
Marshall University
Marshall Digital Scholar
Weisberg Division of Computer Science Faculty
Research Weisberg Division of Computer Science

Spring 4-22-2012

Audio convolution by the mean of GPU: CUDA
and OpenCL implementations
Davide Andrea Mauro
Marshall University, maurod@marshall.edu

Follow this and additional works at: http://mds.marshall.edu/wdcs_faculty

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Weisberg Division of Computer Science at Marshall Digital Scholar. It has been accepted
for inclusion in Weisberg Division of Computer Science Faculty Research by an authorized administrator of Marshall Digital Scholar. For more
information, please contact zhangj@marshall.edu, martj@marshall.edu.

Recommended Citation
Mauro D.A. Audio convolution by the mean of GPU: CUDA and OpenCL implementations. Proceedings of the Acoustics 2012
Nantes Conference, 23-27 April 2012, Nantes, France: pp.2863-2868, 2012.

http://mds.marshall.edu?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zhangj@marshall.edu,%20martj@marshall.edu

Audio convolution by the mean of GPU: CUDA and
OpenCL implementations

D.A. Mauro

Laboratorio di Informatica Musicale (LIM), Dipartimento di Informatica e Comunicazione
(DICo), Università degli Studi di Milano, Via Comelico 39/41, 20135 Milano, Italy

mauro@dico.unimi.it

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2857

This paper focuses on the use of GPGPU (General-Purpose computing on Graphics Processing Units) for audio

processing. This is a promising approach to problems where a high parallelization of tasks is desirable. Within

the context of binaural spatialization we will develop a convolution engine having in mind both offline and real-

time scenarios, and the support for multiple sound sources. Details on implementations and strategies used with

both dominant technologies, namely CUDA and OpenCL, will be presented highlighting both advantages and

issues. Comparisons between this approach and typical CPU implementations will be presented as well as between

frequency (FFT) and time-domain approaches. Results will show that benefits exist in terms of execution time for

a number of situations.

Figure 1: The workflow diagram of the system.

1 Introduction
We first introduce the core of the work in terms of con-

ceptualization and development of a model. Even if the pro-

cess is well known and understood in terms of mathematics,

the realization of implementations that work in real-life sce-

narios is not trivial. One of the greatest obstacle is the com-

putational complexity that convolution requires both in the

time and frequency domain approaches. This means that the

problem could be theoretically solved but the computer ar-

chitecture does not allow it to be solved in a reasonable time

for some practical cases of interest.

2 Convolution Engines
As shown in Figure 1 the system requires as input an ane-

choic signal (monophonic) and a impulse response (stereo)

and the overall output will be two channel spatialized sound

that can feed both headphones or loudspeakers (with crosstalk

cancelation algorithms [2]).

We will focus on implementations of this system thanks

to modern GPGPU techniques.

2.1 State of the Art
In the literature there are other systems that aim at re-

alizing systems that achieve real-time auralization, or aug-

mented reality. We present a brief sketch of the opportunities

and the techniques employed. It is worth to cite the work of

Kapralos et al. presented in [4] and [5] where the authors ap-

ply GPGPU techniques to solve the problem of convolution.

The main differences are that the authors use a time domain

implementation that exploits the use of OpenGL in order to

process audio data. This means basically that they need to

tweak the system to threat audio data as RGB bitmaps.

• TConvolutionUB∼: A Max/MSP external patch from

Thomas Resch that extends the possibilities given by

the buffir∼ object allowing convolution with a filter

that has more than 255 points.

• SIR2: An easy to use native audio-plugin to use for

high quality reverberation. It’s available for the plugin

formats VST and AudioUnit. Its use can be stretched

from a convolution reverb to a convolution engine for

auralization given the flexibility of the program itself.

• djbfft: A library for floating-point convolution. The

current version provides power-of-2 complex FFTs, real

FFTs at twice the speed, and fast multiplication of com-

plex arrays. Single precision and double precision are

equally supported.

• BruteFIR: An open-source convolution engine, a pro-

gram for applying long FIR filters to multi-channel

digital audio, either offline or in realtime, by Anders

Torger [8]. Its basic operation is specified through

a configuration file, and filters, attenuation and delay

can be changed at runtime through a simple command

line interface. The author states that the FIR filter al-

gorithm used is an optimized frequency domain algo-

rithm, partly implemented in hand-coded assembler,

thus throughput is extremely high. In real-time, a stan-

dard computer can typically run more than 10 channels

with more than 60000 filter taps each. It makes use of

the partitioned convolution and overlap-save methods

that are introduced in the following subsection.

