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ABSTRACT  

Hematopoiesis is maintained by a proper balance between self renewal and multipotent 

differentiation of the hematopoietic stem cells (HSC). Acute myelogenous leukemia (AML) is 

characterized by the blockage in the differentiation of HSC, while self renewal and proliferation is 

preserved. It is important to understand the mechanisms involved in the inhibition of hematopoietic 

differentiation and maintenance of the HSC state in order to develop better therapies for AML. In these 

studies I have explored the role of Hsp90, omega-3 fatty acids and YB-1 in hematopoietic 

differentiation. EML, a hematopoietic precursor cell line, was used as a model for the hematopoietic 

system in these studies. My preliminary data showed the activation of Wnt signaling upon inhibition of 

Hsp90 in EML cells. This data suggested the involvement of Hsp90 in the regulation of Wnt signaling 

in EML cells. Moreover, my initial data with fatty acid studies indicated that omega-3 fatty acids could 

affect Wnt signaling in EML cells. Unfortunately, further progression of both these studies was marred 

by variability in my data. In my latest study, I have identified YB-1 as a marker involved in the 

maintenance of the hematopoietic stem cell state.  YB-1 was found to be highly expressed in the EML 

cell line and in the mouse bone marrow-derived HSC and myeloid progenitor cells. In addition, YB-1 

expression was downregulated during myeloid differentiation in retinoic acid (RA) and granulocyte 

macrophage colony stimulating factor (GM-CSF) treated EML cells, as well as in the granulocytes 

derived from mouse bone marrow. Further, abnormal YB-1 expression was observed in myeloid 

leukemic cell lines. Knockdown of YB-1 expression and arsenic trioxide treatment (As2O3) in 

erythroleukemic, K562 cell line resulted in apoptosis and inhibition of cell proliferation. Most 

importantly, these treatments led to the induction of megakaryocytic differentiation in these cells. 

Overall my data suggests that increased expression of YB-1 in the leukemic cells contributes to the 

leukemic cell properties by promoting cell proliferation, cell survival and blocking cell differentiation. 

Thus, YB-1 could be a potential target for therapy in myeloid leukemia.  
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CHAPTER One: INTRODUCTION 

Hematopoiesis 

Hematopoietic stem cells (HSC) are the stem cells that give rise to blood and immune 

cells. They are ultimately responsible for the constant renewal of blood as billions of new blood 

cells are produced every day. Hematopoietic stem cells have the capability of self renewal and 

multi-potent differentiation, and hematopoiesis is maintained by a proper balance between the 

two. Hematopoietic stem cells give rise to multipotent committed progenitors - common 

lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs) (Figure 1.1). These 

multipotential committed precursors are highly proliferative and express receptors for specific 

growth and survival factors- the colony stimulating factors (CSF). The CMPs further produce 

megakaryotic/erythroid progenitors (MEPs), which differentiate into erythrocytes and platelets; 

and granulocye-monocyte progenitors (GMPs), which then produce granulocytes and 

monocytes. The CLPs give rise to mature T lymphocytes, B lymphocytes and natural killer 

cells (Kaushansky et al., 2006; Tenen, 2003).  

The production of hematopoietic cells is under the tight control by a group of 

hematopoietic cytokines. Among these, the most important regulators of HSC maintenance are 

stem cell factor (SCF), and thrombopoietin (TPO). Receptors for TPO and SCF, c-Mpl and c-

Kit, respectively, are both expressed on the surface of HSCs. SCF is expressed constitutively in 

bone marrow (BM) stromal fibroblasts and endothelial cells and is essential to the survival, 

proliferation and differentiation of HSCs (Broudy, 1997; Hartman et al., 2001). Administration 

of a neutralizing antibody against c-Kit in mice led to the depletion of all progenitor cells in two 

days, indicating the role of SCF in HSC maintenance (Ogawa et al., 1991).  
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Figure 1.1. A general model of hematopoiesis. Blood-cells are produced from a hematopoietic 
stem cell (HSC), which can undergo either self-renewal or differentiation into a multilineage 
committed progenitor cells These include common lymphoid progenitor (CLP) and common 
myeloid progenitor (CMP). CMP further divides to give rise to more differentiated progenitors, 
committed to granulocytes and macrophages (GMs), and megakaryocytes and erythroid cells 
(MEPs). CLP produces progenitors committed to T cells and natural killer cells (TNKs) and B 
cells (BCPs). Successive division and differentiation of these progenitors give rise to fully 
differentiated cells-B cells, NK cells, T cells, neutrophils, eosinophils, basophils, monocytes, 
platelets and erythrocytes. Different cluster of differentiation antigens (CD) and markers 
expressed on the surface of each cell type are shown in blue. NK cells (NKPs), T cells (TCPs), 
granulocytes (GPs), monocytes (MPs), erythrocytes (EPs), megakaryocytes (MkPs). 
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Mice with loss-of-function mutations in TPO or c-Mpl have a decrease in the number 

of HSC that can repopulate the bone marrow. Further, there is reduction in the expansion of 

HSCs that occurs after bone marrow transplantation. This suggests that TPO plays role in 

promoting the survival and the expansion of HSCs. 

Myeloid cell development involves the interaction of various cytokines in the survival, 

proliferation and differentiation of myeloid progenitors (Figure 1.1). Interleukein-3 (IL-3), SCF 

and TPO are involved in the formation of MEP from CMP. The differentiation of MEP into 

megakaryocytes or erythrocytes depends on the presence of TPO or erythropoietin (EPO). CMP 

give rise to GMP in the presence of granulocyte-macrophage colony stimulating factor (GM-

CSF). Differentiation of these committed progenitors into the granulocyte lineage or monocyte 

lineage requires granulocyte colony stimulating factor (G-CSF) or macrophage colony 

stimulating factor (M-CSF), respectively (Kaushansky et al., 2006). 

Apart from cytokines, transcriptions factors are also thought to play critical role in 

regulating normal hematopoiesis. These include lineage-specific factors and non-specific 

transcription factors. The lineage-specific transcription factors are differentiating factors such 

as PU.1, CCAAT/enhancer binding protein α (C/EBP α) and GATA1, affecting only small 

number of related lineages. The non-lineage-specific transcription factors such as AML1 and 

SCL are involved in almost all lineages. Disruption of acute myeloid leukemia (AML1) or stem 

cell leukemia (SCL) affects formation of the entire blood cell lineage, as these transcription 

factors function at the pre-hematopoietic stem cell stage (Tenen, 2003; Rosenbauer and Tenen, 

2007). Expression of PU.1 is considered one of the earliest events favoring HSCs to lineage 

commitment. PU.1 and GATA-1 are co-expressed in CMPs but their mutually exclusive 

expression coincides with further commitment to either granulocytic/monocytic or 

megakaryocytic/erythroid differentiation (Zhu and Emerson, 2002). In 
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erythroid/megakaryocytic leukemia cell line, K562 ectopic expression of PU.1 led to their 

differentiation into granulocytes and monocytes, instead of megakaryocytes upon Ras pathway 

activation. Further, overexpression of GATA-1 in granulocytic progenitor 32D cells redirects 

them to megakaryopoiesis (Matsumura et al., 2000).  

Disruption of this transcription factor function can interfere with the normal cellular 

differentiation and lead to leukemia. Leukemia is characterized by a terminal differentiation 

block of hematopoietic cells while the self renewal and proliferation is preserved. 

Understanding the pathways by which transcription factors regulate differentiation is important 

to developing improved treatments for hematological malignancies including leukemia. 

 

Acute myelogenous leukemia 

Various hematological abnormalities including myelodysplastic syndrome arise from 

the dysregulation of the hematopoietic process. Myelodysplastic syndrome (MDS) is a 

preleukemic state which involves the ineffective production of the myeloid cells. In one third of 

patients with MDS, the disease transforms into acute myelogenous leukemia (AML), usually 

within months to a few years. Leukemia comprises 33% of childhood cancers and is the most 

prevalent cancer in the children. Among different types of leukemia, AML is the most common 

leukemia diagnosed in infants with a five-year survival rate of 22.6% (Surveillance 

Epidemiology and End Results, NCI). AML is characterized by bone marrow infiltration of 

abnormal hematopoietic precursors and resulting disruption of normal production of red blood 

cells, white blood cells, or platelets. It is diagnosed based on the presence of >30% immature 

and functionless cells called blasts in the bone marrow and peripheral blood. Symptoms in most 

patients arise from disruption of normal blood component production and include fatigue, 

anemia, bleeding and bruising (thrombocytopenia), and fever with or without infection. 
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Transcription 
factor 

Frequency in 
AML 

RUNX1–ETO 
(t(8;21)) 

12–15% 

CBFβ–MYH11 
(inv16) 

8–10%  

PML–RARα 
(t(15;17)) 

6-7% 

MLL fusions 
(t11q23) 

4-7% 

C/EBPα 7-9% 

GATA1 

 

Nearly 100% in 
AMKL 
associated with 
Down’s 
syndrome 

PU.1 <7% 

RUNX1 9% 

 

Table 1.1. Examples of transcription factor mutations in patients with AML. Abbreviations : 
AML, acute myeloid leukaemia; AMKL, acute megakaryoblastic leukaemia; CBFβ, core-
binding factor-β; C/EBPα, CCAAT/enhancer binding protein-α  GATA1, GATA-binding protein 
1; MLL, mixed lineage leukaemia; PML, promyelocytic leukaemia; PU.1, transcription factor 
encoded by SPI1; RARα retinoic acid receptor-α; RUNX1, runt-related transcription factor 1. 

 

Chromosome aberrations are detectable in the leukemic blasts of approximately 55% of 

adults with AML. Aberrant transcription factor activity in AML is associated with acquired 

chromosomal translocations that result in oncogenic fusion products such as RUNX1–ETO 

t(8;21) CBFβ–MYH11; Inv16, MLL (mixed lineage leukaemia; t(11q23) and PML–RARα 

(promyelocytic leukaemia–retinoic acid receptor-α; t(15;17) (Table1.1). These chromosomal 

changes have been recognized as the most important prognostic factor for achievement of 
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complete remission, risk of relapse, and overall survival (Döhner and Döhner, 2008). Several 

mutations that have been identified in genes such as C/EBPα GATA1, NPM1, FLT3 and c-Kit 

and are associated with poor prognosis in AML (Rosenbauer and Tenen, 2007). Mutations in the 

GATA1 gene that results in the formation of a truncated GATA1 protein with altered 

transcriptional function occurs in acute megakaryoblastic leukemia (AMKL) affecting patients 

with Down syndrome (Wechsler et al., 2002).  

Stress response 

Stress induced by change in temperature leads to a complex program of gene 

expression and adaptive response. These cell stress responses are of great interest both to basic 

biology and to medicine. The ability to survive and adapt to thermal stress appears to be a 

fundamental requirement of cellular life, as cell stress responses are ubiquitous among both 

eukaryotes and prokaryotes. Increase in temperature can result in a heat shock response and can 

lead to the production of heat shock proteins (Hsp), while a decrease in temperature induces a 

cold shock response resulting in cold shock proteins. Heat and cold shock responses are both 

involved in inhibition of cell growth and reduction in protein synthesis. Depending on the 

intensity of the exposure both heat and cold stress can lead to the activation of the apoptotic 

program and, in the extreme cases, necrosis (Sonna et al.,  2002). 

New approaches are emerging in order to find therapies for AML. Some of these 

approaches address the role of stress proteins in cancer. Cancer cells exist in a state of stress 

and rely upon stress related proteins for survival. Many malignant cells have constitutively high 

levels of stress proteins that correlate with aggressive and resistant tumors, resulting in poor 

prognosis. Thus, stress proteins have been identified as attractive targets for therapy in cancer. 
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Heat shock protein 90 (Hsp90) 

In 1962, investigators reported that heat induced a characteristic pattern of puffing in the 

chromosomes of Drosophila (Ritossa, 1962). This discovery eventually led to the identification 

of the heat-shock proteins (Hsp) or stress proteins whose expression these puffs represented. It 

was found that brief exposure of cells to high temperature can provide protection from 

subsequent larger increases in temperature, even when this increase would normally be lethal. 

Increased synthesis of Hsp in Drosophila cells following stresses such as heat shock was first 

demonstrated in 1974 (Tissieres, 1974). Later it was shown that the heat shock response is 

ubiquitous and highly conserved in all organisms from bacteria to humans (Schlesinger et al., 

1982). 

Hsp act as molecular chaperone by enabling protein folding and assist in protein 

trafficking.  Molecular chaperones are a ubiquitous class of proteins that play important roles in 

protein folding and in the protection of cells from several stresses associated with the disruption 

of protein structure including heat shock. Chaperones bind to and stabilize the unstable 

conformation of another protein therby helping in its folding and assembly. One major function 

of chaperones is to prevent both newly synthesized polypeptide chains and assembled subunits 

from aggregating into nonfunctional structures (Hartl, 1996).  

Hsp90 is a specialized molecular chaperone required for the stability and function of 

numerous client proteins (substrate protein) that are mainly involved in signal transduction 

pathways. In unstressed cells, Hsp90 accounts for 1–2% of total protein, but in response to heat 

shock this increases to 4–6% of cellular protein. Hsp90 is distinct from other chaperone systems 

as it does not fold non-native proteins but rather binds to substrate proteins at a later stage of 

folding. It interacts with various protein substrates to assist in their folding and plays a critical 

role during cell stress by repairing damaged proteins (protein refolding), or by degrading them 

thus restoring protein homeostasis and promoting cell survival (Jolly et al., 2000). Moreover, 
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Hsp90 is critical to the survival of the organism since the genetic knockout of Hsp90 is lethal in 

mice (Voss et al., 2000). 

 

Hsp90 isoforms and structure 

Hsp90 is highly conserved and expressed in a variety of different organisms from 

bacteria to mammals. There are five functional human genes which encode Hsp90 protein 

isoforms. In mammalian cells, there are two or more genes encoding cytosolic Hsp90 

homologues Hsp90α (inducible form) and Hsp90β (constitutive form) which are the result of a 

gene duplication event (Csermely et al., 1998). Human Hsp90α shows 85% sequence identity to 

Hsp90β (Chen et al., 2005; Chen et al., 2006). An important difference is that the Hsp90α form 

readily dimerizes, whereas the β form does so with much less efficiency. Hsp90α is shown to 

play a regulatory role in muscle cell differentiation of zebrafish while Hsp90β is required for 

early embryonic development (Reviewed in Sreedhar et al., 2004). Recently another Hsp90 

isoform has been identified, Hsp90N, which shares high sequence homology with the other two 

Hsp90 isoforms, but lacks the N-terminal domain (Figure 1.2). It has been shown to be 

associated with cellular transformation by activating Raf in rat F111 fibroblasts 

(Grammatikakis et al., 2002). However, a later study reported the existence of this isoform to 

be accidental and occurred due to chromosomal rearrangement in a single cell line (Zurawska et 

al., 2008).  

Two other isoforms include GRP94 in the endoplasmic reticulum and TRAP1 in the 

mitochondrial matrix. GRP94 is glucose-regulated, induced by glucose starvation and is known 

to participate in protein folding and assembly (Gupta, 1995). TRAP1 acts as a molecular 

chaperone to retinoblastoma protein (Rb) during cellular stress. It possesses a unique LxCxE 

motif which is involved in binding to Rb. This motif is absent in all other Hsp90 family 
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members (Chen et al., 1996; Felts et al., 2000). There is still not much known about the 

function of these two isoforms of Hsp90. 

 

Structure of Hsp90 

Hsp90 consists of four structural domains (Figure 1.2). A highly conserved N terminal 

domain (NTD) which has an ATP binding pocket necessary for Hsp90 function. Various natural 

and synthetic inhibitors of Hsp90 bind at this site. 

 

 

 

Figure 1.2. Structure of Hsp90 and its various isoforms. There are four structural domains of 
Hsp90. The N terminal domain (NTD) is highly conserved and has an ATP binding site. A 
charged linker region connects the NTD with the middle domain (MD). This linker region is 
absent in TRAP1. MD is involved in binding to client proteins. The C terminal domain (CTD) 
is the dimerization domain and has TPR binding site where cochaperones such as HOP bind. 
The TPR region is absent in TRAP1 and GRP94 has instead an endoplasmic retention site.  
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With the exception of TRAP1 there is a charged linker region that connects the NTD 

with the middle domain (MD). The MD is also involved in client protein binding. The C- 

terminal domain (CTD) is the dimerization domain. In eukaryotes, the CTD has the 

tetratricopeptide repeat (TPR) motif recognition site (consisting of amino acids MEEVD), which 

regulates ATPase activity (Wandinger et al., 2008). This region is responsible for the interaction 

with cochaperones such as HOP (Hsp 70-Hsp90 organizing protein). The TPR binding site is 

absent in TRAP1 while in GRP94 this is replaced with an endoplasmic retention site. While the 

C-terminal domain provides for the constitutive dimerization of Hsp90, the N-terminal domain 

undergoes transient dimerization driven by ATP binding (Prodromou and Pearl, 2003). 

The protein folding activity of Hsp90 is regulated by the dynamic association of 

various co-chaperones (Figure 1.3). Hsp90 dimerizes at its CTD to form a U shaped structure 

such that the N terminal domain is available for protein interaction. Hsp 70 and Hsp 40 form a 

complex with the client protein for delivery to Hsp90 (Mahalingam et al., 2009). Hsp90 binds 

to the Hsp70 complex by the adapter protein HOP via the TPR domain which is present at the 

CTD of both Hsp90 and Hsp70. This is described as the “open conformation’’. Recruitment of 

ATP to the NTD of Hsp90 results in dimerization and a conformational change leading to the 

formation of clamp around the client protein (Prodromou et al., 2003). This is referred as the 

“closed confirmation” and results in the dissociation of HSP70/HSP40/HOP complex. Aha is a 

cofactor that can bind and stimulate the activity of ATPase. Cdc37 and p23 are then recruited 

which help in the stabilization of the client protein and facilitates ATP hydrolysis (Pratt and 

Toft, 2003;  Pearl et al., 2003). This complex assists in the conformational maturation of the 

client and maintains the protein in an active state capable of exerting its function. 
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Figure1.3. The Hsp90 superchaperone compex cycle. The binding of a client protein to Hsp90 
requires the co-operation of another chaperone, Hsp70 and its co-factor Hsp40. Hsp90 dimerizes 
at its C-terminal end. Hsp70 and Hsp 40 form a complex with client protein for delivery to 
Hsp90. Hsp70 complex binds to Hsp90 by an adapter protein (HOP), through the small helical 
TPR domains which is present at the C-terminal end of both Hsp90 and Hsp70. Initiation of 
ATPase activity by binding of cofactors like Aha results in a conformational change (clamp 
formation) in Hsp90 such that it dissociates from the Hsp70/Hsp40/HOP complex. Cdc37 and 
p23 then replace the original cochaperones to assist in conformational maturation of the client 
protein and its activation. Inhibition of ATP-binding through Hsp90 inhibitors prevents client 
protein maturation and results in degradation of these oncogenic proteins by the proteasome.  
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Role of Hsp90 in cancer 

Hsp90 protein is found to be overexpressed constitutively in various types of cancer 

cells (Multhoff and Hightower, 1996). Hsp90 regulates the conformation, activity, function and 

stability of client proteins. There are over 100 known Hsp90 client proteins that include 

transcription factors and protein kinases involved in oncogenic signal transduction pathways. 

Hsp90 is overexpressed in breast, pancreatic, lung, ovarian cancers (Ochel and Gademan, 

2002). Moreover, Hsp90 expression is high in various leukemic cell lines and human acute 

leukemia cells (Yu Fu et al., 1992). Recently, Hsp90 was reported to be overexpressed in AML 

patients and was associated with poor prognosis (Flandrin et al., 2008). Thus, Hsp90 is the 

principle molecular chaperone implicated in oncogenesis making it an attractive target for 

cancer therapy. 

