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ABSTRACT

This paper addresses the problem of the real-time automatic tran-
scription of a live music performance into a symbolic format based
on XML.

The source data are given by any music instrument or other
device able to communicate with Pure Data by MIDI. Pure Data
is a free, multi-platform, real-time programming environment for
graphical, audio, and video processing. During a performance,
music events are parsed and their parameters are evaluated thanks
to rthythm and pitch detection algorithms. The final step is the
creation of a well-formed XML document, validated against the
new international standard known as IEEE 1599.

This work will shortly describe both the software environment
and the XML format, but the main analysis will involve the real-
time recognition of music events.

Finally, a case study will be presented: PureMX, an applica-
tion able to perform such an automatic transcription.

1. INTRODUCTION

The study of automatic transcription tools is an interesting matter
both in research and in commercial applications.

In this paper we will focus on the design and implementation
of ad hoc automatic transcription algorithms for real-time instru-
mental performances. This research presents a number of appli-
cation fields, ranging from the encoding of unique improvisations
in symbolic form to speeding up the score writing process, like a
musical dictation.

There are some problems to face even at this early stage. First,
which kind of music devices should be supported? Which music
features should be extracted and translated? Where and when the
required computation should be carried out? Finally, which kind
of encoding should represent the results of the process? Of course
each question can have multiple answers, but our purpose here is
just demonstrating that an efficient and effective solution can be
implemented. Then our results can be applied with little or no
effort to more general cases.

In short, the process described in this paper starts from a live
performance, where MIDI-capable music instruments and devices
are used. The resulting data stream is parsed by a real-time en-
vironment provided by Pure Data. Through this application, a
number of algorithms to achieve an automatic transcription are im-
plemented. The final format to represent music events is the new
standard known as IEEE 1599-2008. Our choices will be justified
in the next sections, and a brief description of the applications and
adopted standards will be given.

2. A SHORT OVERVIEW OF IEEE 1599

Even if the encoding in XML format represents only the final step
of the process, it is important to describe this aspect immediately
as all the algorithms will be affected by this choice.

The music code we adopt, namely IEEE 1599, is not a mere
container for symbolic descriptions of music events such as notes,
chords, rests, etc. Thanks to its multi-layer structure, illustrated in
detail in [1], IEEE 1599 allows to describe many different aspects
of music within a unique document. In particular, contents are
placed within 6 layers:

e General - music-related metadata, i.e. catalogue informa-
tion about the piece;

e Logic - the logical description of score symbols (see below);

e Structural - identification of music objects and their mutual
relationships;

e Notational - graphical representations of the score;

e Performance - computer-based descriptions and executions
of music encoded in performance languages;

e Audio - digital or digitized recordings of the piece.

The Logic layer has a central role in an IEEE 1599 document.
In detail, it contains i) the main time-space construct aimed at
the localization and synchronization of music events, known as
Spine sub-layer; ii) the symbolic description of the score in terms
of pitches, durations, etc., known as Logically Organized Symbols
(LOS) sub-layer; and iii) information about a generic graphical im-
plementation of symbolic contents.

The Logic layer is the only level directly involved in the pro-
cess of live performance transcription, since it contains the music
symbols written in Common Western Notation (CWN). Specifi-
cally, music events have to be listed, identified and sorted in a
common data structure called Spine. Spine translates the typi-
cally 2-dimensional layout of a score in a 1-dimensional sorted
list of music events, uniquely identified by an ID. Each symbol of
spine presents a space and time distance from the previous one, ex-
pressed in relative way. In this work, only temporization of events
is involved and not their placement on a graphical score; as a con-
sequence, only time-related aspects of Spine sub-layer will be dis-
cussed.

After providing a list of IDs in Spine, music events can be de-
fined in standard notation within the LOS sub-layer. Here pitches
are described by note names and octaves, and rythmical values are
expressed in fractional form. For example, a J corresponds to the
XML line:
<duration num="1" den="2" />
and a J- to the XML line
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<duration num="3" den="8" />.

As regards durations, please note that a reduction to lowest terms
of the fraction is not required by IEEE 1599 specifications, even
if desirable. Similarly, dotted notations is supported in IEEE 1599
in order to try to obtain 1 as numerator, like in the latter example
where the duration - has been encoded as d—~N—~ ; alterna-
tively, the following XML lines could be employed:

<duration num="1" den="4" />
<augmentation_dots number="1" />.

