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Abstract: This study examined effects of soil freezing on N dynamics in soil along an N processing gradient within a
mixed hardwood dominated watershed at Fernow Experimental Forest, West Virginia. Sites were designated as LN (low
rates of N processing), ML (moderately low), MH (moderately high), and HN (high). Soils underwent three 7-day freezing
treatments (0, –20, or –80 8C) in the laboratory. Responses varied between temperature treatments and along the gradient.
Initial effects differed among freezing treatments for net N mineralization, but not nitrification, in soils across the gradient,
generally maintained at LN < ML £ MH < HN for all treatments. Net N mineralization potential was higher following
freezing at –20 and –80 8C than control; all were higher than at 0 8C. Net nitrification potential exhibited similar patterns.
LN was an exception, with net nitrification low regardless of treatment. Freezing response of N mineralization differed
greatly from that of nitrification, suggesting that soil freezing may decouple two processes of the soil N cycle that are oth-
erwise tightly linked at our site. Results also suggest that soil freezing at temperatures commonly experienced at this site
can further increase net nitrification in soils already exhibiting high nitrification from N saturation.

Résumé : Nous avons étudié les effets du gel du sol sur la dynamique de N dans le sol le long d’un gradient de transfor-
mation de N dans un bassin versant dominé par des feuillus mélangés à la Forêt expérimentale de Fernow, en Virginie-Oc-
cidentale. Les stations ont été classées sur la base du taux de transformation de N: LN (faible), ML (modérément faible),
MH (modérément élevé) et HN (élevé). Les sols ont subi trois périodes de gel de 7 jours (0, –20 ou –80 8C) en labora-
toire. Les réactions ont varié selon la température ainsi que le long du gradient. Les effets initiaux étaient différents selon
l’intensité du gel dans le cas de la minéralisation nette mais pas dans le cas de la nitrification dans les sols le long du gra-
dient qui s’est généralement maintenu à LN < ML < MH < HN avec tous les traitements. Le potentiel de minéralisation
nette de N était plus élevé à la suite d’un gel à –20 et –80 8C que chez le témoin et plus élevé qu’à 0 8C dans tous ces
traitements. Le potentiel de nitrification nette suivait le même patron. La station LN faisait exception: la nitrification nette
était faible peu importe le traitement. La réponse de la minéralisation de N au gel était très différente de celle de la nitrifi-
cation, indiquant que le gel du sol peut découpler deux processus du cycle de N dans le sol qui sont par ailleurs étroite-
ment reliés dans notre site. Les résultats indiquent aussi que le gel du sol à des températures qui surviennent couramment
dans ce site peut augmenter davantage la nitrification nette dans les sols où la nitrification est déjà élevée à cause de la sa-
turation en N.

[Traduit par la Rédaction]

Introduction

Among the paradoxes of global warming is a predicted in-
crease in the likelihood of soils of north-temperate forests to
freeze during winter months (Groffman et al. 2001a). This
has important implications for the structure and function of
forest ecosystems because freezing can alter several biogeo-
chemical processes in affected forest soils, particularly those
involved with N cycling in forest ecosystems. Freezing of
soil can drastically influence the mobility and availability of
N in forest soils by affecting microbial populations responsi-
ble for transforming unavailable organic N into mobile,

available forms (Allen-Morley and Coleman 1989). This re-
sponse is similar to that of drying–rewetting cycles (Skog-
land et al. 1988; DeLuca et al. 1992), which have been
shown to substantially increase extractable NO3 from nearly
undetectable levels in N-limited soils (Gilliam and Richter
1985, 1988). A burst of microbial activity generally accom-
panies both thawing of frozen soil and rewetting of dried
soil (Skogland et al. 1988).

