are for the ordinate carriage. The rails below are
for the abscissa carriage.

allow for many options for connecting rods to make the ordinate carriage (See Figure

2.27).

The wheels for the ordinate carriage are actually above the center of mass. That

is, the carriage hangs on the ordinate rails. In the center of mass of the carriage is a

three-way coupling placed so that the center screwed hole lines up with the threaded

rod centered on the ordinate rails. Hence, when the corresponding gear trains are

turned the threaded rod turns and the ordinate carriage is displaced along the rails.

The pen attachment is a simple 5/32 inch copper tube that fits in one of the couplings

extended from the end of the carriage. The cartridge for a standard ink pen will fit

snugly inside the tubing. Additionally, the pen attachment is spring loaded so as to

keep the pen in contact with the table at all times. If need be, for resetting purposes,

the pen may be pushed up through the coupling and held in place by small screwed-

rod. The flat strips mounted on top of the carriage are to add weight, so that the

force of the spring does not lift the carriage from its rails (See Figure 2.27).
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Figure 2.27. Side View of the Ordinate Carriage of the Output Table. The various
couplings used in its construction and the spring loaded pen are shown.
Also, green flat strips are screwed together and used to stabilize the
carriage on the rails.

The Output Table also has a clutch box, separating it from the section of inter-

connection, similar to the one on the Input Table and integrators. On the rod inside

the clutch box is a threaded coupling along with a threaded rod inserted serving to

drive the table carriage in the direction of abscissa. Working together, the table and

ordinate carriages will provide a plot in the two dimensional plane of any two available

variable motions in the section (See Figure 2.28).

2.12. MULTIPLIER

A multiplier is used to produce the product of two variable quantities. One

variable shaft may always be multiplied by a constant by adding a gear train to

it. However, multiplying two variables together is much different as they both are

always changing. Although Marshall’s machine is not equipped with a multiplier, one

is being designed by the Marshall DA Team. The addition of a multiplier will expand
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Figure 2.28. This complete view of an Output Table shows the gear train located on
the left hand side leading to the the clutch box which is governed by
some dependent variable from the section.

the programmability of the machine as a whole. Although the multiplier is subject to

human error, much like the Input Table, it will still be a very much needed addition.

A product of two variables is always available with the use of two integrators;

however, two integrators will not always be available for some higher order problems.

This idea will be discussed further in a later section, but a brief mention of using

a multiplier is given. The design of a multiplier unit can be thought of as a hybrid

integrator/Input Table. Referring to a diagram from a paper written by Bush from

the Journal of the Franklin Institute (See Figure 2.29), observe the bar in the center

of the diagram. This bar is mounted to a vertical axle and rotates like an integrator

disk. There is an accurately scribed line in the center of the bar, a reference line,

serving a purpose very similar to the curve on an Input Table. This bar will revolve

around the axis mentioned. However, the bar rotates only 90 degrees due to the

drive mechanism. On the left side of the diagram there is a long threaded rod with

a movable carriage. The movable carriage has a pivoting bearing mounted on it.
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Figure 2.29. Schematic diagram of a multiplier. The Drawing is a replica of the
diagram in the original Bush Paper.

Journaled in this pivot bearing is a sliding rod rigidly connected to the axle that

carries the bar. So, as the threaded rod is turned, the carriage is displaced and thus

the sliding rod moves up or down, essentially moving the angle on the bar. On the

right side of the diagram, there are two parallel rods. The left leads to a helical gear

train and then to a threaded rod that moves a pointer carriage in the direction of the

ordinate. The right rod leads to a threaded rod moving the same pointer carriage
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Figure 2.30. Abstraction of the action of a multiplier interpreted as similar triangles.

in the direction of abscissa. The pointer carriage is like an Input Table, but the

difference in design is that the plotting surface, or table, does not move.

Figure 2.30 shows how the apparatus produces the product of shaft rotations.

The common baseline for both triangles is the initial position of the rotating bar

represented by the diametrical line scribed through its center. The two corresponding

hypotenuses will represent the final angular position of the bar with respect to the

initial position. In order for the bar to be rotated through some angle θ, the threaded

rod on the left side of the Bush diagram needs to rotate through some portion of

a turn. The rotations of this shaft, call it z, are proportional to the tangent of the

angle θ, where the constant of proportionality depends on the fixed distance from

the center of the bar to its end denoted by k in Figure 2.30. The position of the

reference pointer in the direction of abscissa is x, and the position in the direction

of the ordinate is y. Note that both x and y are displaced by corresponding shaft

rotations. When the z-shaft is turned, a right triangle is formed. The hypotenuse
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that crosses through both triangles is the diametric line scribed through the center

of the bar. The two corresponding legs are y, for its height and x for its base. Figure

2.30 depicts two cases: the left shows the case when the x-displacement is positive

given a positive z-displacement and the right is the case where the x-displacement is

negative given a positive z-displacement. Note that a negative z-displacement would

flip the diagram in both cases.

The length of the hypotenuse can be easily found, given a fixed z, but it is not

necessary to find it because the tangent of the angle θ corresponds to the ratio of

the two legs. Also, the tangent of θ is the relationship that connects the rotations

of z with that of x and y. Suppose in addition to the z-shaft turning some portion

of a turn, the x-shaft also turns at the same time. The turning of the x-shaft will

result in a displacement of the reference pointer along the abscissa axis. If we drop

a perpendicular line from the endpoint of the x-line, to the diametric line scribed on

the bar, we have two similar triangles (Refer to the right hand side of Figure 2.30).

Because the angle θ is the same, the relationship, z/k = y/x, implies y = (z ∗ x)/k,

where k is the fixed distance from the center of the bar to the edge of the bar when

it rests in the trivial position.

With proper gear trains, resulting in k = 1, the product of two variable shafts

as the rotation of a third shaft will be obtained. An operator stationed at the y-shaft

can turn an appropriate hand-crank and keep the reference pointer on the diametric

line scribed in the bar at all times by changing y. For example, if the z-shaft turns

three times and the x-shaft turns twice, then an operator would need to turn the

y-shaft hand-crank six times in order to keep the pointer on the line. Note that the

idea is the operator will keep the pointer on the line at all times, so using a multiplier

is subject to errors depending on the operator. Therefore, if it is available, the use

of two integrators is always more accurate than that of the multiplier. The degree of
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accuracy depends on the nature of the problem and using a multiplier may be just

enough to observe the qualitative properties desired.

2.13. CONCLUSION

Building a differential analyzer is somewhat of a delicate process. The un-

derlying principle of the machine is that all instances of precision and/or accuracy

are simply relative to the machine itself. If two rods are spinning well then they

are aligned straight, and for continuity gear trains are inserted in various places for

smooth operation of the machine. Moreover, because all quantities are measured

in terms of shaft rotations, a revolution counter is placed on every integrand shaft,

for each integrator, and inputs and outputs of plotting surfaces. Additionally, limit

switches are in place, hard wired to the main motor drive, to avoid any component

continuously moving beyond its range. Dr. Lawrence and the DA Team, with the

guidance of Tim Robinson, constructed the Marshall DA in about nine months. It

has taken some time to get used to the operation of the machine; when running

the machine, making sure things are mechanically operating as normal is imperative.

The parts are actually very reliable with a rare occurrence of a part breaking entirely.

Rods will occasionally get bent and small adjustments of collars and gears are peri-

odically necessary. The most important aspect of maintaining the machine is keeping

the moving parts oiled and running the machine often. In fact, in the rare occurrence

of a break, it usually comes after the machine has been static for an extended period

of time. Experience for efficient operation is necessary, but the parts are designed so

that even persons without any mechanical background can follow a systematic plan,

and become Meccano inventors themselves.
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Figure 2.31. Above Frontal View of “Art” Marshall’s Differential Analyzer: Shown
in the center, between the two inner integrators, is the Motor-Vater.

Figure 2.32. Side View of Marshall’s Differential Analyzer, “Art.”



3. MATHEMATICAL JUSTIFICATION OF MECHANICAL INTEGRATION

This section concerns the theoretical aspects of integration in a context consis-

tent with the mechanical integrator. A pure mathematical justification of why an

arbitrary function on the integrator satisfies the condition for Riemann integrabil-

ity is given and proved in the fullest regard. The approach is an application of the

construction of the Riemann integral as given in Kirkwood [12]. Also verification of

the fact that the rotation of an integrator wheel produces the integral of the wheel’s

variance from the center of the disk with respect to the rotation of the disk is given in

the classical sense. This type of application has, at least to this author’s knowledge,

not been given for the specific case of a mechanical integrator of this type.

3.1. NOTATION

In order to talk about the main mathematical points, we need to correlate the

movable parts of the machine to the mathematical symbols that are standard for

mathematicians. So first think about the rotating glass disk mounted on a movable

carriage with a steel wheel placed perpendicular on top of the surface of the disk such

that the disk turns the wheel by the force of friction between the glass disk and the

steel wheel. The disk carriage is moved back and forth by the rotation of the lead

screw. Note that the carriage is allowed to be displaced while the disk is turning the

wheel, ultimately changing the turning ratio from disk to wheel and governing the

revolutions per minute of the wheel’s rotation (See Figure 3.1).

If the wheel is replaced by a pen and the disk turns as the carriage moves

back and forth concurrently, the pen draws a somewhat deceiving polar curve on the

71
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Figure 3.1. Schematic of an integrator

surface of the disk (See Figure 3.2). For example, suppose the rotation of the disk

and the motion of the carriage have the same magnitude. That is, both drives are

turned at the same constant rate. What will be drawn on the surface of the disk is a

spiral (See Figure 3.3). However, the spiral does not represent a polar curve; the plot

will be interpreted as a linear function. As another example, if the lead-screw shaft

does not turn at all, the resulting curve on top of the disk is a circle (See Figure 3.2).

However, this is still a function because the dependent variable is always one specific

value at all times. In fact, the function is interpreted as a constant function for some

fixed y value. Comparing some function plotted on the surface of the disk to that

same function plotted in a Cartesian coordinate system, the independent variable

is the rotation of the disk, and the dependent variable is the distance a point on

the curve is from the center of the disk, within a constant. Thus, if the dependent

variable and the independent variable have the same magnitude, then the function is

y = x. Here, y is the motion of the carriage due the rotation of the lead-screw, and
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x is the rotation of the disk, both of which are measured in terms of shaft rotations.

An analogous interpretation for the function described by these two motions was

elegantly given by Dr. Bonitia A. Lawrence. Imagine the independent variable axis

of a Cartesian coordinate system being manipulated into a long coil spring, spiraling

around a common center, and let the measure of some point on that axis to the

common center be the dependent variable. The geometric interpretation would be

a spring with different radii throughout its length, one way of visualizing the input

motions of an integrator as a function. The reason for using a spring example is so

that there is no confusion with the graph on the surface of the disk being a function

or not. If the original interpretation is considered, the disk would turn once and at

the same time the carriage would be displaced one inch from center. Stop time or

the rotation of the disk and look at the distance of a corresponding point on the

graph to the center of the disk, call it y1. If the disk turns one more full rotation,

and in the meantime the carriage is displaced one inch forward and subsequently one

inch back, then after the disk is stopped again for another observation, the distance

of the point from the center (y2) is the same distance as the previous case (y1). So

it would seem that y is not a function. However, note that the disk is at a new x

displacement; hence, the y values are still unique. Therefore, for every x-turns of the

disk, there is one unique y-distance from the center, and the definition of a function is

still satisfied. The y distance from the center may only be in one place, at some given

portion of a turn x, such that y = f(x) (Note: When interpreting the motion of the

integrator in a mathematical context, y = f(x). However, there aren’t any mechanical

interconnections that would provide a dependence of shaft rotations from the motion

of the disk to the motion of the lead-screw.) When interpreting this mapping as it is

in the spring example, one cannot conceive of two y positions corresponding to one x

because it is impossible to have two radii at the same given point on the spring.
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Figure 3.2. This is an example of three different constant functions that would be
drawn by the Integrator on the surface of the disk.

Now that we see the relationship between the motion of the disk and the motion

of the carriage via the lead-screw represents a function, we may talk about them in

terms of x and y, where x is the rotation of the shaft that turns the disk and y is

the displacement of the carriage due to the rotation of the shaft that turns the lead-

screw, with the usual notation y = f(x). At this point we are assuming that there

are no gear trains inserted between either the motion of the carriage via the lead-

screw (integrand shaft) and the motion of the disk via the differential shaft. Also,

it is important to note that, when the wheel is mounted properly, only rotational

motion may be picked up by it. That is, the wheel by design will only turn through

an arc-length prescribed by the motion of the disk and determined by the wheel’s

distance from center of disk. At this point, we are just defining some function whose
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Figure 3.3. This graph was actually drawn by “Art” when the wheel was literally
replaced by a pen. The integrand and differential shaft drives were turned
at the same rate. The result is this spiral and it is to be interpreted as
the function f(x)=x.

y motions are governed with respect to x motions. The implicit curve drawn on top

is a luxury that exists for theoretical purposes, but that is not seen when using the

machine to solve differential equations.

3.2. PRELIMINARY RESULTS

We will first need to show some known facts about the Supremum and Infimum

of bounded sets of real numbers. Throughout the various definitions there are remarks

that will relate the physical parts of the machine to the analogous mathematical def-

initions.
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Definition 3.1. A set is a well-defined collection of objects.

Remark 3.2. All sets, for our purposes, may be interpreted as shaft rotations and the

accumulation thereof.

Formally, the function that exists on top of the surface of the disk is

f : X 7→ Y , where X and Y are subsets of real numbers and may be interpreted

as numerical shaft rotations.

Definition 3.3. [12] Let A be a set of real numbers. If there is a real number b

for which x ≤ b for every x ∈ A, then b is said to be an upper bound for A. A set

that has an upper bound is said to be bounded above. If there is a number c such that

c ≤ x for every x ∈ A, then c is said to be a lower bound for A. A set that has a

lower bound is said to be bounded below. A set that is bounded above and below is

said to be bounded. A set that is not bounded is said to be unbounded ( [12]).

Remark 3.4. The idea of bounded for the rotations of shafts on the integrator is

simply that the shaft begins turning then it stops. The upper or lower bound of any

set will depend on the rate at which the shaft is turned. Suppose a shaft is turned at

a monotonic rate until it is stopped; then the upper and lower bounds will be the end

points of the set. However, if the shaft is turned at a non-monotonic, or non-constant

rate, then the position where the shaft stops is not necessarily the largest or smallest

value. The magnitude of accumulation of turns depends of the designated value of

where it starts (usually 0). Because the shaft may turn in either direction, positive

or negative, one would need to keep track of the largest value by numerical shaft

rotation counters, if that value is desired. Unbounded sets are only available on the

machine if we assume that its corresponding shaft never stops turning. Note there

are still infinitely many elements between two points.

Definition 3.5. [12] Let A be a set of real numbers that is bounded above. The

number b is called the supremum of the set A, denoted by supA, if
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(i) b is an upper bound of A, and

(ii) If c is a upper bound of A, then b ≤ c.

Definition 3.6. [12] Let A be a set of real numbers that is bounded below. The

number b is called the infimum of the set A, denoted by inf A if

(i) b is a lower bound of A, and

(ii) If c is also a lower bound of A, then c ≤ b.

We will need the following results about sets of real numbers to establish are

main result.

Theorem 3.7. [12] Let A and B be non-empty bounded subsets of real numbers,

with A ⊆ B, then supA ≤ supB, and inf A ≥ inf B

Proof. As A and B are both bounded, then by definition, A and B are bounded above

and below.

Let the supA = αS, supB = βS and inf A = αI and inf B = βI .

By the definition of Supremum, for all x ∈ A, x ≤ αs ≤ α, where α is an upper

bound for the set A, and x ≤ βS ≤ β, for all x ∈ A, where β is an upper bound

for the set B. Since, A ⊆ B, then βS is an upper bound for A. Let α = βS. Then

x ≤ αS ≤ α = βS. And so, αS ≤ βS, Hence, supA ≤ supB.

Similarly, by the definition of Infimum, for all x ∈ A, α0 ≤ αI ≤ x, where α0

is a lower bound for A.

Furthermore, since A ⊆ B, β0 ≤ βI ≤ x, for all x ∈ A, where β0 is a lower

bound for the set B. Hence, βI is some lower bound for the set A and since αI is the

inf A we may let βI = αI . Thus, we have that βI = α0 ≤ αI ≤ x, which implies

αI ≥ βI ,

Therefore, inf A ≥ inf B.



78

The next result will be extremely useful when we prove the function on top of

the glass is Riemann Integrable.

Theorem 3.8. [12] (i) Suppose A and B are nonempty sets of real numbers such that

if x ∈ A and y ∈ B, then x ≤ y. Then supA and inf B are finite, and supA ≤ inf B.

(ii) Suppose that A and B are as in part (i). Then supA = inf B, if and only

if, for every ε > 0, there exist an x(ε) ∈ A and y(ε) ∈ B such that y(ε)− x(ε) < ε.

Proof. Let x ∈ A and y ∈ B, with x ≤ y. So, for every x ∈ A, x is a lower bound for

the set B, so then x ≤ inf B. Which implies that the inf B is an upper bound for the

set A. Thus, supA ≤ inf B.

This takes care of part(i) and for part (ii) we have to show “iff”. Let ε > 0 be

given, and let x(ε) ∈ A and y(ε) ∈ B, such that y(ε) − x(ε) < ε. We have from part

(i) that inf B ≥ supA and by the definition of infimum and supremum, we know that

y(ε) ≥ inf B, and x(ε) ≤ supA, for all x ≤ y. Thus, inf B − supA ≤ y(ε)− x(ε) < ε

Going the other direction, suppose inf B = supA. Given ε > 0, there exist

x(ε) ∈ A and y(ε) ∈ B so that

supA ≥ x(ε) ≥ supA− ε
2

and inf B ≤ y(ε) ≤ inf B + ε
2
, since A and B are sets

of real numbers.

Denote α = inf B = supA, and we have,

α ≥ x(ε) ≥ α− ε
2

and α ≤ y(ε) ≤ α + ε
2

Which implies, 0 ≤ y(ε) − x(ε) ≤ (α + ε
2
) − (α − ε

2
) = ε Since the implication

has been shown in both directions we have shown, given the assumptions,

inf B = supA if and only if for any ε > 0 , there exist x(ε) ∈ A and y(ε) ∈ B,

such that y(ε)− x(ε) < ε.
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Figure 3.4. Generalized depiction of a function on top of the disk. The function can
be discretely approximated into small arc-lengths prescribed by the disk.

In the next sub-section we define a Riemann sum as it pertains to a function

represented on top of the integrator disk. We first want to create a generalized

representation of a function on top of the integrator disk, and then use the Riemann

sum to add up the differences prescribed by the function.

3.3. DEFINING A RIEMANN SUM

Referring to the Figure 3.4, recall when we described what would happen when

the wheel of an integrator was replaced by a pen. The graphical representation of the

function will, in practice, be spiralled in nature. However, for our purposes we want

a general depiction of a function that would include all cases of what a function could

be on a small closed interval. We choose a small interval so there isn’t any confusion
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about the modular nature of the rotation of the disk. That is, if we were to let the

disk turn though several full rotations, it could be difficult to discern whether or not

the curve is a function, because the curve essentially draws over itself. In any case,

the accumulation of turns is taken into account for each full turn of the disk, which

provides a new x value for every portion of a turn therein. So to avoid this ambiguity,

we consider the closed interval, [α, β], which lies within one full turn of the disk, or

rather some portion of a turn.

Definition 3.9. A partition denoted by P={x0, x1, x2, ........., xn} of the interval [α, β]

is a finite set of numbers x0, x1, x2, ....., xn such that

α = x0 < x1 < x2 < .... < xn = β.

Remark 3.10. It is very important to note that here, although some portion of a

turn of the disk may be taken as an angle measurement, the relationship between

polar coordinates and rectangular coordinates is not related by the rules learned in

trigonometry. That is x = rcos(θ), and y = rsin(θ) do not provide a means to

calculate the an angle in this partition given some numerical shaft rotation value of

the differential shaft. Although, there may be a reduction gear train inserted between

the driving mechanism of the differential shaft and the disk itself, let’s suppose that

there is no reduction gear for the disk. Then given one turn of the differential shaft x,

the disk turns once as well. So for 1
4

of a turn of the differential shaft, the disk turns

through an angle π
2
. If we further suppose that the carriage is at some arbitrary yet

fixed position y, some ordered pair (1, y) in rectangular coordinates, corresponds to

a polar coordinate with and angle measure less than π
2
. Regardless of what position

the carriage takes at this point in the partition, the values of ordered pairs do not

have a trigonometric relationship. The reason for using x in the partition is because

even though portions of turns are angles, the surface of the disk need not be confused
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Figure 3.5. On the left is a partition of the disk, on the right is a refinement of that
partition.

with a polar coordinate system. It is simply a way to keep track of the accumulations

of shaft rotations that have been defined to be sets of real numbers.

Definition 3.11. Let P and Q be partitions of [α, β]. Q is said to be a refinement

of P if P ⊂ Q.

Partitions are used to divide an interval into smaller closed sub-intervals. Re-

finements are partitions, but more specifically, refinements are partitions of the sub-

intervals in a partition. The union of sub-intervals in a refinement is equal to the

sub-interval of the partition that has been refined.

Example 3.12. Suppose the interval [α, β] = [0, π
2
], and let P = {0, π

4
, π
2
} be a partition

of that interval. The partition Q = {0, π
6
, π
4
, π
3
, π
2
} is also a refinement of P , as P ⊂ Q.
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Note that the interval [0, π
2
] of the partition P is equivalent to the union of subintervals

[0, π
6
] ∪ [π

6
, π
4
] ∪ [π

4
, π
3
] ∪ [π

3
, π
2
] in the refinement Q (Refer to Figure 3.5).

The reader should keep in mind that the function on top of the surface of the

disk is two dimensional and bounded on [α, β] where the coordinate system is of its

own convention, entirely. So if we want to define a Riemann sum, we must do so

within the surface of the disk. We have developed partitions of the set of x values,

that is the set of turns for the disk. We now denote a set that will be representative

of the y = f(x) values for the function as well.