Cancer cells are particularly sensitive to Hsp90 inhibition and the therapeutic 

selectivity for cancer versus normal cells is based upon three main factors (reviewed in Pearl et 

al., 2008). Firstly, according to the ‘oncogene addiction model,’ cancer cells exclusively 

depend on a sensitive Hsp90 client protein that drives malignancy. Degradation of a specific 

Hsp90 client has a greater impact on the cancer cells than in normal cells. For example, 

degradation of mutant BRAF in a melanoma cell or Bcr-Abl in chronic myeloid leukemia 

(CML) results in apoptosis and/or differentiation, whereas their degradation in normal cells 

leads to little or no effect. Secondly, many oncoproteins are expressed in mutated forms in 

cancer cells that are much more dependent on Hsp90 for their stability and activity than their 

normal counterparts, e.g. Bcr-Abl, EGFR and BRAF. Thirdly, cancer cells become dependent 

on Hsp90 to manage the cellular stress created by the oncogenic process and the hypoxia, 

acidosis and nutrient deprivation of the tumor microenvironment (reviewed in Solit and Chios, 

2008). In support of this hypothesis, Kamal et al. have shown that Hsp90 in tumor cells is 

found entirely in an active complex with co-chaperones, whereas most Hsp90 in normal tissues 
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resides in a free, uncomplexed, or latent state. Since the binding affinity of Hsp90 inhibitors is 

higher for tumor derived Hsp90 than in normal cells it allows specific targeting of tumor cells 

(Kamal et al., 2003). 

Hsp90 inhibition results in proteasomal degradation of large number of oncogenic 

client proteins which are involved in all the hallmark traits of cancer, including proliferation, 

evasion of apoptosis, immortalization, invasion, angiogenesis and metastasis. Targeting Hsp90 

may be beneficial as it has a combinatorial impact on multiple oncogenic pathways. In addition, 

this combinatorial action should markedly reduce the opportunities for cancer cells to develop 

resistance to Hsp90 inhibition.  

 

Hsp90 inhibitors 

Targeting Hsp90 with drugs has shown promise in clinical trials. Hsp90 inhibitors 

cause the destabilization and eventual degradation of Hsp90 client proteins. Majority of Hsp90 

inhibitors bind to the ATP pocket of Hsp90 and block the ATPase cycle that is essential for 

Hsp90 function (reviewed in Taldone et al., 2009). Hsp90 inhibitors Geldanamycin (GA) and 

Radicicol were discovered as natural products and originally isolated as antibiotics.  

Geldanamycin (GA) is a benzoquinone ansamycin which binds to the ATP pocket of 

the N-terminal domain of Hsp90 and inhibits the binding of ATP. This inhibition targets bound 

client proteins for ubiquitination and proteasomal degradation leading to depletion of 

oncoproteins and consequent cell-cycle arrest and apoptosis (Hostein et al., 2001). Later it was 

found that GA is insoluble in water, unstable and exhibits severe hepatotoxicity. Therefore 17-

allylamino-17-desmethoxygeldanamycin (17-AAG) was developed to enhance the solubility 

and therapeutic index of geldanamycin.  17-AAG is currently being used in animal models of 

cancer and has progressed to clinical trials (reviewed in Taldone et al., 2009).  
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Approximately one third of acute myeloid leukemias have activating mutations of 

FLT3, which are associated with adverse clinical outcome. 17-AAG exhibits a potent activity 

against leukemic cell lines, particularly those harboring a FLT3 mutation (Minami et al., 2002).  

However a recent study reported the effect of 17AAG on a large scale of AML patients. In this 

study, overexpression of Hsp90 was associated with poor prognosis and resistance to 

chemotherapy in AML patients. Leukemic cells from the patients with higher Hsp90 expression 

showed spontaneous growth in liquid culture and colony formation. In vitro exposure of 

leukemic cells to 17-AAG resulted in inhibition of growth in liquid and clonogeneic cultures 

and induced apoptosis (Flandrin et al., 2008). 

Chronic myeloid leukemia (CML) is characterised by the BCR-ABL fusion gene, 

which is a constitutively active cytoplasmic tyrosine kinase. Imatinib mesylate targets the ATP-

binding site of the kinase domain of ABL and is being used to treat CML patients (Druker et 

al., 2001). However, patients can develop imatinib resistance (Gorre et al., 2001). Heat-shock 

protein 90 maintains BCR-ABL stability and function. Treatment of BCR-ABL resistant cells 

with 17-AAG was shown to target BCR-ABL for degradation and to suppress cell proliferation 

(Nimmanapalli et al., 2001). Furthermore, Hsp90 inhibitors have been used in combination 

with histone deacetylase (HDAC) inhibitors to induce apoptosis and inhibit cell growth in both 

imatinib-sensitive and resistant BCR-ABL cells (Rahmani et al., 2005). 

Stress induced by exposure to low temperature in cells can produce cold shock proteins 

which are involved in a cold shock response. The cold shock response is similar to the heat 

shock response in terms of inhibition of growth and reduction in protein synthesis in cells. 

However, the heat shock response is ubiquitous and highly conserved in all organisms from 

bacteria to humans and Hsp function as a molecular chaperone or protease. Moreover, cold 

shock proteins are found only in bacteria and function as an RNA chaperone (Matisumoto et 

al., 1998). In eukaryotes, the homologous region to the bacterial cold shock proteins is found in 
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the nucleic acid binding region of the cold shock domain (CSD) protein family (Kohno et al., 

2003).  

 

Y Box protein (YB-1) 

Y-box proteins are members of the cold shock protein family that contain a CSD which is 

highly conserved during evolution. There are three Y-box proteins in human and mouse, two of 

which are expressed in both somatic and germ cells (Table 1.2). Contrin in human and MSY2 in 

mouse are germ cell-specific members of the Y-box protein family. The Y-box protein, YB-1 

(p50 or dbpB) is the most extensively studied member which is ubiquitously expressed in various 

tissues (reviewed Matsumoto and Bay., 2005).  

 

Human Mouse Expression 

YB-1/DbpB YB-1/MSY1 Ubiquitous 

DbpA MSY4 Ubiquitous 

(Abundant in heart, 

muscle and testis) 

Contrin/DbpC MSY2 Germ cells 

 

 

Table 1.2. Y-box proteins in human and mouse  
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YB-1 expression, structure and function 

YB-1 was originally identified as a transcription factor and was named because it binds to the Y-

box (inverted CCAAT-box) sequence of the major histocompatibility complex class II gene 

(Didier et al., 1998). The CSD of the vertebrate protein is 40% homologous with the cold shock 

protein isolated from bacteria (Kohno et al., 2003).  

 

 

 

 

Figure 1.4 The Structure and Functions of YB-1. YB-1 protein has three domains: N-
terminal, cold shock (CSD) and C-terminal domains (CTD). The N-terminal is involved in 
transactivation whereas the CSD is the most conserved domain and is important for RNA/DNA 
binding. The CTD has basic and acidic amino acids referred as B/A repeats and mediates 
protein: protein interactions. Cellular trafficking is regulated by the presence of a nuclear 
localization signal (NLS) and a cytoplasmic retention site (CRS) in the C-terminal domain.  

 

 

The human YB-1 gene is contains 8 exons and is located on chromosome 1p34 (Toh et 

al., 1998).The mRNA is about 1.5 kb long and encodes a 43 kDa protein which has 324 amino 

acids (Didier et al., 1988). YB-1 is broadly expressed throughout development. High levels of 

YB-1 are present in human fetal tissues of heart, muscle, liver, lung, adrenal gland, bone marrow, 
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kidney and brain. On the other hand, YB-1 transcripts are not detected or are expressed at a very 

low level in many adult tissues (Spitkovsky et al., 1992).  Expression level of YB-1 correlates 

with the cell proliferation state (reviewed in Lu et al., 2005). Also, high levels of YB-1 are 

detected in regenerating liver after tissue damage and the proliferating compartment of colorectal 

mucosa (Ladometry and Sommerville, 1995). 

 

 

Structure of YB-1 

The YB-1 protein consists of three domains: the variable N-terminal domain, a highly 

conserved cold shock domain (CSD) and the C terminal tail domain (CTD) (Figure 1.4). The N-

terminal domain is rich in alanine and proline residues and is thought to be involved in trans-

activation. The CSD is the most evolutionary conserved nucleic acid-binding domain that binds 

RNA, as well as single-stranded and double-stranded DNA. The CTD of YB-1 contains 

alternating regions of basic and acidic amino acids, called B/A repeats or charged zipper, and 

facilitates dimer formation. This region is suggested to mediate protein–protein interactions. 

YB-1 has been shown to interact with a number of cellular and viral proteins that are involved 

in various cellular processes. Cellular localization of YB-1 is controlled by the presence of a 

cytoplasmic retention site (CRS) and a nuclear localization signal (NLS) in the CTD (reviewed 

in Kohno et al., 2003; Wu et al., 2007). 

 

Functions of YB-1 

Transcription and Translation 

As a transcription factor, YB-1 binds to the inverted CCAAT-box that is known as the Y-box in 

the promoter regions of several eukaryotic genes involved in cell growth including proliferating 

cell nuclear antigen (PCNA), epidermal growth factor receptor (EGFRα), DNA polymerase α 
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and DNA topoisomerase II α (Wolfe, 1994; Ladometry and Somerville, 1995; Kohno et al., 

2003). In the cytoplasm, YB-1 acts as a RNA chaperone by associating with mRNAs to form 

messenger ribonucleoprotein particles. YB-1 regulates translation in a dose-dependent manner; 

low concentrations of YB-1 activate translation and high concentrations repress it (Evdokimova 

and Ovchinnikov, 1999). YB-1 can shuttle to the nucleus and back to the cytoplasm, which 

contributes to its function as a regulator of transcription and translation. 

 

DNA Repair 

YB-1 has been shown to be overexpressed in cisplastin-resistant cell lines and 

reduction of YB-1 leads to increased sensitivity to cisplatin and other DNA interacting drugs 

(Ohga et al., 1996). It is reported to interact with PCNA (Ise et al., 1999) and p53 (Okomoto et 

al., 2000), which suggests that YB-1 may be involved in DNA repair and the DNA damage 

response. Moreover, YB-1 is shown to possess 3’-5’ exonuclease activity (Izumi et al., 2001). 

However, the regulation of this enzymatic activity in vivo is not known. 

 

Drug resistance 

The multidrug resistance gene (MDR-1) codes for P-glycoprotein (Pgp). Pgp is an ATP 

binding cassette (ABC) transporter that is responsible for the efflux of a variety of compounds 

out of the cell. These transporters act as a protective mechanism by reducing the toxins within a 

cell but they can also cause drug resistance by eliminating clinically useful drugs. Nuclear 

localization of YB-1 has been associated with the expression of Pgp and development of drug 

resistance in breast cancer, melanoma and multiple myeloma (Janz et al., 2002; Schittek et al., 

2007; Chatterjee et al., 2007).  
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Biological role of YB-1 

YB-1 plays a role in embryonic development. Homozygous deletion of YB-1 in mouse 

embryos results in late embryonic/perinatal lethality after embryonic day 13.5. This occurs due 

to major developmental defects such as neurological abnormalities, hemorrhage and respiratory 

failure. Moreover there is hypoplasia in multiple organ systems in late stage embryos that leads 

to growth retardation. In this study, mice heterozygous for loss of YB-1 did not develop any 

abnormalities in YB-1 function and were phenotypically indistinguishable from the wild type 

littermates (Lu et al., 2005). 

 

 

Figure 1.5. Model of YB-1 function. YB-1 is an important component of cellular stress 
response pathway which protects cells from a variety of stresses. In mammalian cells, YB-1 
expression is induced in response to environmental stress leading to its accumulation in the 
nucleus. YB-1 deficiency results in the loss of this protective mechanism. Thus, cells deficient 
in YB-1 show an increased sensitivity to environmental stresses and undergo premature 
senescence. 
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YB-1 is considered an important component of a cellular response pathway that is 

required to protect cells from a variety of stresses (Figure 1.5). Fibroblasts derived from YB-1-/- 

embryos demonstrated increased sensitivity to oxidative, genotoxic and oncogene induced stress. 

Under oxidative stress, populations of YB-1-/- mouse embryonic fibroblasts have a large 

percentage of cells in the G0/G1 phase of cell cycle. These cells accumulate negative cell cycle 

regulators such as p16 and p21 and senescence prematurely (Lu et al., 2005). Two previous 

studies reported that the loss of one functional allele of YB-1 resulted in a haplo-insufficient 

phenotype in vitro. Targeted YB-1 heterozygous mutations in the chicken lymphoid DT40 cell 

line showed major cellular defects such as aneuploidy and severe apoptosis (Swamynathan et al., 

2002). Targeted disruption of one allele of YB-1 in mouse embryonic stem cells caused 

abnormal sensitivity to external cytotoxic stimuli (Shibhara et al., 2004). These studies suggest 

that YB-1 plays a crucial role in cell growth and stress response. 

 

Role of YB-1 in cancer 

Similar to Hsp90, YB-1 has been shown to be overexpressed in variety of human 

cancers including breast, thyroid, colorectal, prostate and melanoma (Kohno et al., 2003). 

Several clinical studies revealed that increased YB-1 expression is associated with poor 

prognosis in non small cell lung, prostate, ovarian and breast cancer (Kuwano et al., 2004). YB-

1 has been shown to play role in cell proliferation and cell cycle progression. Increased YB-1 

expression is correlated with PCNA and DNA topoisomerase IIα expression in colorectal 

cancer, human lung cancer and is linked to markers of cellular proliferation in osteosarcoma 

(reviewed in Matsumoto and Bay, 2005). Further, YB-1 acts as a cell cycle stage-specific 

transcription factor. In HeLa cells, nuclear accumulation of YB-1 transcriptionally activates 

cyclin A and B1 genes, which are crucial for cell cycle progression (Jurchott et al., 2003).  
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Figure 1.6. Schematic of the signal transduction pathways of YB-1 in cancer cells. Growth 
factors such as insulin like growth factor, IGF-1, and cytokines activate various kinases that 
can phosphorylate YB-1. It is generally thought that phosphorylation of YB-1 by kinases such 
as Akt in the cytoplasm leads to nuclear trafficking and DNA binding. The phosphorylation of 
YB-1 can also alter its role in translation initiation, mRNA splicing and/or transport. In the 
nucleus, YB-1 directly binds to the inverted CAAT boxes and activates multiple genes involved 
in cell growth. It can also indirectly induce the expression of oncogenes by binding to other 
transcription factors such as AP-1 and p53. Thus, oncogene expression can be induced by YB-1 
through transcriptional as well as translational control. 
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In a transgenic mouse model, YB-1 has been shown to induce mammary tumor 

formation through chromosomal instability. This chromosomal instability occurred due to 

mitotic failure and centrosome amplification (Bergmann et al., 2005). In addition, YB-1 is 

believed to promote tumor invasion and metastasis by controlling the expression of a matrix 

metalloproteinase (MMP-2) (Cheng et al., 2002). Also, YB-1 has been reported to be involved 

in inducing drug resistance in cancer cells. YB-1 positively regulates the transcription of 

MDR1, and in a number of malignancies YB-1 levels are closely associated with the expression 

of Pgp (Janz et al., 2002; Schittek et al., 2007; Chatterjee et al., 2007; Bargou et al., 1997). 

Many proteins that phosphorylate YB-1 have an important role in the signal transduction 

pathways associated with growth and survival of cancer (Figure 1.6). Various growth factors 

such as insulin like growth factor (IGF-1) and cytokines activate kinases that can phosphorylate 

YB-1. Phosphorylation by kinases such as Akt, MAPK, or Jak in the cytoplasm leads to the 

nuclear translocation of YB-1 where it transactivates genes involved in cell growth (EGFR, 

PCNA, Topoisomerase II α, DNA polymerase α), cell invasion (MMP-2) and represses genes 

that induce apotosis (Fas) and cell differentiation (GM-CSF). Phosphorylation of YB-1 can also 

alter its role in translation initiation, mRNA splicing and transport. In the nucleus, YB-1 directly 

binds to inverted CAAT boxes and activates multiple genes involved in cell growth. It can also 

indirectly induce the expression of oncogenes by binding to other transcription factors such as 

activator protein (AP-1) and p53. Thus, oncogene expression can be induced by YB-1 through 

transcriptional as well as translational control (Wu et al., 2007).  

. 

 Role of YB-1 in hematological malignancies 

Evidence for the involvement of YB-1 in hematological disorders such as MDS comes 

from a gene array study where YB-1 expression was found to be higher in the bone marrow 
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samples of MDS patients (Lee et al., 2001). A later study identified YB-1 as a gene that is 

differentially expressed in the wild type and heterozygous GATA-1 knockdown mice. GATA-1 

is a transcription factor essential for erythropoiesis, and heterozygous knockdown of GATA-1 

in mice leads to maturation arrest and transformation of erythroblasts. GATA-1 knockdown 

mice exhibit increased expression of YB-1 in its spleen as compared to wild-type mice 

(Yokoyama et al., 2003a). GATA-1 mutant mice have a phenotype similar to humans with 

MDS in early stages of life which transforms into acute leukemia in later stages of life. Another 

study by the same group showed YB-1 mRNA to be highly expressed in the erythroblasts from 

the patients with myelodysplastic syndrome refractory anemia (MDS-RA) relative to normal 

patients (Yokoyama et al., 2003 b). These studies suggested a role for YB-1 in hematopoiesis, 

particularly erythroid development. Recently, YB-1 was demonstrated to be strongly expressed 

in immature and anaplastic multiple myeloma (MM) cells from the bone marrow of patients and 

in various MM cell lines indicating its potential involvement in leukemia (Chatterjee et al., 

2007). 

Though YB-1 has been studied extensively in solid tumors there is a paucity of 

information about its role and regulation of gene expression in hematopoiesis. Also, there are 

few studies demonstrating the association of YB-1 with MDS and leukemia. The objective of 

the study in chapter 2 was to determine the role of YB-1 in hematopoiesis and leukemia. In 

chapter 2, we show that YB-1 is highly expressed in stem/progenitor cells and is downregulated 

during myeloid differentiation. Moreover, abnormal expression of YB-1 in leukemic cells could 

contribute to their leukemic cell properties by blocking differentiation.  
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Wnt signaling 

In previous studies, it was shown that mutations in the chromatin remodeling genes or Hsp90 in 

Drosophila resulted in the gain-of-function expression of Wg to produce an abnormal eye 

phenotype. This phenotype was epigenetically inherited (Sollars et al., 2003). The studies 

presented in chapter 3 were aimed to determine the effect of Hsp90 modulation on the Wnt 

pathway in a mammalian model system. 

Wnt signaling is involved in embryogenesis and controls diverse cellular behaviors 

such as cell proliferation, stem cell maintenance and cell fate decisions. Dysregulated Wnt 

signalling has been shown to be associated with cancer. Therefore, researchers have focused on 

targeting this pathway for developing better therapies against cancer.  

Investigators first identified Wnt genes independently in Drosophila and mouse. 

Wingless (Wg) was identified as a segment polarity gene in Drosophila (Sharma and Chopra, 

1976), while int-1 was cloned as a proto-oncogene in mouse (Nusse, 1984). The name “Wnt” 

was derived from “wingless” and “int-1” after these two genes were shown to encode 

homologous proteins (Rijsewijk et al., 1987).  

In humans, there are at least 19 members of the Wnt family and at least 10 members of 

its receptor family, FZ (frizzled) (Reya and Clevers, 2005; Mao et al.,  2001). Wnt signals 

transduce two distinct pathways: the canonical pathway for cell fate determination and the non-

canonical pathway for the control of cell movement and tissue polarity. Canonical Wnts include 

Wnt1, Wnt3A and Wnt 8 while non-canonical Wnts are Wnt4, Wnt5A and Wnt11.  
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Figure 1.7. The canonical Wnt signaling pathway. (A) In the absence of Wnt binding to Fz, 
Dsh remains unactivated and ß-catenin is bound by the destruction complex composed of APC/ 
Axin/ GSK-3β. This complex phosphorylates β-catenin and is targeted for degradation. (B) 
When Wnt binds to Fz, Dsh is activated and uncouples β-catenin from the complex. β-catenin 
can then associate with transcription factors and mediate transcription of the target gene.  
Frizzled (Fz), Adenomatous polyposis coli (APC), dishevelled (Dsh), Glycogen synthase kinase 
3β (GSK-3β), Lymphoid enhancer-binding factor (LEF), T-cell factor (TCF), Adenomatous 
polyposis coli (APC). 

 

 

The most studied Wnt pathway is the canonical pathway (Figure 1.7), which is 

activated by the binding of a Wnt ligand to a frizzled receptor (Reya and Clevers, 2005). In the 

absence of Wnt, ß-catenin is bound by the multiprotein “destruction complex” composed of the 

tumor suppressors, APC (adenomatous polyposis coli) and Axin. These latter protein bind and 

present ß-catenin to the kinases, glycogen synthase kinase 3 ß (GSK3 ß) and casein kinase I 

(CKI). This results in phosphorylation of ß-catenin and thereby it is targeted for 



 26 

polyubiqitination and proteasomal degradation. In the presence of Wnt, ß-catenin binds to FZ 

and inhibits the destruction complex so that ß-catenin remains unphosphorylated. This results in 

the translocation and accumulation of ß-catenin in the nucleus. In the nucleus it interacts with 

the TCF/LEF family of transcription factors to activate downstream target genes such as c-Myc, 

CyclinD1 and matrix metalloproteinase (MMP) that regulate cell proliferation, differentiation 

and survival (Mc Donald et al., 2006). 

