Marshall University
Marshall Digital Scholar

Weisberg Division of C ter Sci Facult
R:sl:arecr}% tvision ot L-omputet sclence Facuity Weisberg Division of Computer Science

4-2010

Head in space : A head-tracking based binaural
spatialization system

Luca A. Ludovico
Marshall University

Davide Andrea Mauro PhD
Marshall University, maurod@marshall.edu

Dario Pizzamiglio

Follow this and additional works at: http://mds.marshall.edu/wdcs_faculty
b Part of the Other Computer Sciences Commons

Recommended Citation

Ludovico LA, Mauro DA, Pizzamiglio D. “Head in space: a head-tracking based binaural spatialization system.” In Proceedings of
Sound and Music Conference 2010 (Barcelona, Spain), 369-376).

This Conference Proceeding is brought to you for free and open access by the Weisberg Division of Computer Science at Marshall Digital Scholar. It
has been accepted for inclusion in Weisberg Division of Computer Science Faculty Research by an authorized administrator of Marshall Digital Scholar.

For more information, please contact zhangj@marshall.edu, martj@marshall.edu.

http://mds.marshall.edu?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zhangj@marshall.edu,%20martj@marshall.edu

HEAD IN SPACE: A HEAD-TRACKING BASED BINAURAL
SPATIALIZATION SYSTEM

Luca A. Ludovico, Davide A. Mauro, and Dario Pizzamiglio
LIM - Laboratorio di Informatica Musicale
Dipartimento di Informatica e comunicazione (DICo)
Universita degli Studi di Milano, Via Comelico 39/41, I-20135 Milan, Italy
{ludovico,mauro}@dico.unimi.it
http://www.lim.dico.unimi.it

ABSTRACT

This paper discusses a system capable of detecting the po-
sition of the listener through a head-tracking system and
rendering a 3D audio environment by binaural spatializa-
tion. Head tracking is performed through face recognition
algorithms which use a standard webcam, and the result is
presented over headphones, like in other typical binaural
applications. With this system users can choose an audio
file to play, provide a virtual position for the source in an
euclidean space, and then listen to the sound as if it is com-
ing from that position. If they move their head, the signal
provided by the system changes accordingly in real-time,
thus providing a realistic effect.

1. INTRODUCTION

3D sound is becoming a prominent part of entertainment

applications. The degree of involvement reached by movies

and video-games is also due to realistic sound effects, which
can be considered a virtual simulation of a real sound en-

vironment.

In one of the definitions of Virtual Reality, simulation
does not involve only a virtual environment but also an
immersive experience (see [1]); according to another au-
thor, instead of perception based on reality, Virtual Reality
is an alternate reality based on perception (see [2]). An
immersive experience takes advantage from environments
that realistically reproduce the worlds to be simulated.

In our work, we are mainly interested in audio aspects.
Even limiting our goals to a realistic reproduction of a sin-
gle audio source for a single listener, the problem of recre-
ating an immersive experience is not trivial. With a stan-
dard headphones system, sound seems to have its origin in-
side the listener’s head. This problem is solved by binaural
spatialization, described in Section 3, which gives a realis-
tic 3D perception of a sound source S located somewhere
around the listener L. Nowadays, most projects using bin-
aural spatialization aim at animating S keeping the posi-
tion of L fixed. Thanks to well known techniques, such a
A This
of

which permits

et al is

the

Copyright: ©2010 Luca Ludovico

an open-access article distributed under terms the

Creative Commons Attribution License 3.0 Unported, unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

369

result is quite easy to achieve. However, for an immersive
experience this is not sufficient: it is necessary to know
the position and the orientation of the listener within the
virtual space in order to provide a consistent signal [3], so
that sound sources can remain fixed in virtual space inde-
pendently of head movement, as they are in natural hearing
[4].

As a consequence, we will introduce a head-tracking
system to detect the position of L within the space and
modify the signal delivered through headphones accord-
ingly. The system can now verify the position of S with
respect to L and respond to his/her movements.

At the moment, audio systems typically employ mag-
netic head trackers thanks both to their capability of han-
dling a complete 360° rotation and to their good perfor-
mances. Unluckily, due to the necessity of complex dedi-
cated hardware, those systems are suitable only to experi-
mental or research applications. But the increasing power
of home computers is supporting a new generation of opti-
cal head trackers, based primarily on webcams.

This work proposes a low cost spatialization system which
only relies on resources available to most personal comput-
ers. Our solution, developed with MAX/MSP, is based on
a webcam head-tracking system and binaural spatialization
implemented via convolution.

