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Palaeontology
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Mammalian tooth enamel is often chipped, provid-
ing clear evidence for localized contacts with large
hard food objects. Here, we apply a simple fracture
equation to estimate peak bite forces directly from
chip size. Many fossil hominins exhibit antemor-
tem chips on their posterior teeth, indicating
their use of high bite forces. The inference that
these species must have consumed large hard
foods such as seeds is supported by the occurrence
of similar chips among known modern-day seed
predators such as orangutans and peccaries. The
existence of tooth chip signatures also provides a
way of identifying the consumption of rarely
eaten foods that dental microwear and isotopic
analysis are unlikely to detect.

Keywords: dietary reconstruction; hominid;
dentition; fracture

1. INTRODUCTION
Diet is intricately tied to almost all aspects of an organ-
ism’s lifestyle. Palaeontologists trying to reconstruct
the behaviour of fossil species benefit greatly from
knowing what the members of those species were
eating. However, the tools currently available for diet-
ary reconstruction are few, and all have limitations.
Tooth chipping analysis is a new methodology that
can provide immediate information on diet, both
in the types of foods eaten and in the forces used to
process those foods.

Tooth enamel is a brittle material that is easily
chipped at high loads. Such chipping results when a
large hard object forcefully contacts the tooth near an
occlusal edge (Chai & Lawn 2007). Small hard objects
do not cause chipping, instead inducing microscale
plastic deformation in the enamel at the points of con-
tact (Lucas et al. 2008). Neither do soft objects cause
chipping because they deform around the tooth,
smothering it within a compressive contact stress
field. Accordingly, chipping instantly reveals a history

of large hard food objects in the diet. Chipping can
also provide quantitative information on bite forces
from routine measurements of chip and tooth dimen-
sions in conjunction with a simple fracture equation.
Traditionally, bite forces for fossil species have been
estimated from analyses of jaw musculature and lever
arms (Demes & Creel 1988; Rayfield et al. 2001;
Wroe et al. 2005). However, such analysis is feasible
only for those rare fossils with reasonably well-
preserved crania.

Studies going back over 50 years have noted a link
between chipping and past oral activity among early
hominin taxa (Robinson 1954; Tobias 1967; Wallace
1973). However, the precise link between foods and
enamel chipping has remained unclear, and there has
never been any attempt to use chipping to acquire a
quantitative measure of bite force. In this study, we
revisit fossil hominins in order to demonstrate the
potential utility of chipping analysis. Comparative
analysis on certain species of great apes, monkeys
and peccaries—extant hard-food eaters with similar
tooth morphology to hominins (Kiltie 1982)—high-
lights a certain universality of the concept.

2. MATERIAL AND METHODS
We obtained photographs of hominin, ape, monkey and peccary
enamel chips from original specimens or casts of museum specimens
(see the electronic supplementary material). Chip sizes h from the
tooth side wall and tooth base diameters D were measured from
these photographs (figure 1) to the nearest 0.03 mm. Consideration
was given only to antemortem chips (i.e. those with smoothed edges,
indicative of wear occurring subsequent to the fracture event). Chip
size data are tabulated in the electronic supplementary material.
Critical loads for chip formation were then estimated from the
relation (Chai & Lawn 2007)

PF ¼ T 0h3=2; ð2:1Þ
where T 0 is a coefficient proportional to material ‘toughness’ (intrin-
sic resistance to crack growth). We used data from failure tests on
modern human enamel to calibrate this relation via a linear least
squares best fit of PF versus h data to obtain T0 ¼ 9.3 MN m23/2

(see the electronic supplementary material).
For comparison, we turned to an earlier study by Demes & Creel

(1988) of maximum possible bite forces Pjaw from jaw mechanics of
great apes and fossil hominins. Their analysis produced ‘bite force
equivalents’ from an analysis of jaw muscle sizes and lever arms. Fol-
lowing Demes & Creel, we converted these equivalents to absolute
forces by calibrating proportionality factors from the average maxi-
mum bite forces for male and female Macaca fascicularis from
Hylander (1979). This procedure yielded maximum estimated bite
forces of 720 and 510 N for human males and females, a little
below estimates for human first molars using ‘soft’ bite force
gauges (Braun et al. 1995) but within a broad range of values from
other methods of bite force estimation (Hylander 1977).

3. RESULTS
Individual chip/tooth sizes h/D for the various living
and fossil species are plotted in figure 2a (see also
table S1). Note the wide range of values for each
species. Clearly, the chip location must lie within the
range 0 , h/D , 0.5. Our data lie within h/D , 0.3,
indicating a practical chip limit in normal dental func-
tion. Higher h/D would cause the starter cracks to
arrest at the dentine and, at ultra-high loads, to split
the tooth. Substitution of h/D ¼ 0.3 into equation
(2.1) provides a corresponding limiting bite force

Pmax ¼ 0:16T 0D3=2: ð3:1Þ

Table 1 compares bite forces Pmax calculated from
equation (3.1) for fossil hominins as well as for

Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsbl.2010.0304 or via http://rsbl.royalsocietypublishing.org.
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extant primates and peccaries, using averaged molar
sizes D (Demes & Creel 1988), with PF calculated
from equation (2.1), using the highest measured h
(see table S1).