• AlmusVCU: From the author of BruteFIR this is a com-

plete system that aims at an integrated environment for

sound spatialization. It has been designed primarily

with Ambiophonics in mind and contains all process-

ing needed for a complete Ambiophonics system.

• Aurora Plugin: From Angelo Farina, is a suite of plug-

ins for Adobe Audition: room acoustical impulse re-

sponses can be measured and manipulated, for the recre-

ation of audible, three-dimensional simulations of the

acoustical space.

2.2 Convolution in the Time Domain
This approach can be mathematically described by the

formula:

y(k) =
∑
j=1

x1(j)x2(k − j + 1) (1)

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

2858

Where x1 and x2 are the input sequences of length m and n
and y is the output sequence of length k = m + n − 1.

When m = n, which is the normal case for other imple-

mentations, this gives:

w(1) = u(1)v(1)

w(2) = u(1)v(2) + u(2)v(1)

w(3) = u(1)v(3) + u(2)v(2) + u(3)v(1)

· · ·
w(n) = u(1)v(n) + u(2)v(n − 1) + · · · + u(n)v(1)

· · ·
w(2n − 1) = u(n)v(n)

(2)

The computational complexity for the time domain approach

is O(n2).

This is the underlying approach to every other method.

Implementing a FIR (Finite Impulse Response) filter is obvi-

ously the easiest idea but as can be seen from the complexity

as the input size increase it could become impossible to pro-

cess data in real-time.

2.3 Convolution in the Frequency Domain
Thanks to the convolution theorem we can express the

convolution of two sequences as the multiplication of their

Fourier transforms. Here the general layout for the frequency

domain approach is introduced. The approach that can be

schematized as follows:

• Zero-Pad input vectors x1 and x2 of length m and n so

the length of the sequences becomes m + n − 1;

• Perform FFT of the input vectors;

• Perform the pointwise multiplication of the two se-

quences;

• Perform the IFFT of the obtained sequence.

The computational complexity for the frequency domain ap-

proach is O(n log(n)).

2.3.1 Overlap-add algorithm

Since the size of the input can become very high, it is

not convenient to use a single window to transform the en-

tire signal so a number of methods can be implemented to

overcome this. We choose to use a method called Overlap-

add (OA, OLA). It is an efficient way to evaluate the discrete

convolution of a very long signal x[n] with a finite impulse

response (FIR) filter h[n]. The concept is to divide the prob-

lem into multiple convolutions of h[n] with short segments

of x[n]:

y[n] = x[n] ∗ h[n] :=

∞∑
m=−∞

h[m]x[n − m] =

M∑
m=1

h[m]x[n − m]

(3)

where h[m] = 0 for m outside the region [1,M].

xk[n] :=

⎧⎪⎪⎨⎪⎪⎩
x[n + kL] n = 1, 2, ···, L
0 otherwise

(4)

Figure 3: Schematic view of the overlap-add convolution

method.

where L is an arbitrary segment length.

x[n] =
∑

k

xk[n − kL] (5)

So y[n] can be written as a sum of convolutions:

y[n] =

⎛⎜⎜⎜⎜⎜⎝
∑

k

xk[n − kL]

⎞⎟⎟⎟⎟⎟⎠ ∗ h[n] =
∑

k

(xk[n − kL] ∗ h[n]) (6)

The method is depicted in Figure 3

It is particularly useful for our tasks since it works on

independent pieces of input and thus is well suited for a par-

allelized approach such as one that employs a GPU.

3 Reference CPU implementations
In order to make comparisons with the GPU implemen-

tations that we will present we need a reference implementa-

tion that can serve as a basis in terms of execution time and

bitwise precision. For this reason three different prototypes

have been developed that use different algorithms.

The first two prototypes are Matlab scripts that use both a

Time Domain and a Frequency Domain approach. Since the

computational complexity for the Time Domain approach is

O(n2) this can not be used when the filter kernels are big. In

our experiments, according to a Max/MSP implementation

that will be introduced in the following section, we choose to

limit the size to 256 samples.

The frequency domain implementation (presented in [7])

will be used to validate the results in terms of bitwise preci-

sion. Since Matlab is mainly intended as a prototyping en-

vironment there is no focus on performance and every other

implementation can outperform our Matlab testbase by or-

ders of magnitude. Moreover, this implementation works

only in “direct mode”; this implies that a single FFT is per-

formed for the entire signal and therefore the algorithm may

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2859

Figure 2: A scheme of convolution in frequency domain.

not be applicable for long sequences due to memory con-

straints or implementation limits. Source code for both the

Matlab implementations are available from the author.