Canonical Wnt signaling is associated with the pathogenesis of several carcinomas. 

Dysregulation of Wnt/ ß-catenin signaling is involved in the initiation of colorectal 

carcinogenesis. APC is a tumor suppressor gene that can down-regulate the transcriptional 

activation mediated by Wnt/ß-catenin. APC mutations result in its inactivation and 

concominant loss of the inhibition of Wnt. Moreover, mutations of ß-catenin in the functionally 

significant phosphorylation sites have been detected in colorectal cancer (Morin et al., 1997). 

Furthermore mutations in members of the Wnt/ß-catenin pathway have been reported in 

hepatocellular and gastric cancers (Polakis et al., 2000). Aberrant activation of the Wnt 

canonical signaling pathway is involved in pathogenesis of many types of cancers, making this 

pathway an attractive therapeutic target. 

 

Wnt signaling and hematopoietic stem cells 

The Wnt/ ß-catenin signaling pathway has been shown to have an effect on controlling 

the proliferation, survival and differentiation of hematopoietic cells. It has been shown that 

expansion of HSC occurs in long-term cultures due to the overexpression of activated ß-catenin. 

These expanded HSCs retained the functional characteristics of HSCs and are able to 

reconstitute the hematopoietic system in vivo (Reya et al., 2003).  

Activation of Wnt signaling pathway has been implicated in the pathogenesis of various 
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hematological malignancies including leukemia. ß-catenin activation coupled with GSK3 ß 

inactivation has been demonstrated in precursor B-cell acute lymphoblastic leukemia (ALL). 

The granulocyte macrophage progenitor (GMP) has been identified as a candidate leukemic 

stem cell in blast crisis chronic myelogenous leukemia (CML), and it has elevated levels of 

nuclear ß-catenin (Jamieson et al., 2004). Also, constitutive expression of active ß-catenin in 

vivo has been shown to result in loss of myeloid lineage commitment at the GMP stage, 

blocking erythrocyte differentiation and disrupting lymphoid development (Kirstetter et al., 

2006). Recently, it has been found that the Wnt/ ß-catenin signaling pathway is required for 

self-renewal of leukemic stem cells (LSCs) that are derived from either HSC or more 

differentiated GMP (Wang et al., 2010). This suggests the involvement of active ß-catenin in 

leulemogenesis. 

In the Drosophila model Wnt signaling was shown to be epigenetically regulated 

(Sollars et al., 2003). Epigenetics involves changes in gene expression that are propagatable 

through mitosis or meiosis, and are caused by mechanisms other than a change in the DNA 

sequence. These can occur through DNA methylation, histone modifications, or non-coding 

RNA. Secreted frizzled related proteins (SFRP), which act as Wnt antagonists, can inhibit Wnt-

Frizzled interaction by sequestration of the ligand.  SFRPs have been shown to be regulated by 

promoter hypermethylation and have been implicated in various cancers (Suzuki et al., 2004; 

Fukui et al., 2005; Marsit et al., 2006). Recently, SFRPs have also been found to be 

downregulated or inactivated by promoter hypermethylation in acute lymphocytic leukemia 

(ALL) and AML (Jost et al., 2008).  

Inhibition of Hsp90 in Drosophila resulted in the up-regulation of Wg to produce an 

abnormal eye phenotype via epigenetically regulation (Sollars et al., 2003). In chapter 3 we 

wanted to determine the effect of Hsp90 modulation on the Wnt pathway in a mammalian 

model system. We obtained mixed results in this study since the in vitro model system does not 
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recapitulate the stem cell niche seen in vivo. Hsp90 interacts with numerous signal transduction 

proteins including chromatin remodeling complexes. Therefore, there is a possibility that Hsp90 

has an effect on the Wnt pathway, and if this can be demonstrated it will have profound 

implications for the treatment of cancer as Wnt signaling is activated in various cancers.  

 

Omega Fatty acids and cancer 

In recent years, there has been increased focus on the role of specific dietary fatty acids 

and their effect on health and disease. Researchers have been studying the effects of poly 

unsaturated acids (PUFA) on cancer. This interaction will be important in devising new 

therapies for treatment and chemoprevention against cancer.  AML is characterized by the 

inhibition of myeloid progenitor cell differentiation. Omega fatty acids have been shown to 

promote myeloid differentiation. Moreover, Wnt signaling has been demonstrated to be active 

in AML. Therefore, in the studies described in chapter 4 we have investigated the effect of 

omega fatty acids on Wnt signaling in the hematopoietic system. 

Fatty acids (FA) are carboxylic acids with long hydrocarbon chains that can be 

saturated or unsaturated depending upon the presence of double bonds in the carbon chain. 

Fatty acids with multiple sites of unsaturation are termed as PUFAs. Omega-6 FAs are derived 

from linoleic acid (LA, 18:2) and the omega-3 FA are derived from α-linolenic acid (ALA, 

18:3). LA is metabolized to arachidonic acid (AA, 20:4, omega-6), while ALA can be 

metabolized to eicosapentaenoic acid (EPA, 20:5, omega-3) and ultimately docosahexanoic 

acid (DHA, 22:6) (Anderson and Ma, 2009).  Linoleic acid and α-linolenic acid are omega-3 

and omega-6 PUFAs that are essential for survival and must be obtained from dietary source, 

since they cannot be synthesized in mammals. Omega-3 (EPA) and Omega-6 (AA) PUFA are 

classified depending on the location of the first double bond relative to the methyl terminus 
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(Das, 2008) (Figure 1.8).  

 

 

 

Figure 1.8. Omega-3 and omega-6 Polyunsaturated fatty acids (PUFA). (A) Arachidonic 
acid with first double bond at carbon 6 from the methyl terminus. (B) Eicosapentanoic acid with 
first double bond at carbon 3 from the methyl terminus.  

 

Omega-6 and omega-3 FA are important structural components of the phospholipid cell 

membranes and are essential for the activity of membrane-bound enzymes and receptors as well 

as signal transduction. Polyunsaturated FAs are substrates for eicosanoid synthesis, with omega-6 

FAs converted into pro-inflammatory eicosanoids and omega-3 FAs being converted into anti-

inflammatory eicosanoids. High omega-6/omega-3 tissue ratios contribute to the development of 

chronic diseases in later life such as coronary heart disease and stroke, or diabetes (Institute of 

medicine, 2005). Several studies suggest that omega-6 FA promote cancer development 

(Williams et al., 2011) while omega-3 FA suppresses tumor carcinogenesis (Augustsson et al., 

2003; DeDecker, 1999; Calviello et al., 2009). 

Omega fatty acids have been found to have effects on the hematopoieis. Eicosanoids 

derived from AA metabolism (omega-6 FA) have been shown to play a role in myelopoiesis 

and erythropoiesis (Dupuis et al., 1997). High omega-3/omega-6 FA ratio in the diet has been 
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reported to promote differentiation and reduce the frequency of myeloid progenitor cells in the 

bone marrow of mice (Varney et al., 2009). Abnormal hematopoiesis results in excessive 

proliferation of immature blasts and inhibition of their differentiation into mature blood cells. 

This can lead to myeloproliferative disorders and leukemia. Since omega-3 FAs have been 

shown to promote differentiation they can be used as a therapeutic approach in leukemia. 

Wnt signaling plays an important role in hematopoietic self renewal and differentiation 

(Reya et al., 2003). Prostaglandin (PGE2) derived from AA (Omega-6 FA) metabolism 

regulates vertebrate HSC induction and engraftment (North et al., 2007). Recently, it was 

reported that PGE2 interacts with Wnt and together they regulate murine stem and progenitor 

populations in vitro and in vivo (Goeslling et al., 2009). Inhibition of PGE2 synthesis blocked 

Wnt-induced alterations in HSC formation at the level of ß-catenin. This suggests that omega-6 

FAs might play role in promoting HSC proliferation.  

Aberrant Wnt signaling is associated with different cancers including AML and CML 

(Jamieson et al., 2004). Earlier studies with Drsophila demonstrated the up-regulation of Wnt 

signaling after inhibition of Hsp90 by an epigenetic mechanism. SFRP which act as Wnt 

antagonists can inhibit Wnt-frizzled interaction by sequestration of the ligand. SFRP are 

negatively regulated by epigenetics (DNA methylation) and this leads to up-regulation of Wnt 

signaling. Up-regulation of Wnt signaling through down-regulation of SFRP occurs in ALL and 

AML (Jost et al., 2008). Recently investigators reported that omega-3 fatty acids inhibited Wnt 

signaling in hepatocellular and cholangiocarcinoma (Lim et al., 2008; Lim et al., 2009). This 

suggests that omega-3 FA may be involved in the inhibition of Wnt signaling in leukemia by 

the down-regulation of SFRP. 

Since Wnt signaling is important in hematopoietic stem cell maintenance and is 

involved in leukemia, I hypothesized that omega-3 FA might induce differentiation in leukemic 

cells by inhibiting the Wnt signaling via an epigenetic mechanism.  To investigate the effects of 
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omega-3 and omega-6 FAs on the Wnt pathway I used a stem cell model, EML cells and 

leukemic cells. Wnt signaling activity was examined based upon the accumulation of ß-catenin 

in the nucleus. In chapter 4, our prelimiary data initially showed that Wnt signaling is down-

regulated upon exposure to omega-3 FAs in EML cells as well as HL-60 leukemic cells.  
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Abstract 

Hematopoietic transcription factors play a critical role in directing the commitment and 

differentiation of hematopoietic stem cells along a particular lineage. Y box protein (YB-1) is a 

transcription factor which is widely expressed throughout development and is involved in 

erythroid cell development, however its role in early hematopoietic differentiation is not 

known. Our objective was to investigate the role of YB-1 expression in early hematopoietic 

differentiation and leukemia. Here, we show that YB-1 is highly expressed in mouse erythroid, 

myeloid lymphoid-clone1 (EML), a hematopoietic precursor cell line, but is downregulated in 

myeloid progenitors, and GM-CSF treated EML cells. Moreover, we found that lineage−/IL-

7R−/c-kit+/Sca1+ (LKS; enriched fraction of hematopoietic stem cells) and lineage−/IL-7R−/c-

kit+/Sca1−  myeloid progenitor cells showed a high level of YB-1 expression as compared to the 

differentiated cells like granulocytes in mouse bone marrow (BM). Also, YB-1 protein was 

expressed at high levels in myeloid leukemic cell lines blocked at different stages of myeloid 

development. We further investigated the role of YB-1 in leukemic cells by knockdown studies 

and observed that down-regulation of YB-1 expression in K562 leukemic cells inhibited their 

proliferation ability, induced apoptosis and differentiation towards megakaryocytic lineage. 

Overall, our data indicates that YB-1 is down-regulated during myeloid differentiation and the 

aberrant YB-1 expression in leukemic cells could be a contributing factor in the development of 

leukemia by blocking their differentiation. Thus, YB-1 protein could be an excellent molecular 

target for therapy in myeloproliferative disorders and leukemia. 

 

Key words: YB-1, EML cells, K562 cells, differentiation, mouse stem and progenitor cells 
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Introduction  

Hematopoiesis is the process by which all the different cell lineages that form the blood 

and immune system are generated from a common pluripotent stem cell. It is maintained by a 

proper balance between self renewal and multi-potent differentiation of the hematopoietic stem 

cells (HSC) (Huntley and Gilliland., 2005). Transcription factors play a major role in 

differentiation in a number of cell types, including the various hematopoietic lineages (Tenen et 

al., 1997). Among the best examples are PU.1, CCAT/enhancer binding protein α (C/EBPα), 

AML1, Globin Transcription Factor (GATA-1), c-myb, and SCL/Tal1 (Rosenbauer et al., 

2005). Myeloid gene expression is controlled by the combinatorial effects of several key 

transcription factors. Alteration of myeloid transcription factors (changes in expression and 

structure) lead to abnormal myelopoiesis and dysplasia (Tenen et al., 1997). Consequently, a 

major focus of research in this area has been on the molecular mechanism controlling normal 

myeloid differentiation. To better understand the process of normal hematopoietic 

differentiation, it is important to identify and characterize the differential expression of 

transcription factors in HSCs and terminally differentiated cells.  

It is difficult to study the early stages of hematopoietic differentiation because few 

experimental models are available to approach this question. The Erythroid Myeloid Lymphoid-

clone 1 (EML) cell line, developed from murine bone marrow cells transfected with a vector 

expressing a dominant negative form of the retinoic acid receptor, provides a unique in vitro 

model to address this question. EML cells can be indefinitely propagated in medium containing 

stem cell factor (SCF) and can be differentiated into erythroid, myeloid, lymphoid lineages by 

the addition of appropriate cytokines (Tsai et al., 1994). 

The Y-box protein (YB-1), also known as p50 or dbpB belongs to a superfamily of cold 

shock proteins that are highly conserved during evolution (Toh et al., 1998). Y-box protein is 

involved in a wide variety of cellular functions, such as regulation of DNA transcription and 
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translation (Evdokimova et al., 2006). YB-1 null mice can survive organogenesis and the 

majority of homozygous null embryos survive to day 18.5 of gestation (Lu et al., 2005).YB-1 is 

an integral part of the cellular stress response signaling pathway required for protecting cells from 

a variety of stresses and prevention of premature senescence in cultured primary cells (Lu et al., 

2005). Y-box elements are present in the promoters of several genes associated with cell division, 

therefore it is suspected that YB-1 has a role in promoting cell proliferation (Wolfe 1994; 

Ladomery and Sommerville 1995). It has also been shown that down-regulation of YB-1 results 

in reduced proliferation and increased apoptotic cell death rates in multiple myeloma cells 

(Chatterjee et al., 2008). The YB-1 transcript and protein have also been detected in mouse 

embryonic stem cells (Shibahara et al., 2004). In summary, there is evidence for YB-1 having a 

role in cell proliferation, cell survival and protecting against apoptosis. 

Increased nuclear and cytoplasmic expression of YB-1 has frequently been detected in 

a wide range of human cancers, including breast, thyroid, colorectal, osteosarcomas, and 

synovial sarcomas (Kohno et al., 2003). Clinical studies on YB-1 have shown close association 

of the cellular level of YB-1 with tumor growth and prognosis in ovarian, lung and breast 

cancers (Kuwano et al., 2004). YB-1 controls the expression of genes involved in tumor 

progression including matrix metalloproteinase-2 (MMP-2) and the multidrug resistance gene 1 

(MDR-1) (Mertens et al., 1997; Ohga et al., 1998). Enhanced YB-1 expression is associated 

with tumor progression and drug resistance in melanoma and multiple myeloma (Schittek et al., 

2007; Chatterjee et al., 2008). 

Knockdown of GATA-1, a transcription factor essential for erythropoiesis in mice, 

leads to maturation arrest and transformation of erythroblasts. The GATA-1 mutant mouse 

(knockdown mouse) exhibits increased expression of YB-1 in its spleen as compared to the 

wild type mouse (Yokoyama et al 2003 a, b). Moreover, expression of YB-1 was found to be 

higher in the bone marrow samples of MDS patients (Lee et al., 2001). The expression of YB-1 
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is higher in erythroblasts in myelodysplastic syndrome-refractory anemia (MDS-RA) than in 

normal cells suggesting a role of YB-1 in erythropoiesis (Yokoyama et al., 2003 a, b).  

Since the role of YB-1 in normal hematopoietic differentiation has not been elucidated, 

we examined the expression of YB-1 in the mouse hematopoietic EML cell line and in vivo 

during myelopoiesis. To further investigate its possible role in leukemogenesis, we have 

determined the expression and function of YB-1 protein in human leukemic cells. 

 

Materials and Methods 

Cell Culture 

EML C1 cells were the kind gift of Dr. Schickwann Tsai and were maintained in 

Iscove’s modified Dulbecco medium (IMDM,) supplemented with 20% horse serum (American 

Type culture collection, ATCC, Manassas, VA) and 10% BHK/MKL-conditioned medium 

(Tsai et al., 1994). For differentiation studies, EML cells were induced to differentiate into 

myeloid cells with 10 µM all-trans retinoic acid (ATRA (RA); Sigma, St. Louis, MO, USA), 

10% BHK conditioned medium (source of stem cell factor) and 15% WEHI conditioned 

medium (source of interleukin-3) for three days. Cells were then cultured again in IMDM/20% 

horse serum with 20 ng/ml of murine granulocyte-monocyte colony stimulating factor (GM-

CSF) (Stem cell tech. Vancouver, BC, Canada) for the next three days. HL-60 (human 

promyelocytic leukemia), K-562 (human myelogenous leukemia) (Lozzio and Lozzio 1975); U-

937 (human promonocytic leukemia), WEHI-3 (murine monocytic leukemia) cells were 

purchased from the ATCC and cultured according to their guidelines. 

Mouse strains 

C57BL/6J mice were bred and maintained at the AAALAC accredited animal care 

facility at Marshall University in accordance with the university guidelines. Donor mice used 
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for bone marrow isolation were 8-10 months of age. Mice were sacrificed for these experiments 

according to institutional guidelines. 

Flow cytometry studies  

Stable clones with YB-1 shRNA in K562 cells: Sh6-, Sh7-, Sh8- were seeded at a density 

of 1x105 cells/ml in a six-well plate and treated with 0.5µM As2O3 for 72 hours. Treated as well as 

untreated EML and K562 cells were washed twice with FACS buffer (Phosphate buffered saline, 

PBS supplemented with 3% BSA, 0.02% sodium azide and 1mM EDTA) and collected by 

centrifugation. Thereafter they were incubated with FcγRII/III antibody (553142, BD 

Pharmingen) to prevent nonspecific binding by blocking the Fc receptors for half an hour at 4°C. 

For EML cells the cells were washed again and labeled with PE conjugated anti-Sca-1 (clone D7, 

553108), PE conjugated anti-c-Kit (clone 2B8, 553355), biotinylated anti-CD11b (clone M1/70, 

553309, BD Biosciences) or PE conjugated anti-F4/80 (clone BM8, MF48004, Caltag) for 30 

minutes on ice. After washing the EML cells biotinylated anti-CD11b antibody was labeled with 

strepavidin APC (SA1005, Molecular probes). K562 cells were washed and labeled with APC 

conjugated mouse anti-human CD41a antibody (clone HIP8, 559777, BD biosciences) for 30 

minutes on ice. Data acquisition was performed using BD FACS Aria sorter and data analysis 

was done using Flow Jo software v.7.5.5 (Treestar, Ashland, OR). 

 

Cell staining and sorting 

Bone marrow (BM) was harvested from C57BL/6J donor mice by flushing both femur 

and tibia with PBS/2% FBS.  Heart punctures were performed to isolate serum from the mice.  

Cells were washed with 1X PBS by centrifugation and resuspended in PBS/2%FBS buffer 

followed by the addition of 10% mouse serum at 4°C for half an hour to block the Fc receptors to 

prevent any nonspecific binding.  For isolation of HSC and progenitor cells, 2.5X107 bone 

marrow cells were incubated for half an hour on ice with 100 µl of each of the following 
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biotinylated lineage specific antibodies to identify terminally differentiated cell types: CD3e 

(clone 145-2C11), CD11b (clone M1/70), B220 (clone RA3-6B2), Gr-1 (clone RB6-8C5), TER-

119 (anti-erythrocyte specific antigen), IL-7Rα chain (clone B12-1) (Lineage panel; 559971, 

Becton Dickenson-Pharmingen).  Cells were labeled with PECy7 conjugated anti-Sca-1 (clone 

D7, 25-5981) and APCCy7 conjugated anti-c-Kit (clone 2B8, 25-1171; eBioscience, San Diego, 

CA) monoclonal antibodies.  After washing with PBS/2% FBS the cell suspension was incubated 

with strepavidin pacific blue conjugate (Molecular probes, Invitrogen) for 30 minutes on ice. 

Murine hematopoietic stem cells (lineage−/IL-7R−/c-kit+/Sca1+) and myeloid progenitors 

(lineage−/IL-7R−/c-kit+/Sca1−) were sorted from bone marrow, as described previously (Akashi et 

al., 2000). For the isolation of granulocytes, bone marrow cells were stained with biotinylated Gr-

1 and visualized by a strepavidin pacific blue conjugate.  All cell populations were sorted using 

BD FACS Aria multicolor cell sorter and data analysis was done using DIVA and Flow Jo 

software (Treestar, Ashland, OR). A second round of sorting was performed to ensure pure 

populations. RNA was isolated from multiple independently isolated samples containing normal 

HSC, myeloid progenitors and granulocytes. 