In temperate forests, particularly those in more northern
latitudes, snow cover acts seasonally as an effective insula-
tor for soil by virtue of its high air content, mitigating the
effects of low air temperature on soil, typically preventing
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soil from freezing and ensuring survival of a variety of mi-
croorganisms beneath snow cover (Schimel et al. 2004;
Schmidt et al. 2009). Consequently, soils that are overlain
by snowpack frequently go through winter months without
freezing, despite extremes of low air temperatures (Lynch-
Stieglitz 1994). Conversely, soils commonly freeze in for-
ests of northern latitudes in the absence of snow. Working
in hardwood and conifer forests of New Hampshire, Fahey
and Lang (1975) found that the occurrence of soil freezing
increased with elevation, varied with stand type, and lasted
as late as May and June in that region.

Global warming has been causally connected to recent de-
creases in snowfall in north-temperate forests (Barnett et al.
2005). Long-term data from the Hubbard Brook Experimen-
tal Forest, New Hampshire, indicate that from 1955 to 2005,
all measures of snow fall (i.e., depth, water content, and du-
ration of cover) decreased significantly with time (Campbell
et al. 2007). Thus, the frequency of soil freezing events is
likely to increase in the future (Hardy et al. 2001).

Experimental approaches to investigate effects of freezing
on soil have varied considerably in the literature. Morley et
al. (1983) used extreme freeze–thaw cycles (–27 to 23 8C)
in the laboratory that resulted in 40%–60% mortality of bac-
terial populations. Investigating freezing effects on soil food
webs, Allen-Morley and Coleman (1989) subjected soil to
–1 8C for 7 days and found that postfreezing recovery varied
greatly among soil microbial populations. Cooke (1990)
used liquid N2 to freeze contrasting soil types, finding that
effects of freezing on nitrification enzyme activity varied
greatly with type of soil.

In 1996, a snowpack manipulation experiment was estab-
lished at Hubbard Brook Experimental Forest to examine the
biogeochemical consequences of decreases in snowpack ac-
cumulation (Groffman et al. 2001a). This study found that
even mild winters can bring about soil freezing in the ab-
sence (i.e., experimental removal) of snowpack (Hardy et
al. 2001). It also determined that soil freezing increased
mortality of fine roots (Tierney et al. 2001), increased soil
NO3 without significantly altering net N mineralization and
nitrification (Groffman et al. 2001b), and enhanced loss of
N and P via soil solution (Fitzhugh et al. 2001).

Christopher et al. (2008) studied the effects of soil freez-
ing on N mineralization and nitrification by sampling along
a snow-cover gradient in Japan, sampling in contrasting soil
types. They found simultaneous increases in N mineraliza-
tion and decreases in nitrification in response to freezing, re-
gardless of soil type. Austnes and Vestgarden (2008) used
an experimental approach to examine the response of N in
undisturbed soil columns from montane heathlands of south-
ern Norway to freeze–thaw cycle and permanent frost treat-
ments, finding that both treatments increased NH4 and
decreased NO3. In another freeze–thaw experiment, Joseph
and Henry (2008) found that N leaching increased nearly
twofold following freezing and thawing of temperate old
field soils.

This latter response, increased leaching of N in the form
of NO3, has important relevance to effects of freezing in
soils of N-saturated forest ecosystems wherein soil NO3 ac-
cumulates and is leached from soil into streams (Aber et al.
1998). This can be of serious concern to forest health if
more frequent freezing events further increase NO3 leaching

because it has been shown to deplete Ca and Mg availability
in impacted soils (Peterjohn et al. 1996; Gilliam et al.
2001a, 2001b, 2005). We are aware of no studies that have
examined effects of freezing on N dynamics in soils of N-
saturated forests.

Several hardwood-dominated watersheds of the Fernow
Experimental Forest (FEF), West Virginia, have been shown
to be N saturated (Gilliam et al. 1996; Peterjohn et al.
1996), particularly the long-term reference watershed at
FEF (WS4) (Stoddard 1994; Gress et al. 2007). Another
symptom of N saturation, that of high relative nitrification
(i.e., the percent of mineralized N converted to NO3), is es-
pecially evident at FEF. Long-term in situ (buried bag) incu-
bations have revealed that nitrification is consistently close
to 100% across three FEF watersheds, indicating that net N
mineralization and nitrification are tightly linked at this site
(Gilliam et al. 2001a, 2001b, 2004).