Let P = {x0, x1, x2, ...., xn} be a partition of [α, β] with sub-intervals [xi−1, xi],

i = 1, 2, .., n. Denote y∗={f(x)|x ∈ [xi−1, xi]}, as the set of all y = f(x) values with

respect to the partition P .

We will need the greatest and least elements of these sets, so let

mif = Inf{f(x)|x ∈ [xi−1, xi]}

and

Mif = Sup{f(x)|x ∈ [xi−1, xi]}.

Note that mif and Mif are unique. Furthermore, let ∆xi = xi−1 − xi, i = 1, 2, ..., n

be the length of some arbitrary sub-interval in the partition. Note that ∆xi is the

particular portion of a turn of the disk that corresponds to some sub-interval of the

partition and is always positive.

Definition 3.13. Let P = {x0, x1, x2, ..., xn} be a partition of [α, β]. For each

subinterval[xi−1, xi], choose x∗ ∈ [xi−1, xi]. Then

n∑
i=1

f(x∗)∆xi
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Figure 3.6. Defining a Riemann Sum over the function f . ([s1+s2+s3], is an example
of a Riemann Sum.)

is called a Riemann sum of f on [α, β] with respect to the partition P and is denoted

by S(f ;P ).

At this point it is instructive to return to the three discrete cases previously

mentioned in the last section on the integrator mechanics (Refer to Figure 3.6, which

represents three discrete cases of the motion of the wheel when given some fixed y

for some portion of a turn of the disk x.). The function is plotted on the surface of

the disk, and the three cases are superimposed on top of the generalized depiction of

the function f . The key point of fact is, the rotations of the wheel, as represented

in the discrete cases, is by mechanical design a Riemann sum with respect to the

partition. The partition P={x0, x1, x2} corresponds to the three cases of the discrete

rotations of the disk x∗1, x
∗
2, x
∗
3. To see that rotations of the wheel do in fact represent
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a Riemann sum we need to define what the rotations of the wheel are mechanically.

As discussed in the last section, the wheel is mounted in such a way that its rotation

can only be affected by the motion prescribed by the disk. Hence, as the disk x turns

the wheel at a fixed radius y, the wheel turns through some arc-length. To find this

arc-length s we have the formula s = rθ, where r is the radius or distance from the

center of the disk to the edge of the arc, and θ is the angle prescribing the arc. The

correlation between arc-length and a Riemann sum as defined above for our f is that

x governs θ and y governs r. So to calculate the total shaft rotation for the wheel we

have

s1 + s2 + s3 =
3∑
i=1

ri∆θi =
3∑
i=1

f(x∗i )∆xi = S(f ;P ).

Note that our first f(x∗i ), f(x∗1) in this simple case corresponds to the element x∗1 in

the sub-interval [x0, x1]. What we are trying to prove in theory is that our function

f is Riemann integrable, and the wheel will be the mechanism that calculates it for

us.

Definition 3.14. Given the assumptions that f is bounded on [α, β], mif and Mif

are finite, and for i = 1, 2, ...n. Let P={x0, x1, x2, ..., xn} be a partition of [α, β],

mif = Inf{f(x)|x ∈ [xi−1, xi]} and Mif = Sup{f(x)|x ∈ [xi−1, xi]}, for each sub-

interval [xi−1, xn], and let ∆xi = xi − xi−1, for all i = 1, 2, ....n. Then

Su(f ;P ) =
n∑
i=1

Mif∆xi

and

Sl(f ;P ) =
n∑
i=1

mif∆xi

are called the upper Riemann sum and lower Riemann sum, respectively, of f on

[α, β] with respect to the partition P .
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Remark 3.15. Because, by definition, mif ≤ f(x∗) ≤ Mif for some sub-interval of

the partition P , we have that Sl(f ;P ) ≤ S(f ;P ) ≤ Su(f ;P ) for some sub-interval of

the partition P .

In order to define a Riemann integral on the partition of the interval [α, β], we

will need the following result.

Theorem 3.16. (i) Suppose P and Q are partitions of [α, β] and Q is a refinement

of P . Then,

Sl(f ;P ) ≤ Sl(f ;Q)

and

Su(f ;P ) ≥ Su(f ;Q).

(ii) If P and Q are partitions of [α, β], then

Sl(f ;P ) ≤ Su(f ;Q).

(iii) Let Sl(f)=:sup{Sl(f ;P )|P is a partition of [α, β]} and

Su(f)=:inf{Su(f ;P )|P is a partition of [α, β]}. Then Sl(f) and Su(f) exist and

Sl(f) ≤ Su(f).

Note that Sl(f) is the supremum of the set of lower Riemann sums, and Su(f) is the

infimum of the set of upper Riemann sums.

Proof. Let P = {x0, x1, x2, ....xn}, be a partition of [α, β] and P1 be a refinement of P

such that P1 is created by adding one element to P . So P1 = {x0, x1, ...xj−1, x′, xj, ....xn−1, xn},
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where x′ is the element that has been added. By definition

Sl(f ;P ) =
n∑
i=1

mif∆xi =

j−1∑
i=1

mif∆xi +mjf∆xj +
n∑

i=j+1

mif∆xi

and

Sl(f ;P1) =

j−1∑
i=1

mif∆xi +m′jf(xj−1 − x′) +m′′jf(x′ − xj) +
n∑

i=j+1

mif∆xi

where

m′jf = inf{f(x)|x ∈ [xj−1, x
′]}

and

m′′jf = inf{f(x)|x ∈ [x′, xj]}.

Note by design, Sl(f ;P ) and Sl(f ;P1) differ by the number of points that represent

the sub-interval [xj−1, xj], wherein the refinement P1 contains one extra point x′.

Hence, to make comparisons between Sl(f ;P ) and Sl(f ;P1) we need only to consider

mjf and m′jf + m′′jf . As [xj−1, xj] covers both of the sub-intervals [xj−1, x
′] and

[x′, xj], we know that the corresponding y values for those intervals have a similar

relationship in that, the set

{f(x)|x ∈ [xj−1, x
′]} ⊂ {f(x)|x ∈ [xj−1, xj]}

and

{f(x)|x ∈ [x′, xj]} ⊂ {f(x)|x ∈ [xj−1, xj]}.

So by Theorem 3.7 we know that

m′jf ≥ mjf
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and

m′′jf ≥ mjf.

So we have,

mjf∆xj = mjf [xj−1 − xj]

= mjf [xj−1 − x′ + x′ − xj]

= mjf [xj−1 − x′] +mjf [x′ − xj]

≤ m′jf [xj−1 − x′] +m′′jf [x′ − xj−1]

=⇒ Sl(f ;P ) ≤ Sl(f ;P1).

So continuing in this fashion, we can define more refinements of P such that

P ⊂ P1 ⊂ P2 ⊂, ....,⊂ Pk, where each Pi is determined by adding exactly one element

to the partition Pi−1 for i = 1, 2, ..., k. Furthermore, letting Q be a refinement of Pk,

we have

P ⊂ P1 ⊂ P2 ⊂, ....,⊂ Pk ⊂ Q.

Then we conclude

Sl(f ;P ) ≤ Sl(f ;P1) ≤ Sl(f ;P2) ≤ ... ≤ Sl(f ;Pk) ≤ Sl(f ;Q).

In order to show that Su(f ;P ) ≥ Su(f ;Q) we construct that same type of

refinement P1 of the partition P of [α, β] as we did for the previous case. Except here

we work with

Su(f ;P ) =
n∑
i=1

Mif∆xi =

j−1∑
i=1

Mif∆xi +Mjf∆xj +
n∑

i=j+1

Mif∆xi
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and

Su(f ;P1) =

j−1∑
i=1

Mif∆xi +M ′
jf(xj−1 − x′) +M ′′

j f(x′ − xj) +
n∑

i=j+1

Mif∆xi

where

M ′
jf = sup{f(x)|x ∈ [xj−1, x

′]}

and

M ′′
j f = sup{f(x)|x ∈ [x′, xj]}.

Note that in set of sub-intervals we still have that

{f(x)|x ∈ [xj−1, x
′]} ⊂ {f(x)|x ∈ [xj−1, xj]}

and

{f(x)|x ∈ [x′, xj] ⊂ {f(x)|x ∈ [xj−1, xj]}.

Using Theorem 3.7 we obtain

M ′
jf ≤Mjf

and

M ′′
j f ≤Mjf.

So we have

Mjf∆xj = Mjf [xj−1 − xj]

= Mjf [xj−1 − x′ + x′ − xj]

= Mjf [xj−1 − x′] +Mjf [x′ − xj]

≥M ′
jf [xj−1 − x′] +M ′′

j f [x′ − xj−1].
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Therefore, from the definitions of Su(f ;P ) and Su(f ;P1),

Su(f ;P ) ≥ Su(f ;P1).

Now letting Q be some refinement of P and noting that P1, P2, ...., Pk such that

P ⊂ P1 ⊂ .... ⊂ Pk ⊂ Q, we get

Su(f ;P ) ≥ Su(f ;P1) ≥ Su(f ;P2) ≥ .. ≥ Su(f ;Pk) ≥ Su(f ;Q).

Thus, Sl(f ;P ) ≤ Sl(f ;Q), and Su(f ;P ) ≥ Su(f ;Q).

(ii) Let P and Q be partitions of [α, β]. Then P ∪Q is a refinement of both P

and Q. From the above result we have that

Sl(f ;P ) ≤ Sl(f ; (P ∪Q))

and

Su(f ; (P ∪Q)) ≤ Su(f ;P ).

Notice

Sl(f ; (P ∪Q)) ≤ Su(f ; (P ∪Q))

and so

Sl(f ;P ) ≤ Su(f ;Q).

(iii) Let

m = inf{f(x)|x ∈ [α, β]},

and

M = sup {f(x)|x ∈ [α, β]}
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As f is bounded, m and M are finite. If we look at the length of the whole interval

[α, β], that is (β − α), we can establish a bound for the set of upper Riemann sums

and the set of lower Riemann sums. So because m(β − α) represents the smallest

“arc − length” in the interval and M(β − α) represents the largest “arc − length”

value in the whole interval we get

m(β − α) ≤ Sl(f ;P ) ≤ Su(f ;P ) ≤M(β − α),

so that Sl(f) and Su(f) are finite. Hence, by Theorem 3.8 part(i)

Sl(f) ≤ Su(f).

Referring to Figure 3.7, we can get a visual interpretation of the lower and

upper Riemann sums from left to right respectively. (Note we have expanded our

closed interval for good visualization.) It should be noted that the general function

depicted on the surface of the disk can be taken to be either positive or negative.

In order to have a discernable difference between the values of y in terms of positive

and negative, we would need to observe which side of the disk the function is being

plotted on independent of the disk’s rotation. Because the implicit function on the

disk is created for theoretical purposes, it is not necessary to define a condition for

the sign of these values. Here we are only interested in the magnitude of the y

values. The sign of the y values for the integrator is established by the clockwise

or counter clockwise direction of rotations of the wheel. Because we are still under

the assumption that our function f is arbitrary, the sign of the function is arbitrary.

Note that here we are using the upper and lower Riemann sums to approximate the

integral of f and each such calculation of f for each sub-interval of the partition is in
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Figure 3.7. Depiction of lower and upper Riemann Sums

the form of an arc length. (Reader beware: The concept of arc-length (curve-length)

from a calculus perspective, in terms of polar coordinates, is not that same as our

concept of “arc− length” here.)

3.4. DEFINING A RIEMANN INTEGRAL

At this point we are ready to define our Riemann integral. From this definition

we will now have a way to determine the Riemann integrability of a function.

Definition 3.17. [12] For f , a bounded function on [α, β], f is said to be Riemann

integrable on [α, β] if Sl(f) = Su(f). Then the Riemann integral of f on [α, β] is the

common value of Sl(f) and Su(f), and is denoted by
∫
f(x)dx.
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Consequently, to determine whether or not the function f is Riemann integrable,

one must assume that the function is bounded so that the Riemann integrability

condition is satisfied for the general case.

Theorem 3.18. [12] A bounded function f on [α, β] is Riemann integrable on [α, β]

if and only if, given ε > 0, there is a partition P (ε) of [α, β] such that

Su(f ;P (ε))− Sl(f ;P (ε) < ε.

Proof. Let P and Q be partitions of [α, β], and let Q is a refinement of P . By

definition, f is Riemann integrable on [α, β] if Sl(f) = Su(f). That is, the supremum

of the set of lower Riemann sums is equal to the infimum of the set of all upper

Riemann sums. We know from Theorem 3.16 part(iii) that Sl(f) ≤ Su(f). So in

order to show Sl(f) = Su(f), we need to show given ε > 0,

Su(f)− Sl(f) < ε.

First, denote

L = {Sl(f ;Q(ε))|Q(ε) is a partition of [α, β]},

and

U = {Su(f ;Q(ε))|Q(ε) is a partition of [α, β]}.

Given ε > 0, let u(ε) ∈ U and l(ε) ∈ L such that u(ε) − l(ε) < ε. But since

u(ε) ≤ Su(f), and l(ε) ≥ Sl(f), we have that

Su(f)− Sl(f) < u(ε)− l(ε) < ε.
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On the other hand, if we suppose that Sl(f) = Su(f), then there exist u(ε) ∈ U

and l(ε) ∈ L such that

Sl(f) ≤ l(ε) < Sl(f) +
ε

2
,

and

Su(f) ≥ u(ε) > Su(f)− ε

2
.

Now letting s = Su(f) = Sl(f), we have

s ≤ l(ε) < s+
ε

2
,

and

s ≥ u(ε) > s− ε

2
.

Hence,

0 < u(ε)− l(ε) < (s+
ε

2
)− (s− ε

2
) < ε.

So by defining arbitrarily small partitions of the interval [α, β] on the disk, we

have proved the our function f satisfies the condition for Riemann integrability. This

application of Riemann integrability of a bounded function on a closed interval was

chosen so that we could define a Riemann integral on the surface of the disk with

as little information about the function f as possible. Now we are convinced that a

bounded function on a closed interval is Riemann integrable if and only if there exists

some arbitrarily small partition where there is no difference between the upper and

lower Riemann sums. So how do we know that our function f specifically satisfies

the condition for Riemann integrability? Our f(t), as defined on the surface of the

disk, is a position on the surface of the disk that can be partitioned into infinitely

small sub-intervals by design and by definition. So this discussion links the theory
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of integration with the surface of the disk. We now need a way to calculate that

integral at all infinitesimal points with no differences between the upper and lower

Riemann sums. This mechanism is where the approximation of the integral comes

into play. Theoretically, the true integral exists on the surface of the disk. We need a

mechanism that super sums up the integral as a function of the rotation of the disk.

When we defined our f , we used a pen mount as a reference point to the center of

the disk. That pen was affected by its position from the center of the disk and the

rotation of the disk as well. So the point at which the pen makes contact with the

surface of the disk, at any given portion of a turn of the disk, is the exact point on the

plane of the disk at which the discrete Riemann sums become an integral. In other

words, this is the point where the upper and lower Riemann sums are equal. We

will now mount the wheel properly in place of the pen so that it will be at the exact

point where the upper and lower Riemann sums are equal. We know that the wheel’s

rotation, and accumulation thereof, already represents an arc-length or Riemann sum

(s = rθ = yδx). Now the implicit curve becomes invisible and the wheel is affected by

the variation of the disk carriage about its center with respect to the rotation of the

disk. So for any given distance from the center of the disk, the wheel turns through

an arc-length for all portions of a turn of the disk. The wheel literally adds up all

integral values (consecutive arc-lengths), in “real time,” as they are given while the

function f itself is being defined on the surface of the disk.

Although this is where our adventure ends, many results in calculus yet remain

to be justified. From this application it is now reasonable to assume that the funda-

mental properties of integration will follow. One of the most obvious results is the

continuity of the integral function on the bounded interval [α, β] using the Interme-

diate Value Theorem. One fundamental reason for the function f being continuous is

that an operator gets to control the independent variable and there exist arbitrarily

small portions of turns within every full turn. This type of analysis of the theory of
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mechanical integration gives rise to concepts in the time-scales calculus as a mechani-

cal integrator of this type has complete control of the independent variable. Moreover,

the DA team has already been solving dynamic equations on time-scales, but that

goes beyond the scope of this paper. For the reminder of this paper, it will be left to

the reader to make the assumption that the Fundamental Theorem of Calculus holds

true, without proof.



4. BASIC OPERATION OF A DIFFERENTIAL ANALYZER

The operations section involves general aspects of setting up the machine for

solving simple differential equations. Additionally, views on the educational ben-

efits of using mechanical interrelationships to interpret mathematics are discussed

throughout the section. The most difficult aspect of working with a differential an-

alyzer is applying the proper scale factors to various components. Operators of the

differential analyzer have the freedom to choose any convention. For example, a con-

vention is established when an operator initially chooses a particular scale factor for

a primary component shaft of the machine (i.e. primary disk drive shaft, lead-screw,

etc.). Since there exists the freedom of convention, each instance of scaling is not

unique. Moreover, scaling a differential equation is also problem dependent. Using

a few simple examples, and ultimately leading to a general approach to more com-

plicated problems, the concept of using a differential analyzer to solve differential

equations is realized. There are also included in the Appendix many schematic dia-

grams of the various examples in this section as well as more complex problems not

previously mentioned. In this section the theory of mechanical integration is applied,

and practical uses of a differential analyzer are revealed.

4.1. QUANTIFICATION AND “UNITY” OF AN INTEGRATOR

An integrator is the first component that should be fully understood before an

operator tries to use the machine. For this reason it is the first component to be

considered. As mentioned the integrator unit has three movable parts: disk, carriage,

and wheel. Respectively, these parts will be called the differential, the integrand,

96
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and the integral, for each of them has its own separate shaft rotation for reference.

In the previous section, Theorem 3.18, it was shown that the rotation of the wheel

(integral shaft) represents the integral of the wheel’s distance from the center of the

disk (integrand shaft) with respect to the rotation of the disk (differential shaft), or

Turns of Integral Shaft =

∫ xn

x0

y(x)dx. (4.1)

Moreover, any function determined by the integrand shaft with respect to the differ-

ential shaft satisfies the Riemann integrability condition. (Refer to Theorem 3.18.)

Theoretically, an integrator will integrate any function that can be interpreted in

terms of shaft rotations. However, in practice, producing a perfect integral is contin-

gent upon several necessary mechanical parameters. First there must be absolutely

no slippage occurring between wheel and disk. This is achieved by the addition of a

torque amplifier and careful considerations of the movable parts of the wheel. An-

other aspect is the gear trains that are necessary for the movement of the carriage

and the rotation of the disk. In theory the disk may turn once for every turn of

the differential shaft and likewise the lead-screw can be turned once for each turn of

the integrand shaft (or the carriage is displaced by one shaft rotation). In this case,

displacing the dependent variable of a function on the disk by one unit corresponds to

turning each input shaft one time. However, in practice this is not the case because

it’s simply not feasible to rotate a heavy disk through a 1:1 gear train and to have a

threaded rod whose pitch is one thread per inch. So these two components must be

geared down between rotation shaft and movable part. In the case of the disk, there

is a reduction gear in place between the differential shaft and the disk gear drive; we

denote this by K. In the case of the carriage displacement, there are two things to

consider: a reduction gear and the pitch of the lead-screw. These two parameters will
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be combined and denoted by P . Another necessary parameter for the quantification

of the integrator is the radius of the wheel, which we will denote by a.

Our goal now is to take the theoretical result and apply it to a realistic situation

in general practice. We need to determine the actual number of turns of the integral

shaft given the two inputs of differential and integrand shafts. The simplest place

to start is with a fixed displacement of the integrand shaft. The question “at what

displacement from the center of the disk does the wheel’s edge need to be in order

to give a 1:1 correspondence from differential shaft to integral shaft?” is an essential

one. From a mathematical point of view, this distance can be interpreted as the

Unity of an integrator, but, generally speaking, this distance is simply where one

turn of the differential shaft results in one turn of the integral shaft. Note that, in

the discrete case (when the integrand shaft is fixed), the integrator is a simple gear,

and the ratio of turns for the integral shaft is in terms of the two radii, the radius

of a concentric circle on the disk (or equivalently the displacement of the carriage)

to the radius of the wheel. Just to be clear, one can interpret one turn of the disk

as 2πy and one turn of the wheel as 2πa with ratio 2πy
2πa

. Note the factor 2π reduces

and the ratio becomes y
a
. In order to have a 1:1 correspondence, the radius of that

particular concentric circle on the disk needs to be equal to the radius of the wheel.

So using our notation, let

y

a
= 1,

which implies a = y, where y is the radius of the concentric circle on the disk. This

answers the question of unity from a theoretical standpoint.

In practice, we must have a way to measure the magnitude of y. Because all

quantities are to be measured in terms of shaft rotations, the radius y can be measured

by the displacement of its movable part, the carriage. Furthermore, because the

carriage is essentially driven by a shaft, it makes sense to let its displacement be a
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shaft rotation. But now, in terms of shaft rotations, we must know exactly how many

turns of y yield a 1:1 correspondence for the ratio of disk to wheel. In order to calculate

that, we must also take into consideration how many turns of the differential shaft

correspond to the number of turns of its movable part, the disk. For the differential

shaft x, x-turns of the differential shaft implies the disk will turn K ∗ x times. For

example, if K = 2/5, then one turn of the differential shaft will result in 2/5 of one

full turn of the disk, as K is a reduction gear. Similarly, for y-number of turns of

the integrand shaft y, the carriage will be displaced P ∗ y inches from center (if the

pitch of the lead-screw is measured in inches). Note it is not necessary to measure

the pitch of the lead-screw in inches. However, it is necessary to maintain consistency

when measuring distance on top of the disk, measuring the pitch of the lead-screw,

and the radius of the wheel a.

First, we quantify the integrand shaft using the motion of its movable part.