The Logic layer - which defines music events from a logical
point of view - takes a key role for all the other layers, as they refer
to spine identifiers in order to bind heterogeneous descriptions to
the same music events. In order to obtain a valid XML file, only
spine is strictly required, so that even scores not belonging to CWN
are supported by IEEE 1599.

In our context, the first advantage coming from IEEE 1599
consists in the possibility to encode contextually additional infor-
mation: provided that a live performance can be correctly tran-
scribed, within a unique IEEE 1599 document not only the logic
score (notes, rests, etc.), but also the corresponding computer-
based performance layer, the resulting digital audio, and even re-
lated structural information can be encoded. This aspect highlights
the heterogeneity of media types and different kinds of description
supported by IEEE 1599. Its multi-layer structure allows to or-
ganize such a variety as a broad and comprehensive picture of a
unique music piece.

Besides, an IEEE 1599 document can host, for each layer,
multiple descriptions of the same piece. For example, the file con-
taining the “logic” score of a piece - namely a sequence of music
symbols flowing like in the composer’s mind - can present n dif-
ferent graphical instances, related to n score versions, in the No-
tational layer. Similarly, the Audio layer can host m sub-sections,
corresponding to as many tracks (e.g. historical performances, live
unplugged executions, transcriptions, variations, piano reductions,
and so on).

As a consequence, IEEE 1599 in our opinion fits very well
the purposes of this work. Nevertheless, the algorithms we will
describe in the following sections can produce transcriptions in
any other music code: binary (e.g. NIFF) as well as plain-text (e.g.
DARMS, LilyPond), general markup (e.g. MML) as well as XML
(e.g. MusicXML).

3. PURE DATA AS A PLATFORM FOR LIVE
PERFORMANCES

In this section we will shortly introduce Pure Data, the open-source
counterpart of MAX/MSP system. Both of them were developed
by the same author, Miller Puckette; his contribution to the project
is presented in [2].

Pure Data is an integrated platform designed for multimedia,
and specifically for musical applications. This graphical real-time
environment can be successfully used by programmers, live per-
formers, “traditional” musicians, and composers.

As illustrated in Figure 1, both the environments had a long
evolution since their author started the development process in the
eighties. Some of the key concepts have not changed over time,
such as the overall flexibility and modularity of the system. Pure
Data functions can be improved by the use of abstractions, i.e.
sub-patches recalled by the user under other patches, and exter-
nals, i.e. newly created object programmed in C via the Pure Data
framework and its API. Pure Data was written to be multi-platform
and portable; versions exist for Win32, IRIX, GNU/Linux, BSD,
and Mac OS X. Source code is available too.

The program interface is primarily constituted by two kinds of
window: PureData and patch/canvas. The former gives access to
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Figure 1: The evolution of MAX and Pure Data.

the settings of the program and to the visualization of system mes-
sages, allowing the control of the correct workflow. The latter is
the place where the user creates and interacts with the application
by placing objects and linking them together.

Patches present two different states: edit mode and run mode.
In edit mode the user can add objects, modify them and link them
through cords. In run mode the patch follows its workflow and the
user can interact with it in real-time.

Objects appear like “black boxes” that accept input through
their inlets or as arguments (placed near their name) and return out-
put data through their outlets. Programs are built disposing these
entities on a canvas (the patch) and creating a data flow by linking
them together through cords. Data are typed; as a consequence not
all the possible links are available.

Choosing the linking order has influences on the scheduler pri-
ority. Unlike MAX, where the rule is right-to-left execution of
links, Pure Data is ruled by the creation time of such links. Even
if some patches suggest a certain degree of parallelism, execution
is always serialized. This feature can be viewed as a limit but also
as a way to simplify priority criteria and execution flows.

Some objects are followed by a “~” character in their name.
This symbol is used to indicate that they are signal objects, which
means that they can handle audio and video streams.

In the latest versions interface objects exist, too. These objects
allow the user to control some parameters of the patch during its
execution without the annoyance of setting them by typing. As
regards their graphical representation, they can have various forms
such as buttons, sliders, scrollbars, menus, etc.

An application of the mentioned concepts will be shown in
Section 6, where the inferface to achieve real-time interaction and
automatic trascription will be descrived.