In addition, a notable degree of spatial heterogeneity in
soil N dynamics has been described for WS4 as evidenced
by spatial patterns of soil solution chemistry and in situ in-
cubations (Peterjohn et al. 1999; Gilliam et al. 2001a,
2001b, 2005). Based on long-term data for soil water NO3
and in situ rates of net nitrification, we have identified a
gradient of four sites within WS4 that vary in rates of NO3
production.

The purpose of this study was to examine the effects of
soil freezing on net N mineralization and nitrification along
a gradient of rates of N processing in an N-saturated central
hardwood forest ecosystem. We subjected soil samples to
three freezing temperature treatments, 0, –20, and –80 8C,
addressing the following questions. (i) What are the initial ef-
fects of soil freezing on NH4 and NO3 production? (ii) What
are the effects of soil freezing on net N mineralization and
nitrification potentials and relative nitrification? (iii) How do
these responses vary along the nitrification gradient?

Materials and methods

Study site
The study site, FEF, occupies ~1900 ha of the Allegheny

Mountain section of the unglaciated Allegheny Plateau in
Tucker County, West Virginia, adjacent to the Monongahela
National Forest (39803’N, 79849’W). Averaging approxi-
mately 1430 mm�year–1, precipitation at FEF varies season-
ally and with elevation, generally greater during the growing
season and at higher elevations (Gilliam et al. 1996). Long-
term records at FEF indicate that, for the decade of 1991–
2000, there were >1100 days with ambient temperatures
<0 8C. Of these, nearly 20% were less than –10 8C. Snow-
pack typically ranges from a few days to <2 weeks (Adams
et al. 1994). Thus, the likelihood of freezing is notable for
this site.

Four sample sites were located in WS4, the long-term
reference watershed at FEF that supports >100-year-old
mixed-aged hardwood stands (Fig. 1). Soils at all sample
sites are predominantly coarse-textured Inceptisols (loamy-
skeletal, mixed mesic Typic Dystrochrept) of the Berks and
Calvin series, sandy loams derived from sandstone. Soil pH
generally varies between 3.50 and 4.00 (Gilliam et al. 2004).
The woody overstory is characterized by a high diversity of
tree species, with dominant species including sugar maple
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(Acer saccharum Marsh.), black cherry (Prunus serotina
Ehrh.), and northern red oak (Quercus rubra L.). The herba-
ceous layer of these sites comprises species typical of mon-
tane eastern deciduous forests, including violets (Viola spp.),
blackberry (Rubus spp.), stinging nettle (Laportea canaden-
sis (L.) Wedd.), and several species of ferns (Gilliam 2007).

Field sampling
Sampling was done at four sites that were shown by pre-

vious investigations to represent a gradient in rates of net ni-
trification. Determination of this gradient was based on
long-term soil water NO3 data and 6 years of monthly
(growing season) rates of net N mineralization and nitrifica-
tion measured in situ from 1993 to 2007 and reported in part
in Gilliam et al. (2001a, 2001b). The sites were not defined
by specific boundaries, thus precluding accurate estimates of
area. Rather, they were identified as essentially subcatch-
ments within the watershed. These sites were as follows:
LN (low rates of N processing), ML (medium-low rates),
MH (medium-high rates), and HN (high rates). Several stand
and soil characteristics of the four sites are summarized in
Table 1.