When a = y we assume that the integrand shaft y directly corresponds to the dis-

placement of the carriage. Because it does not in practice, we want to measure the

radius of the concentric circle on top of the disk by a shaft rotation that connects

the rotation of the integrand shaft to the displacement of the carriage. Thus, we now

have a = y ∗ P , or

y ∗ P
a

= 1 (4.2)

Some care must be taken in the interpretation of this last equation. It states that the

rotations of disk and wheel will have a 1:1 correspondence when y ∗ P = a. That is,

for any portion of a turn of the disk, the wheel will turn the integral shaft that same

portion of a turn, as long as the wheel rests at a particular distance from the center

of the disk. The particular distance the wheel rests from the center is determined

by y. To talk about this relationship strictly in terms of shaft rotations of the whole

integrator unit, we must consider what effect the reduction gear for the differential
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shaft has on the total number of turns of the integral shaft. So assuming the disk

turns one full turn, how many times did the differential shaft turn? It is important not

to be confused on the convention of gear ratios. A gear ratio is the number of teeth

on one gear divided by the number of teeth on another (or radii as opposed to teeth)

where the order of the gears depends on whether or not the gear is a reduction gear.

The constants K, and P represent reduction gears so their ratios are between (0, 1).

From differential shaft to disk, K is a reduction gear, but from disk to differential

shaft, as is the case for our purposes now, K is not. Hence, the disk spinning one full

turn implies the differential shaft turned 1
K

times. Keep in mind that the differential

shaft turned more times than that of the disk. For example, if K = 2/5 then 1 turn

of the disk was a result of 2.5 turns of the differential shaft. What we want to have

is a 1:1 correspondence between differential shaft and integral shaft. And we can use

the above equation to get an expression of how many times the integrand shaft must

be turned to get 1:1 correspondence from disk to integral shaft. We need only factor

in the reduction gear K into that expression (Equation 4.2). To see how, note that

for any number of turns of the disk the equation

y ∗ P
a

= 1

provides a 1:1 correspondence if we want to use the differential shaft as a reference

drive instead of the disk. Then

y ∗ P
a

=
1

K
. (4.3)

Solving for y, the number of turns of the integrand shaft, we get

y =
a

K ∗ P
. (4.4)
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Therefore, the integrand shaft needs to be turned a
K∗P times in order to have a 1:1

correspondence between differential shaft and integral shaft.

This analysis is important because we have established a point on top of the disk

that may be referenced as one unit. For example, suppose one needs the integral shaft

to represent the function f(x) = x (a line with slope equal to one); that mapping is

obtained by initially setting the wheel to a position consistent with the right hand

side (RHS) of Equation 4.4. If f(x) = 2x is the desired function, then double that

distance and that mapping is achieved. This concept is discussed in further detail

after a change of variables, from the theoretical constants to variables that take into

account specific gear trains on the machine, is made.

Suppose that the wheel sits at an arbitrary, yet still fixed, position from the

center of the disk. Note that this distance, in terms of shaft rotations, is represented

by y ∗ P . A new question is now proposed: “how do we determine the total number

of shaft rotations of the integral shaft, given a certain number of differential shaft

rotations?” For example, let the differential shaft be turned once; this means the

disk is turned K times. And for any turn of the disk, the wheel turns y ∗ P/a times

as much as the disk. Hence, for one turn of the differential shaft the wheel turns

(K ∗ P ∗ y)/a times. Its easy to see that if the number of turns of y is a/K ∗ P , then

our expression is,

K ∗ P ∗ a
K∗P

a
= 1.

This equation makes sense because that particular value of y was chosen to give a 1:1

correspondence from differential shaft to integral shaft. Moreover, if the differential

shaft had turned x-times to start in this example, as opposed to once, then the right

hand side of the equation would be equal to x. So we can conclude the analysis of this

discrete case by saying the total number of shaft rotations for the integral shaft given

a certain number of shaft rotations for the differential shaft x, at a fixed integrand
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shaft rotation y, is given by

xy ∗ KP
a
.

We have established a method of determining the total number of shaft rotations

of the integral shaft when the integrand shaft is fixed. Note that for any number of

discrete cases, the individual number in each case may be added up, case-wise, to get

a total. However, when the integrand shaft is not fixed or non-constant, we can no

longer use simple arithmetic calculations because now the output of the wheel is an

integral. But we can use the Riemann integral result proved in the last section. We

need only to substitute our newly developed expressions, that are in terms of shaft

rotations, into the result from the last section to have an expression for the total shaft

rotations of the integral shaft in the continuous case.

Note that for the previous discrete cases our function on top of the surface of

the disk was a constant function. For the continuous case, we have generalized this

to any function satisfying the Riemann integrability condition.

Recall the result from Section 3, Theorem 3.18, that states, a bounded function

f (lead-screw or integrand shaft, with respect to a finite number of turns of the

disk) is Riemann integrable, only if infinitely small partitions of the turns of the disk

exist such that there is an arbitrarily small difference between the upper and lower

Riemann sums for the function f , contained on the disk’s surface, with respect to

the partitions. The Section 3 conclusion provides the reason for the rotation of the

wheel being representative of the integral of the function f . By definition a Riemann

integral is a Riemann sum that has the property of equal upper and lower Riemann

sums everywhere in the domain by which they are defined. The wheel’s rotation is

defined in exactly the same way. Because the accumulation of the wheel’s rotation is

a Riemann Sum, by definition, the wheel represents the integral of y (integrand shaft)

with respect to x (differential shaft). In order to measure the output of the wheel
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in terms of shaft rotations, the expression given for the output of the wheel (Result

given in Theorem 3.18) is divided by the radius of the wheel (a); thus, incorporating

the needed ratio from variable disk radii to the radius of the wheel (Recall that, in the

discrete case, in order to calculate the total number of turns of the wheel one must

divide, the turns of the disk times the fixed distance of the wheel’s edge to the center

of the disk (y ∗ x), by the radius of the wheel(a); and note that in this continuous

case, y ∗ x is represented by the result from Theorem 3.18).

To be clear, taking the expression for the wheel’s output, that is,

∫ xn

x0

y(x)dx (4.5)

and dividing it by the radius of the wheel while making the necessary gear reduction

substitutions will transform the integral expression for the wheel’s output into an

integral expression formally in terms of shaft rotations.

For sake of ambiguity, one should change the variables in (4.5) to y∗, and x∗ so

that there is not any confusion after the substitution is made. So now y denotes the

total shaft rotations for the integrand shaft, x denotes the total shaft rotations for

the differential shaft, and the integral shaft is

1

a

∫ xn

x0

y∗(x)dx∗.

Let y∗ = yP , and let x∗ = xK, where y∗ is the displacement of the carriage in terms

of shaft rotations, and x∗ is the rotation of disk in terms of shaft rotations.

Substitution into the above equation yields

1

a

∫ xn

x0

y(x) ∗ Pd(x ∗K)
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which yields

KP

a

∫ xn

x0

y(x)dx. (4.6)

Because K, and P are both constants, they may be factored out of the integral

expression. Note that we have divided the entire result by the radius of the wheel a.

Hence, the constant KP
a

comes out of every integrator. Conceptually, one could

simply multiply an output by a gear train to cancel out the constant, but that would

involve gearing up by too much. As it is only reasonable to gear up by at most

two, for mechanical purposes, multiplying by a gear train to cancel out the scale

constant is not practical. However, we can use the concept of Unity of the integrator

to essentially reduce the constant. Note for future reference we will call KP
a

the

Integrator Constant of an integrator, which is just the multiplicative inverse of the

value of Unity of an integrator, which is a
KP

. We have the freedom to choose what

value of shaft rotation(s) represents one unit. So if we choose one unit to be a
KP

, then

we can say we are integrating with respect to not only x but a
KP
∗ x. So within the

differential of the integral expression above we have

KP

a

∫ xn

x0

y(x)d(
a

KP
∗ x),

which implies the integral shaft is now

∫ xn

x0

y(x)dx,

as a
KP

is a constant.

And now this measurement of a/KP can be a standard one unit of measurement,

denoted by I. We suggest much caution in scaling in this way, for this is just an option

for a particular integrator and is not a means to escape issues of the scaling constant

in general. As will be seen later, this type of scaling works only when solving linear
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differential equations. In general, an operator must always assume that a factor of 1
I

comes out of every integrator.

On “Art,” K = 2/5, P=50
57

* 1
32

, and a = 15/16. Note that P is a combination of

two values due to the reduction gear in the clutch box and the pitch of the lead screw

(32 threads per inch). So the integrator constant I = a
KP

, implies I = 85.5; that

is, 85.5 shaft rotations can be interpreted as one unit. Unfortunately, I = 85.5 only

corresponds to primary rods contained in the section of interconnection because of

the placement of the counters used to measure rotations on the various components.

For instance, on the integrator unit, a counter is mounted on the back part of the

frame. Due to its location, the reference rod that essentially turns the counter is

directly attached to the lead-screw. The placement of the revolution counters imply

that 85.5 shaft rotations of the counter rod does not move the integrator carriage

the same amount as 85.5 shaft rotations of the integrand shaft. As the gear train

inside of the clutch box is 50:57. When measuring the displacement of the integrator

carriage with the counter rod, its rotation is not affected by the gear train in the

clutch box. Hence, 85.5 turns of the integrand shaft correspond to 85.5/(57/50) = 75

turns of the counter rod. That is, the counter rod needs to be turned 75 times in

order to displace the carriage exactly one unit from the center. The value of 75 does

not imply that the counter will read 75 because the counters are designed to read 10

for every shaft rotation or in increments of 1
10

of a shaft rotation. Additionally, there

is a 3:1 gear train between the actual counter sprocket and the counter rod, so for

every one turn of the counter rod the counter reads 10/3 on the display. Hence, for

unity, 75 turns of the counter rod implies the counter reads 75 ∗ 10/3 = 250 on the

display (250=1=unity). Because all four integrators, input table, and output table

have a clutch box, for purposes of using counter reading to get numerical values, 250

is one unit and it is also denoted by I. Remember the freedom to change still exists

if so needed for solving different types of differential equations.
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Finding the Unity of an integrator is the first type of quantification that must be

calculated when working with any differential analyzer. Formally we will denote the

Unity of an integrator as I = a
KP

= 250 and the Integrator Constant as I∗ = 1
I

= 1
250

.

(Note the integrator constant is not the same as the constant of integration from

calculus.) So as not to be confused with convention of gear ratios, it is best to establish

a way to denote gear ratios and calculate shaft rotations in the beginning and then

stick firmly to your convention. For the Marshall DA Team, the consideration of a

“direct drive path” concept was adopted, depending on which gear is being turned

and which gear is doing the turning. For example, when calculating Unity for the

lead-screw shaft as opposed to the integrand shaft, conceptually it is necessary to

divide by the gear train that is the difference between the rotation of the two shafts.

Note that in this case, 57/50 is the dividend that accounts for the gear train with ratio

50:57. At first, dividing in this way may seem to be an ambiguity in the convention

of a direct drive path; however, the direct drive coming from the lead-screw shaft is

the reverse gear train, so the convention is still consistent.

This point of fact may seem to be somewhat trivial, but in practice, a trivial

subject to some may not be so to others. The concepts of ratios and proportions are

deeply embedded in the exercise of quantifying an integrator just as these concepts

are embedded in the elementary levels of mathematics. Using a manipulative, such

as an integrator along with several options of gear trains, to clarify the subject with

students is an activity that the Marshall DA Team seeks to investigate. Negativity

and positivity are additional concepts embedded in the action of an integrator. When

the wheel sits in the center of the glass, there is no motion picked up by the wheel

as the disk is turned. When the wheel sits on one side of the glass it will rotate

clockwise and when it sits opposite side of the glass it will rotate counter-clockwise

with respect to the rotation of the disk. Either direction can represent positive for

example. The more important fact is that, when the wheel sits on opposite sides the
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of glass with the center as a reference point, the wheel turns in opposite directions

if the rotation of the disk is monotonic. Deciding which side represents positive or

negative is up to the operator, notably, when two sets of gear trains are meshed

together the first gear train reverses the direction of the direct drive. Then the

second gear train reverses the direction of the previous gear; thus, the first gear and

the last gear have the same direction of rotation. Moreover, the concept of negating an

already negative quantity results in a positive quantity is demonstrated via a physical

example.(Negative multiplied by negative results in positive.)

4.2. SOLVING SIMPLE EQUATIONS

A beginning discussion of how to use a differential analyzer to solve differential

equations would be best served with a simple example of a first order linear differential

equation whose solution is a linear function. It should be clear at this point how to get

an integrator to represent a linear function whose slope is consistent with the initial

displacement of the integrand shaft, which remains fixed. The dependent variable and

independent variable are represented by the shaft rotations of the integrand shaft and

the differential shaft, respectively. For the purposes of solving differential equations,

our formerly established notation for the two input shafts and the output shaft of an

integrator will depend on what the variables in the differential equation are. That is,

for the notation of a DE, the inputs and output of an integrator will correspond to the

variables used to express the DE. Using the integrator to produce a linear function

and using the differential analyzer to solve a differential equation whose solution is a

linear function are equivalent procedures.

Definition 4.1. A Differential Equation is an equation that relates a function, y(t),

its derivatives, and functions of t. (Dr. Bonita A. Lawrence.)
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From an analytical perspective, consider the DE,

dy

dt
= k,

where k is a real number. Solving this equation, in general, is a simple matter of

integrating both side of the equation with respect to t. So,

∫
dy

dt
dt =

∫
kdt,

is equivalent to

y = kt+ c

where c is a normal constant of integration. This is the general solution to the DE.

If we want a particular solution, consider the initial condition

y(0) = 0

which would imply that c = 0 and

y = kt.

This is a particular solution for the given the initial condition. The differential equa-

tion says, if t is taken to be time, the rate at which y changes with respect to time is

equal to some real number, or the rate of change of y at any given time is constant.

The derivative is the rate of change and by the rule assigned in the equation the

derivative is always constant, meaning it never changes. So when thinking about an

integrator unit on a differential analyzer, the integrand shaft governs the different

rates, or gear ratios of the wheel with respect to the disk. Hence, the integrand

shaft is the derivative in this differential equation. Because the equation says that
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the derivative never changes, the integrand shaft never changes, which is the same

situation as the discrete case described above, when the wheel sits at a fixed posi-

tion, k, and never moves. In the previous section we showed that the rotation of

the wheel represents the integral of some function described by the lead-screw with

respect to the turns of the disk. Now we have the same relationship but in terms

of shaft rotations. When the integrand shaft represents the derivative of a function,

by the Fundamental Theorem of Calculus, the integral shaft represents the function

itself. (The antiderivative of the derivative of a function is the function within a con-

stant.) This fundamental relationship between the two inputs and output shafts of

an integrator is how the machine analyzes the different rates of change, or derivatives,

involved in a differential equation.

Mechanically, setting up the machine to solve this simple DE is very straight

forward. All that is required is to take the primary motor drive shaft from the section

and allow it to drive the differential shaft of one integrator. This setup will solve

the DE by just the use of one integrator. To get a useful visual of what’s happening

mechanically, an output table is needed in this case, because the derivative is constant

and the integrator carriage sits still. However, using an output table is not always

necessary, for very useful information may be acquired from simply watching the

movement of the integrators. So if an output table is used, where the section is a

medium for motion transfer, the integral shaft would essentially drive the ordinate

carriage and the primary drive shaft would drive the table in the direction of abscissa

as well as the differential shaft. The output table draws like an Etch-a-Sketch, and

the resulting plot on the surface of the table will be a straight line whose slope is the

same value as the initial displacement of the integrand shaft relative to the concept

of Unity that was previously established.

The concept of the integrator representing a definite integral when using it to

solve DE’s is an implicit operation embedded within the action of the integrator. The
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integrator itself represents a definite integral. For every arbitrary portion of a turn

of the differential shaft, the integral shaft turns an amount equal to the value of the

integral from the starting point that is, from the lower limit, to the upper limit, which

is when the differential shaft is stopped. The total number of shaft rotations of the

integral shaft is the value of the definite integral at the point where the differential

is stopped. But for all infinitesimal portions of turns in between, the values were

calculated. An accumulation of shaft rotations may be taken at any time in between

the upper and lower limit, which will correspond to a definite integral value whose

upper limit lies in the interval between the the two values. These accumulations as

they occur in time, may be tabulated by the output table in the form of a curve, and

it is this accumulation of the plot that has the illusion of suggesting the integrator is

solving an indefinite integral, because the plot is that of a function. However, when

integration occurs on the differential analyzer, it is simply calculating all definite

integral values from point a to point b, and those values are accumulated by shaft

rotations, wherein the shaft rotations are transformed into a plot via an output table.

In fact, the differential analyzer is always working on a closed domain. It is up to the

operator to match up that domain so that the plot of the particular solution is in a

window of interest.

It is also imperative to note that the initial condition for the differential equation

is the initial displacement of the integrand shaft before the independent variable drive

(primary section drive) is started. Moreover, the initial conditions must satisfy the

differential equation analytically. That is in an analytical sense, substituting the

initial values into the differential equation will result in an equation that is true. For

a first order DE, one piece of initial data is required to get a particular solution.

In the case of the example above, we had information about the initial position of

the dependent variable y at t = 0, resulting in the determination of the constant of

integration. If we were to simply use the information we know about the derivative
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at t = 0, we would not be able to strictly determine the value of the constant c,

at least analytically. Note that the constant c is the same as the initial value of

y at t = 0, which is the y-intercept of the linear function plotted on the table.

Because the dependent variable y does not appear explicitly in the DE, substituting

the initial values in the DE will not determine the y-intercept unless it’s an initial

condition itself. However, the differential analyzer will plot a particular solution even

if we only consider the initial condition of the derivative at t = 0, or y′(0) = k.

So in this case, the y-intercept of the linear graph that is plotted is just in some

arbitrary position on the plotting surface, arbitrary yet still fixed. In most cases it

is necessary to initially displace the ordinate carriage of the output table so that its

initial displacement satisfies the initial conditions given for the differential equation

itself. Although solving this DE is a case where the initial setting of an ordinate

carriage is not important, it is still necessary to understand why. For example, suppose

that we use the machine, as we have in our above example, where the constant of

integration is yet undetermined. Furthermore, let the initial displacement of the

ordinate carriage read 250 on its reference counter. By our former calculations, this

situation would mean that y(0) = 1 (analytically). (But this value is not to be taken

literally, because it could just as well be some other value subject to interpretation.)

Because a linear function is simply shifted up or down the y-axis for different values of

c, the curve may be interpreted with y(0) = c. This fact allows freedom of convention

(convention of the ordinate carriage’s initial displacement along the y-axis) in choosing

y(0) when the initial position for the dependent variable is unknown, either explicitly

or deterministically, by using the DE along with other initial conditions that are

given.

This information is still useful in the analysis of different particular solutions,

because it says that in this case no matter how much an initial value of the dependent

variable changes the qualitative nature of the solution essentially stays the same. The
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real change happens when the initial displacement of the integrand shaft, or derivative

at t = 0, has a different value, changing k, ultimately altering the DE itself. The result

is in the form of lines with different slopes. This exercise has been demonstrated to

elementary algebra students, and the goal of the exercise is to show a linear function

has a constant rate of change, or constant slope. It lays the groundwork to compare

different polynomial functions in terms of their derivatives without mentioning a

formal definition of the derivative.

The process of setting up this problem in the previous example can be outlined

schematically, using a Bush Schematic. Referring to Figure 4.1 the rectangle above

represents an integrator along with the two inputs and the output, the one below

represents an output table. The line to the left, with the arrow that points to the

frame is the integrand shaft, the line in the middle represents the integral shaft, and

the line to the right is the differential shaft. For the Output Table, the horizontal

shaft drives the table carriage in the abscissa direction, and the vertical shaft drives

the ordinate carriage. This convention will be the standard notation when setting

up problems on the machine. Figure 4.2 is the schematic diagram for the previous

example, y′ = k. Using just one integrator, the vertical lines going to the integrator

are bus-shafts, and the horizontal lines are cross-shafts contained in the section, a

concept developed by Vannevar Bush. Note that throughout the text we will be

inserting various elements to our schematics, like the output table and the adder

units, etc. Starting with the first cross-shaft, the primary motor drive, interpreted

as the independent variable t, and its corresponding bus-shaft drives the differential

shaft. Moving down the cross shafts, the next in line is labeled k = y′ representing a

constant slope. Then what comes out of the integral shaft is:

∫
kdt,



113

Figure 4.1. Schematic diagram of the basic interconnections of an integrator. The
below diagram is the schematic diagram of an output table.

or kt = y. Note that we have dropped the use of a definite integral, and have not

gained a constant of integration. This is just notation. The integral is sill a definite

integral, as described above, but to avoid the confusion of implying that the integral

shaft represents one particular value, we denote the accumulation of definite integrals

using the notation of an indefinite integral without the added constant of integration.

It should be clear that the turns of the integral shaft represents a definite integral

from x0, to x, but the accumulation of such is given as a set of ordered pairs on a
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Figure 4.2. Schematic diagram y′ = k, where the output is a linear function.

closed domain. The function itself is bounded by the interval from (x0, x), that is

from when the independent variable is started until it is stopped. So, from this point

on, the notation used to represent an integral shaft will be, in general, the same as

an indefinite integral without the constant of integration.

The DE that is being solved is consistent with the set-up previously described.

Remember that the integrand shaft can be interpreted as the derivative of the integral

shaft by using the Fundamental Theorem of Calculus. So, if we let y′ denote the
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integral shaft then

y =

∫
y′dt

and the DE being solved is

dy

dt
= k,

which implies we obtain

y(t) = kt

on the differential analyzer. Analytically, this would be the case where y at t = 0 is

0, or y(0) = 0. But for solving on the DA we know that y(0) is not necessary since it

does not explicitly appear in the DE, changing the value of y(0) does not change the

solution drastically and, if we so desire to start at a particular y-intercept value, we

may let any arbitrary position on the y-axis be that initial value, and continue the

quantification of this linear example from that standpoint.

Another simple example is the second order DE,

d2y

dt2
= k.