Before describing the transcription algorithms, let us justify
the adoption of MIDI format for source data. Most of the periph-
erals that can be attached in a live performance environment are
usually MIDI capable. Keyboards, synthesizers, MIDI-equipped
guitars, etc., can be used by performers to interact with the sys-
tem. Pure Data can handle MIDI format though its primitives,
thus allowing a simple but effective implementation of our work.
However, the algorithms introduced in the next section make use
of basic information that is available in a large number of formats.
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It would be virtually possible to adopt any other input format for
the transcription. For example, Pure Data has primitives for OSC
(OpenSound Control), thus the support for that format could be
easily implemented.

Please note that, even if MIDI has a lower expressivity than
IEEE 1599, it is widely used both for score encoding and for nu-
meric communication among sound devices. Thanks to its exten-
sive employment in standard live performance environments, it has
been adopted as the base for music events transcription into IEEE
1599 format.

4. FROM MIDI TO IEEE 1599

The simplicity, extensibility and power of Pure Data make it an
ideal choice to develop musical applications based on the IEEE
1599 format, thus improving - as a side effect - the diffusion of
this new standard. In order to demonstrate the effectiveness of
our approach, we have developed PureMX, a library of Pure Data
externals designed to convert a MIDI stream (played live by ei-
ther performers or sequencers, or a combination of both) into a
well-formed and valid IEEE 1599 document. By now, the pro-
gram focuses just on the construction of the Logic layer of IEEE
1599, which mainly contains a sorted list of music events (Spine
sub-layer) and their symbolic representations (LOS sub-layer). See
Section 2 for further details.

The PureMX library is written in ANSI C, making exclusive
use of the standard libraries and the Pure Data API, in order to
be highly portable on a wide variety of platforms. It is also ex-
tremely modular, taking full advantage of the Pure Data object
paradigm and simplifying the integration of new features not yet
implemented in the library itself.

Once loaded in the system, PureMX objects can be used inside
a Pure Data patch, in combination with the native primitives of
the platform, other libraries of externals or Pure Data abstractions
(sub-patches).

One of the most challenging aspects encountered in the de-
veloping process of PureMX lies in the conceptual and structural
difference between the formats involved in the conversion. First
of all, while MIDI is just a sequence of chronologically ordered
events, IEEE 1599 represents musical information in a hierarchi-
cal and multilayered fashion. So, it is useful to organize the MIDI
input stream inside a data structure which mirrors the nature of the
IEEE 1599 format. In second instance MIDI, as a performance for-
mat, stands at a lower level of abstraction than the Logic layer of
IEEE 1599. For instance, fundamental entities of symbolic score
description in IEEE 1599 (such as clef and tonality), that are very
rich in semantic content, are not explicitly present in the input
stream. In fact, MIDI was designed to convey semantically poorer
concepts such as the mechanical actions made by a performer on a
musical instrument.

Going down the hierarchy of musical information layers, we
can consider the lower levels a “practical instance” of the abstract
concepts contained in the higher ones, so information is just trans-
lated into a new form but not completely lost. In our case we can
consider the events of a performance format as a practical real-
ization of the concepts which should be written in the IEEE 1599
Logic layer, so most of the information we need is “hidden” but
still present in MIDI. It is possible to apply musical information
retrieval algorithms on the input stream and obtain those missing
elements, as they are implicitly contained in the relations among
events and in the general context of the whole stream. For com-
plete reference on MIDI see [3].

5. ALGORITHMS FOR PITCH AND TEMPO
EXTRACTION

5.1. Event Segmentation

In MIDI - like in most performance formats - music events are rep-
resented by the succession of two message types: a noteon which
activates a note and a noteoff which deactivates it. Please note
that music events can be interleaved, e.g. a noteon could follow
another noteon message before the noteoff of the former. Both
message types contain a pitch parameter that identifies which note
has been activated/deactivated, and a velocity parameter that indi-
cates the intensity of the action on the instrument. The duration
of a note can be easily calculated by counting the time between a
noteon and a noteoff message sharing the same pitch. In the same
way, the duration of a rest can be calculated by counting the time
between a noteoff and the next noteon (in this case pitch does not
matter).