Mineral soil was taken to a 5 cm depth as nine replicate
samples from a randomly located 3 m � 3 m grid at each
site. The grid was located at each site adjacent to the long-

term in situ incubation plot to reflect the soil characteristics
(see Table 1) reported previously in the literature (Gilliam et
al. 2001a, 2001b). The grid design was used as part of an
additional study on microscale heterogeneity in soil proc-
esses. A single sample was taken at the center of each of
nine 1 m2 contiguous plots within the grid. Soil was re-
moved via hand trowel and placed in 500 mL sterile poly-
ethylene Whirl-Pac bags, which were stored on ice for
transport back to the Marshall University Weeds and Dirt
Laboratory.

Experimental treatments
Subsamples of soil from each plot were extracted for

analysis of NH4
+ and NO3

– immediately upon return to the
laboratory (see Laboratory analyses below). Approximately
50 g of each sample was placed into each of three 120 mL
sterile polyethylene Whirl-Pac bags for freezing treatment as
follows: 0, –20, and –80 8C. The 0 and –20 8C treatments
were administered by placing bags in separate Fisher Iso-
temp incubators, which held soil temperature constant at the
respective settings. The –80 8C treatment was administered
by placing bags in a Thermo Electron Corporation freezer
and was chosen as an extreme treatment to determine
whether the intermediate treatment (–20 8C) represents a
threshold temperature for freezing effects (i.e., slight or no
differences between –20 and –80 8C treatments would sug-
gest a –20 8C threshold). The remaining soil was kept in
the original bag and refrigerated at 4 8C as control. All
treated samples were subjected to treatments for 7 days.

Initial effects of freezing on soil N were assessed in this
study to further separate the direct biotic and abiotic effects
of freezing. These effects were assessed by extracting all
treated samples immediately following thawing for 24 h
(note: the 0 8C soils did not freeze to hardness due to the
freezing point depression effect of soil solutes but were al-
lowed to come to room temperature for the same time pe-
riod as for the –20 and –80 8C samples). Effects of freezing
treatment on net N mineralization and nitrification potential
were assessed by incubating the remaining soil in all bags
for 7 days at 25 8C prior to additional extraction.

Laboratory analyses
Soil moisture was monitored for all subsamples before

and during incubation, and neither varied among samples or
through time of incubation. Extraction and analysis for NH4

+

and NO3
– followed methods described in Gilliam et al.

(2005). Briefly, moist soils were extracted with 1 mol�L–1

KCl at an extract to soil ratio of 10:1 (v/m); these were ex-
pressed as dry mass using a dry to moist conversion ratio
from dried subsamples. Extracts were analyzed colorimetri-
cally for NH4

+ and NO3
– with an AutoAnalyzer 3 automatic

analysis system. Net N mineralization rates (in mg N�g
soil–1�day–1) were calculated as postincubation NH4

+ and
NO3

– minus preincubation NH4
+ and NO3

–. Nitrification rates
(in mg N�g soil–1�day–1) were calculated as postincubation
NO3

– minus preincubation NO3
–. Relative nitrification was

expressed as a percentage and calculated as net nitrification
divided by net N mineralization multiplied by 100.

Data analyses
The effects of freezing on net N mineralization and nitri-

Fig. 1. Map of WS4 of Fernow Experimental Forest, West Virginia,
showing sample sites for the present study. Sites are as follows:
low nitrification (LN), medium-low nitrification (ML), medium-
high nitrification (MH), and high nitrification (HN).
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fication were assessed by comparing means of control soils
with those of soils treated at 0, –20, and –80 8C with one-
way analysis of variance and least significant difference
tests (Zar 1999). We considered initial effects of freezing to
be any treatment effect found for extractions made immedi-
ately after freezing treatment. Effects of freezing on poten-
tial net N mineralization and net nitrification were said to
be those found for extractions made following the 1-week
incubation of all soils at 25 8C. Potential effects of soil
weathering on net nitrification were assessed via correlation
between mean nitrification and mean soil clay content across
all four sites.