For this DE we need two pieces of information to get a particular solution. First let’s

solve it in general. We may integrate both sides twice to get

∫ ∫
d2y

dt2
dtdt =

∫ ∫
kdtdt

which yields

y =

∫
(kt+ c)dt

which gives

y =
1

2
kt2 + ct+ d,
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where c and d are constants of integration. Furthermore, if we impose the initial

condition y′(0) = 0 and y(0) = 0, we get the particular solution

y(t) =
1

2
kt2,

whose graph is a parabola.

On the differential analyzer, the set up is a simple continuation of the first

example (Refer to Figure 4.3 for a Bush schematic.). For one integrator, set it up so

that the integrand shaft is constant, send the motion of the linear function that comes

out of the integral shaft to the integrand shaft of another integrator. Integrator 2 now

has a linear rate of the change. The integral shaft output of the second integrator

will be the desired quadratic function. In the schematic diagram, Figure 4.3, the

independent variable shaft connects in two places, that is, to the corresponding bus-

shafts that drive the differential shafts of both integrators. The input for the first

integrator is constant; its output essentially drives the input for the second integrator.

The output of Integrator 2 is the desired solution and it will drive the ordinate carriage

of the output table. The independent variable, in addition to the two differential

shafts, also drives the table carriage of the output table, thus providing a plot of y

vs t.

To compare the solution given by the differential analyzer and the general so-

lution, note that. As was the case in the last example, the dependent variable y

is not explicitly available in the DE. The only requirement given by the differential

equation for the values for y′′, y′, and y at t = 0, is that y′′ always equals k. As

will be seen later, a relation between the initial conditions of variables is often given

by the DE itself. However, in this example, we have y(0) being arbitrary yet fixed,

y′(0) being the value of the initial displacement of the integrand shaft of Integrator

2, and y′′(0) = k. If we let the initial displacement on Integrator 2’s integrand shaft
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Figure 4.3. Schematic diagram y′′ = k, where the output is a quadratic function.

be y′(0) = 0, and set the ordinate carriage to satisfy y(0) = 0 then the plot will be

the positive half of an upright parabola, since the solution is y = 1
2
kt2 on the interval

I0 = [0, t], where t is the value when the independent variable motor is stopped. This

is a particular solution of the general solution y = 1
2
kt2 + ct + d. Note that on the

differential analyzer it is not necessary to have an initial condition for y at t = 0. The

reason for this is the same as in the previous example; y is not explicitly available

in the DE. So for any value of y at t = 0, the graph is transformed by a vertical

shift up or down the y-axis, which we can call whatever we want. So, d is arbitrary

yet fixed and k is the initial condition for Integrator 1 to be determined by the DE

itself. The value of c in this example is the initial condition for Integrator 2, since

y′(0) = c. Note that y′ is also not available in the DE. However, the given initial
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data may be useful analytically because the DE has order 2 and we need two pieces

of information, chosen from y′′(0), y′(0), and y(0), to get a particular solution. It is

the case when using a differential analyzer that the particular information needed to

solve any DE is the initial positions of the integrand shaft for any given integrator

being used in the mechanical calculation of the solution. Because the integrand shaft

corresponds to a derivative, or equivalent value, all initial conditions must be at least

given for each derivative of the DE. So we need y′(0) to get a particular solution on

the differential analyzer, but the DE itself does not require it to be any particular

value. In other words, we have the freedom to impose whatever initial condition on y′

at t = 0 we want. The DE will always be satisfied for our chosen condition, providing

us with a unique solution for that particular condition. It is interesting to see how

different initial y′(0) values affect the shape of the parabola. To complete this kind of

graphical analysis, one needs to create a standard on the output table that is for an

x-axis and y-axis. In this case, it is convenient to draw the axes such that the origin is

in the center of the plotting surface because, for a parabola, one might be interested

in negative independent variable values. To do this, set the initial conditions of the

integrators as previously stated and set the ordinate carriage at the center. Then

simply run the independent variable motor in the reverse direction to the desired

position. Stop it, reset the ordinate carriage back to the center, and reset the initial

conditions of the integrators. Then run the motor in the positive direction, which

will give a nice curve for a range of negative and positive independent variable values.

Note that the positive and negative sides of the disk should not be changed because

that would reverse the entire convention that has been previously established for the

initial conditions with respect to their positivity. In many cases, when solving DE’s,

an operator is interested in positive values, but if needed, negative values are easily

obtainable.
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As the general solution is already known, it is easy to see the effect of changing

c by writing

y(t) =
1

2
kt2 + ct+ d

in an equivalent form by completing the square on the right hand side to get

y(t) =
k

2
(t+

c

k
)2 + (d− c2

2k
).

In an analytical sense, we see that the value of c essentially changes the coordinates

of the vertex of the parabola, when d and k are fixed. Moreover, if the value of c is

positive, the vertex is shifted to the left, and if c is negative the vertex is shifted to

the right, for k positive. For negative k, this situation is reversed and the parabola

is now concave down. Information about the roots may also be obtained if desired.

Because all the constants in the equation correspond to initial conditions on either

the integrators or the output table, the same information may also be obtained from

using the machine.

The differential analyzer provides a different perspective on the different trans-

formations of the graph because the information is in the context of various rates

of change. The first integrator has two important pieces of information, the initial

position of the integrand shaft k, and the output or integral shaft. If k is positive, the

linear function coming from the output of Integrator 1 is increasing. Mechanically,

this means that the rotation of that shaft is in the positive direction. This increasing

linear function is the rate of change for Integrator 2 and it will pull the integrator

carriage in the positive direction, drawing the wheel ever closer to the positive side of

the glass. If the position of the wheel on Integrator 2 is initially on the negative side

of the glass, then the wheel will eventually pass through zero. Ultimately, reversing

the direction of the wheel results in the ordinate carriage (dependent variable) revers-

ing direction as well. Remember that the integrand shaft will move the carriage and
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essentially change the position of the wheel with respect to the center of the disk. So

if the initial position of Integrator 2’s wheel sits on the negative side of the disk, the

plot of the solution starts off by decreasing and decelerates in the negative direction

until it eventually stops at the center of the glass. This value represents the vertex of

the parabola. Also, it is instructive to note that the constantly changing position of

the carriage represents the derivative of the output, or the derivative of the quadratic

function, that is the solution to the DE. Hence, when the carriage lines the wheel

up with the center of the disk, it is the same as setting the derivative equal to zero

and the y-value on the output table at that point is the critical point. Take note

as well that the position of Integrator 1’s carriage represents the second derivative

of the quadratic solution. If that fixed position is positive then the graph would be

concave up resulting in the critical point in question being a minimum, which only

happens at one infinitesimal point. Then the carriage continues past the center to

the positive side of the glass and continues to increase until the independent variable

drive is stopped. This process is entirely observable, and this is just one example of

many possible initial conditions and thus transformations that are available. If we

start k negative, then the graph would be concave down and, depending on the other

initial condition of Integrator 2, the graph would either be increasing or decreasing.

Regardless, the position of the integrator wheel with respect to the center of the disk

will be consistent with the first and second derivative tests, depending on where the

wheel sits on the on the surface of the disk with respect to the center of the disk.

This situation becomes much more elaborate when the quadratic function is sent

to the integrand shaft of a third integrator, which implies that the solution coming

from the output of the third integrator is a cubic function. The DE formally used is

y′′′ = k



121

and the schematic diagram may be referenced in the Appendix. Suppose that the

initial conditions of the first two integrators are as in the above example, when k is

positive and Integrator 2 starts at a negative initial position. Recall that Integrator

2 passes through the center exactly once, which means that Integrator 3 has the

potential to pass through the center at most twice, depending on the distance from

center relative to the distance the wheel is from center of Integrator 2. Further suppose

that the initial position of integrator 3 is half the magnitude of the initial position

of Integrator 2, and Integrator 3 rests on the positive side of the glass. When the

independent variable drive is started Integrator 3’s carriage will begin moving in the

negative direction. Integrator 3 will pass through zero before Integrator 2 because of

its relative distance from the center the disk compared to that of Integrator 2. When

this happens, the ordinate carriage will reverse direction creating a critical point.

A few units of time later, Integrator 2 will pass through the center, reversing the

direction of Integrator 3, causing it to now be pushed in the positive direction. In

the meantime, Integrator 3 has managed to accumulate some considerable magnitude

on the negative side. So it will take a few more units of time to get back to the

center. When Integrator 3 does get close to the center, it will pass through it one

more time, causing the ordinate carriage to reverse its direction yet again, creating

another critical point. So there are two critical points total for Integrator 3 and as the

independent variable drive continues, Integrator 3 will never pass through the center

again. Because Integrator 2 continues on its path in the positive direction, as would

be expected with a quadratic function after it has reached its vertex, there are not

any other critical points, which would make perfect sense, because a cubic function

has at most two critical points. Moreover, the correspondence of the first and second

derivative tests with the integrator wheel positions are still consistent with the side

of the disk the wheel sits on at any given time. The only difference now is the first

derivative is now the position of Integrator 3, the second derivative corresponds to
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the positioning of Integrator 2 and a new third derivative is referenced on Integrator

1, which is of course the constant k in this case.

There are many more cases, using different sets of initial conditions for the

cubic problem and the quadratic problem. Far too many to be discussed here. It is

beneficial for an operator to become familiar with these three simple examples for they

will provide the building blocks for becoming more and more familiarized with the

machine and the particular scaling. Unfortunately, the scaling is problem dependent,

but, if one can correlate the mechanical interrelationships with the mathematical

principle of these simple algebraic functions, then one can conceive a more practical

understanding of how the differential analyzer is beneficial to students and to a novice

operator. This exercise of linear to quadratic to cubic functions produced by the

multiple integrations of a constant function was designed and refined by Dr. Lawrence

and the DA Team. The aim was to create a visual interpretation of the relationship

between first, second and third order polynomials in terms of their rates of change

so that elementary algebra and first-level calculus students can better understand

the nature of these functions. The goal of the exercise was to highlight the fact

that a cubic function has a quadratic rate of change, a quadratic function has a

linear rate of change, and a linear function has a constant rate of change. Moreover,

to do so without formally defining a derivative was an underlying theme, at least

for elementary algebra students. Experiments with such exercises has proved to be

exciting and fun for both the students and the professor. It was a nice change of pace

from the classroom norm and also proved to be very beneficial to the operators.

4.3. SCALING A DIFFERENTIAL EQUATION IN THE SIMPLE

LINEAR CASE

One very important test that an operator should be familiar with is the circle

test. The objective of the circle test is to get an output table to graph a circle so that
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an order of error may be established within some interval of the independent variable.

More specifically, we need to find an equation whose solution is a circle. Because the

circle is not a function we need to find some other relation that is. The differential

equation

y′′ = −y

or simple harmonic motion, has a general solution given by

y(t) = A0 cos(t) +B0 sin(t),

where A0 and B0 are constants. Furthermore, if we impose the initial conditions

y′′(0) = 0 and y′(0) = 1, then we get the particular solution

y(t) = sin(t).

Because the phase plot of y vs y′ is sin(t) vs cos(t), we can use the output table to plot

the two given functions of t in a parametrical plot. As it is a well known fact that these

parametric equations produce a circle, simple harmonic motion is the best candidate

equation for the circle test. Specifically, the circle test compares to the graph of the

unit circle, where the critical values of the phase plot for y′′ = −y corresponds to

the four intercepts of the unit circle with the axis in a Cartesian coordinate system.

Moreover, a very nice trigonometric exercise for pre-calculus students is to begin by

taking the general solution

y1(t) = A0 cos(t) +B0 sin(t)

and differentiate it once yielding

y′1(t) = B0 cos(t)− A0 sin(t).
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Using the algebraic relation of a circle

x2 + y2 = r2

substitute x = y1(t) and y = y′1(t) to obtain an expression of the form

(sin(t))2 + (cos(t))2 =
1

A2
0 +B2

0

= r2.

Now one can truly see that this phase plot is still a circle with different radii corre-

sponding to different initial conditions. Any linear combination of sin(t) and cos(t)

plotted against its rate of change will be a circle where the values of A0 and B0 deter-

mine the size of the circle’s radius. So this exercise can relate concepts of trigonometry

with calculus preparation. For this exercise, the differential analyzer provides a vi-

sualization of the process when the initial conditions are changed, thus changing the

values of A0, and B0. The Marshall DA Team has had much success with demonstra-

tions of this type for pre-calculus students, an added bonus of the circle test, which

was designed for purposes of mechanical error detection.

Forcing an output table to graph a circle will provide insight (i.e., mechanical

accuracy) into the accuracy of two integrators, a half section of interconnection and

an output table. If the circle is drawn through 2π unit turns of the independent

variable and there is no discernable difference from where the circle begins and ends,

an operator is assured that within one period of a solution the machine has produced

minimal mechanical errors. Moreover, in general, the two integrator wheels have each

passed through the center twice without slippage and without backlash in the gear

trains. The process may be continued for any number of periods. If the circle contin-

ues to draw over itself, then the components being used offer minimum mechanical

errors for the given number of periods. In practice, the error in the circle test will

depend on the sophistication of the parts being used. With Meccano, elimination of
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Figure 4.4. Schematic diagram y′′ = −y, or simple harmonic motion. In this case,
the output is parametric plot of a circle.

backlash altogether is not feasible. However, because the errors are mechanical, they

may be accounted for as they occur in “real time.” The addition of frontlash units

greatly reduces the effect of backlash. The use of these units resulted in an error in

Bush’s machine of 1 part in 10,000. The Manchester machine, built of Meccano, had

frontlash units, and the error was measured to be 1 part in 1000 of a unit. For “Art,”

which does not have frontlash units, the error is a little better than 1 part in 100.

That is, a little over two full shaft rotations of the counter for each integrator per

period. Figure 4.4 is the schematic diagram for simple harmonic motion. Notice that

the values on top of the integrator correspond to the initial values for each integrator
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at t = 0. This diagram is called a general schematic because it does not introduce any

scale factors. Moreover, any time the scaling of a differential equation is not clear, it is

best to create three different schematics: a general schematic, an algebraic schematic

and a final schematic with scale factors. In the general schematic, we consider the

differential equation without scale factors so that the basic connections for each of

the integrators involved can be determined at an early stage. We can see at this

point that at least two integrators are required because the DE is second order. For

the section of interconnection, cross-shafts are represented by horizontal lines and

component bus-shafts are vertical lines. Note that the connection of a component

bus-shaft to a cross-shaft in the section is denoted by a darkened dot and an open

circle-dot represents a sign change within the direct drive connection. Changing signs

schematically is a matter of notation. (Here we are using an open circled dot to de-

note a sign change.) But in practice changing sign means opposite rotation. So there

is no need to consider clockwise or counterclockwise rotations in order to determine

whether a shaft has been negated. Simply observe: If the two shafts are spinning

in opposite directions, there exists a negation of sign between them. Furthermore, a

1:1 gear train preserves magnitude but reverses direction in practice. It is not always

necessary to keep track of all gear train negations schematically. Just to be sure that

a quantity is indeed negative, diagrammatically, any such quantity will be represented

with a minus sign in the labeling of its cross-shafts in the schematic.

As mentioned earlier, the solving of differential equations with a differential

analyzer is a term-wise reduction of derivative process. The idea is to start with the

highest order derivative y(n), pass that motion through an integrator to get y(n−1) and

repeat this process until the dependent variable is obtained. The differential equation

itself will establish equality by explicitly relating the highest order derivative with

the other terms in the differential equation. The equality in the machine is made

by connecting two shafts together as needed. If there exist any terms other than
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the dependent variable, its derivatives, and the independent variable, such as non-

homogeneities or nonlinearities, those terms must be generated by other means that

will be discussed later. Other nonlinear terms include any type of products, nonlinear

or other-wise. Simple harmonic motion is an example with simple terms, but its setup

is fundamental to the operation of a differential analyzer.

To create the Bush schematic, first notice that the DE is linear. On the machine

this means that all integration is with respect to the same independent variable,

t. Hence, the t shaft is the first labeled cross-shaft and it runs along the section

connected to the differential shafts of both integrators involved (t is also the primary

motor drive). Observe that the second bus-shaft is labeled

d2y

dt2
.

Using the second bus-shaft is convenient because this term is the highest order deriva-

tive term in the DE, and solving the DE is a termwise process. However, note that

we could have just as well called it y. We could solve an equivalent integral equation

that describes the same rates of change as the original DE, as

d2y

dt2
= −y

is equivalent to

y = −
∫ ∫

ydtdt.

In fact sometimes it is more convenient to do so because this reduces the order of the

DE by one, implying the number of integrators needed to solve a particular DE is

decreased by one. But in this example we will continue in the general case of using

the highest order derivative, as changing the original form does not help.
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Starting with the highest order derivative

d2y

dt2
,

we send this motion into Integrator 1’s integrand input shaft. Hence, the output is

the integral of that with respect to t, by the Fundamental Theorem of Calculus, the

output is

dy

dt
= y′.

This motion is in turn sent to Integrator 2’s integrand shaft and gets integrated

with respect to t, to yield y. Then from the output of Integrator 2 the motion

passes through a 1:1 train of gears reversing the direction of motion of that shaft and

essentially becoming a negative value with the same magnitude. From the differential

equation itself we know that the second derivative of y must always be equal to the

opposite of y. Hence, the cross-shaft labeled −y is directly connected to the cross-

shaft labeled y′′. This, as the DA Team likes to say, “completes the circuit.” The

“circuit” represents the statement of equality. That is, representing the differential

equation itself. Now, if we so desire, we may plot any two quantities available in the

section. Because we want the machine to draw a circle and we know the solution

to the differential equation with the given initial conditions is y(t) = sin(t), we will

plot the solution y against its derivative y′. Because, d(sin(t))
dt

= cos(t) the parametric

phase plot therein will force the output table to draw a circle (See Figure 4.4.).

The second schematic for simple harmonic motion is one that includes algebraic

scale factors and disregards sign. Because we have a general idea of where the motion

needs to be reversed to yield the sign change, we can leave it out here because now we

are concerned primarily with the magnitude of the shafts. So referring to Figure 4.5,

we see a much more elaborate schematic of the same equation. We start by labeling

the independent variable shaft At, for A turns of the t shaft. Next we label the second
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Figure 4.5. Basic algebraic schematic diagram of simple harmonic motion.

derivative shaft as By′′ for B turns of that shaft. Formally, A is defined to be the

number of unit turns in the independent variable shaft and B is the number of unit

turns of the highest order derivative shaft. All other shafts available in the section

will be relative to these two shafts. Thinking about the operations mechanically, the

first two inputs of Integrator 1 yield an output relative to the constants A and B.

Then the two inputs of Integrator 2 are relative to the output of Integrator 1 and the

independent variable, so that Integrator 2 yields an output in terms of the constants

A and B as well.

In a mathematical context, we have the output of Integrator 1 being

∫
By′′d(At) =

AB

I
y′.
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Remember that upon every integration, the integral quantity is multiplied by the inte-

grator constant I∗, or equivalently, divided by the Unity of an integrator, I due to the

reduction gears of the mechanical integrator itself (I = a/(KP )=250). Taking that

output of Integrator 1 and integrating it yet again with respect to the independent

variable shaft gives ∫
AB

I
y′d(At) =

A2B

I2
y,

because we can pull out the constants A,B and I. Consequently if we want to

maintain the equality given by the differential equation, then this output of Integrator

2 must be connected to the shaft originally labeled By′′. So we have a new relation

given by the equality of the machine that must be maintained and be consistent with

the equality of the differential equation we want to solve. That is,

By′′ =
A2B

I2
.

It is easy to see that the relation for this equation that needs to be maintained must

be

B =
A2B

I2
.

As the equation is linear and homogenous in y we can, in a sense, reduce B in the

equality to yield A2 = I2 or A = I.

With respect to this relation, we have the suggestion to let A = 250, since 250

is the counter reading that represents the Unity of an integrator. However, reducing

B to 1 in the relation is not always the best approach because DE’s that are non-

homogenous, and especially those nonlinear, can have more complicated relations.

The next section is an attempt to quantify such nonlinear problems. Unfortunately,

scaling a differential equation on a differential analyzer is problem dependent. In

simple harmonic motion, not only are we working with a simple equation, but all
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information is known about the solution. Also, there are points of symmetry that

allow very simple scaling. For instance, we can gear down the outputs of both integra-

tors by the same amount and still maintain equality within the scale of the algebraic

factors. In this case, it is useful to use B in the relation so that we can increase the

value of A and still satisfy the condition in the relation. However, in doing so, one

will change the scale of Unity among the various components of the machine. Let’s

return to the case of simple scaling, that is, when A = 250 and B has been com-

pletely eliminated from the relation. Substitution of these values into our expression

yields a final schematic, Figure 4.6. This type of scaling will be called Unity scaling.

(Choosing an A value that inversely corresponds to the integrator constant.) When

the motions of the variable shafts are passed through an integrator, the integrator

constant reduces with the unit turns of the independent variable. This means that

the Unity of an output table and other components, as well as the integrators, have

the common value of I = 250. Notice that if we disregard the choice of B in the final

schematic (Figure 4.6) we will obtain a plot of 1 ∗ y vs 1 ∗ y′. There is a slight ambi-

guity in doing so. By reducing B in an analytical sense, we have inadvertently lost

information about the unit turns in the dependent variable y, in a mechanical sense.

The issue is: a coefficient of 1y in the section yields a value of Unity on the output

table of 250 shaft rotations being one unit. This is due to the Unity of the integrator

being 250. In order to maintain consistency between the various components, we will

not reduce B in the schematic. We will let B = 250, so that now in the schematic we

have a plot with coefficients 250y vs 250y′ on the output table (See Figure 4.6). Now

we have a nice mathematical comparison between the unit variable on the machine

and one unit in a pure mathematical sense (250=1). The reader should be very aware

that this nice property only exists for certain classes of linear ODE’s (autonomous).

So when an algebraic scale factor is reducible, an operator should not disregard its

existence. An operator should instead note that the relation of equality in the DE



132

Figure 4.6. Final schematic diagram of simple harmonic motion.

doesn’t depend explicitly on that factor. However, within the interconnections of the

machine, that factor may still be useful and must be accounted for in the plot and

various components such as an integrator.