In MIDI, durations are calculated in Midi Time Clock (MTC)
units. Most sequencers use 24 MTC per quarter, and their abso-
lute duration depends on the Beat Per Minute (BPM) value of the
sequence. On the other side, in the Spine sub-layer of IEEE 1599
durations are calculated and stored in Virtual Time Units (VTUs).
The only difference is the following: while MTC granularity is
fixed, VTU granularity can change for each IEEE 1599 document.
For example, if the shortest note of a given music piece is the quar-
ter note, then in IEEE 1599 we can associate a single VTU to this
rhythmic value.

In order to achieve a conversion from VTU-based temporal
representation to Common Western Notation (CWN), it is nec-
essary to identify and segment music events that are not repre-
sentable by a single CWN symbol. A rhythmic value whose nu-
merator is not power of 2 should be encoded by using two or
more symbols tied together. For instance, the first note in Figure 2
presents a duration that can be expressed as 7/s. The segmentation

————
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Figure 2: Segmentation of a VI'U duration into parts representable
by CWN symbols.

algorithm implemented in PureMX exploits the similarity between
CWN symbols and the binary system, providing an extremely fast
and effective way to split complex durations into simple ones. We
choose granularity in order to assign the time unit (2° = 1 VTUs)
to the smallest CWN symbol. Going from short to long values, the
following symbol will have exactly twice the duration of the first
(2! = 2 VTUs), the third will have twice the duration of the sec-
ond (22 = 4 VTUs) and so on. As a consequence, we can repre-
sent CWN rhythmic values through variable-length binary strings
where the highest order bit is set to 1 and all the others are Os.

As a further step, also augmentation dots should be consid-
ered. Each augmentation dot increases the duration of a note by
half its value, so a dotted value can be represented as a sum of the
value itself and of the immediately smaller one. In binary terms,
notes dotted n times can be encoded through strings with the high-
est n+1 bits set to 1 and the others set to 0.
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The segmentation algorithm takes in input an arbitrary binary
string which represents a duration in VT Us. If the string encodes a
duration longer than 7/4 (whole note with two augmentation dots),
events lasting 7/4 are repeatedly written and their duration is sub-
tracted from the original string until the remaining part becomes
shorter than this amount. The string obtained in this way is then
copied and right bit-shifted until it becomes a sequence of bits all
setto 1 (e.g. 1, 11 or 111); finally, it undergoes a left bit-shift
process by the same amount. In this way, the algorithm finds the
largest value representable by a single note symbol, possibly dot-
ted. Such an event is written into the data structure and its duration
is subtracted from the original string. The process is repeated until
the remaining part of the original string is made of 0s.

For example, let a note be representable by the fraction 13/32.
This is the case of a dotted quarter (3/s) tied to a thirty-second note
(1/32). If the latter value is the smallest one in the piece, the corre-
sponding binary string would be 1101. After verifying that 13/32
< 7/a, the proposed algorithm carries out 2 right bit-shifts, thus
producing the string 11 (made of a pure succession of 1s). Then
the process is inverted, and the string becomes 1100. This bit
configuration now corresponds to a single rhythmic value, namely
a dotted quarter note. After subtracting the new string from the
original one, we obtain the remaining part of the original duration:
1101-1100 = 0001, i.e. the value to add in order to obtain the
whole duration. As a matter of fact, the 0001 string corresponds
to a thirty-second note.

Even if metric and accent issues are ignored, the mentioned
algorithm is guaranteed to find always a right solution to the seg-
mentation problem.

5.2. Clef Guessing

After facing the problem of complex rhythmical values, we need to
define the clef in order to represent pitches by disposing symbols
on a staff. In CWN the clef is used to associate a well-defined pitch
to each line and space of the staff, thus creating an unambiguous
correspondence between the vertical position of a symbol and the
name of the note represented.

The problem of finding a clef that fits well a given musical
sequence is quite easy to solve, as all the information we need
is coded inside the pirch parameter of MIDI noteon and noteoff
events. The pitch parameter is an integer between 0 and 127, and
each number represents a different semitone, like a different key on
akeyboard. In MIDI, pitch 60 corresponds to the Middle C, having
a frequency of 261.63 Hz approximately. This pitch is usually
referred as C4. Consequently, MIDI pitch 61 is assigned to Ct4
(277.18 Hz), MIDI pitch 62 to D4 (293.67 Hz) and so on.