Results and discussion

Initial effects of freezing on net N mineralization and
nitrification

Laboratory freezing exerted pronounced initial effects on
net N mineralization, although this effect varied signifi-
cantly (P < 0.05) among sites (Fig. 2). Initial effects differed
significantly among freezing temperatures for net N mineral-
ization, but not nitrification, in soils across the gradient,
which was generally maintained for all freezing treatments
(i.e., rates of N processing at LN < ML £ MH < HN). An
exception to these patterns was evident for the LN site
wherein net nitrification remained very low across all freez-
ing treatments (Fig. 2). Net N mineralization was highest at
–80 8C for the higher N sites and was significantly lowest
across all sites at 0 8C.

Initial responses of soil N to freezing (i.e., immediately
after freezing treatment) were assessed in this study because
they should exemplify the direct biotic and abiotic effects of
freezing. Biotic effects include responses of microbial popu-
lations associated in soil N dynamics, which may initially
decrease due to lysing of cells from ice formation in the cy-
tosol, simultaneously increasing NH4 and NO3 that is re-
leased from the cytosol (Allen-Morley and Coleman 1989).
Also, NH4 production following cell lysis is possible
through extracellular deaminase activity (Abdel-Fatah et al.
2003). Abiotically, freeze–thaw cycles facilitate physical

Table 1. Characteristics of sample sites along a net nitrification gradient within WS4 of Fernow Experimental Forest, West Virginia.

Characteristic LN ML MH HN
Elevation (m) 808 838 838 833
Clay (%) 12.0 9.6 9.6 7.2
Sand (%) 69.8 66.3 70.3 66.8
Silt (%) 18.2 24.1 20.1 26.0
Organic matter (%) 17.0 17.3 13.8 17.0
In situ N mineralization (g N�m–2�month–1) 0.1 2.2 2.9 4.3
In situ nitrification (g N�m–2�month–1) 0.02 1.6 2.3 4.2
Soil water NO3

– (mg N�L–1) 0.1 0.2 1.1 3.1
Foliar N (%) 1.64 2.38 2.34 2.55
Litter N (%) 1.30 1.63 1.65 1.81
Total basal area (m2�ha–1) 31.8 22.3 36.8 35.3
Total density (stems�ha–1) 1025 825 1075 500
Dominant tree species Quercus rubra Quercus alba Quercus rubra Prunus serotina
Herb layer cover (%) 17.4 18.0 11.2 27.4
Dominant herb species Smilax rotundifolia Laportea canadensis Smilax rotundifolia Laportea canadensis

Note: Sites: low nitrification (LN), medium-low nitrification (ML), medium-high nitrification (MH), and high nitrification (HN). N data taken from on-
going work initially reported in Gilliam et al. (2001a, 2001b).

Fig. 2. Initial effects of freezing on (a) net N mineralization and
(b) net nitrification of soils from four sites within WS4 of the Fer-
now Experimental Forest, West Virginia. Experimental treatments
are as follows: low freeze (T0, freezing at 0 8C for 7 days followed
by incubation), medium freeze (T-20, freezing at –20 8C followed
by incubation), and high freeze (T-80, freezing at –80 8C followed
by incubation). Shown are means ± 1 SE of the mean. Means with
the same letter (x, y, z) are not significantly different (P < 0.05)
between sites for a given treatment. Means with same letter (a, b, c)
are not significantly different (P < 0.05) between treatments for a
given site.
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breakdown of soil organic matter, increasing surface area to
volume ratios of soil organic materials and increasing acces-
sibility to microbes.

Effects of freezing on net N mineralization and net
nitrification potentials

Net N mineralization potential (hereafter, net N mineraliza-
tion) (i.e., following a 7-day incubation at 25 8C) was signifi-
cantly higher following freezing at –20 and –80 8C than the
control, which was also significantly higher than the 0 8C
treatment. A similar pattern was observed for net nitrification
potential (hereafter, net nitrification), i.e., rates following
–20 8C & –80 8C > control > 0 8C (Fig. 3). Also, means among
sites generally maintained the gradient pattern based on field
data. That is, net nitrification was consistently highest at HN,
lowest at LN, and intermediate at the ML and MH sites. More
specifically, net nitrification at the LN site was consistently
one to two orders of magnitude lower, ranging from 0.01 to
0.05 mg N�g soil–1�day–1, than at the HN site, which ranged be-
tween ~3.0 and 5.0 mg N�g soil–1�day–1 (Fig. 3).