This usage of the relation with the algebraic scale factors is due to Crank [6]. He

gives a very similar example, although, on the Cambridge machine it was necessary to

gear down the outputs for mechanical reasons (due to torque amplification). So in his

example he basically let A = 8 ∗ I and let B = I, to allow the B value to reduce the

Unity of the integrator and the A value to reduce the gear trains and still satisfy the

relation of equality in the machine. So the question arises, which scaling is better?

The answer is, whatever scaling provides the maximum use of the full range of the

various components, most importantly the integrator disk, while still maintaining the

equality of the relation. In the Cambridge machine, it was necessary for this problem
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to be scaled in such a way for mechanical purposes and maximum range. Although

the interesting point of fact in Crank’s example is the coefficients of the plot. When

this problem is scaled in this way the plot of y vs y′ has the coefficients of 4I ∗ y vs

4I ∗y′. This plot is certainly still a circle for reasons of symmetry. Keep in mind that

this is a phase plot, and, as long as both inputs of the output table have the same

gearing coefficient, the graph maintains its original properties. But the relevance

of these scale factors, with respect to unity, is what is in question. (If the reader is

interested in reading the Crank example, (See page 39-49, [6]), it should be noted that

his scale factors are in terms of variable shaft rotations and ours are in referenced

counter revolution readings.)

Scaling “Art” as Crank did the Cambridge machine in his paper, would yield a

plot of 1000y vs 1000y′, A = 2000, and B = 250. Furthermore having set our initial

conditions to y′′(0) = 0 and y′(0) = 250, (numerical values are counter readings

here and remember 250=1 analytically), then we get a circle of radius 1000 (counter

reading). Analytically speaking, our circle should be the unit circle, so the radius

should be one (250=I=1), since the particular solution is y(t) = sin(t). However, our

radius is 4 ∗ I = 1000 because we have expanded the scale of Unity on the output

table by four times our I value. At this point we should define the difference between

scaling down and scaling up. Scaling up is increasing the unit variable coefficients,

or zooming in on a window. Scaling down is decreasing the unit variable coefficients,

or zooming out on the window. The window is the plotting surface of the output

table. Note that scaling up or down is not generally consistent with the convention of

gearing up and down, since gearing up and down may take place in various components

resulting in different consequences of numerical magnitude.

One could chose to plot 1000y vs 1000y′, to follow Crank’s example, but one can

just as easily plot off any two shafts that are representative of y and y′, respectively.

That is, we could have chosen to to plot 500y vs 500y′, resulting in a circle of radius
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500. (We actually need this plot because our table range is too small otherwise.) If

500y and 500y′ are available among the various cross-shafts in the section of inter-

connection we can choose these two. These alternatively scaled algebraic and final

schematics are depicted in Figures 4.7 and 4.8, respectively. These algebraic schemat-

ics are different due to the fact that each integrator must be sufficiently geared down

in order to maintain machine equality. This gearing down by 8 is clear from the

newly established relation of equality in Figure 4.7. Substituting A = 2000, B = 250

and n1 = n2 = 8 into the relation of equality in Figure 4.7 yields the final schematic

Figure 4.8.

There are good reasons for doing a test of this type, not only for analysis of me-

chanical errors, but for clarification of scaling freedom. For mechanical error analysis,

the expanded scale coincides with the results on the output table, which is maximum

at a coefficient of 1000 for the circle test. That is, the circle drawn with radius 500

is the biggest circle that can be drawn on an output table of this size. So the test is

an extreme case scenario for mechanical errors in the plotting table itself. Moreover,

because both integrator outputs pass through several gear trains and are geared down

at that, they are, as well, at an extreme case scenario for backlash. Moreover, for

the process of scaling, this example provides many cases for different conventions of

Unity.

Notice that if we take 2000 to be our unit for both independent and dependent

variables, then the scale on the output table is scaled up. Also plotting 500y vs

500y′ is beyond the maximum range for the window of observation on the Output

Table. An availability for 2000 shaft rotations does not exist on the plotting surface.

However, all one needs to do, to a reading on the output table counter, is multiply

that reading by 4 to achieve the proper value in terms of one unit. Hence, the plot is

of the form 1
4
y vs 1

4
y′, in an analytical sense. That being said, one could also simply

divide a counter reading taken from the output table by 500 in order to obtain an
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Figure 4.7. Algebraic schematic diagram of simple harmonic motion with the intro-
duction of the gear trains, n1 and n2.

analytical value at that point. Moreover, dividing out the coefficient of a particular

shaft is best so that only one calculation is needed to get analytical results. So this

difference is not severe at this point. But what can be said about the Unity of an

integrator? For now it remains at the previously established convention I = 250. And

in this case of Scale Folding, we are saying the convention of Unity on an integrator

is different from the value of a unit in the independent and dependent variable and

the Unity of the output table. Note that the Unity of the independent variable is
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Figure 4.8. Final schematic diagram of simple harmonic motion with added gear
trains, where n1 = n2 = 8.

formally the number of turns that shaft turns to get to one unit. So if that unit

variable shaft is geared down independent of the integrator connections, so as not to

affect the differential shafts of the integrators, then we have a new representative for

the independent variable with a smaller value for one unit.

On the output table we can plot off of this smaller value and take smaller incre-

ments of one unit per shaft rotation. Conceptually, gearing down a shaft coefficient

is the same for the dependent variable as it is for the independent variable shaft.
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(This is what we have done in this last example.) For an integrator it is clear that

its Unity need not be the same as other component unities. Because the Unity of an

integrator is defined as the value at which the integrand shaft needs to be to provide

a one-to-one correspondence between the differential and integral shafts. Note that

the independent variable and differential shaft are not always the same. In the case

of linear differential equations, the independent variable shaft turns the differential

shafts of the integrators involved. So the value of Unity of an integrator isn’t nec-

essarily the same as the independent variable shafts unit value A. The Unity of the

independent variable is established for a specific differential equation that is to be

solved. Otherwise it’s just a drive shaft. The choice of the scale factor A is made to

maintain the equality of the relation described by the differential equation and to fold

the scale as needed to provide a good window of observation on the plotting surface

of an output table. The Unity of the output table is always relative to the value of

the unit variable and the Unity of an integrator. The key factor is to establish a

convention before plotting the solution. Even then some adjustments of the A value

and B value may be needed.

One of the best ways to keep track of the different scales on the differential

analyzer is to have two separate but equivalent equations: an analytical equation and

a machine equation. The analytical equation is the pure mathematical equation, the

differential equation. The machine equation is the differential equation in terms of

the scaling of the machine. In the above example, we have the analytical equation

y′′ = −y

and the machine equation

250y′′ = −250y
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that is, of course, the same; but in the latter of the two, we have a scale factor on both

sides of the equation, namely 250, that ensures the differential analyzer is solving the

particular differential equation of interest. It is no surprise that the value 250, which

is the value of B, and the value of Unity for an integrator appears in the machine

equation. For linear homogenous differential equations, the value of B will reduce,

and its significance is diminished. This is not to say the algebraic scale factors are not

useful because they provide a baseline for the selection of scale convention. Moreover,

if B is reduced then the freedom of scaling is simplified to Unity Scaling to an extent

where the choice of B will always be the same as the Unity value of the integrator

and the relation of equality in the differential analyzer is always maintained. But

the introduction of such a concept will provide insight to more scaling options such

as folding the scale or scaling down an integrator disk. When doing so, remember

the scale factor B need not be reduced. A complete algorithmic method of scaling

the machine is not available here for differential equations of all classifications, but

analysis of this type is the ground work for such generalizations.

4.4. SCALING THE INTEGRATOR

Strictly speaking the Unity of an integrator may be manipulated in two different

ways. The first of which, being the most straight forward, is literally change the re-

duction gears that define the Unity of an integrator. For example, on “ART” we have

K = 2/5. If we add another reduction gear of say 1/2 then our new value is K = 1/5.

By doing this we have changed the Unity of an integrator to I = 500, or scaled up

by 2. It is often useful to do so for reasons of accuracy. For example, if our initial

condition is a small fraction, then we may have available more finite points which

will result in better precision accuracy of the wheel measurements. Now granted, all

real numbers between 0 and 1 are available on the surface of the disk, because there

are infinitely many concentric circles on top of the disk. Furthermore, all values in
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between are theoretically measured by the wheel. But, in practice, it is always better

to utilize the full range of the integrator disk as there might exist large scale incon-

sistencies within the derivative or integrand shaft of that integrator when not doing

so. These inconsistencies could result from the integrand shaft being turned at a rate

significantly faster than the speed of the primary drive motor. Analogously, this type

of error-effect could be duplicated if the scale on top of the disk is drastically scaled

up relative to the shaft coefficient of the primary motor drive. Moreover, in order to

feasibly measure some small fraction in an initial condition, a priori or posteriori, it

needs to correspond to a counter reading. If the fraction does not correspond to a

single rotation of the counter, then the operator is forced to approximate that value

by turning the counter through some portion of a digit on the counter.

Using the gearing of the counter, when I = 250, a reading of 001 is .3 shaft

rotations of the lead-screw. If the Unity equals 500, and we want an initial condition

of y′(0) = .25, this would correspond to the counter reading 125, as opposed to 62.5.

So when scaling in this way we can often get precisely measured initial conditions as

well, since we are counting by increments of (1/500) instead of (1/250). Furthermore,

this concept can be extended to any such fraction where the range of the disk equals

any such fraction between 0 and 1. Note that the Unity of the integrator in a case

such as this would not be available in the range of the disk as its value is well beyond

that of 500 (the max range of an integrator disk). This method of changing the Unity

directly is great for scaling up or increasing the Unity value. However, if we want to

go in the other direction and scale down to get a smaller Unity value, the method

is not sufficient for smooth mechanical operation because that would involve gearing

up and could overload the torque amplifiers.

For the case of changing the Unity to a smaller value we chose a more complex

method: absorption of Scale Factors, or Absorption Scaling. Note that by defining

the scale factor B, the Unity of the dependent variable, we can manipulate B to
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change the Unity of an integrator. If the integrand shaft is a variable shaft in y,

then changing its value changes the Unity of the dependent variable. In our previous

example, we have y as a function of t. Ultimately, all variable shafts are functions of

t or composite functions of t, but when scaling down the integrator we strictly need

to consider the variable that is represented by the integrand shaft. Looking back, our

previous example had a machine equation of 250y′′ = −250y, withA = 2000, B = 250.

The value of B corresponds to one unit in the variable y′′, and our integrator has a

Unity value equal to that of B = 250. This was by design: we choose B = 250 so

that there wasn’t any discrepancy with the Unity of the dependent variable and the

Unity of the integrator. However, since the B value is directly affecting the turns

of the integrand shaft and the integrand shaft itself is a variable in y, specifically,

y′′. The B value may or may not equal the formerly defined Unity of an integrator.

If B does not equal the Unity of an integrator, then our integrator constant is not

completely reduced through the multiple integrations required to solve the differential

equation. Due to the fact that the Unity of an integrator is independent of the Unity

of the independent and dependent variables, the Unity of the dependent variable be

manipulated by a choice of B. In doing so, one must take into account the integrator

constant. For each subsequent integration, the integral quantity is multiplied by the

integrator constant that has value equal to the multiplicative inverse of the Unity of

an integrator. As this is the case, in our example of simple scaling, we chose B = 250,

despite the irrelevance of the B value for that scale. By doing so we can also keep

track of the Unity of the dependent variable for that scale, which is imperative when

working with un-unified scales.

Changing the value of B to scale down an integrator is called Absorption Scaling

because, in changing B, a factor is in essence absorbed into the Unity of an integrator.

This absorption factor is I
B

and that value is essentially multiplied in the reduction

gearing of the integrator to yield a smaller value of Unity. Let’s say we want to
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have an initial condition of y′′(0) = 5. If I = 250 then we would have to set the

initial displacement of that integrator to a value of 1250, which is not available on

the disk (maximum 500). So we let B = I
5

= 50, to we have a new Unity of that

integrator, denoted by IB = 50. (Note that in this case the Unity of the integrator

and the integrator constant are not multiplicative inverses.) With this new value we

can obtain an initial condition of y′′(0) = 5 by setting the initial displacement to 250.

Moreover, we can get y′′(0) = 7 by setting the initial displacement to 350, and we

can go all the way to y′′(0) = 10 = 500.

Note that changing the B value doesn’t necessarily mean that the mechanical

interconnections within the section will have to be changed. However, what will cer-

tainly change is the scale coefficient of each individual cross-shaft within the section,

which will in turn affect the output and change the coefficients of the plot. For ex-

ample, letting A = 2000 and B = 50 in the general algebraic schematic in Figure 4.7

will yield final schematic diagram Figure 4.9. Take care in noting that our machine

equation is

50y′′ = −50y

so that machine equality still satisfies the equality given by the analytical equation.

Also notice the each cross-shaft other than the independent variable has a coefficient

value 5 times less than the coefficient values of the schematic diagram in Figure 4.8.

Additionally, the coefficient of the y′ shaft that feeds Integrator 2’s integrand shaft

is 50. This insures the scale of Unity for that integrator is also 50, as is the case for

Integrator 1.

In this setup it will be more convenient to plot the coefficient shafts 200t vs

200y. One reason is we can now see the solution against the independent variable t.

In doing this we can devise a test that will determine whether our scaling intuition

is valid. We know the solution to y′′ = −y with y′′(0) = 0 and y′(0) = 1 is bounded
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Figure 4.9. Alternate Final schematic diagram of simple harmonic motion.

in y by [−1, 1], and also periodic for every 2π units of t. Furthermore, the distance

along the t-axis from 0 to the first t-intercept has the value π. If we take the machine

solution and measure the distance from 0 to the next intercept, measure the maximum

height and take the ratio of those two values we should get a value approximately

equal to π. Note that the machine initial conditions must be set to y′′(0) = 0 and

y′(0) = 50 and the plotting coefficient of the t and y shafts must be the same or

the test is meaningless. This particular consistency is necessary because we have
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scaled down both integrators to 50. Now 50 on the integrator is equivalent to one

analytically. This test was designed by Dr. Lawrence so that, no matter what scale

was chosen, one could always check to see that given the proper initial conditions

our scale was consistent with an analytical solution. When the DA Team did this

test for this particular setup, we got the value 3.142 ∼ π. By using a set of vernier

calipers to simply measure the distance on the graph we were able to calculate this

ratio. If we had used counter readings, our measurement would have been much more

accurate. Nonetheless, this tells us our scaling convention gives the same solution as

Unity Scaling does.

Another reason for choosing to plot 200t vs 200y is that the output table has

a maximum range of 1000 shaft rotations and values smaller than 200 will offer too

small a window of observation, at least for the π test. In other situations we can

vary the initial conditions and observe the qualitative effect on the solution. Because

we have available initial conditions ranging from 0 to 10 analytically, we must be

careful not to overshoot the range on the plotting surface. For example, if we have

a machine initial condition of y′(0) = 500, that is equivalent to saying we have an

analytical initial condition of y′(0) = 10. So analytically we know the solution now

ranges from -10 to 10. If our Unity on the output table is 200 turns per unit, this is

200∗10 = 2000. This range poses a problem as the maximum range of plotting surface

in the ordinate direction is 1000. In this case our pen will run off the surface of the

table (causing potential damage to various components). To avoid running off scale

an operator would need to be modest in the choice of Unity for the output table.

For this example, the choice is simplified because we know the analytical solution

and the effect of increasing the magnitude of initial condition. We will need to be

consistent with the value IB = 50, the scaled down Unity of an integrator, if we want

to run initial condition values at most equal to 10. However, if we don’t know the

solution, one must make a reasonable conjecture about the window of interest because
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there is this risk of running off scale if an initial condition results in an increase in

magnitude of dependent variable beyond the range of 1000 shaft rotations. In most

cases, choosing a scale will be clear in at most three tries, due to the observation of

the movable parts. One begins to learn how to predict the innate nature of differential

equations through mechanical intuition.

The scaling can be even more involved if one so desires to have different values

of Unity for different integrators. In this case one would need to use a combination

of Absorption Scaling and directly changing the reduction gear K for some other

integrator to scale it back up relative to the first. The final type of scaling is called

OverScaling. In the next section, we offer a special case of this type of scaling.

OverScaling occurs when one chooses the value of A in the independent variable

such that, after passing through an integrator, the value of the corresponding term

of the output is significantly larger than it needs to be to maintain machine equality.

That is, a composite number that can be factored to provide not only a scale factor

but also another factor to be used within the equality of the section to avoid gearing

up. In terms of mechanics, instead of gearing one quantity up we will instead gear

all quantities but one down. This type of scaling is very useful and in most cases

(besides the special case in the following sub-section) it will be used in combinations

with other types of scaling.

Simple Harmonic motion is a good example to use for the concept of scaling

because all information can be tested by comparisons to the actual solution which

is fully known in this case. Machine equality is the most important concept to re-

member when scaling the machine. No matter which type of scaling is of interest,

Unity Scaling, Scale Folding, AbsorptionScaling or OverScaling, machine equality

must be satisfied. In terms of plotting coefficients, the choice is entirely a matter of

preference to meet the needs of qualitative analysis. A plotting coefficient is merely a

window of observation. One doesn’t need to use the output table at all if the interests
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are of a quantitative nature because an operator can always divide a counter reading

by its shaft coefficient to get a true analytical value from it if machine equality is

satisfied, although it would be very uninteresting not to see the solution revealed

before your eyes.

4.5. “T”-SUBSTITUTION

The t-substitution technique was first introduced to the DA Team by Tim Robin-

son in preparation for the grand-opening of “Art.” It was necessary for Tim to utilize

this method because, at the time, “Art” couldn’t handle a gearing up by two. Since

then the servo-torque amplifiers have been redesigned by Tim, and they will drive

a gearing up by two although we rarely implement that capability. The method of

t-substitution is like OverScaling in that we let a choice of scale factor be more than

is required and use that factor instead of gearing up. But here we are strictly using

the premise of Unity Scaling. In doing so we can make inferences about the ana-

lytic equation by looking at the machine equation without the ambiguity of different

unities within the machine. In terms of algebraic scale factors, we let A = I, and

maintain that value of Unity throughout the independent and dependent variable,

the section, the integrators and the output table. Moreover, the machine equality is

exactly the same as the the analytic equation because we additionally reduce B in the

relation. Now we let the coefficients of all shafts be at Unity with the common value

of 250. This is the case of Unity Scaling and it only works nicely if B is reducible.

Because the whole machine is at Unity, we can disregard algebraic scale factors and

reference the independent variable shaft t with a coefficient of one. Now we want

to make a substitution for t; hence, let t = 2τ . Carrying this substitution through

one integrator, implies one factor of 2 is pulled out of the integration. Because the

machine is at Unity the integrator constant reduces, and we are left with 2 times the
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integral. Thus, we have available 2 times the original integral and that factor may be

used to gear up a certain quantity.

Consider the autonomous linear ODE

x′′ + 2x′ + x = 0.

To solve this equation on the differential analyzer we need to express the DE in a

form that explicitly defines the highest order derivative, that is

x′′ = −2x′ − x

and make a general schematic. Figure 4.10 is a general schematic that depicts the ba-

sic mechanical interconnections of the machine. Notice that here we have introduced

a new symbol for an adder. The symbol looks like a gear train box with a summa-

tion symbol within it. (Remember that an open circle represents a sign change in

the direct drive.) Also the two direct drives connections in the adder box represent

the inputs of the adder unit and the summation symbol represents the output of the

adder unit. Note here we are adding two things, so there are two inputs to the adder.

We may have as many as we need for multiple additions, in which case, another input

is available inside the adder box of the schematic diagram.

So the DE says the second derivative equals the opposite of the sum of twice the

first derivative and the dependent variable. We start with t feeding both differential

shafts for both integrators, as the DE is linear. Bus-shaft 2, labeled x′′, gets integrated

with respect to t. The output yields x′, then bus-shaft 3 goes through a 1:2 gear train

to become 2x′. Note the convention of the gear train box, 1:2 is a gear up and the

reverse of that is a gear down. It was established this way so an operator would know

which shaft is spinning faster. For instance, in this case, if bus-shaft 3 spins once then
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Figure 4.10. General schematic diagram x′′ = −2x′ − x.

bus-shaft 4 spins twice. Note, in addition to going through a gear train, bus-shaft 3

also is fed to the integrand shaft for Integrator 2, thus becoming bus-shaft 5, x. Now

an adder box is drawn so as to combine the motion of bus-shaft 4 and bus-shaft 5.

Bus-shaft 6 will represent the sum, so where normally a dot would represent its direct

drive connection, σ is in its stead. Notice the two open circle dots on bus-shaft 3, 4

and 5 denoting that the two quantities are negated within the direct drive connections

of the adder unit. The sum shaft or bus-shaft 6 is labeled −2x′−x. Finally, bus-shaft

6 is connected to bus shaft 2 so that we have x′′ = −2x′ − x.

This set-up will work fine if the torque amplifiers are not overloaded. It has

been the DA Team’s motto to avoid gearing up when possible as gearing up more

than a factor of 2 will overload the system and amplify mechanical errors. So we want



148

to solve this system and not have to gear up by 2 in the x′ term. We impose the t-

substitution by letting the independent variable shaft represent 2t. The schematic for

the t-substitution is given in Figure 4.11. The differential shafts of the two integrators

involved are now driven by 2t. Starting with bus-shaft 2, labeled x′′, the outcome

2x′, or bus-shaft 3 is then connected to the direct drive input of the adder box.

Additionally bus-shaft 3 is geared down 2:1 to provide x′ on bus-shaft 4. That shaft

is sent to the integrand input of Integrator 2, and the outcome is bus shaft 5, labeled

2x, because we are integrating with respect to 2t. Bus-shaft 5 gets geared down, 2:1,

and becomes x and then x, or bus-shaft 6, is sent to the adder box input. Thus, the

sum is created giving bus-shaft 7, labeled −2x′− x. Finally, bus-shaft 7 is connected

to bus-shaft 2, so that x′′ = −2x′ − x. This method of scaling is the t-substitution

and we have successfully represented the equality in the DE without gearing up but

instead gearing all quantities but one down.