The paper is structured as follows. First we will pro-
vide a short review of related literature and similar sys-
tems. Then the basic concepts about binaural spatialization
techniques will be introduced. Finally we will describe
the integration of a head-tracking system via MAX/MSP
externals - namely the multi-platform, real-time program-
ming environment for graphical, audio, and video process-
ing used to implement our approach - and the real-time
algorithms involved in the processing of audio and video
streams.

2. RELATED WORKS

We want to present here other similar approaches and projects
which served as a basis in the development process. Some
concepts, such as “binaural spatialization” will be intro-
duced in the following.

e Binaural Tools: A MAX/MSP patch from the au-
thor of CIPIC database that performs binaural pan-
ning using Head Related Transfer Function (HRTF)

mailto:ludovico@dico.unimi.it
http://www.lim.dico.unimi.it
http://creativecommons.org/licenses/by/3.0/

measurements. The panner takes an input sound file
and convolves it with a measured sound response
recorded from a selectable angle and elevation. Out-
put can optionally be recorded to a sound file. The
program was created based on some parts of Vin-
cent Choqueuse’s binaural spatializer for Max/MSP
[5]. We started from these works to develop our ap-
proach. They are inspiring as they do not use ex-
ternal libraries and rely solely on MAX capabilities.
This approach has also some drawbacks. For ex-
ample, in order to perform spatialization efficiently,
other techniques could be used but they should be
expressly implemented.

Spat~: A Spatial Processor for Musicians and Sound
Engineers [6]. Spat~ is a real-time spatial process-
ing software which runs on the Ircam Music Work-
station in the MAX graphical signal processing en-
vironment. It provides a library of elementary mod-
ules (pan-pots, equalizers, reverberators, etc.) link-
able into a compact processor integrating the local-
ization of sound events together with the manipula-
tion of room acoustical quality. This processor can
be configured for various reproduction formats over
loudspeakers or headphones, and controlled through
a higher-level user interface including perceptual at-
tributes derived from psychoacoustical research. Ap-
plications include studio recording and computer mu-
sic, virtual reality or variable acoustics in rooms.
The stability and quality of this library could be use-
ful to redesign some structures of our spatializer and
achieve better quality and performances.

bin_ambi: A Real-Time Rendering Engine for Vir-
tual (Binaural) Sound Reproduction [7]. This library
is intended for the use with Miller Puckette’s open
source computer music software Pure Data (PD). The
library is freely downloadable and can be used un-
der the terms of GNU General Public License. It
provides a simple API easy to use for scientific as
well as for artistic projects. In this implementation
there is a room simulation with 2 sound objects and
a listener. One direct signal and 24 early reflections
are calculated and rendered per sound object. The
sound rendering based on mirror sources provides
models for the early reflections. Each reflection will
be encoded into the Ambisonics domain (4th order
3-D) and added to the Ambisonics bus. The listener
rotates the whole Ambisonics field, the Ambisonics
decoder renders the field into 32 discrete signals of
32 virtual loudspeakers. All 32 speaker signals will
be filtered by its HRFT in relation to the left and
to the right ear (binaural decoding). Interpolation is
one of the critical points of such applications. We
can choose an approach like the one proposed here
that could give a better interpolation and sound qual-
ity but increases the computational complexity of the
system.

3D-Panner [8]: A SuperCollider-based spatialization
tool for creative musical applications. The program

370

spatializes monaural sounds through HRTF convo-
lution, allowing the user to create 3D paths in which
the sound source will travel. In 3D Panner the user
can easily create unique paths that can range from
very simple to very complex. These paths can be
saved independently of the sound file itself and ap-
plied to any other monaural source. During play-
back, the sound source is convolved with the interpo-
lated HRTFs in real-time to follow the user-defined
spatial trajectory. This project is inspiring for our
work because we plan to introduce new features, such
as moving sound sources, and we need a way to de-
scribe and handle trajectories.

3. BINAURAL SPATIALIZATION

Binaural spatialization is a technique that aims at reproduc-
ing a real sound environment using only two channels (like
a stereo recording). It is based on the assumption that our
auditory system has only two receivers, namely the ears.
If it is possible to deliver a signal equal (or nearly equal)
to the one which a subject would receive in a real environ-
ment, this will lead to the same perception. Our auditory
system performs various tasks to obtain a representation of
the acoustic environment; most of them are based on the
physical parameters of the signal of interest and are called
“cues” [9][10].