The last CPU implementation is written in C++ and is

based on the FFTW3 library (see [6]). It is based on the ar-

chitecture presented in Figure 2 and implements both modal-

ities (Direct and OLA) previously discussed.

The FFTW library itself is based on Cooley-Tukey al-

gorithm [3]. As presented by the authors, the interaction

of the user with FFTW occurs in two stages: planning, in

which FFTW adapts to the hardware, and execution, in which

FFTW performs useful work for the user. To compute a DFT,

the user first invokes the FFTW planner, specifying the prob-

lem to be solved. The problem is a data structure that de-

scribes the “shape” of the input data - array sizes and mem-

ory layouts - but does not contain the data itself. In return,

the planner yields a plan, an executable data structure that

accepts the input data and computes the desired DFT. After-

wards, the user can execute the plan as many times as desired.

3.1 A CUDA convolution engine
For the CPU implementation with CUDA we were able

to implement both Direct and OLA algorithm. We consider

the benefits of both approaches in the following section while

presenting performance comparisons. For FFT we use a li-

brary called CUFFT which is actually based on FFTW3 li-

brary with some other optimizations specifically designed for

GPUs. One of the current issue is the CUFFT limit of 64 mil-

lions of points.

3.2 An OpenCL convolution engine
One of the current limitations is that the factorization al-

gorithms works only for powers of 2 (radix-2). So the pay-

load should be adapted to make the sum with the length of

the filter kernel to be the closest greater power of 2.

4 The CGPUconv prototype
From a number of the previously cited prototypes we

derived a single application that allows the user to choose

between a CPU- or a GPU-based algorithm and between a

direct mode (a single window for the entire signal) and an

Overlap-add mode. It is structured as a “wrapper” around

the single module that has the capability of opening audio

files and writing them back to disk thanks to libsndfile (see

[1]). It is a command line tool that compiles and executes

both on Microsoft Windows, Apple Mac OS X, and Linux as

long as they have, or there exists a version of:

• Libsndfile for I/O;

• FFTW3 library for CPU implementation;

• CUDA Framework;

• OpenCL driver.

The program can be adapted by removing functionalities pro-

vided by any subset of the previous requirements by remov-

ing the components that make use of that prerequisite. The

source code is available from the author at

http://www.lim.dico.unimi.it/CGPUconv.

4.1 Performance Comparisons
Performances of these algorithms depends on the size of

input. Therefore, to characterize the “trade-off”, we tested

them with different input sizes. To make a reliable com-

parison we choose to use as input signals a logarithmic sine

sweep and its TRM (time reversal mirror) so the output should

be the δ function (Dirac delta function) or, to be more pre-

cise, the limited bandwidth approximation of the sinc (sinus
cardinalis) function.

δ(x) =

⎧⎪⎪⎨⎪⎪⎩
+∞, x = 0

0, x � 0
(7)

∫ ∞
−∞
δ(x)dx = 1 (8)

sinc(x) =
sin(x)

x
(9)

We then compute the time spent on the convolution proce-

dure, excluding the load procedure that reads from audio files

and the write to disk procedure for the results, which are col-

lateral to our primary goal. A special case is represented by

the first execution for both the CUDA and OpenCL imple-

mentation where for the former there exists some extra time

devoted to the load of the environment while for the latter,

apart from the aforementioned setup, we have to take into

account the time that the driver allocate to compile kernel

functions.

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

2860

Direct OLA

CPU - 9699

CUDA - 6181

OpenCL 7486 6699

Table 1: Performance comparisons. Time in ms.

The algorithms were executed on an OS X 10.6.8 equipped

Apple Macbook Pro 13.3” (MacBookPro5,5), Intel Core 2

Duo processor @2,53 GHz, 8 GB Ram, NVIDIA GeForce

9400GM VRAM 256 MB shared memory. OpenCL drivers

are provided by the operating system (1.1 compatible), and

the CUDA framework is version 4.0.

All the audio files are high quality PCM uncompressed

files and have a sample rate of 96 kHz and a quantization

word of 24 bit. With this bit depth the theoretical dynamic

range is ∼ 144 dB.

For each algorithm we measured the difference computed

between the signal under test and the reference (coming from

the Matlab implementation) with a phase inversion. So the

difference on a sample by sample basis gives us a new signal

that can be used as a degree of similarity between the two

original signals. For each and every proposed approach this

signal is below -122 dB FS (dB on the full scale) meaning

there is no practical difference, and the result is in the order

of magnitude of the noise floor.