The clef guessing algorithm designed for PureMX is based
on the computation of a mean among the various pitches inside a
measure, in order to find the “average pitch” of that measure. For
the sake of simplicity, the mean is arithmetic: each symbol has
the same weight, no matter what its duration is. Please note that
this algorithm has to compute results in real time. The whole pitch
range is divided into intervals, and a clef is associated to each of
them. The clef that fits best the melodic sequence is the one that
minimizes the use of additional cuts, as shown in Figure 3.
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Figure 3: Average pitch intervals for the PureMX implementation
of the clef-guessing algorithm.

The choice of using just two of the seven available clefs avoids
interval overlapping; moreover, in current notation the other five
clefs are rarely used, e.g. in particular contexts (such as in vocal
music) or for certain musical instruments (such as the alto clef for
viola).

The average pitch calculation presents a problematic issue: as
the concept of pitch makes no sense for rests, they should not
be included in the mean; but in this case empty measures would
not have an average pitch value and, consequently, they would not
have a clef. The same clef of the previous measure could be as-
signed, but the problem remains if the first measure is empty too.
The adopted solution consists in assigning a pitch value to rests,
in particular the same pitch of the previous event, if any, otherwise
the pitch of the following one.

The intervals proposed in Figure 3 are the ones used in the
PureMX implementation of the algorithm, however there are many
other alternatives: for example, creating a specific interval set for
vocal music based on fessitura instead of average pitch; calculating
this parameter by a weighted mean; taking note durations into ac-
count; performing this calculation on the whole part/voice instead
of measure by measure.

5.3. Key Finding and Pitch Spelling

The pitch parameter is also useful in finding the tonal context of a
given sequence of notes. This is a fundamental aspect to make a
good CWN transcription because in the equal temperament, uni-
versally adopted by current western music, each semitone may
correspond to 2 or 3 enharmonically equivalent pitches. For in-
stance, MIDI pitch 60 can be written in a score as C, Bf or Dbb;
and pitch 68 only as Gff or Ab. Knowing the tonal context allows
us to choose the correct note name, and therefore the right position
on the staff, for each pitch value in the sequence.

In the least 20 years, many people have proposed studies and
methods to solve the key finding and/or the pitch spelling prob-
lem, reaching good results. The common element shared by every
approach is the analysis of musical events not as isolated entities
but as part of a context, which affects their interpretation and at
the same time is affected by their presence. Differences lie in the
choice of parameters and rules to identify and quantify relations
among those events. All key finding and pitch spelling algorithms
contain heuristic information, namely prior knowledge about the
problem they have to solve, mainly based on the rules of tonal
harmony. For this reason, all those approaches do not work well
(sometimes they fail at all) when applied to music belonging to
different cultural areas or historical periods.

In order to give the PureMX library key finding and pitch
spelling capabilities, many different solutions have been exam-
ined. With simplicity in mind, we wanted an algorithm reasonably
efficient, easy to implement and able to solve both problems at the
same time. The Krumhansl-Schmuckler algorithm (and its further
improvement by David Temperley) [4] has all these features. It is
based on a Bayesian approach: each note gives a certain amount
of “points” to each possible tonal centre, and the one which gains
the higher score is chosen as the most probable for that sequence
of notes.

In the PureMX implementation of the algorithm, twelve possi-
ble tonal centres are defined, one for each semitone in an octave. In
case of enharmonic equivalence, the tonality with less accidentals
is preferred, following the principle of notational economy. Scores
to tonal centres are then assigned following two probability distri-
butions, one for major keys and the other for minor keys. Such dis-
tributions were experimentally deduced by Krumhansl and Kessler
at the beginning of the 80s and then improved by Temperley in
1990. The experiment consisted in asking listeners to rate how
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well “probe tones” fitted into various musical contexts (cadences
in major and minor) [5]. Results are shown in Figure 4.

The probability distributions provides a measure about the fit-
ness of a particular pitch inside the scale of each tonality. For
example, a pitch value of 60 (possibly corresponding to the notes
C, Bft or Dbb) will give a high score to C major as its tonic, or to
F major as its dominant, or to A minor as its median; but it will
give a poor evaluation to B major because it is not a natural degree
in that scale. Score assignment is also weighted on note durations,
so that more importance is given to longer notes. It is worth to un-
derline that small rhythmic values are often used for less relevant
notes, such as chromatic passages and embellishments.