Binaural spatialization can be achieved through various
processes, such as: equalizations and delays, or convolu-
tion with the impulse response of the head (HRIR). The
latter approach is the one we have followed in our work.
In order to obtain these impulses, many experiments in-
volving the use of a dummy head ' have been made (see
i.e. [11]), thus creating databases of impulse responses.
Most of them use a fixed distance (usually 1 meter) from
S to L, which constitutes a potential limitation.

4. INTEGRATING A HEAD-TRACKING SYSTEM
INTO MAX

In our work, we choose to adopt faceAPI, namely an optical
face tracking system developed by Seeing Machines [12]
that provides a suite of functions for image processing and
face recognition encapsulated in a tracking engine. It is a
commercial product - freely usable only for research pur-
poses - that implements a head tracker with six degrees of
freedom. It can be seen as a “black box” which grants ac-
cess to tracking data through a simple interface oriented to
programming tasks. Basically the engine receives frames
from a webcam, processes them and then returns informa-
tion about the position of the head with respect to the cam-
era.

MAX/MSP is an integrated platform designed for mul-
timedia, and specifically for musical applications [13]. This
graphical real-time environment can be successfully used
by programmers, live performers, “traditional” musicians,
and composers. Within the program objects are also repre-
sented like “black boxes” which accept input through their

! A dummy head is a mannequin that reproduces the human head.

inlets and return output data through their outlets. Pro-
grams are built by disposing these entities on a canvas (the
patch) and creating a data flow by linking them together
through patchcords.

MAX provides developers with a collection of APIs to
create external objects and extend its own standard library
[14]. The integration of the head tracker requires to create
a base project for MAX (we used the so called “minimum
project”) and then add references to faceAPI to start devel-
oping the external.

When MAX loads an external, it calls its main() func-
tion which provides initialization features. Once loaded,
the object needs to be instanced by placing it inside a patch.
Then the external allocates memory, defines inlets and out-
lets and configures the webcam. Finally, faceAPI engine
starts sending data about the position of the head. In our
implementation the external reacts only to bang messages: >
as soon as a message is generated, a function of faceAPI
is invoked to return the position of the head through float
variables.

Each MAX object has to be defined in terms of a C

[Head Tracker

J (

Audio Source]

Source
Head pose wh
position

HRIR Database

Anechoic
signal

[Coordinates conversion]

HRIR Database
index

[Convolution]

o

J
~ J

Impulse
response

Binaural Signal

[Interpolation

[D/A Conversion

structure, i.e. a structured type which aggregates a fixed
set of labelled objects, possibly of different types, into a
single object. Our implementation presents only pointers
to the object outlets in order to directly pass variables to
the tracking engine.

typedef struct _head {
t_object c_box;
void *tx_outlet,
void *rx_outlet,
void *xc_outlet;
} t_head;

+*tz_outlet;
*rz_outlet;

*ty_outlet,
*ry_outlet,

Such values represent the translation along 3 axes (tz, ty, tz),
the orientation of the head in radians (rx, ry, rz) and a con-
fidence value. After their detection, values are sent to their
corresponding outlets and they are available to the MAX
environment. In brief, the headtracker external presents
only one inlet that receives bang messages and seven out-
lets that represent the values computed by the tracking en-
gine.

5. THE “HEAD IN SPACE” APPLICATION

This section aims at introducing the Head in Space (HiS)
application for MAX. As discussed in Section 4, we as-
sume that our head-tracking external acts as a black box
that returns a set of parameters regarding the position of
the head.

In Figure 1 a workflow diagram of the system is shown.

In input, two sets of parameters are available to the sys-
tem, in order to define: 1. the position of the listener, and
2. the position of the audio source. Given this information,
and taking into account also the position of the camera,
it is possible to calculate the relative position of the lis-
tener with respect to the source in terms of azimuth, eleva-
tion and distance. This is what the system needs to choose
which impulse response to use for spatialization. Once the

2 A bang is a MAX special message that causes other objects to trigger
their output.

371

Figure 1. The workflow diagram of the system.

correct HRIR is obtained from the database, it is possible to
perform convolution between a mono audio signal in input
and the stereo impulse response. Since the position both
of the listener and of the source can change over time, an
interpolation mechanism to switch between two different
HRIRSs has been implemented.

5.1 Coordinates Extraction

The spatializer uses a spherical-coordinates system that has
its origin in the center of the listener’s head. Source is iden-
tified by a distance measure and two angles, namely az-
imuth on horizontal plane and elevation on median plane.
Angular distances are expressed in degrees and stored in
the patch through integer variables, whereas the distance is
expressed in meters and its value is stored as a float num-
ber.