To get a solution to this particular DE we need initial conditions that satisfy

it. So if we want a solution that starts at the origin we need initial conditions such

that x′′(0) = −2x′(0). Because it will be convenient to have a solution that starts out

increasing, we will use x′′(0) = −2 and x′(0) = 1. Analytically this gives the solution

te−t, and, if we want to maintain Unity within the output table, we need to be sure

to plot t vs x, which means we need to gear down the independent variable 2:1 in the

plot (See Figure 4.11).

It is interesting to note that the t-substitution is mechanically defined as gearing

quantities down instead of gearing one quantity up. So if we take a look at the

schematic diagram from a mechanical standpoint and disregard the t-substitution,

we can get a differential equation from it. Basically, taking the labeling from the bus-

shafts away, and starting with t for the independent variable, we can work through

the mechanical integrations to get the DE x′′ = −x′ − 1
4
x. In a mechanical sense,

the interconnections do not change from problem to problem. However, what does
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Figure 4.11. Schematic diagram of x′′ = −2x′ − x with a t-substitution.

change is the set of initial conditions that satisfy each of these. Remember that we

previously chose x′′(0) = −2 and x′(0) = 1. For this newly acquired DE those initial

conditions do not satisfy it for x(0) = 0. Moreover, the two DE’s have two different

general solutions, due to their auxiliary equations. So, in a mechanical sense, solving

x′′ = −x′− 1
4
x with a set of initial conditions that doesn’t satisfy its equality, yields a

particular solution to a similar yet still different DE whose equality does satisfy those

initial conditions. So an operator must be aware of the type of substitutions that
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were made and always make sure that if a solution to a particular DE is desired, then

the chosen initial conditions must satisfy the DE. Otherwise, we are not solving that

particular DE; we are solving another equation, whose equality is forced by a set of

initial conditions.

4.6. SOLVING A “STIFF” ODE

An example of a differential equation classified as “stiff” is

y′ = −30y.

This particular DE with initial conditions y′(0) = −10 and y(0) = 1
3

is numerically

unstable using RK4 with a step-size of .1. A rigorous analysis of this type of numer-

ical instability is beyond the scope of this discussion. Our goal is to solve this DE

with the given initial conditions with the differential analyzer and provide a different

perspective for finding a solution by a mechanical approximation method.

Clearly, this differential equation is solvable by the separation of variables method.

Given the set of initial conditions y′(0) = −10 and y(0) = 1
3

we find the particular

solution

y(t) =
1

3
exp{−30t}.

This particular solution will be helpful later when comparing quantitative values of

the machine solution and providing a numerical argument concerning the accuracy of

the machine.

We need to create a general schematic. First take note that it is not feasible to

gear up by 30. In this case, when creating a general schematic, the t-substitution is

used. In Figure 4.12, label bus shaft 1 as 30t and bus shaft 2 as y′. The output of bus

shaft 3 is 30y. We then connect bus shaft 3 to bus shaft 2 and we have y′ = −30y.
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Figure 4.12. General schematic diagram of y′ = −30y, an example of a “stiff” ODE.

Notice the open circle dot in the direct drive connection of that last shaft, so that we

send back a negative quantity into bus shaft 2. The interconnections are easy enough

and machine equality is achieved. Now a plot is needed. Because all components are

at Unity, I = 250, gearing down the t shaft by 30, independent of the interconnections

of the machine, is necessary. (This is achieved by using Integrator 2 as a reduction
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gear.) Similarly, for y, a gear down is also necessary so that we may have a plot of

t vs y. But notice that we can’t get an initial condition of y′(0) = −10 with the

common Unity value I = 250. So we need a way to do this and not change our Unity

scale. To do so, notice we have available in the section 30y. Because the equation

is linear and homogenous in y, we know that a scale on y will result in a similar

scaling of y′. So if we plot off 30y, we would be equivalently plotting just y with an

increased initial condition times 30. With that in mind, we set our initial condition to

−250 = 750 (since the counters are centered at the value of 0 and the numerals reset

after a reading of 1000, the reading is 1000-250=750) so that our ratio of integrator

disk to wheel is literally 1:1 but negatively correlated. Then we gear the output down

by 3, independently of the equality interconnections, so that we have available in

the section 10y. We obtain the plot of t vs 10y. We can think of this two ways, in

an analytical sense; We are plotting ten times the solution with an initial condition

of y′(0) = −1, or we are plotting the actual solution with and initial condition of

y′(0) = −10. Either way the analytical solution is the same because the second set

of initial conditions yields the solution

y(t) =
1

3
exp{−30t}

and the first set with y′(0) = −1 = −30y(0), implies y(0) = 1
30

which yields a

particular solution of y(t) = 1
30

exp{−30t}, but the right hand side multiplied by 10

gives the original solution

y(t) =
1

3
exp{−30t}.

So we can use the plot of t vs 10y to give an equivalent solution of t vs y

with y′(0) = −10, when we use the later of the two we can make an additional

inference about the DE by looking at the mechanical aspects of the interconnections

and disregarding the t-substitution, as we did in the last sub-section. In doing that
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we derive a similar but different differential equation that satisfies a different set of

initial conditions. That is y′ = −y, with y′(0) = −1 whose particular solution is

y(t, 0,−1) = exp{−t}.

Again we derive this alternate DE by observing the interconnections of the

schematic diagram and disregarding the t-substitution. We can look for differences in

the former and the later. The main difference is in the plot; note that the intercon-

nections of the schematic diagram do not change from equation to equation, but the

plot does. In the latter we don’t need to gear down either independent nor dependent

variable, but, in the former, we gear down t by 30 and y by 3. So one can conclude

that y is simply one third of y(t, 0,−1) at t = 30τ where τ is the independent variable

in the derived equation. So symbolically this looks like

y =
1

3
y(30t, 0,−1)

which can easily be verified analytically by letting y(t, 0,−1) = exp{−τ}, as we know

the explicit solutions of both DE’s. It is not shocking that these two solutions are

so closely related, especially after a quick look at the explicit solutions. However,

the point is that this kind of information can be obtained without knowing the so-

lution and by simply creating a general schematic diagram of the original DE one

can make theoretical generalizations. In fact, just constructing a general schematic

is a generalization in itself of a differential equation and in a very simple context. As

mentioned previously, assertions as those in this example seem simple because the

differential equation is linear and solvable. The idea is to expand on this analysis to

include different classes of nonlinear differential equations whose solutions don’t have

explicit forms. Although here we have simply scratched the surface on classifying

different types of differential equations, it should be stated that solving differential
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equations mechanically certainly provide an alternate perspective into the nature of

relating various rates of change in a differential equation.

As for the numerical instability using the RK4 method to solve this “stiff” DE,

the gear scaling taking place when solving the DE mechanically can provide some

insight. The underlying factor in solving this DE mechanically was gearing down the

independent variable by 30. This fact automatically suggests that very important

information is happening in increments taken in one thirtieth of one unit of time for

the independent variable. This point is even further illustrated given that the solution

is exponential decay. So when one implements the RK4 method at a step-size of .1,

there is no alternative. Information is lost with a jump that large. With reasonable

confidence, one would need at least a step-size of 1
30

= .0333.... to minimally capture

all the information in a differential equation with that large of a change in derivative.

However, this is simply a conjecture.

Solving differential equations using a differential analyzer doesn’t involve a step-

size, nor is there any subsequent round-off error embedded within the operations

while the solution is being calculated; which is why the differential analyzer is able

to solve this “stiff” DE with very little trouble. However, not employing a discretiza-

tion method is not to say that a differential analyzer is without error. In practice,

the differential analyzer can accumulate considerable error due to backlash when the

integrator wheel passes through zero, especially if there are no frontlash units. Fur-

thermore, there will always exist some play in the gear trains and this will increase

as the number of gear trains inserted increases. Granted, we try to minimize the me-

chanical errors as much as possible and we can determine the accuracy of the machine

by running various mechanical tests and accounting for those errors as they occur in

“real-time.” But in practice the solution is still an approximation. The goal here

is not to say that one approximation method is better than the other, because they

both have their strengths and weaknesses. Instead, we want to say that continuous
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analog computing and discrete digital computing are fundamentally different types

of approximations. What analog lacks in precision it makes up for in theory and con-

tinuous operations. And what digital lacks qualitatively it makes up for in precision

and efficiency. Both digital and analog methods have their own degrees of accuracy

and justifications therein. No doubt some combination of the two methods is the

“golden mean between two extremes” (Aristotle). It is always advantageous for one

to consider all available resources when challenged with solving a problem that seems

unsolvable.

We shall end our example with a theoretical justification of why the machine

solves this particular DE and back up this claim with a plot of the machine solution.

From a theoretical point of view we want to show that, as the mechanical errors are

minimized, the DA will plot the particular solution to our “stiff” example. So first we

will work under the assumption that there are no mechanical errors. That is, there

exists absolutely no slippage between wheel and disk, and backlash is completely

eliminated with the gear trains when the wheel passes through zero. Since in the

last section we proved the function f that is the integrand shaft is always Riemann

integrable, so we can construct the solution y of the DE in the form

y =

∫
−30ydt

where y = f(t). (Consider the schematic Figure 4.12.) So upon substitution of this

expression for y into the differential equation we see that

d

dt
y =

d

dt
(−30

∫
y(t))dt = −30y



156

is a true statement. We also need to show that the given set of initial conditions also

satisfies the differential equation. So we must have that

y′(0) = −30y(0)

where y′(0) = −10 and y(0) = 1
3
. We can easily see that these initial conditions also

provide a true statement. Now we can be sure, in a theoretical context, that the

machine solution y is indeed the solution to the DE given these assumptions.

This type of mathematical justification can be seen formally, in its original form,

in a paper written by James Thomson, and Lord Kelvin in 1887 [15] the inventors of

the disk-globe integrator. In their paper, they generalize this concept to include linear

homogeneous nth order differential equations and show that their calculation machine

will always provide solutions in all cases of this type. On a historical note, Thomson

and Lord Kelvin couldn’t realize the full extent of their invention because torque

amplification was not feasible in that time period. It wasn’t until Bush realized how

this could be done and extended the idea to build a differential analyzer that found

mechanical solutions of problems of a nonlinear nature. Because of the invention

of the mechanical torque amplifier by Bush and Niemann, a differential analyzer is

able to solve nonlinear problems. Furthermore, with the advent of Servo-mechanisms,

due to Arthur Porter, used to amplify torque, the use of differential analyzers was

spread over a large range of scientific communities. It’s interesting to note that in

the days of Porter, Hartree, and Bush, differential analyzers were used primarily by

physicists, whose concerns were of a quantitative and practical nature as opposed to a

qualitative and theoretical one. At the present time with the implementation of Tim

Robinson’s servo-torque amplifier, a differential analyzer, namely “Art”, now rests in

the hands of a group of mathematicians, the Marshall DA Team. So opportunity is
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now available for a more qualitative and theoretical study of mechanical integration

(in a continuous context) to be extended to the nonlinear case.

From the practical and quantitative stand point, nothing accredits the accuracy

of an approximation method quite like a solution plot. Additionally, a comparison

of the raw data obtained from the approximation and the precise analytical values

of the exact solution can be made. To do so, we need to first plot the solution and

take counter readings at increments of say 100 on the counter, then find out what

analytical value these t-values corresponds to. Simply divide counter readings by the

scale constant on the t-shaft, then take those corresponding analytical t-values and

evaluate them in the explicit form of the solution, that is

y(t) =
1

3
exp{−30t}.

We can see that using the t-substitution is not a good choice for scaling, as the plot

covers less than 0.1% of the entire plotting surface, or in other words, it’s zoomed out

too much. With that fact under consideration we will choose a form of combination

scaling with Scale Folding and Asorption Scaling.

Two separate schematics, the algebraic and the final, are available in Figures

4.13 and 4.14. Upon the introduction of the algebraic scale factors in the schematic,

Figure 4.13, we derive the relation

A = 30 ∗ n ∗ I

where n is the gear train that gears down the output of the integrator. The value of

n may also be interpreted as the factor by which the graph is scale folded. We let

n = 6 because 6 is a factor of 30, and 30 will reduce nicely among the subsequent

integrations along with integrator constant factor. Also scaling up by 6 will suffice
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in finding a desirable window of interest. (It’s essentially zoomed in by 6.) So A =

30 ∗ 6 ∗ 250 = 45000. Next we need a choice for B. Since we need to scale the initial

condition in y, namely y′(0) = −10, we should scale B down by a factor of 5 from

Unity. From those facts, we can see that the value for B should be 250/5 = 50 so

we set the initial position of the integrator to -500 and that will correspond to the

analytical value of -10. So letting A = 45000 and B = 50 in Figure 4.13 yields the

final schematic Figure 4.14. Note that in the plot the coefficients are 4500t vs 1500y.

This implies we have geared down the t-shaft by 10 independently of the mechanical

interconnections that represent equality. So now the initial condition y(0) needs to

be set on the output table so that it will correspond to the y-intercept in the solution.

We know y(0) = 1/3, so, as 1500 represents 1 unit in y on the output table (only),

we have that 1500/3 = 500, which is where the initial y position needs to be at a

machine distance of 500 on the counter from the axis origin. Now all components are

consistent with the scaling factors, we have a machine equation of

50Y ′ = −1500Y

with initial conditions Y ′(0) = −500 and Y (0) = 500.

In practice it is useful to denote the machine equation by Y so that we can

separate it from the analytical denotation y. Both notations are consistent with

their initial conditions. The solution plot is available in Appendix (ap7). Note that

corresponding y-values can be calculated by taking counter readings and dividing each

reading by its shaft coefficient. For this plot, several random Y -values were taken for

corresponding T -values, then compared to the same value in the analytical solution.

We found that the difference between Y -values and y-values, for the corresponding

T and t values were approximately 0.001. This would be a compelling argument

from data analysis that the mechanical approximation of this solution has order of
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Figure 4.13. Algebraic schematic diagram of the “stiff” ODE. Note: the relation of

equality is B = 30AB
250n1

.

magnitude of error in the thousandths of a decimal place, at least on a closed t-

domain of [0, 1
2
]. This is quite accurate considering the “stiffness” of the DE and the

fact that “Ar”t is built from Meccano parts without frontlash units. One reason for

this accuracy is that the integrator wheel never passes through zero, since the solution

is monotonic and decreasing. This also implies that gear backlash is minimized for the

same reasons. Additionally, the scale has been expanded so that the counter readings

are taken in small increments of corresponding shaft rotations. Moreover, in terms of

mechanics, the machine simply operates smoothly when things are geared down.

One need not confuse increments of a counter reading with a step-size; they are

entirely different concepts. The difference is that counter readings are not just integer

values; they are sets of real numbers. We just like them to be integer values because
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Figure 4.14. Final schematic diagram of y′ = −30y.

then we don’t need to estimate the reading with the naked eye for some portion of a

turn in the counter. So, to this end, one could simply gear up the counter to yield

better precision, giving the machine more precision accuracy. But gearing up makes

the counter turn very fast. A better way is to have a fine adjustment on the counter

where increments of portions of counter readings could be better measured. The

accuracy alone in the approximation would essentially stay the same because analog
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computers like the differential analyzer are continuous in nature. The movable parts

are what produce error, unlike digital discrete approximations taken at increments

with high precision. There is a clear difference between precision and accuracy as

usually more of one leads to less of the other. A differential analyzer focuses primarily

on the accuracy in the approximation by taking sets of exact measurements in the real

numbers. In doing so, there is a loss in precision, at least in practice, because a realistic

measurement can only be as accurate as the device used in taking the measurement.

The key point of fact is the turning of the wheel as it rests on the surface of the

disk can measure values that are unrealistically small because there exist arbitrary

small partitions of the surface of the disk through any degree of a portion of a turn.

Theoretically, we can always find a refinement of that partition and another refinement

of the last refinement, which is the meaning of an unrealistically small measurement;

an arbitrarily small refinement of a partition. Because the wheel is literally turned

by the disk through friction, provided there is absolutely no slippage, the wheel is

forced to roll over all arbitrarily small refinements contained in that portion of a turn.

So we know, theoretically, that the wheel’s rotation covers all the arbitrarily small

measurements in between. One could argue that, theoretically speaking, the surface

that is the edge of the wheel can only have a countable number of measurable points

on it. Then the distance between any of those two points would have no measurement

relative to the wheel’s rotation, so the smallest measurement of distance on the edge

of the wheel is indeed an arbitrarily small distance relative to what is defined as “the

smallest measurement” on the machine. Relative measurements is how the machine

is able to obtain very good accuracy with lack of precision.

An Analogy would better illustrate the point. Suppose a carpenter uses a cheap

tape measure to find the distance along a wall. After measuring and cutting a board

that needs to be nailed along this wall, the carpenter finds that the board is three

inches too long. Unknowingly, the carpenter misplaces the cheap tape measure. The
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carpenter instead uses a very expensive set of vernier calipers, that measures to thou-

sandths of an inch, to make the three-inch cut mark on the board. Upon hanging the

board along the wall, the carpenter notices that the board is not of the right length,

although a set of very precise vernier calipers was used in the cut. Recall that the

carpenter originally used the cheap tape measure to determine the distance along the

wall. The reason the board is not of the right length is because the wall measurement

is relative to a measurement taken with the tape measure. The carpenter should have

found the misplaced tape measure to make the three-inch cut mark regardless of the

fact that the calipers are a better measuring device. So accuracy can be preserved

independent of precision as long as the measurements being taken are relative to the

same scale.

Having lack of precision in practice must be accounted for when making math-

ematical inferences about the approximation, ultimately leading to conjectures of a

more theoretical nature. For example, in the solution of the “stiff” DE there is a point

when the wheel actually reaches zero. Analytically this is only possible in the limit as

t goes to infinity. In this case, in order to develop the theory, we would need to define

the point in which the wheel finally reaches zero as the limit. Theoretically, this is as

simple as saying it. But, in practice, when approximating this value for the solution,

we would need to consider this value in terms of how precise our measurements are.

If our order of accuracy is in the thousandths of a unit, we could overestimate small

values of y for large values of t because the counter may not be able to provide a

precise enough measure of the arbitrarily small refinements at that point without

being significantly geared down. In this case, the value of the limit at a given t-value

would have the practical meaning of no further changes in the magnitude of y at the

limit value. This interpretation, in a sense, is a practical meaning of converging to

zero. So there is some information provided as to how this model would behave as it

naturally occurs in time.
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This type of argument is strictly from a mechanical perspective with the goal to

offer insight into the very abstract nature of a mechanical approximation technique.

We can see that a mechanical approximation is of a continuous nature. But with

this, in practice, we have a loss of precision. As to the difference between mechanical

and numerical approximations, the use of a step-size is the underlying degree of

separation. A more rigorous qualitative error analysis would require much more of a

numerical argument along with a stronger base of mechanical integration theory, and

the journey into that analysis will be saved for a later adventure.

This concludes the operations section. Keep in mind that the schematics in the

end of the Appendix include general, algebraic and final schematics, some with little

to no scaling mentioned and some with all aspects of scaling completely detailed.

Setting up the basic problems mentioned throughout this section is the first step in

learning how to use a differential analyzer. One should combine previous knowledge

of these basic problems with the new perspective provided by the differential ana-

lyzer. By consideration of mechanical tolerances and mathematical fact one can use

one’s intuition to extrapolate a personal interpretation of how mathematics relates

to mechanical interrelationships.



5. SETTING UP A NONLINEAR PROBLEM

This section outlines the setup for several nonlinear problems. Although “Art”

is limited in the range of nonlinear problems, this section will provide a means to

account for a broad range of nonlinearities that may occur in a differential equation.

Additionally, one particular differential equation, namely the nonlinear circuit, is set

up with a final schematic. This particular problem has been mentioned in [11] The

Theory of Differential Equations. The original study of this differential equation is due

to Ueda [11]. The goal is to solve this nonlinear problem, which would incorporate all

the various components of “Art,” and provide insight into solving nonlinear problems

on the machine, in general. Furthermore, a successful attempt to run this problem on

the machine and create an elaborate phase plot, specifically mentioned in Peterson

and Kelley’s Theory of Differential Equations, was made. All aspects of scaling are

mentioned in great detail along with an alternate scale using two more integrators.

5.1. GENERATING NON-HOMOGENEITIES WHEN SOLVING

ODE’S MECHANICALLY

To further expand the range of problems solvable by a differential analyzer,

we sometimes generate certain terms that may not be available from the subsequent

integrations of the highest order derivative. These terms are often non-homogeneities

that arise, for example, in a forcing function problem. A forcing function problem

is a differential equation, like dampened harmonic motion, where there exists a non-

homogeneous term that will contribute significantly to the qualitative nature of the

solution. That is, the forcing function will force a dampening effect on the solution

164
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curve for example. The example DE used in the description of t-substitution (in the

subsection of the previous section) was one such non-homogeneous term that was used

as part of a forcing function problem. The problem was created by Dr. Lawrence and

Tim Robinson for the Grand Opening of “Art”. The DE was dampened harmonic

motion that started from the trivial solution wherein a short lapse of time, the forcing

function effect, provided change into the system. Ultimately, the forcing function

would converge to zero and provide no further contribution to the system. The

result over a significantly large enough (or precision limit point) lapse of “time,” was

dampened harmonic motion at an initial condition equal to the point in the solution

at which the forcing function “converged” to zero. Afterwards, it was interesting to

take the plot of the solution and forcing function, then superimpose the two, so that

one can see the net effect that the forcing function had on the autonomous dampened

harmonic portion of the DE.

Since then, Dr. Lawrence has designed an exercise for her differential equa-

tions courses that she likes to call “Finding a DE For a Given Solution.” It involves

the concept of a forcing function. During the creation of the problem, it was neces-

sary to find a differential equation whose solution is the forcing function because, in

order to generate a non-homogeneity on the machine, one must solve a differential

equation whose solution is the particular non-homogeneity. So the exercise is, “here

is a solution, now find a DE that it satisfies.” The method involves taking one or

several derivatives of the function in question and algebraically manipulating those

expressions into an equation in terms of the derivative(s). For example, consider the

function

x(t) = t exp (−t).