 

RNA extraction and quantitative RT-PCR 

RNA was isolated from double sorted HSC & progenitor cells obtained from mouse bone 

marrow or from EML cells using an RNeasy kit according to the manufacturer’s instructions 

(Qiagen, Valencia, CA). cDNA was synthesized by using the Advantage RT-for-PCR kit® 

according to the manufacturer’s guidelines (Clontech, Mountain View, CA). Gene expression 

analysis designed against mouse YB-1 (catalog no. ABI Mm00850878) was performed using 

TaqMan Gene Expression Assays on an ABI Prism 7000 sequence detection system (Applied 

Biosystems, Foster City, California, USA). Expression of the β-actin gene (catalog no. ABI, 

4352341E) was used to normalize the amount of the investigated transcript. Data were corrected 
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for efficiency and loading using the Pfaffel method (Tichopad et al., 2003). Data shown are 

representative of four independent experiments. 

Western blotting 

Treated cells from different experimental conditions were rinsed once with ice-cold PBS 

and then separated into nuclear and cytoplasmic fractions using the NE-PER extraction kit as per 

the manufacturer’s instructions (Pierce, Rockford, IL). Protein concentration was determined 

using bicinchoninic acid (BCA) protein assay reagents from Pierce according to the 

manufacturer’s guidelines. Cell extracts were then denatured at 95°C for 5 min in 2x sample 

buffer (62.5 mM Tris HCl (pH 6.8), 25% glycerol, 0.01%  bromophenol blue, 2% SDS, 10% β-

mercaptoethanol). Equal amount of protein extracts were separated on an 8-16% gradient Tris-

Glycine SDS–poly acrylamide gel (Bio-Rad, Hercules, CA) by electrophoresis (PAGE) and 

transferred onto nitrocellulose membranes (Millipore) using the Bio-Rad MiniProtean3® system. 

The membranes were treated in blocking solution (5% non fat dry milk in TBS containing 0.1% 

Tween 20) and incubated with primary YB-1 rabbit polyclonal antibody (1µg/ml, 2749, Cell 

Signaling Technologies, Danvers, MA) overnight at 4°C, followed by incubation with HRP-

conjugated monoclonal rabbit secondary IgG antibody (1: 3000, 7074, Cell Signaling). An anti-

mouse GAPDH antibody (MAB374, GE Healthcare, CT) was used to assess equal loading. 

Proteins were visualized by enhanced chemiluminescence (ECL) (GE Healthcare, CT). 

Benchmark TM protein ladder was used to visualize the transfer of protein onto the membrane and 

MagicMark TM XP (Invitrogen) was used as a molecular size standard. 

 

Wright-Giemsa staining 

EML cells at different stages of myeloid cell differentiation were cytospun onto 

microscopic slides and stained with Wright-Giemsa stain (Accustain, sigma) and light 

microscopy images (400x) taken using an Olympus BX51 system microscope attached to a DP70 
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microscope digital camera. Captured images were analyzed for morphological changes during 

myeloid differentiation with DP70 software on a Dell optiplex GX280 computer. 

 

Transfection of leukemia cells and generation of stable clones 

The shRNA expression vector for YB-1 (YB-1-pSUPER with the target sequence 

GAAGGTCATCGCAACGAAG, shYB-1) for generating YB-1 specific shRNAs and control 

shRNAs has been described previously (Schittek et al., 2007; Huber et al., 2004). This vector 

does not have a selectable marker. To generate stable clones, K562 leukemia cells (Lozzio CB, 

Lozzio BB, 1975) were cotransfected with the YB-1 pSUPER vector and for neomycin 

selection ; pEGFPN3 vector (Clontech, Saint-Germainen- Laye, France) by electroporation 

using BTX electroporation system as per manufacturer’s instructions (Genetronics, San Diego, 

CA). K562 cells or pEGFP transfected K562 leukemia (Empty vector, EV) cells served as 

controls. K562 cells were selected with 800 µg/ml G418, 48 hrs after transfection, for 2 weeks, 

thereafter GFP +ve cells were sorted and recultured in G418 media for another 2 weeks. When 

stable clones were generated the G418 dose was reduced to half. Three stable clones sh6-, sh7- 

and sh8- from the YB-1sh/EGFP were confirmed for YB-1 knockdown by western blotting and 

were further analyzed. 

 Cell Viability Assay 

Stable clones with YB-1 shRNA in K562 cells: Sh6-, Sh7-, Sh8- were treated with 0.5 

µM As2O3 (Alfa Aesar, Massachusetts, USA) and cell viability assay was performed at 24, 48, 

72 hours using the trypan blue dye exclusion method. 

Apoptosis assay 

Stable clones with YB-1 shRNA in K562 cells: Sh6-, Sh7-, Sh8- were seeded at a 



 41 

density of 1x105 cells/ml  in a six-well plate and treated with 0.5 µM As2O3  for 72 hours. The 

cells were harvested and washed with cold PBS and resuspended in the binding buffer (100 µl 

of calcium buffer containing 10 mM HEPES/NaOH, ph7.4, 140 mM NaCl, 2.5 mM CaCl2) 

containing 5 µl annexin V-pacific blue and 5 µl 7 AAD (5 µg/ml).  The samples were incubated 

for 30 minutes in the dark at room temperature and then subjected to flow cytometry. 

Morphological evaluation of differentiated cells 

Stable clones with YB-1 shRNA in K562 cells: Sh6-, Sh7-, Sh8- were treated with 

0.5µM As2O3 for 72 hours and cell morphology was determined by examining light microscopy 

images (400x) taken using an Olympus BX51 system microscope.  

Cell cycle analysis by flow cytometry 

Stable clones with YB-1 shRNA in K562 cells: Sh6-, Sh7-, Sh8- were seeded at a 

density of 1x105 cells/ml  in a six-well plate and treated with 0.5µM As2O3  for 72 hours. Cells 

were harvested and washed twice with PBS, fixed in 70% ethanol overnight at 4°C. Cells were 

then stained with 5 µl (1 mg/ml) propidium iodide (PI) containing 2.5 µl (10 mg/ml) RNase for 

30 minutes at 37°C and analyzed by flow cytometry on an Accuri C6 flow cytometer. 

Statistics 

Statistical analysis of the data was performed using the Student t test or ANOVA 

followed by a Student t test with corrections for multiple comparisons using the Bonferroni 

method as appropriate. The statistical test used for each data set is stated in figure legends; p < 

0.05 was considered to be significant. Data are presented as means plus or minus standard error of 

mean (SEM). 
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Results 

EML cells as a model of myeloid differentiation  

The EML cell line is a SCF dependent multipotent cell line with myeloid, erythroid and 

lymphoid potentials.  It was established from mouse bone marrow infected with a retroviral 

vector (LRARα403SN) harboring a dominant negative retinoic acid receptor (RAR construct) 

(Tsai et al., 1994). 

 

Figure 2.1. Morphology of EML cells during RA and GM-CSF induced differentiation. 
Cytospin preparations of the indicated cells were stained with Wright-Giemsa. (A) Native 
DMSO treated SCF dependent EML cells. Arrows indicate hand-mirror-shaped cells that are 
frequently seen in EML cell line. (B) EML cells treated with SCF/IL-3 and 10 µM RA for three 
days. Arrows show the granulocyte-monocyte progenitors (CFU-GM) indicated by the increase 
in nuclear to cytoplasmic ratio. (C) EML/RA+IL-3 cells treated with GM-CSF for another three 
days. Magnification is 400x. Arrows show the committed granulocytic/monocytic progenitors 
with bi-lobed nucleus. Scale bars are 50 µm. 
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It is a suspension cell line consisting of mostly blast like cells with 20-30% hand mirror shaped 

cells (Figure 2.1A).  EML cells serve as an excellent model to study hematopoietic 

differentiation in vitro (Johnson et al., 1999).  It can be induced to differentiate towards 

granulocyte/monocyte progenitors (CFU-GM) by high concentration of RA in the presence of 

IL-3 (Figure 2.1B).  These CFU-GMs can be further differentiated into more committed 

granulocyte/monocyte progenitors by GM-CSF treatment (Figure 2.1C).   

To characterize the differentiation pattern of EML cells with our cytokine treatments, 

we analyzed cell markers associated with several stages of differentiation.  We compared the 

cell surface marker profile of native, DMSO-treated EML cells, EML cells treated with RA+IL-

3 (CFU-GM) for three days, and EML cells treated for an additional 3 days with GM-CSF after 

the RA+IL-3 treatment.  Flow cytometry analysis was performed using the following panel of 

antibodies: (1) anti-Sca-1, which is specific for stem cells, (2) anti-c-kit specific for 

stem/progenitors, (3) anti-CD-11b specific for macrophage/neutrophil lineages, and (4) anti-

F4/80 specific for macrophages (Figure 2.2).  The parental EML cells appear relatively un-

differentiated (Figure 2.2A) and display an immature surface antigen phenotype that is 

characterized by high Sca-1+ and c-kit+ (Figure 2.2 A, B) expression and absence of CD11b 

and F4/80 (Figure 2.2 C, D).  In contrast, the EML/GM-CSF cells appear more differentiated 

(Figure 2.2 C) and display cell surface markers indicative of differentiated cells (CD11b+, 

F4/80+) with a loss of stem/progenitor markers such as Sca-1 and c-kit.  Sca-1 expression in 

GMCSF treated EML cells was >90% reduced (p<0.01) while CD11b (p<0.01) and F4/80 

(p<0.01) showed >95% & 59% increase respectively as compared to the untreated EML cells 

(Figure 2.2 E).  This data indicates that EML cells express stem and primitive progenitor 

markers. When these cells are subjected to conditions that induced myeloid progenitors (CFU-

GM), there is an increase in the expression of granulocyte/monocyte specific markers, which 

becomes more predominant with the appearance of more committed granulocyte/monocyte 
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progenitors. 

 

Figure 2.2. Cell surface marker profile of Untreated, RA and GM-CSF treated EML cells. 
EML cells were induced to undergo myeloid differentiation in the presence of SCF, IL-3 and 
RA for three days followed by GM-CSF for three days as described in materials and methods. 
Samples were collected at day 3 and day 6 for RA & GM-CSF treated EML cells respectively.  
Expression of (A) Sca-1, (B) c-kit which label primitive stem/progenitor cell types and (C) 
CD11b, (D) F4/80 specific for granulocytes and macrophages in DMSO treated (black line), 
RA (grey dashed line) and GM-CSF ( solid grey line) treated EML cells. (E) Combined flow 
cytometric analysis of DMSO treated, RA+IL-3, and GM-CSF treated EML cells in terms of % 
positive cells for each surface antigen. Data is expressed as the mean ± SEM of triplicate 
values. Analysis of variance (ANOVA) for multiple pairwise comparisons was used to analyze 
the data along with Student t test comparing each to untreated EML cells. (* indicate p≤ 0.01). 



 45 

YB-1 expression in undifferentiated vs. differentiated EML cells 

YB-1 functions in erythroid differentiation and aberrant expression of YB-1 leads to 

abnormal erythropoiesis but its role and regulation of gene expression in early hematopoiesis is 

still unknown (Yokoyama et al., 2003). In order to characterize its pattern of expression in early 

hematopoiesis, YB-1 protein expression was studied by western blot analysis in DMSO-treated, 

RA+ interleukin-3 (IL-3) treated and GM-CSF treated EML cells (Figure 2.3). YB-1 was detected 

as 49 kD protein in nuclear extracts. YB-1 protein was highly expressed in native EML cells 

relative to RA+IL-3 and GM-CSF treated cells (Figure 2.3A, B). RA+IL-3 treated EML cells 

(myeloid progenitors) showed a significant decrease (>60%; p<0.05) in YB-1 protein expression 

compared to the DMSO treated EML cells. This reduction was even more apparent in the GM-

CSF treated (>80%; p<0.05) compared to the DMSO treated EML cells.  

In order to determine if YB-1 protein levels correlate with the mRNA, we analyzed YB-1 

mRNA expression in the above three cell populations by quantitative RT-PCR (Figure 2.3 C). 

YB-1 mRNA levels were down-regulated in RA+IL-3 treated relative to the DMSO treated EML 

cells and reduced further significantly with GM-CSF treatment (p<0.05). These data show that 

YB-1 mRNA and protein expression pattern correlate and are highly expressed in native 

undifferentiated EML cells but both levels are dramatically down-regulated during EML cell 

differentiation. Taken together, this data indicates that YB-1 is expressed in undifferentiated stem 

cells and reduces as these cells progress into early and later stage progenitors. The functional role 

of YB-1 expression is not known. 
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Figure 2.3. Expression of YB-1 mRNA and protein in EML cells. (A) Nuclear extracts from 
DMSO treated, RA and GM-CSF treated EML cells were subjected to SDS- PAGE and western 
blot analysis with an anti-YB-1 antibody (1µg/ml). GAPDH was used as a loading control.  (B) 
The mean  SEM of values obtained from densitometric analysis of three individual 
experiments. ANOVA for multiple pairwise comparisons was used to analyze the data along 
with Student’s t-test comparing each to untreated EML cells (* indicate p< 0.05).  This blot is 
representative of at least 3 different experiments, all of which gave similar results (N=9).  (C) 
Total RNA was extracted from untreated, RA and GM-CSF treated EML cells by RNeasy kit 
and was reverse transcribed using Advantage RT-for-PCR kit®.  Real-Time PCR analysis was 
performed using TaqMan probes directed at YB-1 and β-actin.  Data was analyzed with 
ANOVA and is expressed as fold change, corrected for β-actin, relative to untreated EML cells   
(* indicate p< 0.05).  Data is representative of experiments (N=6). 
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Expression of YB-1 in mouse stem and progenitor cells 

Though the EML cell culture system has proved useful in identifying changes in YB-1 

gene expression during hematopoietic differentiation, it is an immortalized cell line and thus 

may not accurately represent normal hematopoietic cells (Ye et al., 2005).  To compare changes 

in YB-1 gene expression observed in EML cells with normal hematopoiesis, we sorted stem 

cells, myeloid progenitors, and granulocytes from C57BL/6 mouse BM.  In mice, multipotent 

hematopoietic activity resides in a small fraction of BM cells lacking the expression of lineage-

associated surface markers but expressing high levels of Sca-1 and c-Kit (LKS fraction).  

Within the lineage− BM cells myeloid progenitors can be isolated from the IL-7Rα
− fraction by 

the absence of Sca-1 expression, but the presence of c-Kit . Based on Sca-1 and c-kit profile of 

lineage−/IL-7R−bone marrow cells, a population enriched in HSC was sorted according to 

lineage−/IL-7R−/c-kit+/Sca1+ (LKS) marker profile while myeloid progenitors were separated 

based on lineage−/IL-7R−/c-kit+/Sca1− profile (Figure 2.4A-C).  Granulocytes were isolated 

from mouse BM by staining with anti Gr-1 antibody as shown in Figure 2.4D and E.  In these 

three populations, YB-1 mRNA levels were measured by quantitative RT-PCR (Figure 2.4F).  

There was a significant two-fold increase in YB-1 mRNA levels in myeloid progenitors 

(p<0.05) as compared to the LKS fraction (enriched fraction for stem cells).  More noteworthy 

is the statistically significant reduction in YB-1 mRNA levels in granulocytes which is reduced 

by more than 87% as compared to the stem/progenitor cells (p<0.01).  These data indicate that 

YB-1 transcripts are highly expressed in stem/myeloid progenitors and down-regulated in more 

differentiated cell types like granulocytes.  These results are consistent with the in vitro data, 

reinforcing the validity of the EML cell model and suggesting an in vivo role for YB-1 in 

hematopoietic stem and progenitor cells. 
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Figure 2.4. Expression of YB-1 in mouse stem and progenitor cells. (A) BM cells from adult 
mice were isolated by flow cytometry. Cells of the appropriate side scatter and forward scatter 
properties (R1) gate were further fractionated by (B) IL-7Rα and lineage panel depletion 
represented by gate R2.  (C) Those remaining were selected based upon c-kit and Sca-1 
expression as indicated.  The lineage−/IL-7R−/c-kit+/Sca1+ (LKS, enriched fraction for stem cells) 
shown as R4 and lineage−/IL-7R−/c-kit+/Sca1− (myeloid progenitors, R3) fractions were then 
sorted for quantitative RT-PCR. (D-E) Granulocytes were sorted from the mouse BM by 
forward/side scatter characteristics (S1) and labeling with anti-Gr-1 antibody (S2). (F) Total 
RNA was extracted from lineage−/IL-7R−/c-kit+/Sca1+ (LKS), lineage−/IL-7R−/c-kit+/Sca1− 

(myeloid progenitors), and Gr-1+   populations followed by real-time RT-PCR was performed 
using TaqMan probes directed at YB-1 and β-actin.  The relative amount of mRNA in each cell 
population was normalized to an internal control gene β-actin and expressed as fold change 
relative to stem cells.  The statistical significance of YB-1 expression was assessed by ANOVA 
combined with the student's t-test (* indicate comparisons to stem cell levels, ^ indicate 
comparisons to progenitor cell levels, p≤ 0.01).  Data is representative of four independent 
experiments (N=12). 
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YB-1 expression in leukemic cells 

YB-1 is involved in erythropoiesis and aberrant YB-1 expression may lead to 

abnormalities in erythroid differentiation (Yokoyama et al., 2003).  MDS is characterized by 

ineffective production of mature blood cells due to increased proliferation and reduced 

differentiation of hematopoietic stem/progenitor cells, with a high predisposition to transform 

into acute leukemia (Greenberg et al., 1997). 

 

 

Figure 2.5. YB-1 expression in leukemia (A) Western blot analysis was performed on the 
nuclear extracts from HL-60 (human promyelocytic leukemia), U-937 (human promonocytic 
leukemia), K-562 (human chronic myelogenous leukemia), WEHI-3 (murine monocytic 
leukemia) cell lines using anti YB-1 antibody. Untreated, RA and GMCSF treated EML cells 
served as positive and negative controls. GAPDH was used as a loading control. (B) 
Densitometric analysis of the above western blot. This data is one representative of three 
independent experiments all giving similar results. 

 

YB-1 has been shown to be up-regulated in the bone marrow of patients with MDS 

(Lee et al., 2001; Yokoyama et al., 2003). Since we saw a high expression of YB-1 in 
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stem/progenitor cells as compared to differentiated cells, we investigated whether higher 

expression of YB-1 is associated with leukemia.  For this we performed western blot analysis 

on protein extracted from several human and mouse leukemic cell lines (Fig. 2.5 A, B).  DMSO 

treated, RA+IL-3, and GMCSF treated EML cells served as references for these experiments. 

HL-60 (human promyelocytic leukemia), U-937 (human promonocytic leukemia), K-562 

(human chronic myelogenous leukemia), WEHI-3 (murine monocytic leukemia) cell lines 

arrested at progenitor stage of myeloid differentiation expressed YB-1 at different levels.  As 

native EML cells are more like stem/early progenitor cells, they express high levels of YB-1 

protein as compared to the more committed myeloid progenitors.  YB-1 expression levels in all 

the leukemic cell lines lie between stem and early myeloid progenitor state except the K-562 

cell line, in which the expression is even higher than the EML cells.  This data indicates that 

YB-1 is highly expressed in myelogenous leukemias. 