Values of Pmax calculated from equation (3.1) are
plotted in figure 2b versus estimates of maximum bite
force Pjaw from the Demes & Creel (1988) study of
jaw mechanics. The straight line through the data is
a least squares best fit, yielding Pmax ¼ 2.0Pjaw, so the
value from chip size is somewhat higher than that
from jaw mechanics. Notwithstanding this difference
in values, the linear correlation confirms the usefulness
of equation (3.1) in providing relative estimates of
maximum bite forces in fossil species from measured
tooth sizes.

4. DISCUSSION
The analysis of enamel chips adds a simple but power-
ful new tool for evaluating jaw performance and

reconstructing diet. The technique is valid for any den-
tate fossil or living vertebrate (see the electronic
supplementary material) and provides estimates of
bite forces commensurate with other techniques. In
this context, it may be noted that values from the jaw
mechanics analysis of Demes & Creel may be under-
estimates because of simplifications in the underlying
two-dimensional lever mechanics (Thomason 1991;
Ellis et al. 2008). Independent food fracture exper-
iments suggest that orangutans are capable of
cracking open macadamia nuts at forces over 2 kN
(Lucas et al. 1994, 2009), which compares with
Pmax ¼ 2.5 kN calculated from equation (3.1) for a
mean molar size of 14.0 mm for this animal. Similarly,
peccaries are capable of fracturing Iriartea ventricosa
palm nuts at Pmax ¼ 3.4 kN (Kiltie 1982), which com-
pares with a value 2.3 kN calculated for a measured
mean molar size 13.3 mm. The relatively high inci-
dence of chipping on the teeth of orangutans and
peccaries (table 2) and many fossil hominins visually
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Figure 1. (a) Photograph of antemortem chips on teeth of Paranthropus robustus. (b) Schematic of enamel chip geometry. Scale
bar, (a) 4 mm.
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Figure 2. (a) Plot of chip dimension h relative to tooth diameter D for a variety of living species and fossil hominins. Values of h
and D are from individual chips (excluding small chips, h , 0.1 mm). Note upper limit h/D � 0.30. (b) Plot of maximum chip-

ping force Pmax from equation (3.1) using averaged molar diameter D versus Pjaw from jaw mechanics. Solid line is a least
squares best fit (red circle, P. boisei; red square, P. robustus; red triangle, A. afarensis; red diamond, A. africanus; inverted triangle,
Homo erectus; blue circle, Homo sapiens; blue triangle, Gorilla spp.; blue square, Pongo spp.; blue diamond, Pan troglodytes; blue
inverted triangle, Macaca spp.).
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confirms the consumption of large hard foods and the
use of high bite forces to process these foods. A lower
incidence of chipping on gorilla and chimpanzee teeth
suggests that these animals process such foods less fre-
quently. Our method also circumvents the requirement
of a nearly complete fossil cranium to obtain an esti-
mate of bite force. All that is needed is a few teeth
with well-formed chips.

Tooth chipping can provide information about diet
that other methods tend to miss. For example, the
hard objects that cause chipping are orders of magni-
tude larger than objects recordable in dental
microwear (Lucas 2004; Lucas et al. 2008). Also,
because chipping patterns are permanent, they can
reveal the practice of hard-object feeding even if it
was a rare event, as is the case with many fallback
foods (Marshall & Wrangham 2007; Constantino &
Wright 2009). Such incidences may be missed by
microwear analysis, in which wear features are rapidly
replaced (Grine & Kay 1988; Teaford & Oyen 1989),
or by isotopic analysis where the signal from rarely
eaten foods can be masked by that from more com-
monly eaten items (Sponheimer & Lee-Thorp 1999;
Yeakel et al. 2007). Interestingly, postcanines of the
robust australopith Paranthropus boisei show enamel
chips but no evidence of hard objects in their dental
microwear (Ungar et al. 2008).

We can go further and analyse the intrinsic resist-
ance to fracture of mammalian dentition in terms of
tooth morphology. Almost certainly, such resistance
is subject to selective pressure, with tooth dimensions
optimized to enable maximum efficiency in food pro-
cessing (Lucas 2004). We have already indicated how
the maximum sustainable bite force Pmax scales with
tooth size D in equation (3.1). Another important
tooth dimension is enamel thickness d. Teeth with
thin enamel may fracture by a mode other than chip
spallation, e.g. by longitudinal propagation of ribbon-
like radial and margin cracks around the side walls
from the occlusal surface to the margin (or vice
versa) (Chai et al. 2009; Lawn & Lee 2009; Lee et al.
2009). Such modes are favoured at contact locations
h in excess of 0.30D. Longitudinal cracks of this
kind are less likely to leave a visible imprint on the
tooth surface. Nevertheless, they weaken the tooth
structure, and in extreme cases can lead to penetration
through the dentine with consequent tooth splitting.
Tooth size and enamel thickness may therefore have
evolved in part to afford protection against potentially
catastrophic effects of fracture in the eating of hard
food objects.
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and Ashley Hammond and Carol Ward for providing
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