Please note that the head tracker presents coordinates
in a cartesian form that has its origin in projection cone
of the camera. Thus the representation of coordinates of
the spatializer and the one of the head tracker are differ-
ent and a conversion procedure is needed. The conversion
process first performs a rototranslation of the system in or-
der to provide the new coordinates of translation both of
the source and of the head inside a rectangular reference
system.

Referring to Figure 3, given the coordinates for a generic
point P, representing the source in a system (O1; X1, Y1, Z1),
we can determine a set of coordinates in a new cartesian
plane (Og; X2, Y5, Z5) that refers to the position of the
head through the relation:

Vo=Vo+(1+k)-R-V (1)

where:

melro 40

headtracker

p DB_loader

H‘#H‘W

p cartesian2spherical

azimuth
[piay |
O r=mm -

patcher player

................................

5 right_ch

patcher sphencaIZmdex

elevatlon

distance

expr 20*log10(1/($F1))

dbtoa

Figure 2. An overview of the patch.

Y,

Xo

¥ X

z

A T
Z 2w/ R

Figure 3. The translation system.

Zo
Vo = ||yo translation components
20
€
Vi=|ly known coordinates of P in O
21
X2
Vo = ||y unknown coordinates of P in Oy
Z2
k=0 scale factor
R=R, Ry R, rotation matrix 2)

R is the matrix obtained by rotating each cartesian triplet
with subscript 1 along its axes X7, Y7, Z; with rotation of
R,, Ry, R, to displace it parallel to X9, Y5, Z>. Rotation
matrixes are:

1 0 0

R, =10 cos(R;) sin(R,) (3a)
0 —sin(Ry;) cos(Ry)
cos(R,) 0 — sin(Ry)

R,=|| 0o 1 (3b)
sin(R,) 0 cos(Ry)
cos(R,) sin(R,) O

R, = ||-sin(R,) cos(R,) 0 3c)
0 0 1

the product R, - R, - R, is calculated with (4).
We can now derive formulas to calculate the position in
the new system:

xo =(zo + x1)[cos(Ry) cos(R.)]
+ (o + y1)[cos(Ry) sin(R)
+ sin(R;) sin(R,) cos(R,)]
+ (20 + 21)[sin(R,) sin(R,)
— cos(R;) sin(R,) sin(R,)]
Y2 =(xo + x1)[cos(Ry) sin(R,)]
+
(4o + y1)[cos(R) cos(R:)
—sin(R,) sin(R,,) sin(R.)]
+ (20 + 2z1)[sin(R;) cos(Ry)
+ cos(R;) sin(R,) sin(R,)]
2o =(x¢ + x1) sin(Ry)
+ (o + y1)[sin(Ry) cos(Ry)]
+ (20 + 21)[cos(R;) cos(Ry)]

Now we can calculate spherical coordinates using the
following formulas:

distance p = \/x2 + y? + 22 8)
azimuth ¢ = arctan (E) ©)]
T
elevation 0 = S A (10)
/.’L'Q _|_y2 +Z2

®

(6)

(N

cos(Ry) cos(R.)
R = ||—cos(Ry)sin(R.)
sin(R,)

cos(R;)
cos(Ry)

sin(R.) + sin(R,) sin(
cos(R;) — sin(R,) sin(
—sin(R,) cos(Ry)

y)cos(R,) sin(R;)sin(R.) — cos(R;)sin(Ry) sin(R.)
y)sin(R,) sin(R,)cos(R;) + cos(R,) sin(R,) sin(R,)
cos(Ry) cos(Ry) "

=

BT

[

buffir~ left 0 200

1

E,at':h; cro ;sfade

Figure 4. The detail of the MAX subpatch for the convo-
lution process.

The new set of coordinates can be employed to retrieve
the right HRIR from the database. Since our database in-
cludes only HRIRs measured at a given distance, we only
use azimuth and elevation. How to use the distance value
to simulate the perception of distance will be explained in
Section 5.4. Since not all the possible pairs of azimuth and
elevation have a corresponding measured HRIR within the
database, we choose the database candidate that minimizes
the euclidean distance.

5.2 The Convolution Process

This section describes the convolution process between an
anechoic signal and a binaural HRIR. We use the CIPIC
database [11], consisting of a set of responses measured
for 45 subjects at 25 different values for azimuth and 50
different values for elevation. Each impulse consists of 200
samples.