 

Biological significance of down-regulation of YB-1 expression on cell proliferation 

apoptosis and differentiation in K562 leukemic cells 

To determine the role of YB-1 in leukemic cells, we downregulated YB-1 in K562 cell 

line (Lozzio and Lozzio, 1975), using specific shRNA and studied the effects of low YB-1 

levels on cell proliferation and apoptosis. Three stable clones sh6-, sh7-, sh8- were selected and 

down-regulation of YB-1 was confirmed by western blotting. Approximately a 40% reduction 

in YB-1 expression was achieved compared to EGFP transfected K562 cells, empty vector (EV) 

(Figure 2.6A).YB-1 down-regulation itself resulted in reduction in cell viability in sh6-, sh7-, 

and sh8- K562 relative to the normal K562 cells and EV at 72 hours. There was a statistically 

significant reduction in cell proliferation in sh6- (68%), sh7- (66%) & sh8- (66%) after 

treatment with 0.5 µM As2O3 relative to the untreated K562 cells (p<0.01) (Figure 2.6B).   
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Figure 2.6. Effects of down-regulation of YB-1 expression on cell proliferation and 
apoptosis in K562 leukemic cells. K562 leukemic cells were co-transfected with a plasmid 
containing YB-1 shRNA and pEGFP. pEGFP was used as a selectable marker to establish stable 
clones. (A) Three clones sh6-, sh7- & sh8- were selected and down-regulation of YB-1 was 
confirmed by western blot using anti-YB-1 antibody (1µg/ml). GAPDH was used as loading 
control. Approximately 40% reduction in YB-1 expression was achieved in each of these clones. 
(N=3) (B) Sh6-, sh7-, & sh8- transfected K562 cells were treated with 0.5µM As2O3  for 72 
hours  and cell viability assay was done at 24, 48 &72 hours as described in methods (* indicate 
p≤ 0.01). (C) Apoptotic analysis was done in K562 cells after 72 hr of treatment with or without 
0.5µM As2O3. These cells were labeled with annexin V pacific blue and 7-AAD and then 
subjected to flow cytometric analysis. Untransfected K562 cells and EV served as controls (* 
indicate p≤ 0.01). Data is expressed as the mean ± SEM of triplicate samples. Data is 
representative of at least two independent experiments. ANOVA for multiple pairwise 
comparisons was used to analyze the data along with Student t test comparing each to untreated 
cells. 
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A higher number of apoptotic cells were detected in sh6-, sh7-, sh8-K562 compared to the 

normal K562 cells and EV at 72 hours. A statistically significant increase in the number of 

annexin-V positive cells was seen in sh6- (61%), sh7- (57%) after treatment with 0.5 µM As2O3 

for 72 hours (p<0.01) (Figure 2.6C). These data indicate that loss of YB-1 reduce cell viability in 

leukemic cells, and confers some protection from apoptosis in these cells. 

YB-1 down-regulation leads to the induction of megakaryocytic differentiation in sh6-, 

sh7-, and sh8- in comparison to the normal K562 cells and EV at 72 hours after treatment with 

0.5 µM As2O3. Phase contrast microscopic examination of As2O3 treated sh6- sh7-, and sh8- 

K562 cells revealed an increase in the nuclear to cytoplasm ratio, and an elongated shape 

characteristic of megakaryocytic morphology (Figure 2.7A). To confirm the megakaryocytic 

differentiation in sh6-, sh7-, and sh8- K562 cells, CD41a (GPIIb/IIIa) expression, a marker for 

platelet/megakaryocytes, was measured.  Interestingly YB-1 down-regulation alone resulted in 

an increase in CD41a expression.  Further increase in CD41a expression was observed after 72 

hours of treatment with 0.5 µM As2O3 (Figure 2.7B). Polyploidization is a unique feature of 

megakaryocytes (Szalai et al., 2006). To further confirm megakaryocytic differentiation, DNA 

content was measured by PI staining. Ploidy analysis revealed a significant increase in the 4 and 

8N population of cells 72 hours after treatment with 0.5 µM As2O3 in sh6-, sh7-, and sh8- in 

comparison to the normal K562 cells and EV (Figure 2.7C).  From this data it is evident that 

down-regulation of YB-1 primes the sh6-, sh7-, and sh8-K562 cells for megakaryocytic 

differentiation after treatment with 0.5 µM As2O3. 
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Figure 2.7. Effects of down-regulation of YB-1 expression on cell differentiation in K562 
leukemic cells (A) Morphological changes in K562 cells at 72 hrs with or without treatment of 
0.5µM As2O3. Arrows indicate megakaryocytic cells. Magnification is 400x. Scale bars are 
50µm. (B) K562 cells were treated with or without 0.5µM As2O3 for 72 hrs and CD41a  
expression which labels platelets and megakaryocytes was measured (* indicate p≤ 0.01). Data 
are expressed as the mean ± SEM of triplicate samples and is representative of at least two 
independent experiments. ANOVA for multiple pairwise comparisons was used to analyze the 
data along with Student t test comparing each to untreated cells (C) K562 cells were treated with 
or without 0.5 µM As2O3 for 72 hrs and DNA content of cells was assayed by staining with 
propidium iodide (PI) and then analyzed by flow cytometry. Data is representative of at least two 
independent experiments. EV indicates empty vector. 
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Discussion 

Y box binding protein is a multifunctional protein and is involved in regulating both 

transcription and translation. YB-1 promotes cell proliferation through transactivation of target 

genes such as proliferating cell nuclear antigen, epidermal growth factor receptor, DNA 

topoisomerase II, thymidine kinase and DNA polymerase α (Wolfe, 1994; Ladomery and 

Sommerville, 1995). It has also been implicated in cell cycle regulation, cell survival, stress 

response regulation, DNA repair, and drug resistance (Lu et al.,  2005;  Kohno et al., 2003).  

YB-1 has been shown to be involved in erythroid development through interactions 

with GATA (Yokoyama et al., 2003); however the role of YB-1 in early hematopoietic 

differentiation has not been investigated.  For the first time, we show in this study that YB-1 is 

expressed in early hematopoiesis and both YB-1 mRNA and protein levels are down-regulated 

during myeloid differentiation.  EML cells undergoing myeloid differentiation down-regulate 

YB-1 expression after three days of culture in RA+IL-3. YB-1 expression is further down-

regulated at six days when these myeloid progenitors are cultured in GM-CSF with the 

appearance of an increasing number of more committed granulocyte and monocyte progenitors.  

A previous cDNA microarray study that analyzed changes in gene expression during induced 

myeloid differentiation of EML cells showed similar results (Ma et al., 2002). This indicates 

that YB-1 is highly expressed during hematopoiesis in multipotent hematopoietic precursor 

EML cells but is down-regulated in more committed granulocyte/monocyte progenitors.   

We have observed greater reduction in the YB-1 protein expression as compared to the 

YB-1 mRNA in both RA/IL-3 and GM-CSF treated EML cells relative to the DMSO treated 

EML cells.  YB-1 has been shown to regulate gene expression not only at the level of 

transcription, but also at the level of mRNA translation (Fukuda et al., 2004).  Therefore, lower 

levels of YB-1 protein expression as compared to YB-1 mRNA might be due to autoregulation 

of YB-1 translation by YB-1 mRNA.  Another possibility could be that RA+IL-3 and GM-CSF 
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treatment might lead to post-translation regulation of YB-1 (Wu et al., 2007). YB-1 can shuttle 

between the cytosol and nucleus (Jurchott et al., 2003) and can also be localized to the 

mitochondria (de Souza-Pinto et al., 2009). However, we have examined only nuclear 

expression of the YB-1. Thus, a cytoplasmic fraction of YB-1 might account for the lack of 

correlation between theYB-1 protein and RNA levels. 

Since we found a dramatic down-regulation of YB-1 expression in EML cells during 

myeloid differentiation, we investigated YB-1 expression in vivo.  HSCs and progenitors were 

isolated based upon the parameters lineage−/IL-7R−/c-kit+/Sca1+ (which is an enriched fraction 

for HSC), lineage−/IL-7R−/c-kit+/Sca1− (myeloid progenitors). Like EML cells, we found high 

expression of YB-1 mRNA levels in the stem/progenitor cells of mouse BM as compared to the 

differentiated cells like granulocytes.  YB-1 has a role in cell proliferation and is known to 

repress transcription of genes involved in differentiation (GM-CSF) and apoptosis (Fas) so one 

possible explanation for YB-1 to be down-regulated in granulocytes is to allow the expression 

of differentiation factors (Coles et al., 1996; Lasham et al., 2000). A gene expression study of 

mouse transcriptome agrees with this data as similar results have been shown in mouse BM for 

YB-1 expression (http://biogps.gnf.org). Taken together, the EML cell studies and primary 

bone marrow studies share consistent results and thus provide strong evidence that YB-1 is 

highly expressed in stem/ early progenitor cells and is down-regulated during 

granulocyte/monocyte lineage differentiation.  

Our data revealed a significant reduction in the YB-1 expression in EML cells upon 

treatment with RA/IL-3, while we saw an increase in the YB-1 mRNA expression in myeloid 

progenitors as compared to the HSC in mouse BM.  This difference could be attributed to the 

fact that the in vitro model involves using relatively high pharmacological concentrations of 

retinoic acid (10 µM) about 100–1000-fold higher than the endogenous physiological 

concentration of retinoids (1–10 nM) normally present in serum which could lead to off target 
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effects (Collins, 2002). Moreover, we have differentiated EML cells towards only CFU-GM, 

which generates granulocyte monocyte progenitors (GMP) while in the mouse BM we have 

assayed all the myeloid progenitors as one group including common myeloid progenitor 

(CMP), GMP and megakaryocyte erythroid progenitor (MEP).  Possibly, YB-1 expression goes 

down in the GMPs, but not in the CMP and MEP. 

YB-1 has been shown to be up-regulated in the bone marrow of patients with MDS 

(Lee et al., 2001; Yokoyama et al., 2003). Over-expression of YB-1 mRNA and protein is 

associated with several human cancers including breast, prostate, pancreas, colorectal and 

melanoma (Kohno et al., 2003), but its role in leukemia has not yet been investigated. 

Therefore, cell lines derived from patients with HL-60 (acute promyelocytic leukemia), U-937 

(acute promonocytic leukemia), K562, chronic myelogenous leukemia (CML) and WEHI-3 

(murine monocytic leukemia), which are arrested at various stages of myeloid differentiation, 

were used to analyze the expression of YB-1 protein.  YB-1 protein was expressed by all the 

myeloid leukemic cell lines, indicating that YB-1 is associated with myelogenous leukemia. 

Additionally, it is intriguing that YB-1 was up-regulated in mouse progenitor cells as compared 

to mouse HSCs.  This finding is consistent with the hypothesis of the progenitor being the cell 

of origin for some leukemias (Jamieson et al., 2004). 

To determine the role of YB-1 in leukemia we investigated the biological consequences 

of YB-1 knockdown in K562 leukemia cells. This cell line was chosen due to high expression 

of YB-1. We treated cells with As2O3 because it is being used as a therapeutic agent for the 

treatment of acute promyelocytic leukemia. The concentration of As2O3 used was 0.5 µM, 

which is within the known plasma concentration in patients under treatment and does affect cell 

viability (Tang et al., 1997). YB-1 down-regulation resulted in growth arrest and induction of 

apoptosis. Upon treatment with As2O3 these effects were more pronounced. YB-1 promotes cell 

proliferation by transactivating various genes involved in cell division and also by controlling 



 57 

cyclin A and B1 gene expression (Wolfe, 1994; Ladomery and Sommerville, 1995; Jurchott et 

al., 2003). A few studies have reported biological effects of YB-1 (Schittek et al., 2007; 

Chatterjee et al., 2008). In the multidrug resistant cell line, K562/A02 YB-1 down-regulation 

leads to decreased cell proliferation and induction of apoptosis. These results are consistent 

with our findings in untreated K562 cells (Xu et al., 2009). 

K562 is an erythroleukemia cell line that is situated in the common progenitor stage of 

megakaryocytic and erythroid lineages of hematopoietic cell differentiation. K562 cells can be 

induced to erythroid or megakaryocytic differentiation by different agents (Baliga et al., 1993; 

Tabilio and Pelicei, 1983). As2O3 exerts double effects on acute promyelocytic cells, i.e., 

induction of apoptosis and partial differentiation (Tang et al., 1997). Interestingly, down-

regulation of YB-1 and treatment with As2O3 led to megakaryocytic cell differentiation in K562 

leukemia cells, further strengthenig our observation that YB-1 is associated with 

stem/progenitor cell maintenance. We saw a significant change in cellular morphology after 72 

hr treatment of K562 leukemic cells with As2O3; evident by an increase in nuclear size and 

cytoplasmic mass. YB-1 knockdown alone resulted in an increase in CD41a, a cell surface 

marker associated with megakaryocytic differentiation expression.  However, we did not see 

any large change in cellular morphology. After treatment with As2O3, there was a steep, 

statistically significant increase in the expression of CD41a when YB-1 was downregulated in 

sh6-, sh7- and sh8- K562 cells. Further confirmation of megakaryocytic differentiation was our 

detection of polyploidy in K562 cells when YB-1 was downregulated (Vitrat et al., 1998). The 

ability of K562 cells to partially differentiate upon YB-1 knockdown supplemented with As2O3 

treatment is a novel finding.  

In conclusion, our data reveals that YB-1 is highly expressed in the EML cell line but is 

down-regulated upon differentiation of these cells towards the myeloid lineage. Terminally 

differentiated cells, such as granulocytes, express low levels of YB-1 as compared to murine 
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BM stem and progenitor cells. Expression of YB-1 in several myeloid leukemia cell lines 

indicates its association with leukemia. Down-regulation of YB-1 expression reduced cell 

proliferation, induced apoptosis and cell differentiation. Further studies are needed to decipher 

the mechanism of how YB-1 contributes to the blockage of myeloid differentiation. 
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In leukemia there is uncontrolled proliferation of immature progenitors and blockage to their 

differentiation.Understanding the mechanisms involved in hematopoietic differentiation will help 

in developing therapies against leukemia. Our major focus of this work was to identify different 

genes that play role in hematopoietic differentiation. Hsp90 is a molecular chaperone that is 

involved with protein folding and various signal transduction cascades. Hsp90 has been suggested 

to regulate Wnt signaling in the Drosophila model. Wnt signaling is associated with 

hematopoietic stem cell maintainenace and is important for leukemia progression. In chapter 3, 

we investigated the role of Hsp90 in the regulation of Wnt signaling in mammalian hematopoietic 

system. 
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CHAPTER Three: Activation of the canonical Wnt pathway in 

the hematopoietic precursor EML cell line upon Hsp90 

inhibition 

Abstract 

Acute myeloid leukemia (AML) in adults has a 20% 5-year disease-free survival, despite 

treatment with aggressive cytotoxic chemotherapy. Heat shock protein (Hsp90) is a chaperone 

for several client proteins involved in transcriptional regulation, signal transduction and cell 

cycle control. 17-AAG, the synthetic analogue of geldanamycin (GA), is an Hsp90 inhibitor that 

is presently in phase II clinical trials for the treatment of various leukemia and other cancers. In 

Drosophila, functional inactivation of Hsp90 resulted in a transdifferentiation event where the 

eye tissue becomes a limb-like outgrowth due to abnormal wingless expression (wg). Expression 

of this phenotype induced by Hsp90 inhibition becomes independent of chaperone after being 

inherited across successive generations, suggesting an epigenetic mechanism. Wnt signaling is 

associated with hematopoietic stem cell maintenance and is important for leukemia progression. 

The objective of the study in chapter 3 was to determine whether the Wnt pathway is regulated 

by Hsp90 in mammalian cells through epigenetic mechanisms as observed in flies. Our 

preliminary data showed the activation of the canonical Wnt pathway in a hematopoietic 

precursor cell line, EML, after inhibition of Hsp90. This effect seemed to be short lived and 

pharmacological inactivation of Hsp90 did not cause any changes in the Wnt pathway activity 

during myeloid differentiation of EML cells. However there was considerable variability in our 

results that prevented further progress in these studies. Further investigation into the molecular 

mechanism of Hsp90 inhibition and Wnt signaling in adult hematopoietic stem cells is needed to 

determine whether Hsp90 play a role in maintaining the leukemic state in AML. 
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Introduction  

Hsp90 is a specialized molecular chaperone involved in the stress response and in 

normal homoeostatic control mechanisms. Several client proteins including transcription factors 

and protein kinases are Hsp90 substrates, where it facilitates their stabilization and activation. 

Inhibition of Hsp90 leads to disruption of various signal transduction pathways in the cell. 

Hsp90 inhibitors such as geldanamycin act by interacting specifically with a single molecular 

target, the Hsp90 chaperone, thereby destabilizing and degrading Hsp90 client proteins (Pearl et 

al., 2008). 

Although Hsp90 is expressed in normal cells, it is frequently overexpressed in cancer 

cells, suggesting a role in maintaining malignant transformation. Hsp90 has been implicated in 

oncogenesis by associating with multiple mutated, chimeric and over expressed signaling 

proteins that promote cancer cell growth and survival (Pearl et al., 2008). Several studies have 

shown that Hsp90 inhibitors target tumor cells over normal cells because of higher binding 

affinity of the Hsp90 complexes present in these tumor cells (Chen et al., 2010; Flandrin et al., 

2008). Thus targeting Hsp90 could result in simultaneous disruption of multiple oncogenic 

signal transduction pathways suggesting utility for treatment of advanced cancers. 

According to Waddington’s canalization model there are masked phenotypes in a wild- 

type population which can be expressed during environment stress. When these adaptive 

phenotypes are selected over subsequent generations they get fixed and can be expressed even 

in the absence of stress (Waddington, 1942). Under stressful conditions Hsp90 deviates from its 

usual role of activating signal transduction proteins and severe stress can temporarily 

overwhelm the Hsp90 chaperone system. This leads to generation of varied phenotypes, which 

when selected, can be fixed in the population and are significant in terms of evolution (Wong 

and Houry, 2006). Impairment of Hsp83, the Drosophila homolog of Hsp90 produced abnormal 

phenotypes which are inherited in subsequent generations (Rutherford et al., 1998). Thus 
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Hsp90 can act as genetic capacitor by storing masked phenotypes for later release. 

This impairment of Hsp90 either by genetic mutation or pharmacological inhibition in 

Drosophila led to phenotypic variation was also reported by another study. However, an 

epigenetic basis for the capacitor function of Hsp90 was revealed, as depletion of Hsp90 

induced an altered chromatin state. Progeny of flies which were fed Hsp90 inhibitor, 

geldanamycin (GA) and a mutation in the trithorax group of genes (TrxG) showed an abnormal 

eye-bristle phenotype. Interestingly, phenotypic selection of this drug-induced phenotype 

resulted in an increase in the number of affected progeny in successive generations even in the 

absence of Hsp90 inhibition indicating, an epigenetic mechanism. Further evidence for an 

epigenetic phenomenon came from chromatin remodeling inhibitors, which were able to reverse 

this phenotype (Sollars et al., 2003).  

Moreover, it was found that this abnormal eye phenotype induced by Hsp 83 and TrxG 

mutations was due to ectopic expression of Wingless (wg) (Sollars et al., 2003). Wingless is 

required for many developmental processes ranging from embryonic segmentation to limb 

development. Since mutations in TrxG genes induced up-regulation of the Wnt pathway, this 

indicates a role of epigenetic gene regulation in this pathway.  

The Wnt signaling pathway is highly conserved during evolution and regulates 

hematopoietic stem cell maintenance and self renewal (Kirsttetter et al., 2006). Its 

dysregulation is responsible for various hematological malignancies including leukemia. The 

canonical Wnt pathway regulates target gene expression via the stabilization and nuclear 

translocation of the cytoplasmic pool of ß-catenin (Brembeck et al., 2003). The focus of this 

study was to find out whether Hsp90 modulation can regulate the Wnt pathway epigenetically 

in a mammalian model system. 
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Hematopoiesis is an excellent model to study differentiation due to the presence of 

different cell surface markers along the course of development. The Erythroid Myeloid 

Lymphoid clone 1 (EML) cell line was developed from murine bone marrow cells transfected 

with a vector expressing a dominant negative form of retinoic acid receptor. These cells are a 

unique in vitro model to study hematopoietic differentiation. EML cells can be indefinitely 

propagated in medium containing stem cell factor (SCF) and can be differentiated into erythoid, 

myeloid and lymphoid lineages by the addition of appropriate cytokines (Tsai et al., 1994). 

Our hypothesis was that Hsp90 acts as an epigenetic modulator affecting the Wnt 

pathway in the EML cell model. To test this hypothesis, EML cells were treated with GA and 

Wnt pathway activation was examined based upon ß-catenin accumulation and translocation to 

the nucleus.  

 

Materials and Methods 

Materials 

Geldanamycin, GA (G3381) and retinoic acid (R2625) were purchased from Sigma. 

FITC conjugated total ß-catenin (610155) and Fc Blocker (553142) antibodies were purchased 

from BD Biosciences while active ß-catenin (05-665) was purchased from Millipore. 

Paraformaldehyde (15014601) and Triton X-100 (02300221) were bought from MP 

Biomedicals. GM-CSF was purchased from Stem Cell technologies (Vancouver, BC).   

Cell culture 

EML C1 cells were the kind gift of Dr. Schickwann Tsai and were maintained in growth 

medium which is base medium (IMDM supplemented with 20% heat inactivated horse serum, 

American Type Culture Collection, ATCC, Manassas, VA) and 10% BHK/MKL-conditioned 
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medium, (Tsai  et al., 1994). EML cells were maintained at a density below 5 x 105 cells/ml for 

these experiments. BHK cells were cultured in EMEM and WEHI-3 cells (TIB-68, ATCC) 

were cultured in IMDM supplemented with 10% FBS at 37º C and 5% CO2. L Cells 

(immortalized mouse fibroblast) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (ATCC, CRL-2648). L-Wnt 3a cells, the 

Wnt 3a expressing clone of L cells and L-Wnt 5a, the Wnt 5a expressing clone of L cells 

(ATCC, CRL-2647 and 2814), were maintained in the same medium containing 0.5 mg/ml of 

G418. 