Minor-Key Scale Degrees
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Major key profile —a—
6 Minor key profile —e-— o
o 5 4
=
=
o 4 .
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2 |

Major-Key Scale Degrees

Figure 4: Probability distributions for score assignment to tonal
centres based on pitch values (Krumhansl-Kessler version). Pic-
ture taken from [5].

Once the tonality is determined, pitch spelling for notes on
the scale is immediate and unambiguous. For notes outside the
scale, note names representing stronger degrees are preferred be-
cause they give a better harmonic representation of the key. In
particular, major and minor degrees are preferred over diminished
and augmented ones.

The original version of the Krumhansl-Schmuckler algorithm
uses an overlapping window technique to control its reactivity:
small windows and few overlapping notes will produce many tonal-
ity changes, while longer and more overlapped windows will pro-
duce more uniform results. The PureMX approach is quite differ-
ent as it uses an exponential mean to obtain the same effects: we
define a multiplying factor « in the closed range [0, 1] and a “his-
tory” array H made of n elements, with n equal to the number of
the considered tonal centres. Let H (z), with = € Ny, be the status
of array H at step z. H(0) is set to 0. Let C'(x) be an n-elements
array where the score assigned to the current measure are stored.
Then we calculate the tonality of a given measure by the equation:

H(z)=C(z)-a+H(x—-1)- (1 —«)

The maximum of the n elements of H (z) is used to determine the
tonality of the current measure, and the array is stored as the new
history. The « factor is a measure of the algorithm reactivity, as
greater values give more weight to the current measure evaluation
whereas smaller values give more weight to history. As the history
is iteratively multiplied by a factor smaller than 1, the contribution
of earlier measures to the history becomes less important as time
passes, until it becomes irrelevant for very distant measures.

Even if this version of the algorithm already provides satisfac-
tory results for well-defined tonal contexts, further improvements

could be applied. For example, it would be possible to implement
a pitch spelling algorithm (the one proposed by [6] is simple yet
efficient) and use its results to help the key finding algorithm, or
could be employed other criteria (voice leading, accents pattern)
in addition to the fitness functions in order to obtain a more ac-
curate tonality guess. Anyway, this would add complexity to the
algorithm, in contrast with our main goals.

5.4. From Absolute To Relative Time Representation

We have already described the concept of VTU in Subsection 5.1,
and we have defined it as the temporal representation of events in
an IEEE 1599 document. VTU values are stored in the Spine (see
Section 2) and describe the chronological order of the events in a
musical piece. We can see VTUs as ticks of a clock, where the ab-
solute duration (in seconds) of a single tick depends on the chosen
granularity and on the BPM value of the piece.These values are in-
tentionally unexpressed at Logic level as the virtual temporization
of score symbols can correspond to different instances at Perfor-
mance or Audio layer. Anyway, a different concept of time is also
present in the LOS sub-layer. Each note and rest is described as a
CWN symbol with its relative duration, so we need to transform
VTU durations in fractions of measure in order to obtain the logic
description of music events.

Let us recall that the conversion from VTU-based timings to
CWN fractional durations has to be achieved in real time, so a
fast but effective algorithm has to be designed and implemented.
Nevertheless, extemporary improvisation is often made of irregu-
lar rhythms, including nested tuplets, so the problem of rhythm
transcription is not trivial and cannot be solved by using mere
quantization.

In the following, the approach employed in PureMX is de-
scribed. The inputs of the algorithm are:

1. the meter of the piece in fractional form i (e.g. i, g, etc.).

Please note that s is the number of subdivisions in a mea-
sure, whereas 1/+ is the rhytmic value corresponding to a
subdivision;

2. VTUs per measure (let it be v), or alternatively VTUs per
subdivision (let it be w); v and w are related by the formula
v=S5-w;

3. the duration of the music event to parse, expressed in VITUs
and referred in the following as x. This amount is available
as soon as a noteoff event follows the corresponding no-
teon in case of notes, or a noteon message follows a remote
noteoff in case of rests.

The process proposed here will return the CWN symbol to
write in the LOS sub-layer, even when located inside a tuplet. The
duration will be represented through a numerator n and a denomi-
nator d, where n is not necessarily equal to 1 whereas d has to be
a power of 2. In short, the following algorithm computes n and d
starting from s, ¢, w (or v) and x.