Thus, whereas freezing treatments that resulted in a truly
frozen state (i.e., –20 and –80 8C) increased net N minerali-
zation and nitrification relative to controls, these processes
were significantly inhibited at 0 8C. This may have arisen
from two mechanisms. First, the 0 8C treatment may have
suppressed N mineralization but not N immobilization, thus
increasing the level of net N immobilization. Second, popu-
lations of ammonifying microbes and nitrifying bacteria may
have decreased at 0 8C in a way that limited their response
to the increasing temperature of incubation (25 8C). Signifi-
cant increases in both net N mineralization and nitrification
at –20 and –80 8C suggest that microbial cellular constitu-
ents (from cell lysis) and increased surface area of soil or-
ganic matter from the physical action of ice provided
sufficient substrate to allow these populations to overcome
low-temperature limitations.

It is of great interest that there were no significant differ-
ences in net N mineralization and nitrification between the –
20 and –80 8C treatments. Generally outside the realm of
surface temperatures of the biosphere (lowest natural tem-
perature was –89.2 8C recorded 21 July 1983 at the Russian
Vostok Station in Antarctica), the –80 8C treatment was
used to test whether further decreasing temperature in a
fully frozen state would have a proportional effect on soil N
dynamics. Our results suggest that –20 8C may represent
threshold beyond which further decreases in temperature
bring about minimal changes in microbial N processing.
Clearly, freezing at –80 8C does not bring about notable de-
clines in nitrifier populations, such as Nitrosomonas and Ni-
trobacter, at least not in soils with highly active populations,
such as those that are predominant at the HN site (Gilliam et
al. 2001a, 2001b).

Results vary considerably among studies in the literature
that examine effects of freezing on soil N. Harding and
Ross (1964) found that thawing after freezing at –20 8C in-
creased net N mineralization and nitrification in some, but
not all, soils examined, concluding that moisture and C con-
tents of soils may influence this response. The field-based
snow manipulation study at Hubbard Brook Experimental
Forest found that freezing (brought about by experimentally
removing snowpack) resulted in increases in soil NO3 and

enhanced loss of N in soil solution, but did so without sig-
nificantly influencing net nitrification (Fitzhugh et al. 2001;
Groffman et al. 2001a, 2001b). Joseph and Henry (2008)
found that experimental freeze–thaw cycles of temperate
old field soils increased leaching of N nearly twofold. By
contrast, Hentschel et al. (2009) concluded that moderate
soil frost did not stimulate solute losses of N, dissoved or-
ganic C, and mineral ions from soils of montane Norway
spruce (Picea abies (L.) Karst.) stands around Fichtelge-
birge, Germany.

The degree to which net N mineralization and net nitrifi-
cation are coupled (sensu Christopher et al. 2008) can be as-
sessed by calculating relative nitrification. Robertson (1982)
used relative nitrification as an independent test of site fac-
tors (e.g., soil pH, C to N ratio) that potentially influence in
situ nitrification. Relative nitrification has been shown to
vary considerably with stand type, with much higher relative
nitrification generally associated with hardwood than with
conifer forests (Bonilla and Rodà 1992; Gilliam et al. 2004;
Fenn et al. 2005). High relative nitrification also has been

Fig. 3. Effects of freezing on (a) potential net N mineralization and
(b) potential net nitrification of soils from four sites within WS4 of
the Fernow Experimental Forest, West Virginia. Control (C), no
treatment followed by 7 days of incubation at 25 8C; see Fig. 2 for
experimental treatments. Shown are means ± 1 SE of the mean.
Means with the same letter (x, y, z) are not significantly different
(P < 0.05) between sites for a given treatment. Means with the
same letter (a, b, c) are not significantly different (P < 0.05) be-
tween treatments for a given site.
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linked to high rates of N deposition (Fenn et al. 2005) and N
saturation (Gilliam et al. 2004).