EML cell differentiation 

EML cells were seeded at a density of 1x105 cells/ml in base medium along with 10µM 

all-trans retinoic acid (ATRA; sigma, St. Louis, MO, USA), 10% BHK conditioned medium 

(source of stem cell factor) and 15% WEHI conditioned medium (source of interleukin-3) for 

three days. Cells were then washed twice with PBS and resuspended at 1x106 cells/ml in base 

medium with 20 ng/ml of murine granulocyte-monocyte colony stimulating factor (GM-CSF) 

(Stem Cell Technologies, Vancouver, BC, Canada) for the next three days. 

Treatment with Geldanamycin (GA) 

EML cells were seeded at 2x105 cells/ml in growth medium and treated with 5, 10 or 15 

nM GA for 24 hours. DMSO was used as a vehicle. Cells were washed and reseeded at 2x105 

cells/ml in growth medium after 24 hours of treatment followed by a 24 hour recovery period. 

All the experiments were performed after the 24 hour recovery period. 

Flow Cytometry 

Treated as well as untreated L, L-Wnt3a, L-Wnt 5a and EML cells were washed twice 

with FACS buffer (Phosphate buffered saline, (PBS) supplemented with 3% BSA, 0.02% sodium 

azide and 1 mM EDTA) and collected by centrifugation. Thereafter they were incubated with 
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FcγRII/III receptor (553142, BD Pharmingen) to prevent nonspecific binding by blocking the Fc 

receptors for half an hour at 4°C. Cells were then fixed with 4% paraformaldehyde /PBS for half 

an hour and permeabilized with wash buffer (PBS supplemented with 3% BSA, 0.1% Triton X-

100). After washing the cells in buffer they were then labeled with FITC conjugated total ß-

catenin antibody (610155, BD Transduction) for half an hour at 4º C. An isotype antibody labeled 

with FITC was used as a negative control for FITC.  Data acquisition was performed using BD 

FACS Aria sorter and data analysis was done using Flow Jo software v.7.5.5 (Treestar, Ashland, 

OR). 

 

Western blot 

Treated cells from different experiments were rinsed once with ice-cold PBS and whole 

cell protein extracts were obtained by briefly sonicating the cell pellets and then boiling the 

lysates for 5 minutes in sample lysis buffer containing 50 mM Tris (tris hydroxymethyl 

aminomethane; pH 6.8), 1% sodium dodecyl sulfate (SDS), 10% glycerol and 1 mM dithiothreitol 

(DTT). Nuclear and cytoplasmic fractions were separated using the NE-PER extraction kit as per 

the manufacturer’s instructions (Pierce, Rockford, IL). Protein concentration was determined 

using bicinchoninic acid (BCA) protein assay reagents from Pierce according to the 

manufacturer’s guidelines. Cell extracts were then denatured at 95°C for 5 min in 2x sample 

buffer (62.5 mM Tris HCl, pH 6.8, 25% glycerol, 0.01% bromophenol blue, 2% SDS,10% β-

mercaptoethanol). Equal amount of protein extracts were separated on an 8-16% gradient Tris-

Glycine SDS–poly acrylamide gel (Bio-Rad, Hercules, CA) by electrophoresis (PAGE) and 

transferred onto nitrocellulose membranes (Millipore) using Bio-Rad MiniProtean3® system. The 

membranes were treated in blocking solution (5% non fat dry milk in TBS containing 0.1% 

Tween 20) and incubated with primary active ß-catenin antibody (05-665, Millipore, 1 µg/ml) 

overnight at 4°C, followed by incubation with HRP-conjugated monoclonal mouse secondary 

IgG antibody (1: 3000, 7074, GE Healthcare, CT). An anti-mouse GAPDH antibody (MAB374, 
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GE Healthcare, CT) was used to assess equal loading. Proteins were visualized by ECL (GE 

Healthcare, CT). A Benchmark TM protein ladder was used to visualize the transfer of protein onto 

the membrane and MagicMark TM XP (Invitrogen) was used as a molecular size standard. 

 

Results 

EML cells have high total ß-catenin levels 

Wnt signaling is important in embryogenesis and is required for the maintenance of the 

hematopoietic stem cell state (Reya et al., 2003). The canonical Wnt pathway involves the 

stabilization and nuclear accumulation of its downstream target, ß-catenin (Mc Donald et al., 

2006). In order to determine the activity of Wnt signaling in the hematopoietic precursor cell 

line EML, we performed intracellular staining to assess the ß-catenin accumulation.  

 

 

Figure 3.1 High β-catenin accumulation in EML cells. Intracellular staining was done to 
examine the level of total β-catenin protein in EML cells. Increased β- catenin accumulation is 
present in EML (purple) cells in comparison with other cell types normal L cells (brown), Wnt 
3a (green) which have active canonical Wnt pathway due to secretion of Wnt in the medium. 
Noncanonical Wnt 5a (red) expressing cells do not appear to show any accumulation of β-
catenin. FITC mean fluroscence values are listed in the figure. L-cells +ve is labeled with FITC 
conjugated β- catenin antibody. 



 67 

EML cells showed higher ß-catenin accumulation compared to normal L cells, Wnt 3a L 

and Wnt 5a L cells (Figure 3.1). Wnt 3a transfected cells were used as a positive control for 

active canonical Wnt signaling and Wnt 5a as a positive control for non-canonical Wnt 

signaling. However, L cells represented basal levels of ß-catenin, which is expected because of 

its role in the cytoskeleton (Brembeck et al., 2006). The signal intensity of ß-catenin was two-

fold higher in EML cells relative to Wnt 3a-L cells. The Wnt 5a expressing cells do not appear 

to show any accumulation of ß-catenin as the signal intensity of ß-catenin was similar in them 

relative to the L cells. 

 

Hsp90 inhibition leads to reduction in total ß-catenin levels in EML cells 

Functional inactivation of Hsp90 led to a transdifferentiation event in successive 

generations of Drosophila due to epigenetic regulation. This transdifferentiation event in 

Drosophila also led to abnormal activation of Wnt signaling (Sollars et al., 2003). My study was 

aimed at ascertaining whether in a mammalian model Hsp90 regulates the Wnt pathway through 

an epigenetic mechanism. A hematopoietic precursor cell line, EML, was used as a 

representative mammalian model system. Since the half life of Hsp90 dissociation and biological 

persistence is short (Supko et al., 1995), and EML cells undergo one cellular division during the 

24 hour rest period, a protocol of pharmacological inhibition followed by a recovery period will 

help in analyzing epigenetic effects. Our goal is to achieve an epigenetic phenotype for the EML 

cells which will be analyzed in future experiments. Before testing the epigenetic mechanism we 

wanted to examine the effect of Hsp90 inhibition on the Wnt singaling. Thus, EML cells were 

treated with GA for 24 hours followed by a 24 hour rest period before determining the 

accumulation of ß-catenin. We observed a decrease in total ß-catenin levels after GA treatment, 

indicated by both the reduction in the percentage positive as well as the median fluorescence of 

total ß-catenin (Figure 3.2). There was more than a 40%, statistically significant reduction of 
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signal intensity for total ß-catenin in 10 nM GA treated EML cells relative to control. 

 

A                                                                             B 

 
 
 

Figure 3.2 Decrease in total β-catenin protein in EML cells after Hsp90 inhibition. EML 
cells were exposed to vehicle (DMSO), 5 nM or 10 nM GA for 24 hours. The cells were then 
allowed to recover for 24 hours, and β-catenin levels were analysed using flow cytometry. Total 
volume of DMSO was constant in all trials. (A) shows the percentage of EML cells which were 
positive for  β-catenin (*p value < 0.01). (B) shows the median fluorescence values for β- 
catenin protein (**p value < 0.05) (N=3). 

 

Activation of the canonical Wnt pathway after inhibition of Hsp90 in EML cells 

In the absence of phosphorylation by glycogen synthase kinase (GSK3 ß), ß-catenin is 

stabilized referred to as active ß-catenin, which translocates to the nucleus, an indication of 

active Wnt signaling (Van Noort M et al., 2002). Since total ß-catenin levels are not an accurate 

representation of the activation of Wnt pathway we wanted to determine the effect of Hsp90 

inhibition on the active ß-catenin levels in EML cells by western blotting. When we treated 

EML cells with different concentrations of GA, we found that active ß-catenin protein was 

highly expressed in 10 nM GA treated EML cells relative to vehicle control and 15 nM GA 

treated EML cells (Figure 3.3 A). 
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To further determine the effect of 10 nM GA on ß-catenin levels and to determine how 

long the Wnt pathway remains activated, we did a time course study. It seemed that the up-

regulation in the levels of active ß-catenin protein lasted for only 24 hours (Figure 3.3 B). In 

this figure, ponceau staining was used as a loading control. This data suggests that the Wnt 

pathway might be activated after the inhibition of Hsp90 in EML cells, but if this does occur it 

is of a short duration. 

 

A     

   

 

B            

 

 

Figure 3.3 Activation of the Wnt pathway after inhibition of Hsp90 in EML cells. (A) EML 
cells were treated with vehicle, 10 and 15 nM GA for 24 hours and rested for another 24 hours. 
Whole cell lysates were extracted and analyzed by western blot analysis to detect active β-
catenin protein levels. Ponceau staining was done to determine equal loading. This blot is 
representative of two independent experiments. (B) EML cells were treated with 10 nM GA for 
24 hours and followed by a 24 hour rest period as before. Western blot was done on the whole 
cell extracts at 24, 48, 72 hours and 1 week time course. ‘C’ represents the vehicle control. This 
blot is representative of two independent experiments. 

 

Loss of Wnt pathway activation in GA treated EML cells after differentiation 

We wanted to observe whether our preliminary finding of the up-regulation in Wnt 

signaling due to Hsp90 inhibition (Fig. 3.3) results in changes in the expression of ß-catenin 
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after differentiation of EML cells. Therefore, we inhibited Hsp90 and then forced EML cells to 

differentiate toward the granulocyte macrophage pathway by treating them with RA and 

GMCSF. 

               A                

 

                B 

              

Figure 3.4 Wnt pathway activation in GA treated EML cells after differentiation. (A) 
EML cells were treated with 10 nM GA for 24 hours and rested for another 24 hours before 
proceeding with the differentiation protocol. Nuclear extracts were isolated and western blot 
analysis was done to determine the levels of active β-catenin after treatment with RA and 
GMCSF. This is a representative blot for two independent experiments. (B) EML cells were 
treated with 10 nM GA and then a second dose of 5 nM given during our differentiation 
protocol along with treatment with RA and IL-3. Western blot analysis was done after 
extraction of nuclear extracts to examine the levels of active β-catenin. GAPDH was used as a 
loading control. This is a representative blot for two independent experiments. ‘C’ represents 
the vehicle control. 

 

 In this experiment, Hsp90 inhibition did not show any effect on the active ß-catenin 

expression. Secondly, we found that upon differentiation with RA as well as GMCSF in the 

EML cells activity of ß-catenin was inhibited regardless of Hsp90 inhibition (Figure 3.4A). 

This data suggests that Hsp90 inhibition does not seem to play a role in Wnt pathway activation 
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with or without forced differentiation of EML cells. Next, we tried to modify our treatment 

protocol by giving a second dose of GA during differentiation but that also seem to have no 

effect on the levels of active ß-catenin (Figure 3.4B). 

 

Wnt pathway activation through inhibition of Hsp90 in EML cells was not consistent 

Next, we wanted to reproduce the earlier findings of Hsp90 inhibition on ß-catenin 

activity in EML cells. Therefore, EML cells were treated with various concentration of GA for 

24 hours and active ß-catenin levels were measured by western blot. 

A 

B   

                      

                                                                                                                                                                                              

Figure 3.5 Up-regulation of Wnt signaling observed previously was not consistent. (A) 
EML cells were treated with vehicle, 1, 2, 5 or 10nM GA for 24 hours followed by a 24 hour rest 
period. Nuclear extracts were isolated and active ß-catenin levels were measured. GAPDH was 
used as a loading control. This blot is representative of at least three different experiments. ‘C’ 
represents the vehicle control. (B) The densitometric analysis for the above experiment.  
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We found that there was no significant difference in the active ß-catenin levels between 

the vehicle control relative to GA treated EML cells (Figure 3.5). This data indicates that the up-

regulation of Wnt signaling upon Hsp90 inhibition in EML cells as observed in our preliminary 

studies is inconsistent. 

Discussion 

We observed an increased expression of ß-catenin in EML cells compared to the L-Wnt 

3a cells, which have active canonical Wnt signaling. This is consistent with the fact that EML 

cells are stem cell in nature and the self renewal pathway such as canonical Wnt signaling is 

required for maintenance of a hematopoietic stem cell state. Deregulation of Wnt signaling, 

which is normally tightly regulated, has been identified as an important step in leukemic 

transformation. Common myeloid progenitor (CMP) gives rise to granulocyte macrophage 

progenitor (GMP) which can form either granulocytes or macrophages that have an active Wnt/ 

ß-catenin pathway. The GMP has elevated levels of nuclear ß-catenin and has been identified as 

candidate leukemic stem cell in blast crisis chronic myelogenous leukemia (Jamieson et al., 

2004). Moreover mutations in members of the Wnt -ß- catenin pathway occur in 90% of  the 

colorectal cancers and other cancers such as hepatocellular and gastric cancers (Brembeck et 

al., 2006). 

In EML cells, after inhibiting Hsp90, we saw a down-regulation of total ß-catenin 

expression in contrast to what was observed in Drosophila. Hsp90 inhibitors have been shown 

to have higher binding affinity to tumor cells than normal cells leading, to proteosomal 

degradation of Hsp90 client proteins. However, several studies have also demonstrated the toxic 

effects of Hsp90 inhibitors on the normal cells. In two different studies, Hsp90 inhibitors were 

found to be extremely cytotoxic to the Oligodendrocyte precursor cells (OPCs) and human 

retinal pigment epithelial cells respectively in vitro (Alcazar and Cid, 2009; Wu et al., 2010). In 

another study, it has been shown that the Hsp90 inhibitor geldanamycin and its analogs have 
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cytotoxic effects on rat primary hepatocytes due to generation of reactive oxygen species 

(Samuni et al., 2010). Therfore Hsp90 inhibitors might be toxic to EML cells and this toxicity 

can result in a general down-regulation of protein expression and a lowering of ß-catenin 

protein levels. Moreover, given the role of Hsp90 in diverse biologic processes, drugs targeting 

Hsp90 will have side effects on normal cellular function.  

Canonical Wnt pathway activation is achieved by stabilization of ß-catenin and 

translocation to the nucleus, activating the transcription of target genes responsible for cellular 

proliferation and differentiation (Brembeck et al., 2006). Therefore we measured the amount of 

active ß-catenin that is due to dephosphorylated on Ser 37 or Thr41 of the molecule (Fig. 3.3 

and 3.4). Surprisingly, we saw an increase in active ß-catenin levels after inhibition of Hsp90 in 

EML cells, which is contradictory to what we previously found. This could be explained by the 

fact that ß-catenin is also involved in cell-cell adhesion at the plasma membrane by mediating 

association of integrins with intracellular actins in myeloid cells (Brembeck et al., 2006). 

Inhibition of Hsp90 affects both the transcriptional regulation and cellular adhesion functions of 

ß-catenin. Also, Hsp90 is required for constitutive and inducible activity of the IKB kinase 

(IKK) complex (Broemer  et al., 2002). Therefore, inhibition of Hsp90 results in impairment of 

IKK activity. IKK regulates ß-catenin via phosphorylation and ubiquitin dependent degradation. 

It has been shown that IKK ß decreases ß –catenin dependent gene expression similar to the 

effects seen with GSK-3 ß (Lamberti  et al., 2001).  In addition, the up-regulation in Wnt 

signaling upon Hsp90 inhibition in EML cells is consistent with the previous finding of 

increased Wg expression in Drosophila upon Hsp90 inhibition (Sollars et al., 2003). 

The up-regulation of Wnt signaling upon Hsp90 inhibiton in EML cells lasted only for 

short duration. The half life of the Hsp90- GA complex is short, indicating Hsp90 inactivation 

is short-lived once GA is no longer supplied to the EML cells. Also the biological half life of 

GA in mice is 77.7 minutes (Supko et al., 1995), which means it is rapidly degraded. Since the 
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biological persistence of Hsp90 is short, it is not surprising that the up-regulation in Wnt 

signalling was short-lived. 

 We did not observe any changes in the active ß-catenin levels upon Hsp90 inhibition in 

differentiating EML cells. This could be due to the fact that we did not see an effect of Hsp90 

inhibition in the control and GA treated EML cells in this experiment. Interestingly, we found 

that active ß-catenin was not expressed in differentiating EML cells. This is consistent with the 

observation that Wnt signaling is involved in the maintenance and renewal of hematopoietic 

progenitors/stem cells and inhibition of Wnt pathway induces their differentiation (Kirstetter et 

al., 2006). Also, it has been shown that expression of a mutant active ß-catenin in normal 

progenitors impairs myelomonocytic differentiation (Simon et al., 2005). 

Future experiments focused on attaining the inhibition of Hsp90 by treating EML cells 

with varying doses of GA. It was thought that the effect on the Wnt signaling might be seen at 

different concentration of GA. We also tried to use early passaged EML cells for our 

experiments. Moreover a longer rest period was given to EML cells after GA treatment. But our 

repeated attempts to revive the phenotype were unsuccessful and there was no significant 

difference in the active ß- catenin levels in the vehicle and GA treated EML cells. Another 

study conducted in our lab to look at the effect of Hsp90 inhibition on the myeloid cell 

differentiation also indicated variable results and no effect on the differentiation profile of EML 

cells (Napper, 2010). This could be attributed to the fact that inhibition of Hsp90 might not 

have any effect on the Wnt signaling at least in the in vitro EML cell model. 

Two earlier studies have reported that EML cells are a heterogenous population. In one 

study the authors demonstrated that can be separated into two different populations based on 

CD34 expression. Levels of stem cell factor receptor (c-kit) are similar in both these 

populations but they differ in growth characteristics and response to cytokines. The CD34+ 

population shows a growth response when treated with SCF while the CD34- population grew 
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in the presence of IL-3.The CD34+ population is able to regenerate the mixed population upon 

stimulation with SCF (Ye et al., 2005). Another study demonstrated the broad spectrum of Sca-

1 expression in EML cells, which was enlisted as the cause of clonal subpopulations in these 

cells. Both high and low Sca-1 expression populations were able to reconstitute the parental 

distribution of Sca-1. Most strikingly, the cells at the extremes of the spectrum differed in their 

differentiation potential.  Sca-1+cells were strongly biased toward myeloid differentiation while 

Sca-1- cells toward erythroid differentiation (Chang et al., 2008). These studies indicate that 

EML cells are a heterogeneous population having different populations with phenotypic cell-to-

cell variability. This is consistent with the notion that hematopoietic cells have an intrinsic 

ability that generates a spectrum of progeny with different differentiation biases, resulting in 

commitment either spontaneously or as a consequence of extracellular signals. This 

heterogeneity might be attributed to biological noise, which is the fluctuation of transcriptional 

regulators. 

 The Wnt signaling pathway controls hematopoietic stem cell (HSC) self-renewal and 

differentiation of hematopoietic progenitors. Aberrant Wnt signaling is associated with 

leukemia.  Researchers have focused recently on the dietary fatty acids due to their beneficial 

effects on health and disease. Omega fatty acids have been shown to promote myeloid cell 

differentiation. Therefore, in the studies described in the next chapter, I have investigated the 

effect of omega fatty acids on Wnt signaling in the hematopoietic stem cell model. 
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 Chapter Four: Effect of omega-3 and 6 fatty acids on the 

Wnt signaling in hematopoietic precursor, EML cell line 

Abstract 

 

The pro-inflammatory omega-6 fatty acids are metabolized through the cyclooxygenase 

(COX) pathway into inflammatory eicosanoids, including prostaglandin E2. In contrast, omega-

3 fatty acids exhibit their anti-inflammatory properties by competitively inhibiting the 

arachidonic acid (AA) cascade, mainly at the COX pathway. The Wnt signalling pathway has a 

key function in stem cell maintenance and differentiation of haematopoietic progenitors and is 

involved in leukemia progression. Omega-3 FAs have been shown to promote differentiation 

and induce apoptosis in different cell lines. The objective of this study was to determine 

whether omega FA altered Wnt signaling in a hematopoietic stem cell model. Our preliminary 

data suggested that treatment of a lymphohematopoietic stem cell line, EML, with 

eicosapentanoic acid, EPA (omega-3 FA) might lead to the down-regulation of Wnt signaling 

compared to treatment with arachidonic acid, AA (omega-6 FA). Interestingly, similar results 

were seen when promonocytic leukemic HL-60 cells were treated with omega-3 FA. 