Figure 4 illustrates the detail of the subpatch for one
channel. From its first inlet it receives the anechoic signal,
while from the second it gets the index for HRIR within a
buffer~ object. HRIRs are stored in a single file that con-
catenates all the impulses. Please note that the process is
performed one time for left channel and another one for
right channel. Inside the database, azimuth and elevation
values are numbered through an ad hoc mapping. Given
an azimuth position naz and an elevation position nel we
can calculate the starting point within the buffer with the

373

|
0,120 1,020
s 1o
lE -~ line~ 0.
- . . -
[IS ' '
ey e E llllllllll
I esssssessessssesses ;
- -
Lssasssssssssssssssess i EesEEsEEEsEEEEEEEES .
S e
4=
-

Figure 5. The detail of the MAX subpatch for the cross-
fade system.

formula:

[((naz — 1) - 50) + (nel — 1)] - iTiengtn 1D
A buffir~ object is a finite impulse response (FIR) filter
that loads both coefficients from the buffer and audio sig-
nal, and then performs convolution in time domain. Con-
volution is implemented through a FIR filter since the small
number of samples of HRIRs makes computationally con-
venient to perform it in time domain instead of frequency
domain. buffir~ object allows to store up to 256 coeffi-
cients.

5.3 Interpolation and Crossfade Among Samples

One of the known problems related to the use of HRIR for
spatialization is the interpolation between two signals con-
volved with two different impulses. This is a very com-
mon case for this kind of real-time applications because
when moving from one azimuth value to another impulses
are very dissimilar. As a consequence, output signal can
change abruptly, thus affecting negatively the perceived
quality of the system. We have designed a simple yet per-
forming interpolation procedure based on crossfade to limit
the artifacts produced by the switch between impulses.

The approach is replicating the audio stream for each
channel that lead to changes to the convolution subpatch.
We add a second buffir~ object so now the first filter will
produce signals convolved with the current impulse and the
second filter will be loaded with the new HRIR provided by
the new position. Then new signal will gradually overcome
the signal from other filter with a crossfade function. Once
done the role of the two filter will switch. This behaviour
is achieved trough a ggate~ object.

As a performance issue it should be noted that in a real

time environment every redundant operation should be avoided.

In our implementation this means that a crossfade between
samples is needed only if a switch has been detected by
a change object that gives a value in output only if it is
not equal to its previous value. This avoid unnecessary
computation by the CPU that are useless if applied to the
same impulse response and could lead to a degradation in
terms of quality. Another improvement is given by the
use of speedlim~ object that establish the frequency of
messages in terms of minimum number of milliseconds
between each consecutive message. It could happen that
changing azimuth and elevation at the same time two dif-
ferent new messages could be generated in a rapid sequence.
That could lead to a premature refresh in the filter co-
efficients leading to a loss of quality. With this compo-
nent they are spaced by at least 40 msec. This value is
chosen according with the typical refresh rate of a video
stream (25 fps). This value is also used to define the cross-
fade duration between samples, and in our implementation
the crossfade is linear. The user can define a value be-
tween 5 msec and 20 msec. By experiments, depending
on the CPU power, it is possible to achieve a good quality
even at 5 msec. So the overall delay between changes is

200 ampies
20 MSeC + LT00 smmpies

sec

5.4 Simulation of Distance

One of the limitations of the CIPIC database is presenting
candidates only at one given distance. In order to simulate
the distance effect, our patch contains a simple procedure
based on the inverse square law. The function is imple-
mented by an expr~ object® with the expression:

20 log1o < (12)

1
distcmce> B
We limit the range of the distance value produced by the
head-tracking system between 0.1 and 2. Conventionally
1 identifies the reference distance of the impulse response,
and in this case no gain is applied. The mentioned distance
value is employed to feed the gain of each channel. The
process could be enhanced by adding a filter which simu-
lates the air absorption or using a database where HRIRs
are measured at various distances.

5.5 The Graphical User Interface

The software application that implements the algorithms
described before is a standard patch for MAX/MSP. The
patch uses an ad hoc external to implement the head-tracking
function.

After launching it, the software presents a main window
made of a number of panels and a floating window contain-
ing the image coming from the webcam after faceAPI pro-
cessing. In the latter window, when a face is recognized, a
wireframe contour is superimposed over the face image.