Mean relative nitrification for the control treatment con-
firms earlier findings that net nitrification can be as high as
100% of net N mineralization in these soils (Gilliam et al.
2001a, 2001b, 2004). Mean values varied significantly
among sites, however, in the following order: HN (97%) >
ML (77%) > MH (61%) > LN (7%), with the general effect
of freezing being to decrease relative nitrification (Fig. 4).
All freezing treatments significantly decreased relative nitri-
fication at the LN site. Freezing at –20 and –80 8C, but not
at 0 8C, caused significant decreases at the ML and MH
sites, whereas –20 8C (but neither 0 nor –80 8C) signifi-
cantly decreased relative nitrification at the HN site
(Fig. 4). Therefore, we conclude that soil freezing may serve
to decouple two processes of the soil N cycle that can other-
wise be tightly linked at our site, similar to the conclusions
of Christopher et al. (2008).

Gradient factors
It is notable that the gradient pattern in net nitrification

based on long-term in situ incubations (Table 1) was gener-
ally maintained under the controlled conditions in the labo-
ratory (Figs. 2b and 3b). This strongly suggests that the
gradient patterns observed from the field have arisen from
variation in soil microbial communities (i.e., composition
and activity) of the respective sites rather than the more
transient ambient factors, such as moisture and temperature,
that are otherwise important in controlling microbial proc-
esses (Gilliam et al. 2001a, 2001b). Accordingly, we were
interested in determining which, if any, site variables, many
of which are listed as ‘‘Characteristics’’ in Table 1, might
best explain this gradient pattern. Of these, soil clay content
was correlated most closely with net nitrification across the
four sites, independent of treatment (Fig. 5). Furthermore,
there is considerable evidence to suggest that this gradient
is the product of differential rates of mineral weathering

during the process of soil formation (Jenny 1980). For ex-
ample, although soils of WS4 are underlain by the same pa-
rent material (Gilliam et al. 2005), Tajchman et al. (1988)
demonstrated that over a 35-year period (1948–1982), net
radiation, a principle driver in weathering of primary and
secondary soil materials (Jenny 1980; Rech et al. 2001),
was highest on southwest-facing upper slopes of the water-
shed and lowest on the north- and northeast-facing slopes
(see Fig. 1).

Although it is highly speculative, results from our study
suggest that, at least across the 35 ha scale of WS4, weath-
ering may represent an ultimate control on nitrification.
More highly weathered soils typically have higher clay con-
tent (Jenny 1980), and clay content was negatively corre-
lated with net nitrification among our samples site, a
relationship that was not substantially altered by freezing
treatment (Fig. 5). This is consistent with conclusions of
Gilliam et al. (2005), a study that included the LN and HN
sites as part of a different gradient study at FEF. They found
that exchangeable Al, another indicator of weathering status
of soil (Troeh and Thompson 2005), was highest at LN
(713 mg Al g–1 soil) and lowest at HN sites (149 mg Al�g
soil–1). Although our work was carried out on a much
smaller spatial scale, these conclusions are also consistent
with those of Reich et al. (1997), who examined factors af-
fecting net N mineralization across 50 forest stands at six
sites in Wisconsin and Minnesota. They discovered that soil
texture was more important than stand type in explaining
spatial patterns of N mineralization.