Coming to the execution time of the algorithms we pro-

pose a summary of the results presented in Figures 4, 5.

Results are depicted as a function of the number of input

samples, averaged over 100 runs.

We also present in Table 1 results for a “real-case sce-

nario”. We have a violin sound that is three minutes long and

a reverberant impulse response of 1 s (sample rate 96 kHz)

• Input: 17703123 samples (∼3’10”)

• Kernel: 96000 (∼1”)

Please note that “-” occurs when there is not enough free

video RAM to handle the data. The idea here is to have a sys-

tem that can run on most home computer so the relatively old

and low powerful graphic card is a good example of what can

be achieved with standard equipment. There are difference

between implementations and this can be explained by the

different way of encoding real and complex numbers. Also

note that there does not exist a concept of “paging” for video

RAM so if a structure is too big to fit in memory there is no

automatic way to handle the situation.

5 Summary and Discussion of the re-
sults

In this paper we presented a number of prototypes that

are suitable for spatialization of sounds exploiting the poten-

tialities of GPUs. Some issues are still present but we want

to point out that the basic concepts here expressed are valid

and mark a profitable direction.

Performance results suggest that for a number of real case

applications there are benefits that can be at least of 1/3 of

the execution time (compared to the reference CPU imple-

mentation) and can be further improved with other GPU-

specific, but not hardware specific, optimizations. Benefits

are increasingly evident as the size of the filter kernel grows

and this is particularly useful for convolution with long rever-

berant impulse responses (e.g. BRIRs) that can be employed

in order to render real environments.

Acknowledgments
The author gratefully wish to acknowledge their stimu-

lating discussions with G. Haus director of the Laboratory

of Music Informatics (LIM) of the Università degli Studi di

Milano and the many researchers and graduate students of

LIM. The author also would like to thank Lorenzo Picinali

and Brian F.G. Katz for extensive conversations concerning

these researches.

This work has been partially funded by the Enhanced Mu-
sic Interactive Platform for Internet User (EMIPIU) project.

References
[1] E. Castro Lopo. Libsndfile [computer software]. Re-

trieved December, 28:2005, 2005.

[2] E. Y. Choueiri. Optimal crosstalk cancellation for binau-

ral audio with two loudspeakers. 2011.

[3] J. Cooley and J. Tukey. An algorithm for the machine

calculation of complex Fourier series. Math. Comput,
19(90):297–301, 1965.

[4] B. Cowan and B. Kapralos. Spatial sound for video

games and virtual environments utilizing real-time GPU-

based convolution. In Proceedings of the ACM Future-
Play 2008 International Conference on the Future of
Game Design and Technology, pages 166–172, Toronto,

Ontario, Canada, November 3-5 2008.

[5] B. Cowan and B. Kapralos. Real-time GPU-based con-

volution: a follow-up. In Proceedings of the ACM Fu-
turePlay @ GDC Canada 2009 International Confer-
ence on the Future of Game Design and Technology,

pages 25–26, Vancouver, British Columbia, Canada,

May 12–13 2009.

[6] M. Frigo and S. Johnson. The design and implemen-

tation of FFTW3. Proc. IEEE (Special Issue on Pro-
gram Generation, Optimization, and Platform Adapta-
tion), 93:216–231, 2005.

[7] D. A. Mauro. Effetti della distanza nella spazializzazione

e localizzazione binaurale. B.A. Thesis, Università degli

Studi di Milano, July 2006.

[8] A. Torger. BruteFIR - an open-

source general-purpose audio convolver.

http://www.ludd.luth.se/torger/brutefir.html.

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2861

 0

 5000

 10000

 15000

 20000

 25000

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

E
xe

cu
tio

n
tim

e
(m

s)

N. of samples

Comparation of execution time for Direct Mode

CPU
CUDA

OpenCL

Figure 4: Execution time for Direct mode depending on input size.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
(m

s)

N. of samples

Comparation of execution time for Overlap-add

CPU
CUDA

OpenCL

Figure 5: Execution time for Overlap-add depending on input size.

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

2862

	Marshall University
	Marshall Digital Scholar
	Spring 4-22-2012

	Audio convolution by the mean of GPU: CUDA and OpenCL implementations
	Davide Andrea Mauro
	Recommended Citation

	Audio convolution by the mean of GPU: CUDA and OpenCL implementations