In Figure 6 we present the user interface of the applica-
tion. As regards the main window, it is organized in several

3 An expr~ object evaluates C-like expressions.

374

(am
5 .
L

s ~

RealTime Spatializer for MaxMSP

0.522 | confidence] [Head in Space v0.3 1

5| Head in space

J

\ J

s ~

r N ~\

e
.
~

O TN

Figure 6. The graphical user interface of the program.

panels. First, it allows to switch on and off the processing
engine. Besides, a number of text boxes and buttons are
used to set the position of the camera and of the source.
Other controls give feedback about the derived position of
the listener and the corresponding translation into azimuth,
elevation, and distance. A 3D representation (with the use
of the OpenGL support of Jitter) of the system made of the
listener (dark cube) and the source (white sphere) is also
provided and updated in real time.

The bottom right panel contains the controls to choose
the audio file to be played and to start the playback.

6. CONCLUSIONS & FUTURE WORKS

This paper has described a working application that per-
forms real-time spatialization of an audio signal based on
the position of the listener.

The system can be improved in several manners. The
use of a single webcam corresponds to a limited resolution
of azimuths and elevations (+ 90 azimuth, -30/+60 eleva-
tion, data coming from faceAPI specifications). It could be
possible to combine more cameras in order to fully repre-
sent the space choosing the one with the highest confidence
value.

Another improvement is adding support for more than
one source in order to render a richer environment. It could
also be interesting to take into account moving sound sources;
this implies that a way to describe trajectories needs to be
implemented.

The use of CIPIC database limits the number of possi-
ble measured distances and led us to implement a distance
simulation mechanism, whereas it would be desirable to
switch among HRIRs measured at various distances. Also
the 200-samples HRIRs do not account for rooms ambi-
ence, so a reverberation tool is needed.

Since the application is structured in modules, it can be [14] D. Zicarelli, J. Clayton, and R. Sussman, Writing Ex-
easily extended in order to support the future changes we ternal Objects for Max and MSP 4.3. 2001.
have mentioned.
The source code and application are freely available
from the authors at:
http://www.lim.dico.unimi.it/HiS.

7. REFERENCES

[1] J. Steuer, “Defining virtual reality: Dimensions de-
termining telepresence,” Journal of Communication,
vol. 42, pp. 73-93, 1992.

[2] K. Osberg, But what’s behind door number 4? Ethics
and virtual reality: A discussion. Human Interface
Technology Lab Technical Report R-97-16, 1997.

[3] S. P. Parker, G. Eberle, R. L. Martin, and K. L
McAnally, “Construction of 3-d audio systems: Back-
ground, research and general requirements.,” tech. rep.,
Victoria: Defence Science and Technology Organisa-
tion, 2000.

[4] D. R. Begault, 3-D sound for virtual reality and multi-
media. Cambridge, MA: Academic press Professional,
1994.

[5] V. Choqueuse, “Binaural spatializer (for maxmsp),”
http://vincent.choqueuse.free.fr/, 2007.

[6] J. Jot and O. Warusfel, “Spat™ A spatial processor for
musicians and sound engineers,” in CIARM: Interna-
tional Conference on Acoustics and Musical Research,
1995.

[7] M. Noisternig, T. Musil, A. Sontacchi, and
R. Hoeldrich, ‘“3d binaural sound reproduction
using a virtual ambisonics approach,” in VECIMS -
International Symposion on Virtual Environments,
Human-Computer Interfaces and Measurement
Systems, (Lugano, Switzerland), 2003.

[8] T. Tatli, “3d panner: A compositional tool for binaural
sound synthesis,” International Computer Music Con-
ference, 2009.

[9] W. A. Yost, Foundamentals of hearing: An introduc-
tion. Academic press London, third ed., 1994.

[10] J. Blauert, Spatial Hearing: The Psychophysics of Hu-
man Sound Localization. Cambridge, MA: MIT Press,
revised ed., 1996.

[11] V. R. Algazi, R. O. Duda, D. M. Thompson, and
C. Avedano, “The cipic hrtf database,” IEEE Work-
shop on Applications of Signal Processing to Audio
and Acoustics, pp. W2001-1/W2001-4, October 2001.

[12] “Seeing machines face tracking api documentation,”
http://www.seeingmachines.com/product/faceapi/,
2009.

[13] A. Cipriani and M. Giri, Musica Elettronica e Sound
Design, vol. 1. ConTempoNet, 2009.

375

http://www.lim.dico.unimi.it/HiS

	Marshall University
	Marshall Digital Scholar
	4-2010

	Head in space : A head-tracking based binaural spatialization system
	Luca A. Ludovico
	Davide Andrea Mauro PhD
	Dario Pizzamiglio
	Recommended Citation

	Proceedings of the Sound and Music Computing Conference 2010