Taking the first and second derivative yields

x′(t) = t(− exp (−t)) + exp (−t)
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and

x′′(t) = t exp (−t)− exp (−t)− exp (−t).

Notice that, if we add the function, its derivative, and its second derivative together,

we are left with an expression

t exp (−t)− exp (−t).

As this is the negative of the expression for x′, the sum of the function, its second

derivative, and twice its first derivative would be zero. So we can extrapolate the DE

x′′ + 2x′ + x = 0

from the expressions given for the derivatives.

Now that a DE whose solution is the non-homogenous term has been found,

an operator can input that function in one of two ways. The most accurate way is

to use extra integrators to generate the non-homogeneity. The process is to create a

Bush schematic that involves the differential equation without the non-homogeneity

and then create a Bush schematic that that solves a DE whose solution is the non-

homogeneity. The final step is to combine these two schematics by letting the solu-

tion to the DE, which generates the non-homogeneous term, be available for further

interconnection within the section; this will essentially complete the setup of the

entire DE. Mechanically, the output solution shaft of the DE that generates the non-

homogeneous term will, in turn, drive a main cross-shaft that helps complete the

interconnection on the primary DE we are trying to solve. The trick is, at least for

non-homogeneous linear equations, is to let the same independent variable shaft drive

the corresponding differential shafts of all integrators. Note that some care is needed

in solving a DE in this way because of the scaling. An operator must be sure that
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the simultaneous solution of the non-homogeneity and the autonomous part of the

differential equation are scaled similarly. If this is not the case, the two parts being

solved could inadvertently be relative to different independent variable scales. Alter-

natively, one might want to have the two on different scales, which is also possible

due to the nature of the non-homogeneity. One needs to keep track of all the scales

as a general rule to ensure that an operator doesn’t interpret the output improperly.

The second less accurate way to input a non-homogeneous term into the section

of interconnection is to use the input table that was described in the construction

section. One still needs to find a DE whose solution is the non-homogeneous term.

However, in this case one first obtains a plot of the solution on the surface of the

input table. Next set up the DE and connect the crankshaft on the input table to

the corresponding cross-shaft in the section. Then set all initial conditions including

those that would correspond to the input curve. Start the independent drive motor

and let the independent variable of the input curve drive the input table carriage.

Meanwhile, an operator stationed at the crankshaft turns the crank as needed to

keep the pointer reference in target with the curve on the input table. Note that the

independent variable of the solution to the DE need not be the same independent

variable of the input curve. For example, if we need to generate a non-homogeneity

such as ey, where y is a function of t, then we need to let a cross-shaft that represents y

drive the independent variable of the input table. All instances of scaling, when using

an input table, are of the same significance as using more integrators. Although the

input table is less accurate due to human error, it is still of great importance especially

from an educational point of view. The DA team has recently been experimenting

with solving differential equations on time scales, and, for this application, the input

table will prove to be very useful.

Either of the two ways may be used to solve non-homogeneous differential equa-

tions. Two examples are given in figures 5.1 and 5.2. Outlined in Figure 5.1 is the
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Figure 5.1. General schematic diagram of y′′ = 1
4
y′ − y + t exp(−t).

general schematic for the forcing function problem. In that setup two integrators

are being used to generate the non-homogeneity. Figure 5.2 schematically outlines

a problem that involves using the input table twice. This problem concerns the

calculation of train running times and was taken from Hartree [10]. One of the non-

homogeneities is fed using a normal input table. The other non-homogeneous term is

fed in the machine as discrete initial settings that correspond to the various positions

of the gradient of the terrain.
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Figure 5.2. General schematic diagram of the Train Running Problem; v′ = dv
dt

=
T−(R+r)
M+m

− g
n
.

Generating non-homogeneities is an integral part of solving more complex prob-

lems on a differential analyzer, and using integrators is certainly the most accurate

way to do so. However, if an operator is forced to use an input table, human error

is introduced. Due to this fact, quantitative information will usually not be very
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precise. But a qualitative study is possible if the mechanical restrictions are taken

into careful consideration.

5.2. GENERATING NONLINEARITIES AND SOLVING NONLINEAR

DIFFERENTIAL EQUATIONS

When solving nonlinear, non-homogeneous differential equations one needs to

use various combinations of the previously described methods with one most impor-

tant added feature: allowing the differential shafts of the integrators to be driven by

something other than the independent variable drive motor. This is the key difference

in solving nonlinear problems in terms of the differential analyzer. The number of

differential shafts that will have this property is unfortunately problem dependent,

but here we will give some general cases.

For example, if we want to generate a squared term, like y2, we want to use the

y shaft and connect it to both the integrand and differential shafts of an integrator.

So we have
∫
ydy = 1

2
y2, and thus y2 will be available for further interconnection.

Higher order exponents are similar, and proper choices of scale factors can reduce any

undesirable constants (See Figure 5.3 for y2 and Figure 5.4 for y3).

We can also integrate the product of two variables by integrating one with

respect to the integral of the other (See Figure ap5 in the Appendix).

Moreover, we can multiply two variables on the machine by using a variation of

the integration by parts formula. That is

∫
xdy = xy −

∫
ydx

or equivalently

xy =

∫
xdy +

∫
ydx.
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Figure 5.3. Schematic diagram: Generating y2, given y.

Then mechanically speaking, an operator can use an adder to sum the two integral

shafts to yield the product of two variables. This type of variable addition can also

be used in combinations if need be (See Figure 5.5 for the schematic diagram of the

multiplication of two variables).

The last case can occur when one needs to generate a non-homogeneous and

nonlinear composite function. Suppose we need to generate sin y where y is the

dependent variable in the differential equation. So we will need to produce a function

of y(t). Producing sin t is well known so this non-homogeneous term is set up first.

Then, independent of that, using subsequent integrations starting with the highest

order derivative of y with respect to t yields y. Let the shaft called y drive the

differential shafts for the simple harmonic setup you have established. The output in

the simple harmonic setup will be a function of y, where y has already been previously

established to be a function of t. Hence, we have available a nonlinear composite term

generated by the differential analyzer. This type of situation is necessary when solving
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Figure 5.4. Schematic diagram: Generating y3 given y.

a differential equation such as

y′′ = sin(y).

(See Figure 5.6 for a general schematic diagram of this DE.)

Some other examples given in the Appendix include the Lamar boundary value

problem as described in Crank [6]. Additionally, there are several schematic diagrams

for non-homogeneities, nonlinear or otherwise, that were mentioned in Crank (page

91 [6]). It should be mentioned that partial differential equations of certain types

have been solved on differential analyzers in the past. Although “ART” has yet to

solve a partial differential equation, implementation of the finite differences method

in finding solutions to partial differential equations using “Art” is of great interest to



173

 

Figure 5.5. Schematic diagram: Generating the product of two variables, xy (Inte-
gration by parts).

the DA Team. In the near future, the Marshall DA team foresees many applications

to various sub-disciplines of dynamical systems other than ODE’s.

5.3. THE NONLINEAR CIRCUIT

The Nonlinear Circuit, or Nonlinear Oscillator, as mentioned in Peterson and

Kelly’s book [11] is described mathematically by

y′′ + ry′ + y3 = b cos(t).
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Figure 5.6. General schematic diagram of a nonlinear ODE, y′′ = sin(y).

The aim was to find a simple example that exhibited some “chaotic” characteris-

tics. In this case, the sensitive dependence on initial conditions, or SDOIC, is the

classification used for “chaotic” behavior. The DE is a model of a simple circuit

with linear resistance y′, nonlinear inductance, y3 and an alternating current source,

cos(t), where y is defined to be the flux in the inductor [11]. Note that the alternating

current source is the non-homogeneous term in the differential equation. Historically,

the differential equation was solved by first converting it into a three-dimensional sys-

tem. A numerical method was then implemented to provide phase plots that would

ultimately exhibit a period-doubling effect given certain initial conditions. Several

phase plots with different initial conditions and parameters are provided in [11]. Also

a solution plot against time that specifically exhibits some interesting dynamics is

given as well. The point is that some of the phase plots are periodic, and, upon a



175

slight adjustment in parameter, such as changing the b-value from 9 to 9.85, the phase

plot produces a period-doubling effect. Similarly, a small change in initial condition,

namely changing y(0) = 1.54 to y(0) = 1.55, results in the solution plot becoming

wildly unpredictable at about t = 40.

When solving this problem on the differential analyzer there are some limiting

factors. Again, the underlying difference in the problems solved in the previous

section and this nonlinear problem is that some of the differential shafts are driven by

quantities other than the independent variable drive. Unfortunately, this consequence

of nonlinearity causes stress on the mechanical operations. For example, because there

are no frontlash units, and the disks are of considerable weight, there are significant

time-lags in the reversals of the differential shafts when the wheel passes through the

center of the disk. That is, when a differential shaft changes direction, some time is

passed before the disk will begin to turn in the opposite direction. This reversal also

implies that a similar time-lag occurs for the wheel’s rotation as it passes through the

center of the disk. This time-lag is due to mostly backlash but also due to the fact

that the differential shaft is being feed by a servo-motor and not a monotonic drive

motor such as the independent variable drive. Additionally, the momentum of the

heavy disk tends to cause the servo-motor control to be unstable. This undesirable

trait (oscillations of the servo-motor) is due to the weight of the disk combined with

the way the servo-motors operate. To try to avoid this instability, the glass disks

in the integrators representing nonlinear terms, were replaced by lighter Plexiglass,

which helps to lighten the load on the torque amplifiers or servo-motors. However,

the time-lags still occur and must be taken into consideration during the phase and

solution plots.

The first step in solving this DE on the differential analyzer, as is always the

case, is to create a generalized Bush Schematic. First express the DE in terms of its
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highest order derivative, that is in the form

y′′ = −ry′ − y3 + b cos(t).

Because this is a second order problem, we will need at least two integrators to

generate y, whereupon the first integration yields y′ and passing that quantity through

another integrator yields y. Note that both of these integrations are with respect to

the independent variable t, as y′′, y′ and y are all linear terms. Also note that we

will need two more integrators to generate y3 and two more integrators to generate

b cos(t) where the term y3 is a nonlinear term and b cos(t) is a linear non-homogeneity

in the differential equation (Refer to Figure 5.7 for the general schematic).

Notice in Figure 5.7 we use the most precise technique (using integrators) to

generate the nonlinear term and the non-homogeneity. Although “ART” only has

four integrators, it is beneficial to start the general schematic of such an involved

problem by using just integrators. Using only integrators to generate all terms will

provide insight into the scaling, since all terms may be dealt with using the same

coefficients of the independent variable.

The next step is to create an algebraic schematic to try to find a relation of

equality that must be satisfied. In this case, several will be obtained (See Figure

5.8). To do so, start with the assumption that At represents the unit turns of the

independent variable and By′′ represents the unit turns of the second derivative. One

integration of these will yield

∫
By′′d(At) =

AB

250
y′,
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Figure 5.7. General schematic diagram for the nonlinear circuit, y′′ = −ry′ − y3 +
b cos(t).

for the output of the first integrator. Next we send that quantity to the second

integrator, which becomes

∫
AB

250
y′d(At) =

A2B

2502
y.

This last integration completes the relationship among the linear terms in the setup,

given the assumptions. Note that this equation is not a relation of equality; it is

simply an equation that relates the constants on y′ and y. In order to generate y3,

y2 is needed first. Hence, let the shaft denoted by y drive both the integrand and
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differential shaft of Integrator 3. So in terms of the algebraic constants, we have

∫
A2B

2502
yd(

A2B

2502
y).

If we factor the integrand constants and differential constants out of the integral

expression we have

A4B2

2504

∫
ydy =

A4B2

2505
∗ y

2

2
.

So this is the output of Integrator 3 and, since it is representative of a constant times

y2 we can send this quantity to the integrand shaft of Integrator 4 to get a constant

multiplied by y3. To do this we let the output of Integrator 2 drive the differential

shaft of Integrator 4. Hence, we are, within a constant, integrating y2 with respect

to y. More formally, Integrator 4’s output is given by

∫
A4B2

2505
∗ y

2

2
d(
A2B

2502
y) =

A6B3

2 ∗ 2508

y3

3
.

This integration will generate completely the nonlinearity. As for the non-homogeneity,

because it is linear, we may treat its scaling similar to the scaling of the simple har-

monic motion examples in the previous section. So we want to let the same inde-

pendent variable in the primary linear terms drive the independent variable in the

non-homogeneity. Hence, let At drive the differential shafts of both Integrators 5

and 6. We want to solve simple harmonic motion on the last two integrators because

we know the solution to simple harmonic motion is linear combinations of sine and

cosine. The only difference from the previous algebraic schematics for simple har-

monic motion and the schematic of Integrators 5 and 6 is here we let the highest order

derivative in the the DE x′′ = −x be represented by Cx′′, for C unit turns in the

variable x′′. Upon subsequent integrations using the last two integrators, we obtain
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the separate relation of equality

C =
A2C

2502
(5.1)

that must always be satisfied for Integrators 5 and 6, where the output shaft for

Integrator 6 is equivalent to the right hand side of this equation. To create a closed

system of equality, which is representative of the given DE, within the machine,

we must add together the outputs of Integrators 1,4, and 6. Then we connect the

resultant sum to the integrand shaft of the first integrator, which is representative of

y′′, so that

y′′ = ry′ + y3 + b cos(t).

Note that the output of Integrator 1 is geared down by r0 to account for the parameter

given in the DE. The parameter b within the linear non-homogeneity may be changed

by an initial setting of initial condition within its closed system of equality, that is

Integrators 5 and 6. Therefore, if we solve the given DE the machine must always

satisfy the three relations of equality

B =
AB

r0 ∗ 250
(5.2)

B =
A6B3

2 ∗ 3 ∗ 2508
(5.3)

B =
A2C

2502
. (5.4)

This last result (Equations: 5.2, 5.3,and 5.4) follows from the fact that each relation

represents a coefficient in the right hand side of our DE. Although these relations

complete the system of equality, the scale factors must be chosen such that specific

parameters given within the differential equation correspond to the LHS of Equations

5.2, 5.3, and 5.4. Here we want to solve for two given particular solutions mentioned

above. Fortunately, both cases include the parameter r = .1, and, because the choice
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Figure 5.8. Algebraic schematic diagram for the nonlinear circuit. Note: the relation

of equality B = AB
2506

+ A6B3

2∗3∗2508 + A2C
2502

and the sub-relation of equality

C = A2C
2502

.

of b in the non-homogeneity ranges from 9 to 12, we can account for this parameter

by an adjustment of initial condition on Integrators 5 and 6. So, to this end, for the

choice of C we must have an initial condition of at least 12 available in the range on

top of the integrator disks for Integrators 5 and 6. A maximum range of 500 shaft

rotations are available on top of any disk. Because (500/12) = 41.667 a choice of

C = 40 would be sufficient to provide an analytical initial condition of 12. That is, if

C = 40 then 40 represents 1 unit on integrand shaft number 5, and since 40∗12 = 480,

this choice of C would thus be available within the max range of an integrator disk.
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Making this substitution into Equations 5.2, 5.3 and 5.4 yields

B =
AB

r0 ∗ 250
(5.5)

B =
A6B3

2 ∗ 3 ∗ 2508
(5.6)

B =
40 ∗ A2

2502
, (5.7)

where these last three equations represents the new refined set of relations that must

be satisfied for maintaining machine equality.

In order to find a suitable choice of A and B, one could implement several

methods. Algebraically speaking, manipulating the expression so that A and B are

integers seems like a daunting task. But first notice that the choice of the term in

the RHS of the relation with r0 needs to ultimately have a coefficient of .1 in an

analytical sense. This coefficient (0.1) is necessary because that term in the relation

represents the coefficient of the variable y′ in the differential equation. The question

arises, “What’s the difference between an analytical coefficient and a coefficient rep-

resented by the machine?” The answer is the choice in the scaling factor B. The

choice of B essentially decides the Unity of the machine equation, because all sub-

sequent integrations are taken to be relative to that initial choice. This fact is clear

when expressing the differential equation explicitly in the form of the highest order

derivative or equivalently expressing the relation explicitly defining B. Hence, if B is

one unit then the following must be true for machine equality in the context of the

specific parameters in the differential equation: Equations 5.5, 5.6 and 5.7 become

B

10
=

AB

r0 ∗ 250
(5.8)



182

B =
A6B3

2 ∗ 3 ∗ 2508
(5.9)

12 ∗B =
40 ∗ A2

2502
. (5.10)

Reducing (5.8) yields A = 250r0
10

= 25r0, reducing (5.10) yields A2 = 18750 ∗ B.

The hardest part is choosing A and B such that (5.8),(5.9) and (5.10) are satisfied.

(We may add a gear train on each output that represents the RHS of each relation.)

Notice that (5.8), and (5.10) may be related to provide an expression of r0 in terms

of B. However, in consideration of (5.9), we find that the choice of A needs to be

sufficiently large so that the RHS of (5.9) is greater than one. Unfortunately, the

relation provided by (5.8) and (5.10) yields an unsuitable choice of A in (5.9). The

RHS of (5.9) must be greater than one due to the fact that we simply cannot gear up

the output of Integrator 4, such that (5.9) is satisfied for B > 1. And we must have

B > 1 because we need to maximize the range on Integrator 1’s disk. Note that even

a choice of B = 1 offers that the second derivative has a magnitude of 500, which is

probably underestimated any way. Therefore a choice of B < 1 would be a drastic

decision for the estimation of the magnitude of the second derivative.

It seems to be the case that (5.9) involves the most complicated algebra, so

we will insert gear trains in the input of both integrators that correspond to the

relation(5.9), which will allow more freedom in (5.9). To further simplify our analysis

we can also work with Integrators 3 and 4 separately from the rest of the relations.

That is, instead of carrying out the subsequent integrations starting from Integrator

1, we may instead start from Integrator 3 by labeling the output of Integrator 2 as Dy

(note D = A2B
2502

). Starting from this new perspective we may create a “sub-schematic”

that simply outlines the nonlinear terms (See Figure 5.9). Starting with the first bus-

shaft, labeled Dy in next figure, we gear that down three separate times, first by n1,
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then by n2, and finally by n3. Again, this is so that the inputs of Integrator 3 and 4

will have an extra gear for better algebraic manipulation. The output of Integrator

3 is

1

250

∫
Dy

n2

d(
Dy

n1

) =
D2

2 ∗ 250n1n2

y2.

Note that the extra factor of 2 is due to the result of integration. We now gear down

the output of Integrator 3 by n4 so that the integrand shaft will incorporate another

gear option. The output of Integrator 4 is

1

250

∫
D2

2 ∗ 250n1n2

y2d(
D

n3

) =
D3

3 ∗ 2 ∗ 2502n1n2n3n4

y3.

Because this is the output of Integrator 4, thus representative of the machine coeffi-

cient of Y 3, we know this quantity must be equal to B, or equivalently,

D3

3 ∗ 2 ∗ 2502 ∗ n1 ∗ n2 ∗ n3 ∗ n4

= B, (5.11)

which is a new relation of the nonlinear term that must be satisfied. Note that if we

allow D = 250 our task is simplified. With, D = 250, we have

B =
250

6n1n2n3n4

which implies

B ∗ 6n1n2n3n4 = 250.

It will help to express 250 = 2 ∗ 53.

Once we have simplified the choice if B, we can back up and think about the

choice for A. We will return to (5.11) shortly. Remember we determined earlier that

A needs to be sufficiently large for mechanical purposes. We also know now that the
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Figure 5.9. Sub-Schematic diagram that generates the nonlinear term in the nonlinear
circuit.

output of Integrator 2 should be 250 as

250 = D =
A2B

2502

where the far RHS of this equation is the output of Integrator 2. Hence,

A2B

2502
= 250. (5.12)

At this point we should consider our initial conditions as they are given in the

analytical sense. The particular solutions we want to run have initial conditions

y(0) = 1.54 and,y(0) = 1.55 , y′(0) = 0, for the parameter b = 12 and,b = 9.85, 9,
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respectively. So there are two different values of y′′ given the two sets of initial

conditions.

Case 1. y(0) = 1.54 and, y(0) = 1.55, given y′(0) = 0 for both, and b = 12,

implies y′′(0) = 12− 1.543 = 8.347736, and y′′(0) = 12− 1.553 = 8.276125.

Case 2. y(0) = 1.54, y′(0) = 0, and b = 9 and ,b = 9.85, implies y′′(0) =

9− 1.543 = 5.347736, and y′′(0) = 9.85− 1.543 = 6.197736

In either case, the initial condition on y′ is between 5 and 10. Now we need to

make a reasonable conjecture about the magnitude of the second derivative. Because

we know very little about the solution, we will estimate that the second derivative

is bounded by 100. That is, we assume that the second derivative is limited to 100

units of magnitude. If we want a range of 100 units on the integrator disk, we need

to let the shaft coefficient of the second derivative be 500/100 = 5. This so happens

to be our choice of B. Our task is not quite finished yet because letting B = 5 in

(5.12) yields an irrational number for A. But we can implement the same kind of

compensation of scale factor via a gear scaling method that we used in the nonlinear

relation (5.11), which will force A to be sufficiently large and be an integer value.

Consider the relation (5.12)

A2 ∗ 5

2502
= 250

which implies

A2 =
2503

5
=

23 ∗ 59

5
= 23 ∗ 58.

If we can multiply the RHS by 2 then we will have a perfect square. Figure 5.10

depicts a refined algebraic schematic for Integrators 1 and 2 only. Here we have the

output of Integrator 1 being geared down separately from the gear train r0. That

is, we have a new coefficient expression for y, which now has a factor of n0 in its

denominator. Note the output of integrator 2, with the newly inserted gear train, is
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Figure 5.10. Sub-Schematic diagram that generates the first two linear terms in the
nonlinear circuit.

still defined to be equivalent to D = 250. Hence, (5.12) becomes

D =
A2 ∗ 5

n0 ∗ 2502
= 250. (5.13)

Finally, letting n0 = 2 in (5.13) implies, A = 2500.