Unfortunately, these changes were not consistent and more investigation needs to be done to 

standardize the experimental conditions required to obtain reproducible changes in cells treated 

with omega-3 FA.  
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Introduction  

Omega-6 fatty acids (FA) are derived from linolenic acid (LA, 18:2) and omegas 3 FA 

are derived from α-linolenic acids (ALA, 18:3). Linolenic acid and α-linolenic FA are essential 

FAs that cannot be synthesized in the body and have to be obtained from the diet (Das, 2008). 

Both omega-6 and omega-3 fatty acids (FA) are metabolized by the same set of enzymes to 

their respective long-chain metabolites.  However, the metabolic products of each pathway are 

structurally and functionally distinct. LA is metabolized to arachidonic acid (AA, 20:4, omega-

6), while ALA can be metabolized to eicosapentaenoic acid (EPA, 20:5, omega-3) and 

ultimately docosahexanoic acid (DHA, 22:6, omega-3). Alternatively, AA can be obtained from 

animal fat sources and EPA and DHA can be consumed directly from marine sources 

(Anderson and Ma., 2009).  

EPA exhibits anti-inflammatory properties while AA has pro-inflammatory action. 

EPA and AA exert these effects as they are the substrates for the synthesis of a group of anti- 

and pro-inflammatory mediators respectively including thromboxanes, leukotrienes, and 

prostaglandins, collectively referred to as eicosanoids, via the cyclooxygenase (COX) and 

lipoxygenase pathway(Anderson and Ma, 2009). 

The ratio of omega-6 to omega-3 FAs is believed to be of higher importance than the 

absolute levels of a particular fatty acid and is thought to play a role in inflammatory, heart, and 

metabolic diseases, as well as cancer (Gleissman et al., 2010). Impaired differentiation is the 

hallmark of many forms of cancer, but is particularly pronounced in myeloid leukemias. 

Omega-3 FA have been shown to promote differentiation by affecting myeloid progenitor cell 

frequency (Dupuis et al., 1997; Varney et al., 2009) and thus can be potentially used as a 

therapy in myeloid leukemias.  
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The Wnt signaling pathway controls hematopoietic stem cell (HSC) self-renewal and 

bone marrow repopulation; aberrant Wnt signaling is associated with carcinogenesis (Jamieson 

et al., 2004; Brembeck et al., 2006). It has been shown in previous studies using the Drosophila 

model system that the Wnt pathway can be epigenetically regulated (Sollars et al., 2003). In 

these studies mutations in trithorax group of genes or Hsp90 resulted in the gain of function 

expression of wingless, which was epigenetically inherited. It is thought that epigenetic silencing 

of secreted frizzled related proteins (SFRP) that have been implicated in colorectal cancer, 

results in the accumulation of the Wnt ligand and activated signaling (Suzuki et al., 2004). Also, 

Wnt activation in stem cells requires PGE2, a byproduct of AA metabolism (omega-6 FA). 

Inhibition of PGE2 synthesis blocks alterations in HSC formation at the level of ß-catenin Wnt-

induced (Goeslling, 2009). Omega-3 FAs have been shown to inhibit COX-2 derived PGE2 and 

Wnt/ß-catenin signaling in hepatocellular and cholangiocarcinoma (Lim et al., 2008; Lim et al., 

2009).  

Thus, I hypothesize that high omega-3 FAs might inhibit leukemic progression by 

inducing differentiation via down-regulation of the Wnt pathway. We used EML cells as a 

model to study hematopoietic differentiation and determined the effect of exposure to various 

ratios of omega-3 and 6 FA on Wnt pathway activation. Wnt pathway activation was measured 

by the nuclear accumulation, ß-catenin. 

 

Materials and Methods 

Materials 

Arachdonic acid, AA (A3555), Eicosapentanoic acid, EPA (E2011) and fatty acid free 

bovine serum albumin, BSA (A3782) were purchased from Sigma. Active ß-catenin antibody 

(05-665) was purchased from Millipore. 
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Cell culture 

EML C1 cells (American Type culture collection, ATCC, Manassas, VA) were 

maintained in growth medium which is base medium (IMDM supplemented with 20% heat 

inactivated horse serum and 10% BHK/MKL-conditioned medium, (Tsai S et al., 1994). HL-60 

cells (ATCC, Manassas, VA) were cultured in IMDM and 20% FBS while U-937 cells were 

cultured in RPMI supplemented with 10% FBS at 37º C and 5% CO2. 

 

Fatty acid Treatments 

EML cells were seeded at 2x105 cells/ml in growth medium and treated with 60µM fatty 

acids including high AA (AA: EPA; 9:1), equal (AA: EPA; 1:1), high EPA (AA: EPA; 1:9) 

dissolved in vehicle (ethanol) for 96 hours. After 48 hours cells were washed with PBS and the 

same concentration of fatty acids was resupplemented along with the culture medium. 

 

Immunoblotting 

Nuclear and cytoplasmic fractions were separated using the NE-PER extraction kit as 

per the manufacturer’s instructions (Pierce, Rockford, IL). Protein concentration was 

determined using bicinchoninic acid (BCA) protein assay reagents from Pierce according to the 

manufacturer’s guidelines. Cell extracts were then denatured at 95°C for 5 min in 2x sample 

buffer (62.5 mM Tris HCl (pH 6.8), 25% glycerol, 0.01% bromophenol blue, 2% SDS,10% β-

mercaptoethanol). Equal amount of protein extracts were separated on an 8-16% gradient Tris-

Glycine SDS–poly acrylamide gel (Bio-Rad, Hercules, CA) by electrophoresis (PAGE) and 

transferred onto nitrocellulose membranes (Millipore) using Bio-Rad MiniProtean3® system. 

The membranes were treated in blocking solution (5% non fat dry milk in TBS containing 0.1% 
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Tween 20) and incubated with primary active ß-catenin antibody (05-665, Millipore, 1µg/ml) 

overnight at 4°C, followed by incubation with HRP-conjugated monoclonal mouse secondary 

IgG antibody (1: 3000, 7074, GE Healthcare,CT). An anti-mouse GAPDH antibody (MAB374, 

GE Healthcare, CT) was used to assess equal loading. Proteins were visualized by ECL (GE 

Healthcare, CT). Benchmark TM protein ladder was used to visualize the transfer of protein onto 

the membrane and MagicMark TM XP (Invitrogen) was used as a molecular size standard. 

 

Results 

Omega-3 fatty acids downregulate Wnt signaling in EML and HL- 60 cells  

Wnt signaling is involved in maintaining the stem cell state in the hematopoietic system 

(Brembeck et al., 2006). Omega-3 FAs have been shown to promote myeloid differentiation 

(Dupuis et al., 1997, Varney et al., 2009). Also, omega-3 FAs have been reported to induce 

differentiation in breast cancer (Wang et al., 2000) and inhibit Wnt signaling in other cancers 

(Lim et al., 2008; Lim et al., 2009). To determine the effects of omega FAs on Wnt signaling in 

the hematopoietic system we used EML cells as a model. The EML cell line was established 

from DBA/2 mouse bone marrow infected with a retroviral vector (LRARα403SN) harboring a 

dominant negative retinoic acid receptor (RAR construct) (Tsai et al., 1994). It is a stem cell 

factor dependent multipotent cell line with myeloid, erythroid and lymphoid potential and 

serves as an excellent model to study the hematopoietic system. A concentration of 60 µM was 

chosen for all FAs (Finstad et al., 1998; Finstad et al., 2000).  EML cells were treated with 

different ratios of omega-3 (EPA) and 6 (AA) FAs. The effect of omega FA on the Wnt 

signaling in EML cells was analyzed based on active ß-catenin accumulation in the nucleus. A 

96 hour time point was chosen for our studies based on the preliminary data showing the 

effective loading of fatty acid on the cell membrane by gas chromatography. High omega-3 FA 
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treated EML cells showed reduction in active ß-catenin levels relative to high omega-6 treated 

cells (Figure 4.1A).  
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Figure 4.1. Omega-3 fatty acids downregulate Wnt signaling in EML and HL- 60 cells. 
Cells were exposed to vehicle, high AA (omega-6) (AA: EPA; 9:1), equal ratio of AA and EPA 
(omega-6+omega-3) (AA: EPA; 1:1), high EPA (omega-3) (AA: EPA; 1:9) for 96 hours. 
Thereafter, cells were washed with PBS and resupplemented with respective FA after 48 hours. 
Nuclear extracts were isolated and western blot was done to determine the levels of active β-
catenin. Each panel shows a representative blot (A) EML cells (B) HL-60 cells. At the bottom 
of each blot is the densitometric analysis for that blot. Each blot is representative of two 
independent experiments. A549 cell lysate was used as a positive control for active ß-catenin 
and is represented as +ve control. 
 

Activated Wnt signaling is involved in many forms of cancer including acute and 

chronic myeloid leukemia (Wang et al., 2010; Jamieson et al., 2004). Therefore, we examined 

the effect of omega fatty acids on Wnt signaling in HL-60, a human promyelocyte leukemic cell 

line. HL- 60 cells were treated with different ratios of EPA and AA as described above and ß-

catenin accumulation was assayed by western blot analysis (Figure 4.1B). Our data suggested 

the down-regulation of active ß-catenin levels in high omega-3 FA treated HL-60 cells relative 

to high omega-6 treatment  

This data indicates that the Wnt pathway is inhibited upon treatment with omega-3 fatty 

acids in hematopoietic stem cell culture as well as the leukemic HL-60 cell line. 

 

Down-regulation of Wnt signaling by omega-3 fatty acids in EML, HL-60 and U-937 cells 

was inconsistent  

Unfortunately when further experiments were done to understand the significance of the 

above data we found conflicting results. We did not see any significant difference between the 

levels of active ß-catenin in high omega-3 FA treated relative to high omega-6 FA treated EML 

cells (Figure 4.2 A). 
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Figure 4.2. Down-regulation of Wnt signaling by omega-3 fatty acids in EML, HL-60 and 
U-937 cells was inconsistent. EML cells were exposed to vehicle, high AA (omega-6) (AA: 
EPA; 9:1), equal ratio of AA and EPA (omega-6+omega-3) (AA: EPA; 1:1), high EPA (omega-
3) (AA: EPA; 1:9) for 96 hours. Cells were washed with PBS and resupplemented with 
respective FA after 48 hours. Nuclear extracts were isolated and western blot was done to 
determine the levels of active β-catenin. Each panel shows a representative blot (A) EML (B) 
HL-60 C) U-937. At the bottom of each blot is the densitometric analysis for that blot. Each 
blot is representative of two independent experiments.A549 cell lysate was used as a positive 
control for active ß-catenin and is represented as +ve control. 

  

 

Similarly, the preliminary data showing that Wnt signaling might be downregulated in 

omega-3 FA treated relative to omega-6 FA treated HL-60 cells was not reproducible (Figure 4.2 

B). We looked at the effects of omega fatty acid treatment in another monocyte like leukemia 

cell line, U-937, but we found no difference in the level of active ß-catenin expression in omega-

3 FA treated versus high omega-6 FA treated U-937 cells (Figure 4.2 C) 
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Attempts to achieve the reduction in the Wnt signaling seen previously upon omega-3 fatty 

acid treatment were unsuccessful  

We wanted to standardize our treatment protocol with omega FAs. Therefore, we used 

different methods to treat EML cells with omega FA to see if there was an effect on Wnt 

signaling. Some studies had demonstrated the use of EPA/AA with sodium salt as a base 

(Asano et al., 1997; Seung Kim et al., 2001;  Edwards et al., 2004). Therefore, we treated EML 

cells with sodium salts of EPA and AA but did not observe any significant difference in the 

active ß-catenin levels in omega-3 and omega-6 FA treated EML cells (data not shown). Other 

studies reported the treatment of cells after serum starvation with FAs along with bovine serum 

albumin (BSA) (Melki and Abumrad, 1992; Ishola et al., 2006). To test this protocol, EML 

cells were serum starved for 24 hours and then treated with AA or EPA complexed to bovine 

serum albumin (BSA) at a molar ratio of 4:1 (FA/BSA) to a final concentration of 60µmol/L for 

5 hours. Interestingly, treatment of FA itself led to massive mortality in EML cells. We also 

used variable molar ratios of FA/BSA; 2:1 and 1:1. Further, after serum starvation for 24 hours 

we supplemented EML cells with reduced concentration of serum (5, 10, and 15%) treated with 

AA and EPA and performed cell viability assay after 24 and 48 hours (Fig. 4.3). There was 

significant mortality in EML cells treated with FAs relative to vehicle control, but this effect 

was more pronounced in omega-6 compared to omega-3 FA treated EML cells. We speculated 

that omega FAs treated cells might be differentiating and may need a stimulant like IL-3 for 

survival. More investigation needs to be done to find a protocol for treating EML and leukemic 

cell lines with omega fatty acids that will yield consistent results. 
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Figure 4.3. Attempts to achieve the reduction in the Wnt signaling seen previously upon 
omega-3 fatty acid treatment were unsuccessful. EML cells were serum starved for 24 hours 
and then treated with vehicle, high AA (omega-6) (AA: EPA; 9:1), equal ratios of AA and EPA 
(omega-6+omega-3) (AA: EPA; 1:1), high EPA (omega-3) (AA: EPA; 1:9) in 5, 10 and 15% 
horse serum. Cell counts were performed by trypan blue dye exclusion method at 24 and 48 
hours after the treatment. 
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Discussion 

EML cells are stem cell in nature and have an active Wnt signaling pathway indicated 

by the nuclear translocation of active ß-catenin. Wnt signaling regulates stem cell fate in the 

hematopoietic system by self renewal of HSC. Deregulation of Wnt signaling, which is 

normally tightly regulated, has been identified as an important step in leukemic transformation. 

HSC differentiate into common myeloid progenitor cells (CMP) that gives rise to granulocyte 

macrophage progenitors (GMP). GMP has been identified as the candidate leukemic stem cell 

in the blast crisis stage of chronic myelogenous leukemia and has an active Wnt/ß-catenin 

pathway (Jamieson et al., 2004). We observed reduction in active ß-catenin expression in EML 

cells treated with high omega-3 FA relative to omega-6 FA, consistent with the fact that omega-

3 FAs have been shown to promote myeloid differentiation (Dupuis et al., 1997; Varney et al., 

2009). 

We initially saw down-regulation of active ß-catenin protein in acute promyelocytic 

leukemia, HL-60 cells upon exposure to high omega-3 FAs. It has been shown previously that 

omega-3 FAs inhibit proliferation and induce differentiation in HL-60 cells which supports our 

data (Finstad, 1994). Also, Wnt signaling is active in various cancers including myeloid 

leukemia. Omega-3 FAs have been shown to inhibit omega-6 FA product, PGE2 and Wnt/ß-

catenin signaling in hepatocellular and cholangiocarcinoma (Lim et al., 2008; Lim et al., 2009). 

Up-regulation of Wnt signaling through epigenetic gene silencing of SFRPs is involved in 

many forms of cancer. Wnt activation in stem cells requires PGE2 (product of omega-6 FAs), 

and it has been shown recently that inhibition of PGE2 synthesis blocked Wnt-induced 

alterations in HSC formation at the level of ß-catenin in vivo (Goeslling et al., 2009). These 

initial findings indicated that omega-3 FA therapies aimed at disruption of the Wnt/β- catenin 

pathways may be effective in the treatment and chemopreventive effects in leukemia. 
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Unfortunately, additional experiments aimed at understanding the mechanism and 

effects of down-regulation of Wnt signaling, gave variable results. There was no significant 

difference in the active ß-catenin expression in both EML and HL-60 omega-3 FA treated 

compared to the omega-6 FA treated cells. We also measured active ß-catenin levels in the pro-

monocytic U-937 cell line but did not see any difference in the cells exposed to omega-3 versus 

omega-6 FAs. This inconsistency could be attributed to the fact that FAs exert their effects at 

several levels, both through signal transduction pathways and on gene transcription. Since the 

effect of FA on various cellular processes like differentiation and apoptosis depend upon the 

concentration of FA and serum, exposure time and the cell model used (Rudolph et al., 2001). It 

may be possible that inactivation of Wnt signaling by omega-3 FAs is a sensitive event which 

requires a specific set conditions to be met. Another possibility could be that omega FAs exerts 

their effects in the hematopoietic system through signal transduction pathways other than Wnt 

ß-catenin pathway.  

We used different methods to treat EML and HL-60 cells with various ratios of FA to 

achieve our initial results but none of these were successful. Since, PUFA are not soluble in the 

aqueous medium we tried sodium salts of FAs which have increased water solubility. 

Moreover, FAs are carried within the body complexed to serum albumin and the FA: BSA 

complexes are the main factors controlling FA availability for uptake (Melki et al., 1992). 

Therefore, we serum starved EML cells to deplete any albumin present in the serum that might 

bind to the free fatty acid and then treated the cells with FAs complexed to BSA.  

We observed massive cell mortality in EML cells after exposure to either omega-3 or 6 

FAs complexed with BSA, relative to the vehicle control. Several studies have reported the 

cytotoxic effects of FA on different model systems. In one study, the authors demonstrated that 

FA sensitive Burkitt lymphoma cell lines, Raji and Ramos, die by necrosis and apoptosis than 

the FA resistant U-698 cell line upon incubation with EPA, respectively. These FA sensitive 
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cell lines exhibit a 2 to 3 fold higher uptake rate of EPA than the FA resistant cell line. 

Accumulation of TAG-rich lipid bodies was seen in Ramos cells incubated with 60 µm EPA 

indicating a role for lipid bodies in regulation of the cellular suicide program. A high number of 

TAG-rich bodies in Ramos cells, containing 2–3 molecules of EPA or DHA per glycerol 

backbone, may cause marked changes in intracellular signal transduction and thereby initiate 

apoptosis (Finstad et al., 2000).This response to in vitro fatty acid supplementation has 

previously been reported for U937-1 cells (Finstad et al., 1998). In another study AA and EPA 

were shown to induce apotosis and necrosis in a dose dependent manner in a murine 

macrophage cell line, J774. When these cells were treated with FAs, they exhibited higher 

granularity, suggesting accumulation of lipid droplets. The cytotoxic effects of the FAs were 

suggested to be related to their ability to be incorporated into TAG (Martins et al., 2006). 

Moreover, the variability in our data could be due to the heterogenous nature of EML 

cells. It has been shown that EML cells can be separated into two different populations based 

on CD34 expression. Levels of stem cell factor receptor (c-kit) are similar in both these 

populations but they differ in growth characteristics and response to cytokines (Ye et al., 2005). 

Another study demonstrated a broad spectrum of Sca-1 expression in EML cells which was 

suggested to be the cause of clonal subpopulations in these cells. Most strikingly, the cells at 

the extremes of the spectrum differed in their differentiation potential (Chang et al., 2008). 

These studies indicate that EML cells are a heterogeneous population having phenotypic cell-

to-cell variability.   

Our preliminary results suggested that the down-regulation of Wnt signaling upon 

exposure to omega-3 FAs may occur in the hematopoietic precursor cell line EML and also 

leukemic HL-60 cells. Unfortunately we could not reproduce these results. This non-

reproducibility might be due to the fact that EML cells take into account only cell autonomous 

factors.  The stem cell niche, which is an important part of stem and progenitor cell biology, is 
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not recapitulated in this model. Also, EML cells in culture are a heterogenous mixture of cells 

with populations having different self renewal and differentiation potential. This heterogeneity 

might have contributed to the variable responses seen in our studies. 
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CHAPTER Five: Discussion and Conclusions 

Hematopoiesis is maintained by a proper balance between self renewal and multipotent 

differentiation of the HSC. Acute myelogenous leukemia (AML) is characterized by the 

blockage in the differentiation of HSC while self renewal and proliferation is preserved. 

Understanding the mechanisms involved in hematopoietic differentiation will help in developing 

therapies against various hematological disorders including leukemia. To address this question I 

investigated: (1) the involvement of Hsp90 in the regulation of Wnt signaling in HSCs cell line, 

(2) the effect of omega-3 and 6 fatty acids treatments on the Wnt signaling in HSC cell line, (3) 

YB-1 expression and function in early hematopoiesis and leukemic cells. 