1. Let g be the greatest common divisor (gcd) between x and
(w-t);

2. Calculate a = z/gand b = (w-t)/g. The fraction a/b rep-
resents the reduction to lowest terms of the original fraction
z/(w-t);

3. Evaluate the obtained denominator b. If b = 2", with n €
No, namely it is a power of 2, then proceed to branch (a).
Otherwise, the value to be parsed belongs to a tuplet. In this
case, let d be the floor rounding of b to the closer power of
2, which will allow to write an existing rhythmic value in
CWN. Jump to branch (b);

ICADO09-5



Proceedings of the 15" International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

(a) Setn = a and d = b. Now the event duration can be
encoded in the LOS sub-layer. If a more compact no-
tation is required, the previously described segmen-
tation algorithm can be employed in order to express
the fraction as a sum of rhythmic values, possibily
dotted or double-dotted. Finally, jump to Step 4;

(b) In order to dimension the tuplet, namely to fix the
number ¢ of values the measure should be divided
into, calculate ¢ = s - w/x. In natural language,
this means: “Divide the measure in ¢ equal parts and
represent the current note as n/d under the resulting
tuplet”. In IEEE 1599, the tuplet encoding is in the
form “Put ¢/d in the place of s/t” (e.g. “Put 6/8, i.e.
6 &, in the place of 2/4,1.e.2 J”), and all the required
values have been calculated. According to standard
notation rules, necessarily 7 € N, but in general this
is not guaranteed by the algorithm (refer to the last
example of this subsection). In this case, a segmen-
tation algorithm has to be used in order to split the
original x into the sum z; + z2 + ... + =, where
each element makes the corresponding 7 an integer.
It is possible to demonstrate that this operation can
always be performed in a finite number of steps;

4. Write the n and d values in the corresponding attributes
of the IEEE 1599 element <duration>. If the event is
dotted, or it belongs to a tuplet, compile also those parts of
the document.

EIguar g

3 5

Figure 5: A measure containing both standard durations and tu-
plets.

Now we will provide a number of examples to clarify the ap-
plicability of the algorithm. Let us consider Figure 5, where time

signature is i thus s = 3 and ¢ = 4. Let 30 be the number of

VTUs per quarter, i.e. w = 30 and v = 30 - 3 = 90. Finally, let us
apply the algorithm when z = 30, which intuitively corresponds
to the first note in Figure 5. From Step 1, g is the gcd between
rz=30and w-t = 30-4 = 120, so g = 30. Step 2 provides
the reduction to lowest terms by using g, so the numerator a = 1
and the denominator b = 4. The evaluation process at Step 3 con-
firms that ¢ = 1 and b = 2", with n = 2. As a consequence, the
obtained results corresponding to a Jare ready to be written in the
XML description of the event.

When = 10, g is the gcd between = 10 and w - t =
30-4 = 120, so g = 10. Step 2 states thata = 1 and b = 12. Step
3 determines that b is not a power of 2, so branch (b) is entered.
Through the algorithm, b = 12 is rounded to the value 8, and this
value is assigned to d. This means that the symbolic value to be
written under tuplet is D. Now the tuplet has to be determined.
From ¢ = s-w/x = 3 -30/10 follows ¢ = 9. Finally, the
algorithm states how to compute the tuplet: “Put 7/d in the place
of s/t”, namely “Put 9/8, i.e. 9 N, in the place of 3/4, i.e. 3 J”.
Even if already correct, the result can be improved by dividing the
two numerators by their ged, thus obtaining “Put 3/8, i.e. 3 N
in the place of 1/4, i.e. 1 J”, which corresponds to the graphical
representation of the second note in Figure 5.

When xz = 15, g = 15, a = 1 and b = 120/15 = 8. Since
the obtained b is a power of 2, branch (a) is entered. As a conse-
quence, the third value in Figure 5 is recognized as N even if its
graphical representation was a dotted eighth note inside a triplet.
From a mathematical point of view, this is correct: in fact the lat-
ter representation implies taking 1.5 parts of the subdivision of a
quarter by 3,i.e. 3/2-1/3-1/4 = 1/8, corresponding to an eighth
note.