Returning to (5.11) we will need to choose n1, n2, n3, n4, so that 5∗2∗3n1n2n3n4 =

2∗5∗5∗5 for B = 5, which implies 3n1n2n3n4 = 5∗5. Among the many solutions, we

need to take into consideration the scale of integrand shafts for Integrators 3 and 4.

The scale must be small enough to include the full magnitude of y and y2. Integrand

shaft 4 should have a range of 50 units as it represents the square of y and therefore
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could get really large. This range would suggest a shaft coefficient of 10. As for in-

tegrand shaft 3, it needs the coefficient 25 to provide 20 units of range in magnitude.

If we refer back to schematic Figure 5.9, we can use the coefficient expressions on bus

shaft 3 and bus shaft 6 to yield the two relations

D

n2

= 25 (5.14)

and

D2

2 ∗ 250 ∗ n1 ∗ n2 ∗ n4

= 10. (5.15)

We now have that as D = 250, then n2 = 10 and n1∗n4 = 5
4
. All that is left is to fully

scale the nonlinear term is to find the value of n3 in (5.11). To do so, we will choose

D = 250, B = 5, n1 = 5, n2 = 10, n4 = 1
4
, based on our most recent information.

Thus, n3 = 3
2
.

The last piece of the puzzle is to scale the linear non-homogeneity, that is Inte-

grators 5 and 6. Note that the only dependence this system has to the other terms,

or rather subsequent integrations, is that of the independent variable that has a shaft

coefficient of A = 2500. Moreover, Integrators 5 and 6 have their own closed system

of equality that can be dealt with very simply. In fact, one only needs to make sure

that a shaft coefficient of 12*B is available from the solution x(t) = 12 cos(t) in the

section of interconnection, essentially gearing down the shaft representative of x by

some amount. This interconnection will have to be done independently, so as not to

to affect the closed system of equality in Integrators 5 and 6. Because throughout

this analysis of scale choice we have established several different relations, it is helpful

to create a finalized algebraic schematic that will incorporate all added variable gear

trains throughout this discussion (See Figure 5.11).

Notice in Figure 5.11 we have added two more gear trains, m1 and m2, to

allow more options for the non-homogenous term. When working with the algebraic
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Figure 5.11. A finalized version of an Algebraic Schematic diagram for the nonlinear
circuit, y′′ = −r0y′ − y3 + b cos(t).

schematic it is not always necessary to go into as much detail as we did in Figure

5.11. For the most part, an operator will begin to notice a pattern emerging from

several relations established due to the subsequent integrations we did. Note that the

choice of D was simply an educated guess. We found that if D = 250 then terms will
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reduce to a reasonable form, and, after some study, an operator will usually need to

simply try a few values for the choice of A and B. This is not to say the algebraic

schematic is not useful because it does provide insight for the first choice. Without

thinking about the DE in terms of an algebraic schematic, an operator is “diving

in blindfolded” so to speak. For some problems, perhaps, the scaling is clear and

this rigorous analysis is not necessary. But creating an algebraic schematic can save

valuable time in a trial and error process.

If we substitute A = 2500, B = 5, C = 40, D = 250, r0 = 100, n0 = 2,

n1 = 1, n2 = 10
3

, n3 = 1, n4 = 5
2

and m1 = m2 = 10 into the schematic diagram,

Figure 5.11, we get the final schematic diagram Figure 5.12. Notice that the choice

of the gear trains ni, has changed. We found that gearing up anywhere in this chain

of gears was not sufficient for smooth mechanical operation. Also take note that in

doing so we have sacrificed the Unity value for integrand shaft 3 and integrand shaft

4. Remember that we had determined a reasonable range for integrand shafts 3 and

4 in consideration of the analytical magnitude of the those values. With these new

choices we now have integrand shaft 3 with a scaling coefficient of 75 (as opposed to

50) and integrand shaft 4 with a scaling coefficient of 15 (as opposed to 10). Because

the values of Unity for integrand shafts 3 and 4, have gone up, we have essentially

reduced the maximum range in magnitude. Now integrand shaft 3 has a range of

500/75 = 6.6666, and integrand shaft 4 has a range of 500/33.333. Analytically

speaking, if y is bounded by 5 in magnitude then y2 will not be more than 25.

Analogously, in terms of the machine, if Y does not exceed 5 ∗ 75 = 375 (that is

integrand shaft 3, which is represented by the position of the wheel with respect to

the center of disk on Integrator 3), then Y 2 will not exceed 25 ∗ 15 = 375 (that is

integrand shaft 4, which is represented by the position of wheel with respect to the

center of disk on integrator 4). We can see if y is bounded by 5 then this is an

appropriate range. However, y < 5 is an assumption and could very well be false. If
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Figure 5.12. Final schematic diagram of the nonlinear circuit using six integrators.

this is the case then Integrator 4 will run out of range first, and we will need to scale

down the Unity in Integrator 4’s integrand shaft. Also take note that the bus-shafts

in Figure 5.11 do not exactly correspond to the bus-shafts in Figure 5.12. This is due

to the fact that some the gear trains in Figure 5.11 are chosen to be 1:1 and there is

no need to mention them in Figure 5.12.

When drawing a final schematic, one can notice a simpler pattern that emerges

from each subsequent integration. As our analysis led us to choices for A,B,C, and

D, we can start with these values and work through the integrations, similar to

the algebraic approach. We start with the integral of 5Y ′′ with respect to 2500t.
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We already know that the result is 50Y ′, but we can use a “short-cut” to get each

subsequent shaft coefficient value. Take the coefficient of the integrand shaft, multiply

it by the coefficient of the differential shaft, and then divide that product by the Unity

of that integrator. The result will be the coefficient of the integral shaft. This value

is the coefficient of the variable, represented by a bus-shaft, which is a result of the

integration. Note that this “short-cut” is simply the algebraic method “spelled out”

in words. The nice property that makes the calculations easier is that each subsequent

integration starts fresh with a reduced value on the integral shaft. We can start from

the output of Integrator 2 (labeled 250y in Figure 5.12) and carry out the calculations

of the coefficients for the nonlinear terms, as they were the most difficult. First, note

that the shaft coefficients on integrand shaft 3 and integrand shaft 4 are 250
10
3

= 75 and

37.5
5
2

= 15, respectively. Now we pass the first pair of coefficients through Integrator 3,

yielding 250∗75
2∗250 = 37.5. Remember that the factor of 2 is in the denominator because

∫
ydy =

y2

2
.

Sending that motion through Integrator 4 we get 15∗250
250∗3 = 5. Similarly the factor of 3

is due to the fact that ∫
y2dy =

y3

3
.

Working with the final schematic in this way will provide a simpler way to account for

any mechanical difficulty the set up may have. This “short-cut” is to be done after

the algebraic schematic has been, at least minimally, worked through. Without this

preparation operators will find themselves playing what could be a very long guessing

game.

At this point we should discuss the linear non-homogeneity. First, we chose,

C = 40,m1 = m2 = 10. Among the coefficients passing through Integrator 5, we have

40∗2500
250

= 400. We then divide that shaft coefficient by 10 to yield 40. For Integrator
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6, we have 40∗2500
250

= 400. Again dividing that shaft coefficient by 10 to get 40. This

next connection is very important. The shaft representing X, with a coefficient of 40,

needs to make the equality connection to the shaft representing X ′′ with a coefficient

of 40 and with a sign change, such that, 40X ′′ = −40X. This Machine equation is

not new, but notice that independent of the sub-equality connection to that the shaft

labeled 40X is a gear reduction of 8 that gives 5X. Moreover, it is the shaft labeled

5X in Figure 5.12 that is connected to the adder that completes the primary equality

connection for the differential equation. The solution X, which is fully known by

design, is equivalent to x(t) = 12cos(t). So, although a shaft coefficient of 60 for X

could obtained otherwise with the proper gear trains, we don’t need to have 60X for

the machine shaft coefficient because a factor of 12 is already imbedded within the

solution x. Remember that all one must do to get an analytical value that represents

a shaft is divide by the machine shaft coefficient. There is an algebraic correlation

from analytical shaft representations to machine shaft coefficients, which is, in the

case of X having a coefficient of 40:

X

40
= x

where x(t) = 12
40

cos(t). Hence, if we have 5 for the shaft coefficient of X, then

x(t) = 12 cos(t), which will now be consistent with our analytically DE. In this case,

having 5X for a machine shaft coefficient, the primary machine equation is

5Y ′′ = −.5Y ′ − 5Y 3 + 5X

or equivalently,

5Y ′′ = −.5Y ′ − 5Y 3 + 5 ∗ 12cos(t).
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When we divide the machine equation by 5 we get our original differential equation,

and this completes our quantification of scaling an ODE to a “machine” ODE.

Unfortunately, “Art” is only equipped with 4 integrators, so at first we con-

sidered using an input table to account for the non-homogeneity. As previously

discussed, a separate DE is set up and solved, a priori. The schematic diagram and

the input curve may be seen in Figures 5.13 and 5.14, respectively. In addition to

human error, the input curve also has other undesirable qualities. The peaks in the

input curve are somewhat non-symmetric, due to the extreme backlash in the 10:1

gear trains necessary for the proper scaling. Because it was originally thought that

the independent variable needed to be driven with a coefficient of 2500, we needed

the 10:1 gears to maintain consistency with the machine equation Unity, which is the

scale factor B. To avoid accumulation of increasing amplitude, an operator restarted

the input curve (i.e., initial conditions) after every period which helped to maintain a

consistent cosine curve. The effect of an operator resetting the initial conditions after

one period in the solution is the imperfections in the peaks of curve that can be seen

in Figure 5.13. There is no doubt in my mind that the addition of frontlash units

will completely eliminate this problem. Furthermore, in order to observe the solution

at t = 40, the time variable was geared down by a factor of 96. By gearing down

we were able to observe more periods, and thus would avoid resetting the input table

many times during the calculation of the solution. To account for this gearing we let

a coefficient of 2500
96

, in the independent variable t, drive the input table. Although

gearing the independent variable down drastically has not been formally tested for

accuracy, it is my belief that do so amplifies already existing human error. Moreover,

operating the input table became a very laborious task.

Another serious problem was that the torque amplifiers were extremely over-

loaded when driving the integrators representing the nonlinear terms. Moreover,

overloading the torque amplifiers contributed to accumulation of error, because of



194

Figure 5.13. Final schematic diagram that generates the non-homogeneous term in
the nonlinear circuit.

the rapid oscillations in the servo-motor, and again amplified backlash in the dif-

ferential drives of the integrators. To make a long story short, the integrators kept

running out of range in spite of a long list of reduction gearing. So despite the errors

that we knew to exist, the solution should have still exhibited some of the minimum

qualitative properties that were known to us from numerical calculation.

Instead of using this input curve, we instead reevaluated the setup entirely,

in consideration of the algebraic scale factors obtained from the beginning of our
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Figure 5.14. First plot of the original input curve, or non-homogeneous term (i.e.
12 cos(t).

work. It was thought that, if we could generate the nonlinear term by using the

Input Table, we could overcome many mechanical difficulties and let the machine

provide the work necessary in generating the linear non-homogeneity. This method

was similar to the concept of generating a composite function, previously mentioned,

where the nonlinear term was created via function composition by using the Input

Table. First, we need a cubic function (refer to Figure 5.15). We can solve the DE

z′′′ = 6,

to generate z = t3. (Refer to the Appendix Figure Ap.1 for a general account of

how to set up this problem.) The scaling in Figure 5.14 is very important. We

know that our choice of D = 250 was the underlying scale factor in generating the

nonlinear term. So we let 250
2
∗ t, a factor of D, drive the table. We also know that

the coefficient of the Y 3-term is 5, so we let 5Z ′′′ drive integrand shaft 1. Upon the

subsequent integrations the result is 5Z, where z = t3 (Remember that Z is a machine



196

Figure 5.15. Schematic diagram used in the generating of the nonlinear term Y 3

variable and z is an analytical variable, but they are algebraically correlated.) So we

obtain a plot of 5Z v.s 125t. The scaling coefficients here are as relevant as the

variables they are attached to. What we know is we have a cubic function on a scale

of 5 vs 125 where the variable driving the table in the abscissa direction is the variable

in the expression for the cubic function. Note the initial conditions on integrator 1 is

5∗6 = 30 (for the machine DE Z”’=30) and the rest are zero. This is so that we have

a simple cubic function. (One can verify that the general solution to z′′′ = 6, where
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Figure 5.16. A plot of the new input curve for the nonlinear term Y 3. (This was the
input used in the calculation of the solution.)

z = f(t), with z′′′(0) = 6, z′′(0) = z′(0) = z(0) = 0, is z = t3.) In order to run the

curve, an operator must start the ordinate carriage it the origin and then separately

run the independent variable in the positive and negative directions for the desired

time interval, resetting initial conditions between runs (See Figure 5.16 for a plot of

nonlinear input curve).

The trick is that when we set up to run the solution to

5Y ′′ = −.5Y − Y 3 + 60cos(t)

on the machine, we need to let the shaft representative of y, that is, Y , with a

coefficient of 125 drive the input table in the direction of abscissa. So when an

operator turns the hand crank to follow the curve, he or she is inputting 5Z, where

z = y3. Hence, the movement of the shaft that connects the ordinate carriage to the

rest of the section is labeled 5Y 3.
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Figure 5.17. Final schematic diagram of y′′ = .1y′−y3 + 12 cos(t). This is the version
that was used in the plotting of the solution

Figure 5.17 is the new finalized schematic diagram for

5Y ′′ = −.5Y ′ − 5Z + 5X

where z = y3 and x(t) = 12cos(t), and we are indeed solving

y′′ = −.1y′ − y3 + 12cos(t),

with initial conditions, y(0) = 1.54, y′(0) = 0. Figure 5.18 was the first successful

solution plot. It was observed that the full range of Integrators 1 and 2 was not being
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Figure 5.18. Solution plot of the nonlinear circuit.

used. To expand the range it was decided to let A=1250, B=10, and work through

the reduction gearing as given by a final schematic diagram (See Figure 5.19).

In the Schematic diagram (Figure 5.19), notice the new Machine equation

10y′′ = −1y′ − 10y3 + 10 ∗ (12cos(t)).

Also note that we have eliminated all reduction gearing within the section except

for the reduction gearing on y′. The gear reduction on y′ is 50:1 because the shaft

coefficient of the output of Integrator 1 is 50. We want to reduce this to 1 as the

Unity of the dependent variable has been changed to 10. Despite this one gear
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reduction, all integrand shafts are being driven with a direct drive coming from the

corresponding integrator output. To compensate for the previously described setup

with the necessary gear reductions contained within the section of interconnection, we

have instead used different independent variable drive constants at various differential

shafts in each integrator. This setup greatly reduces the effect of backlash and we

have expanded the range. Gearing down a monotonic drive, such as the independent

variable, instead of non-monotonic drives, such as shafts being driven by a servo-

motor, will provide a much more accurate plot. To provide insight into the accuracy

of the solution we will create a phase plot (See Figure 5.20). In Figure 5.20, we have

plotted 150y vs 75y′. We ran the machine so that a couple of oscillations of the phase

plot could be observed. It was noticed that the phase plot was not periodic. However,

in the description of this problem with the given initial conditions, the phase plot was

said to settle into a periodic solution after about t = 300, [11]. So we ran the machine

for approximately 50 oscillations. Then we plotted the result on a fresh sheet of paper

(See Figure 5.21). Figure 5.21 does resemble, qualitatively, a similar plot to that of

what RK4 calculates for a phase plot in the time interval 300 ≤ t ≤ 400 (See Figure

5.22). However, it is clear that the plot will not settle into a periodic orbit on the

machine. One reason for this instability is the cumulative error we know to exist in

the non-homogeneous term 12 cos(t). Furthermore, letting the independent variable

run for t = 300 becomes a very laborious task for the operator of the input table.

Figure 5.23 is another example of a phase plot that is supposed to settle into

a periodic orbit after t = 300, and it can be compared to Figure 5.24, which is the

same phase plot calculated by RK4.

The best we can do at this point is plot the solution and compare the results

to a numerically approximated solution. Figure 5.25 is a numerically approximated

solution via the RK4 method. Figure 5.26 is the final solution of y′′ = −.1y′ − y3 +

12 cos(t) with y(0) = 1.55 and y′(0) = 0.
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Figure 5.19. A different Final schematic diagram for the nonlinear circuit with a
different scale.
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Figure 5.20. This is a phase plot of the nonlinear circuit calculated by “Art”, with
the parameter b = 12, and y(0) = 1.54.

With the addition of frontlash units along with two more integrators the nonlin-

ear circuit can be run on the DA autonomously, and the frontlash units will compen-

sate for the accumulation in the non-homogeneous term 12 cos(t). With this under

consideration, Figure 5.26, produced by the DA, does have the qualitative property
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Figure 5.21. This is a phase plot of the nonlinear circuit calculated by “Art” with the
parameter b = 12, and y(0) = 1.54.
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Figure 5.22. This is a phase plot of the nonlinear circuit calculated by RK4, with the
parameter b = 12, and y(0) = 1.54.
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Figure 5.23. Phase Plot produce by “Art” with b = 9, and y(0) = 1.54.

consistent with the nonlinear circuit’s original assessment; the total disruption of a

seemingly periodic orbit at about t = 40.

5.4. CONCLUSION

Working with a differential analyzer, as has been been discussed, requires a cer-

tain amount of patience. The goal of this section was to demonstrate how to set up

nonlinear problems. Dealing with nonlinear terms and generating non-homogeneities
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Figure 5.24. Phase Plot produced by RK4 with b = 9, and y(0) = 1.54.

have been illustrated via several general ways. Finally, a complete account of a non-

linear problem was detailed in the fullest regard. Solving this nonlinear problem was

an attempt to generalize how to scale a nonlinear differential equation on Marshall’s

differential analyzer. “Art” is fully equipped for solving the nonlinear circuit. It has

been shown that the capabilities of “Art” can include nonlinear problems in the range

of problems to be studied.
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Figure 5.25. Solution to the nonlinear circuit with y(0) = 1.55 and b = 12, calculated
by RK4.

Figure 5.26. Final solution to the nonlinear circuit with y(0) = 1.55 and b = 12,
calculated by “Art”.
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An interesting account of solving a nonlinear problem with similar properties

to the nonlinear circuit was given by Arthur Porter in his memoirs. He said, while

remembering working on a problem in chemical control process:

In retrospect, albeit somewhat tangential, our investigations were a

prelude to the chaos theory, which has assumed such great importance in

recent years. The Hartree formulation of the problem and how the

temperature distribution, step-by-step, was generated on the output

table of the differential analyzer was certainly one of the high points

in the history of the machine. A very small change in the initial

conditions at the boundary of the dielectric had spectacular effects,

and indeed, in the ultimate condition gave rise theoretically to the

complete breakdown of the dielectric material through a sudden increase

in temperature. Many years later there was an analogous effect in

meteorology. [14]

Porter is referring to the “butterfly effect,” and so, even in Porter’s day it was

certainly possible to observe “chaotic” properties with a differential analyzer.

Using the differential analyzer to solve nonlinear differential equations has proved

to be a challenge. To truly analyze complicated behavior on a differential analyzer one

must first familiarize oneself with the mechanical action of a differential analyzer. Be-

ing able to relate the action of a movable part to mathematical principle is something

of an acquired taste. The machine was built using Meccano parts. Using these parts

help, for one not so familiar with mechanics, to feel comfortable with the mechanical

action of the machine, because the parts are simple (just like Erector set parts). The

primary component of a differential analyzer is the integrator unit. We initially took

a theoretical approach in the attempt to describe what an integrator does. Using the

concept of infinitely small partitions of a Riemann Sum, we proved that any function
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represented on top of the surface of an integrator is Riemann integrable. With this

proof we have provided a foundation to expand the theory of mechanical integration.

Because the rotation of the integrator wheel is representative of a Riemann Sum, one

can interpret what would be an abstract concept with a physical example. Using

mechanical integrators together by means of an interconnection system is, in essence,

a differential analyzer. In practice, quantification of scaling is indeed the biggest

challenge when using a differential analyzer to solve differential equations. But in the

midst of working through the various substitutions, one can, in turn, develop a new

perspective on different classes of equations. The first step in knowing how to use the

machine is learning how to create a Bush Schematic. In some cases this can be very

simple and in others not so much. But viewing the various interconnections of just

a general schematic diagram literally provides one with a “map” of the differential

equation itself. Likenesses are comparable to various concepts in graph theory in the

attempt to further generalize and simplify complex ideas. When one follows through

with an abstract idea on “Art” the results are of a most elegant practical nature.

By using practical knowledge to provide insight into theoretical assumptions, and

vice-versa, one can develop pure mathematical justifications based on very concrete

realizations. It has been my experience when working with “Art” that one is trans-

ported into a time where computational science is much more involved as opposed to

the digital computing power of today. And for this reason the differential analyzer

has been lost to time. The Marshall DA team has adopted what seems to be an

ancient practice of problem solving and critical thinking, but it is our belief that one

can only benefit from doing so.



APPENDIX A

Schematics
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Figure A.1. General schematic diagram for y′′′ = k; the output table will produce a
cubic function.
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Figure A.2. Schematic diagram: Generating an exponential function.
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Figure A.3. Schematic diagram: Generating a tangent function.
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Figure A.4. Schematic diagram: Generating a square root function.
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Figure A.5. Schematic diagram: Generating a rational function.
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Figure A.6. Solution plot, produced by “Art,” of the Stiff ODE described in section
4. 50Y ′ = 1500Y , with Y ′(0) = −500, is equivalent to y′ = 30y, with
y(0) = 1/3
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Figure A.7. Final schematic diagram for the Lamar Boundary value problem; y′′ =∫
(y)dy′ + β

∫
((y′)2 − 1)dt. Note that β is set as an initial setting on

Integrator 6.
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Figure A.8. Schematic diagram: Generating the integral of a product.
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Figure A.9. Schematic diagram: Generating the product of a rational function and
another function. (Quotient.)
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