Implications for soil freezing in an N-saturated
hardwood forest ecosystem

The variety of responses of soil N dynamics to freezing,
as shown in both field- and laboratory-based studies, pre-
cludes broad generalizations or predictions on effects of soil
freezing in forest ecosystems. Although some of this arises
from variation among studies in methodology used, much
of it is likely the result of (i) intersite variation in N status

Fig. 4. Effects of freezing on relative nitrification (i.e., fraction
(percent) of mineralized N that is nitrified) of incubated soils from
four sites within WS4 of the Fernow Experimental Forest, West
Virginia. See Fig. 2 for experimental treatments. Shown are
means ± 1 SE of the mean. Means with the same letter (w, x, y, z)
are not significantly different (P < 0.05) between sites for a given
treatment. Means with the same letter (a, b, c) are not significantly
different (P < 0.05) between treatments for a given site.

Fig. 5. Second-order polynomial relationships between net nitrifi-
cation and clay content following 1-week incubations for the fol-
lowing freezing treatments: control (C) (r2 = 0.989, P < 0.01), 0 8C
(T0) (r2 = 0.938, P < 0.05), –20 8C (T20) (r2 = 0.999, P < 0.01),
and –80 8C (r2 = 0.997, P < 0.01).
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and soil microbial communities, (ii) site-specific factors that
most profoundly influence those communities, and (iii) vari-
able microbial response to freezing. Results of our study, a
laboratory-based experiment that employed a field-based
gradient in net nitrification that was largely maintained re-
gardless of experimental treatment, suggest strongly that
this is the case, at least at the 35 ha scale of a hardwood-do-
minated watershed. The intermediate temperatures used in
this study (0 and –20 8C) are not uncommon for ambient
conditions at FEF. Long-term data from the Timber and
Watershed Laboratory (USDA Forest Service) indicate that
there were 1134 days <0 8C over the decade of 1991–2000,
during which time snowpack typically lasts a few days at a
time (Adams et al. 1994).

One of the symptoms of N saturation is an increase in the
predominance of net nitrification (Aber et al. 1998), and
WS4 has been cited as one of the better examples of an N-
saturated ecosystem (Stoddard 1994; Peterjohn et al. 1996;
Gress et al. 2007). Our results suggest that soil freezing at
temperatures commonly experienced at this site can further
increase net nitrification in soils already exhibiting high ni-
trification from N saturation, potentially exacerbating prob-
lems associated with N saturation, such as decreased growth
rates of dominant hardwood species, which has been demon-
strated at FEF (May et al. 2005; DeWalle et al. 2006).

Another characteristic of N saturation is high relative nitri-
fication. That is, as N status increases, the amount of N min-
eralized from organic to inorganic forms that eventually
become nitrified increases (Gilliam et al. 2001a, 2001b,
2004; Fenn et al. 2005), a pattern also supported by our data.
However, net N mineralization increased in response to
freezing to a degree greater than net nitrification at all sites
other than HN. Thus, response of N mineralization to freez-
ing may differ greatly from that of nitrification, suggesting
that soil freezing may serve to decouple two processes of the
soil N cycle that are otherwise tightly linked at our site.

Finally, because our sample sites represent discrete areas
(i.e., subcatchments) within WS4, the N gradient represents a
degree of spatial heterogeneity of N availability within the
watershed. Thus, it is possible, based on results shown in
Fig. 3a wherein there were no longer significant differences
in net N mineralization among sites at –20 8C, that one of the
effects of freezing at temperatures quite common to the region
may be to decrease the spatial heterogeneity of N mineraliza-
tion in the watershed. This is a response with relevance to for-
est biodiversity. For example, Gilliam (2007) found that up to
90% of plant biodiversity of temperate forest ecosystems is
found in the herbaceous layer, a vegetation stratum that is sen-
sitive to spatial and temporal variation in soil N availability. It
has been suggested that decreases in spatial heterogeneity of
soil N can lead to decreases in herb layer diversity (the ‘‘N ho-
mogeneity hypothesis’’, see Gilliam 2006; Bobbink et al.
2010). Accordingly, the effects of soil freezing might have di-
rect implications for biodiversity in forest ecosystems.
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