When z = 6, intuitively we are dividing the VTU duration of
the subdivision by 5. This is the case of the last 5 notes in Figure
5. By applying the algorithm, g = 6, a = 1 and b = 120/6 = 20.
Since the obtained b is not a power of 2, branch (b) is entered.
The rhythmic value to use in the tuplet is 1/16, as 16 is the floor
rounding of 20 to the nearest power of 2. From i = s - w/z =
3-30/6 follows : = 15. Finally, the algorithm says: “Put ¢/d
in the place of s/¢”, namely “Put 15/16 in the place of 3/4”, or
alternatively “Put 5/16 in the place of 1/4”.

Finally let us explain the process when applied to a more com-

plex case. Let the meter be 7, thus s = 7 and ¢t = 8. Besides, let

9 be the number of VTUs per Niew=9andv =9 7=63.
Please note that no problem is due to the complex time signature:
e.g., whenx = 36 a J symbol is recognized; and when x = 3
the algorithm recognizes a sixteenth note in a tuplet made of 21
values of the same kind (in this case, the tuplet puts 21/16 in the
place of 7/8, namely a M in the place of a M. Rather, a problem
arises when z = 4. Infact, g = 4,a = 1l and b = 72/4 = 18.
Since the obtained b is not a power of 2, once again branch (b) is
entered and the value to use in the tuplet results to be 1/16. From
t=s -w/x ="T-9/4follows that ¢ ¢ N, and the original z has to
be split into a sum of integer addends. For example, a simple way
to solve the problem is considering * = x1 + z2 = 3 + 1, which
corresponds to representing a unique music event as two tied sym-
bols of different duration. Now the algorithm is able to work on
such values.

6. PUREMX INTERFACE

As a library of Pure Data externals, PureMX shares the user in-
terface of its host program. Figure 5 shows an example patch in
which all of the PureMX externals are used together with some
native Pure Data primitives.

The first external of the set is mxsheet, which records, seg-
ments and stores events of the input stream inside an organized
and hierarchical data structure. Its leftmost inlet accepts some re-
served messages that control the recording process (start, stop) and
the pitch number of incoming events. The next two inlets accept
velocity values and channel numbers, respectively. The other in-
lets are used to indicate BPM value, time signature (numerator and
denominator), VTU per quarter and whether the recording should
start automatically as soon as the first event is received or not. By
now, these values are set manually through numeric inputs, but
further development could involve the creation of beat tracking or
metric structure recognition objects.

The notein object attached to the first three inlets is a native
Pure Data primitive, and it is used to translate MIDI events into
Pure Data messages. This means that, even if PureMX has been
conceived with MIDI in mind, it is theoretically possible to use the
library with any other performance format that has the same data
organization of MIDI. For example, attaching an OSC translator
instead of the notein object, we could make use of OSC messages
instead of MIDI messages.

In terms of outlets, the first two simply send out bangs (sort of
“wake up” messages) in time with the metronome, while the third
sends out a custom message (mxfeed) once the recording stops.
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File Edit Put Find Windows Media Help

Figure 6: Example patch showing PureMX externals, together with
some Pure Data primitives.

This last message contains, among other things, the pointer to the
first memory cell of the recorded data structure, and it is used by
other PureMX externals to read the recorded information or write
new elements.

The other objects of the library are mxcsig, which implements
the clef guessing feature; mxksig, which implements the key find-
ing and pitch spelling features; and finally mxspiner, mxlosser
and mxbuild, which respectively write the Spine, the LOS and the
whole IEEE 1599 document to text files. It is not mandatory to
use all of these objects: there are cases in which, for example, the
IEEE 1599 document is used just for synchronization so the LOS
element is not needed, or it makes no sense to guess tonality as the
musical piece recorded does not belong to the tonal repertoire.

7. CONCLUSIONS

In this paper we have presented a working application that can ful-
fil the needs of musicians who want a transcription of their live
performance. This can be useful for recording of live electronics,
for improvisation, that are unique and always varying, for music
archives, for analysis of the recorded material and so on. We have
faced the problem adopting IEEE 1599 and Pure Data, namely
open and extensible environments that allow the tailoring of the ap-
plication to the user needs. In the paper we have also proposed the
use of some algorithms, both designed ad hoc and adapted from
literature, that can solve the various problems encountered in the
definition of the problem domain and in its practical resolution.
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