 

(1) The involvement of Hsp90 in the regulation of Wnt signaling in HSCs cell line 

Hsp90 acts as a molecular chaperone to ensure the proper folding and refolding of 

client proteins. Hsp90 clients are implicated in various signal transduction pathways and are 

involved in the pathogenesis of cancer making it an attractive therapeutic target for cancer. 

Previous studies in Drosophila demonstrated that inhibition of Hsp90 resulted in a 

transdifferention event where the eye tissue became limb like outgrowth and was demonstrated 

to occur through epigenetic mechamisms. This abnormal eye phenotype was associated with the 

upregulated expression of wingless (Wg), a Drosophila homolog of Wnt, in the eye imaginal 

discs.  This study indicates that Hsp90 plays a critical role in determining the proper direction 

of normal stem cell differentiation and might have implications in haematopoesis. In addition, 

this study is particularly relevant in stem and progenitor cell biology as Wnt signaling regulates 

the hematopoietic stem cell maintenance and self renewal (Kirstetter et al., 2006). Thus, the aim 

of the part of my thesis was to determine whether Hsp90 inhibition would block the normal 

HSC differentiation via up-regulating Wnt signaling. 
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EML, a hematopoietic stem/progenitor cell line, was used as a model for my studies 

(Tsai et al., 1994). In chapter 3, our preliminary data showed the transient up-regulation of Wnt 

signaling upon Hsp90 inhibition in EML cells. This was an important result since it was the 

first evidence of this interaction in a mammalian system and suggested the possibility of 

phenotypic plasticity as seen in the Drosophila model upon Hsp90 inhibition. Phenotypic 

plasticity is the ability to adapt to an unfavorable environment and this is particularly important 

for evolution. Cancer cells show this plasticity, which provides them the ability to survive 

under adverse conditions. Therefore, this increased adaptability could contribute to cancer 

progression. However, we had reproducibility issues with these experiments. 

Two separate studies have demonstrated the heterogeneity of the EML cell line. This 

characteristic could be the reason behind the variability in our data. The published study 

separated EML cells into two separate populations based on the CD34 expression. The CD34 + 

population showed a growth response upon treatment with stem cell factor (SCF) while the 

CD34- cells did not grow in SCF but responded to IL-3 treatment. This shift from the SCF 

dependent growth to the requirement of IL-3 suggests an early differentiation event in the 

CD34- population. Moreover, CD34 + cells were Sca-1hi while CD34- cells were Sca-1lo 

indicating that CD34 + population possessed more stem cell characteristics (Ye et al., 2005). 

The second study reported the broad spectrum of Sca-1 expression in EML cells that was 

correlated with changes in differentiation potential. It is possible that these subpopulations 

exhibit different responses upon Hsp90 inhibition (Chang et al., 2008). Therefore, we might 

sort EML cells into different subpopulations based on the CD34 and Sca-1 expression and then 

inhibit Hsp90 in the different populations. This will allow the analysis of the specific response 

of Wnt signaling of each population upon Hsp90 inhibition. 
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In our initial experiments, we saw a down-regulation of total ß-catenin levels in EML 

cells after inhibiting Hsp90. Geldanamycin, a Hsp90 inhibitor, and its analogs have cytotoxic 

effects on normal cells (Alcazar and Cid., 2009; Wu et al., 2010). Therefore, down-regulation 

of total ß-catenin levels via geldanamycin treatment of EML cells might be toxic. Since the 

effect of Hsp90 inhibition on Wnt signaling is based on the changes observed in the ß-catenin 

expression, the overall down-regulation of ß-catenin expression due to toxic effects of 

geldanamycin would adversely affect the interpretation of our data. 

 When we differentiated EML cells, active ß-catenin was inhibited in RA and GMCSF 

treated cells but the undifferentiated EML cells pretreated with Hsp90 inhibitor did not show 

any effect on the active ß-catenin levels. There was no significant difference in the level of 

active ß-catenin in differentiated and undifferentiated EML cells upon Hsp90 inhibition.  

It is possible that Hsp90 might not be involved in regulating Wnt signaling in the 

mammalian hematopoietic system. In the Drosophila model, researchers reported that inhibition 

of Hsp90 led to the up-regulation in Wg expression resulting in an abnormal eye phenotype 

(Sollars et al., 2003). However, later analysis of this finding suggested the ectopic adhesion of 

hemocytes under the eye imaginal disc to be a possible cause for the ectopic outgrowth rather 

than up-regulated Wg expression in the peripodial membrane. This could be attributed to the 

fact that hemocytes are involved in tissue remodeling (Ruden et al., 2003). Another possibility 

is that the EML cell model takes into account only cell autonomous factors. The Wnt axis might 

not be completely modeled in this system since Wnt is released from the niche cells and taken 

up by the stem cells. Further, the EML cell line has been derived from mouse bone marrow by 

the transfection of a dominant negative retinoic acid receptor. This blockage to hematopoietic 

differentiation in the EML cells could be disrupting the normal Wnt signaling process. 
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Thus, in this study we show the up-regulation of Wnt signaling in EML cells upon 

Hsp90 inhibition. Unfortunately, this data was not reproducible. One contributing factor to this 

lack of reproducibility could be that EML cells are known to have heterogenous populations. 

Also, this in vitro model does not recapitulate the effects of the stem cell niche.  

In the future, the role of Hsp90 regulation of Wnt signaling could be investigated in an 

in vivo mouse model. For this study, mice could be treated with Hsp90 inhibitors such as 

geldanamycin or 17-AAG and the effect of Hsp90 inhibition on normal hematopoesis measured 

by colony formation assays and various differentiation markers. If Hsp90 inhibition 

successfully blocks the normal hematopoietic differentiation, then the expression of active ß-

catenin in HSC or progenitor cell populations would be determined using flow cytometry. Thus, 

this study would determine the role of Hsp90 in regulating Wnt signaling during HSC 

differentiation.  

 

(2) The effect of omega-3 and 6 fatty acids on Wnt signaling in a HSC cell line 

AML is characterized by problematic differentiation of HSC while self-renewal and 

proliferation are preserved. Wnt signaling controls HSC self renewal and is active in various 

cancers including acute and chronic myeloid leukemia (Wang et al., 2010; Jamieson et al., 

2004).  Omega-3 FAs have been reported to promote myeloid differentiation by affecting 

myeloid progenitor cell frequency (Dupuis et al., 1997; Varney et al., 2009). Also, omega-3 

FAs have been demonstrated to induce differentiation in breast cancer (Wang et al., 2000) and 

inhibit Wnt signaling in other cancers (Lim et al., 2008; Lim et al., 2009). Therefore, this 

section of my thesis research analysed the effect of omega FA on Wnt signaling in the 

hematopoietic system. 
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In chapter 4, I showed that treatment of EML and HL-60 cells representing HSC and 

myeloid leukemic cells respectively, with omega-3 FAs led to to the down-regulation of active 

ß-catenin. In the hematopoietic precursor cell line, EML we found that high eicosapentanoic 

acid (EPA) (omega-3) treated cells showed reduction in active ß-catenin levels relative to high 

arachidonic acid (AA) (omega-6) treated cells. Similar results were observed in the human 

promyelocyte leukemia cell line, HL-60. These results were exciting because they suggested 

that omega-3 FA could have therapeutic potential in the treatment of leukemia by disrupting the 

Wnt/β- catenin pathway. 

Unfortunately, the data obtained in these initial experiments was not reproducible. One 

possibility that I cited earlier in discussing the Hsp90 studies is the heterogeneous nature of the 

EML cell culture. The presence of different subpopulations in EML cells which differ in their 

growth characteristics and differentiation potential could lead to variable results (Ye et al., 

2005; Chang et al., 2008). 

In addition, a report has shown that omega-3 (EPA) or omega-6 (AA) FAs treatment of 

EML cells do not seem to have a significant difference on their differentiation profile (Varney 

et al., 2011). In this study EML cells were differentiated into macrophage/granulocytic lineage 

after exposure to omega-3 and omega-6 FAs. There was no effect of EPA or AA on the early 

stem cell markers Sca-1 and CD117 upon differentiation of EML cells, though there was a 

small increase in F4/80 (macrophage marker) after AA treatment. Further, there was no 

difference in the viability or proliferation of cells treated with either EPA or AA. This suggests 

that omega FAs does not have any effect on the proliferation and differentiation of early 

differentiating EML cells. This could be the one of the reasons we did not observe any changes 

in the Wnt signaling with omega FA treatment of these cells. In the same study, when effects of 

omega FA were studied in an in vivo mouse model it was found that omega FA treatment 

affected later stages of differentiation and not the stem cell stage. This suggests that to see the 
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desired effects of omega-3 to omega-6 treatments in EML cells they might need to differentiate 

for a longer duration. 

Stem cell characteristics are known to be regulated by several factors which include 

cell-cell interactions, growth factors, cytokines, and the physiochemical nature of the 

environment in vivo. These components may only be replicated to a fairly limited extent in an 

in vitro cell model; therefore the EML model gives a limited idea as to what effects FAs have in 

vivo. Thus, the potential effect of omega FAs on hematopoiesis requires the investigation of a 

mouse model.  

Omega FAs can be fed to the mice in the diet as corn (omega-6) or canola oil (omega-

3) and its effects on ß-catenin accumulation in HSC and myeloid progenitors could be 

quantified by flow cytometry. In addition, to further determine the effects of FA treatment on 

Wnt signaling in hematopoietic stem and progenitor cells, these cells can be sorted by flow 

cytometry using specific cell surface markers and the sorted cells cultured. Unphosphorylated 

or active ß-catenin interacts with TCF/LEF transcription factors to activate the downstream 

target genes (Mc Donald et al., 2006). Therefore, a reporter assay for the TCF/LEF can be 

performed in these sorted HSC/progenitor cells as a measure of ß-catenin mediated 

transcriptional activation. Thus, this study would confirm the effect of FA treatments on Wnt 

signaling by functional activation of ß-catenin in addition to its accumulation in 

HSC/Progenitor cells. 

 

(3) YB-1 expression and function in early hematopoiesis and leukemic cells 

YB-1 promotes cell proliferation through transcriptional regulation of various genes 

involved in cell division. It also enhances cell growth by promoting both cell cycle progression 

and DNA replication (Kohno et al., 2003). In addition it induces the expression of genes such 
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as MMP-2 which are associated with invasion and metastasis (Cheng et al., 2002). Thus, YB-1 

is implicated in cancer pathogenesis. YB-1 is reported to be involved in erythroid cell 

development as it was shown to be highly expressed when erythroid cell maturation was 

inhibited (Yokoyama et al., 2003a, b). Moreover, YB-1 expression was found to be higher in 

the bone marrow samples of patients with MDS. Further, YB-1 expression was showed to be 

higher specifically in the erythroid progenitors of MDS patients. Although YB-1 is reported to 

be involved in erythropoesis its role and regulation in normal hematopoiesis is not known. Thus 

part of my thesis research was to investigate the role and function of YB-1 expression in the 

early hematopoiesis. 

YB-1 mRNA and protein expression was high in the hematopoietic stem cell line, 

EML, but was down-regulated during myeloid differentiation. Similar results were observed in 

a previous cDNA microarray study that analyzed changes in gene expression during induced 

myeloid differentiation of EML cells (Ma et al., 2002). Moreover, we found YB-1 to be highly 

expressed in the lineage-/IL-7R-/c-kit+/Sca-1+ (LKS, enriched fraction for HSC) and lineage-/IL-

7R-/c-kit+/Sca-1- (myeloid progenitors) compared to in vivo differentiated granulocytes. This 

finding is consistent with a previous study where YB-1 is highly expressed when erythroid cell 

maturation was inhibited upon knockdown of GATA-1, an essential factor for erythroid cell 

development. (Yokoyama et al., 2003b). YB-1 plays a role in embryogenesis and its expression 

level correlates with the cell proliferation state (Lu et al., 2005). High levels of YB-1 are 

present in human fetal tissues that represent more a stem cell stage of development, while YB-1 

transcript is not detected or is expressed at very low level in many adult tissues (Spitkovsky et 

al., 1992). These findings are consistent with our data that YB-1 is highly expressed in 

HSC/progenitor cells while down-regulated in differentiating granulocytes.  Our results with a 

more well-defined cell population further suggest that YB-1 has a role in maintaining the stem 

cell state. 
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We also found that YB-1 was highly expressed in various myeloid leukemia cell lines, 

supporting our hypothesis that YB-1 is involved in cancer progression.  This finding is 

consistent with a previous study which reported increased expression of YB-1 in the bone 

marrow of patients suffering from MDS (Lee et al., 2001). MDS is considered to be the 

preleukemic state characterized by the ineffective production of mature blood cells due to 

increased proliferation and reduced differentiation of HSC. MDS has a high predisposition to 

transform into acute myelogenous leukemia. Knockdown of GATA-1, a transcription factor 

required for erythropoieis in mice, leads to inhibition of erythroid differentiation. YB-1 is 

highly expressed in the GATA-1 knockdown mouse. The mechanism behind YB-1 up-

regulation after GATA-1 knockdown is not known. However, these mice have a phenotype 

similar to human MDS during early stages of life, and in later stages of life they develop acute 

leukemia (Yokoyama et al., 2003 b). This suggests that YB-1 might be playing a role in the 

development of MDS and leukemia. 

To further investigate the biological effects of YB-1 expression in leukemia, we did 

loss of function studies. For this we chose the high YB-1 expressing cell line, K-562, and 

knocked down YB-1 using specific shRNA. Knock down of YB-1 resulted in a growth arrest 

and induction of apoptosis in K562 cells. This effect was much more pronounced when we used 

arsenic trioxide (As2O3). This compound has been shown to induce apoptosis in acute 

promyelocytic cells (APL) and is being used a therapeutic agent in leukemia (Tang et al., 

1997). As2O3 treatment of K562 cells with YB-1 knockdown led to a statistically significant 

reduction in cell proliferation. There was also a significant increase in the apoptotic population 

of these cells. Down-regulation of YB-1 decreases cell viability and induces apoptosis in 

multiple myeloma and melanoma cells (Schittek et al., 2007; Chatterjee et al., 2008). 

Knockdown of YB-1 in the multi drug resistant K562/A02 cell line showed similar results and 

is consistent with our data (Xu et al., 2009). 
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Moreover, we found that treatment of As2O3 in K562 cells with down-regulation of 

YB-1 resulted in their differentiation toward the megakaryocytic lineage (Figure 5.1). Since 

impaired differentiation is the hallmark of myeloid leukemia, this finding has a significant 

impact on our understanding of myeloid differentiation and might be exploited for therapy. 

As2O3 exerts double effects on acute promyelocytic cells such as induction of apoptosis and 

partial differentiation (Tang et al., 1997). We observed changes in the cellular morphology of 

the YB-1 knockdown cells treated with As2O3. Subsequently, we determined the expression of 

CD41a megakaryocytic/platelet marker. We found significant up-regulation of CD41a in YB-1 

depleted K562 cells treated with As2O3. To confirm this data, we did ploidy analysis which 

showed an increase in polyploidy in the As2O3 treated K562 cells containing reduced YB-1 

levels. There was a significant increase in CD41a in untreated K562 cells when YB-1 was 

reduced but we did not observe any significant change in cell morphology. This indicates that 

down-regulation of YB-1 expression could initiate the differentiation process. 

In chapter 2, we show for the first time the expression of YB-1 in the hematopoietic 

stem/progenitor cells and its down-regulation during myeloid differentiation. Further, abnormal 

YB-1 expression in leukemic cells contributes to leukemic properties by enhancing cell survival 

and inhibiting cell differentiation (Figure 5.1). 

We studied the expression and function of YB-1 in vitro using leukemia cell lines. Our 

findings can be further verified by measuring YB-1 levels in patient samples from acute and 

chronic myelogenous leukemia. This will help in translating our findings into humans and 

determine whether YB-1 might be a useful prognostic marker in leukemia. 

An important experiment to study the mechanism for the down-regulation of YB-1 

during myeloid differentiation would be knocking down YB-1 in EML cells. It would be 

interesting to see whether knockdown of YB-1 induces spontaneous differentiation in EML 

cells as seen in K562 leukemic cells. If EML cells differentiate it will further corroborate that 
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YB-1 plays role in early stage of hematopoietic differentiation at an early stage. It might be 

possible that EML cells need a stimulant such as IL-3 for differentiation, which would imply 

that YB-1 acts at a later stage of differentiation. 

To investigate the potential effects of YB-1 gene knockdown in K562 cells a gene array 

study could be beneficial. This assay will help in finding the putative target genes for YB-1.  

The PI3K/Akt signaling pathway plays an important role in the proliferation, 

differentiation and survival of hematopoietic cells. Constitutive activation of PI3K/Akt has been 

demonstrated in AML patients and is associated with poor prognosis (Min et al., 2003; Kubota 

et al., 2004). Akt has been shown to phosphorylate YB-1 leading to its nuclear translocation 

and activation in breast cancer. Inhibition of the PI3K/Akt pathway suppresses nuclear 

translocation of YB-1 in breast and ovarian cancer (Sutherland et al., 2005; Baski et al., 2006). 

Since there are no direct inhibitors available for YB-1 we can inhibit it indirectly by using Akt 

inhibitors in AML cell lines. Further, we could test whether these Akt inhibitors can reduce 

YB-1 expression in a CML mouse model. 

Wnt and Notch pathways play an important role in promoting self renewal in 

hematopoietic stem and progenitor cells (Reya et al., 2003; Duncan et al., 2005). Examining 

whether YB-1 is involved in the regulation of Wnt and Notch pathways in the hematopoietic 

system would be of great interest. A recent study in breast cancer reported several members of 

Wnt and Notch signaling pathways to be the targets of YB-1. Further, c-Kit, which is a receptor 

expressed on the surface of HSC, was also identified as YB-1 target (Finkbeiner et al., 2009). 

Mutations in the c-kit gene have been documented in AML and are associated with a poor 

prognosis (Beghini et al., 2004). Thus, Wnt and Notch pathway elements and c-kit could be the 

putative targets of YB-1 in the HSC/progenitor cells and in leukemia. Our previous two projects 

focused on the regulation of Wnt signaling in the hematopoietic system by Hsp90 and omega 

FAs. If Wnt signaling elements are targets of YB-1 it will be interesting to determine the 
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association of YB-1 with Hsp90 or omega FAs. 

In summary, my overall goal for these studies was to determine potential genes 

involved in the regulation of hematopoietic differentiation. The first study initially suggested 

Hsp90 might be involved in regulating Wnt signaling in the hematopoietic system. Our 

preliminary data showed the transient activation of the canonical Wnt pathway in a 

hematopoietic precursor cell line EML after the inhibition of Hsp90. Our second study initially 

indicated that omega-3 FAs might affect Wnt signaling in the hematopoietic system and 

leukemic cells. These results had great potential in increasing our understanding of how Hsp90 

and omega FAs regulate Wnt signaling in the hematopoietic system. Unfortunately, further 

progress in both of these studies was marred by the variability in repeated experiments. 

However in our third study we have identified YB-1 as a marker in leukemia and that is 

responsible for HSC maintenance, making it an attractive therapeutic target. We show high YB-

1 expression in the hematopoietic stem cell line EML, as well as in the HSC and myeloid 

progenitors from mouse bone marrow. We found down-regulation of YB-1 expression during 

myeloid differentiation in EML cells. Abnormal YB-1 expression was observed in myeloid 

leukemic cell lines. In addition, increased expression of YB-1 in leukemic cells contributes to 

the leukemic cell properties by stimulating proliferation, promoting cell survival and blocking 

differentiation. Since inhibition of YB-1 in leukemic cells can induce differentiation it is an 

attractive target for the development of new therapies for leukemia. 
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Figure 5.1 Model for the expression and function of YB-1 in normal and leukemic cells. 
Hematopoietic stem cells (HSCs) have the ability to self renew and give rise to common 
myeloid progenitors (CMPs). CMP further differentiates to produce mature myeloid cells. 
Blockage in the terminal differentiation of HSCs and CMPs can result in myeloid leukemia. 
YB-1 is highly expressed in the HSCs and early myeloid progenitors relative to the 
differentiated myeloid cells. Knockdown of YB-1 expression followed by treatment of arsenic 
trioxide (As2O3) in K562 cells resulted in their differentiation toward the megakaryocytic 
lineage. Thus, increased expression of YB-1 contributes to the leukemic cell properties by 
promoting cell survival and inhibition of differentiation. 
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