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The Evolution of Zinjanthropus boisei
PAUL CONSTANTINO AND BERNARD WOOD

Many people assume that OH 5, the type specimen of Paranthropus boisei,
collected in 1959, was the first evidence of that taxon to be found, but OH 3,
recovered in 1955, predated the discovery of OH 5 by four years. Thus, Para-
nthropus boisei recently celebrated the equivalent of its fiftieth birthday. This
review marks that milestone by examining the way our understanding of this
taxon has changed during its fifty, or so, year history.

Several hominin taxa have been
established longer or have a larger fos-
sil record, but Paranthropus boisei, the

hominin taxon that began life as Zin-
janthropus boisei, is unusual for several
reasons. First, much of its skull mor-
phology is apparently derived1–3 and
highly distinctive (Table 1). Second,
most of its hypodigm comes from sites
with good stratigraphic and chrono-
logical control and can be dated with
relative precision.4,5 Third, the fossil
record of Paranthropus boisei is
almost exclusively cranial, consisting
mostly of jaws and teeth. This means
there are reasonably sized, relatively
well-dated samples for some morpho-
logical regions like the mandible and
the mandibular dentition. Researchers
can thus trace the evolution of metri-
cal and nonmetrical variables across
hundreds of thousands of years.
Finally, all these factors, together with
the fifty, or so, years that have elapsed
since its discovery, mean that it is pos-
sible to use Paranthropus boisei as an
example of how our understanding of
a hominin taxon changes over time.
For example, to what extent has the
increase in the size of the sample
changed our perception of the taxon?
Have important sample parameters
changed significantly as the hypodigm
has increased in size? To what extent
can we disentangle the influence of an
enlarged fossil record from the bene-
fits that have accrued from advances
in analytical methods? Thus, this
review not only summarizes what we
know of the evolutionary history of
Paranthropus boisei, but also traces
the evolution of our understanding of
its evolutionary history.

HISTORY OF DISCOVERY

The first evidence of a megadont
hominin (that is, a hominin with very
large postcanine tooth crowns relative
to its estimated body size) from East
Africa was found at Olduvai Gorge
in 1955 (Fig. 1).6,7 Labeled OH 3, for
‘‘Olduvai Hominid 3,’’ it was a speci-
men consisting of two teeth, a decidu-
ous canine and a large deciduous
molar crown (Fig. 2). The huge size of
the teeth made them unique among
East African hominins known at the
time. The taxonomy of OH 3 therefore
remained uncertain until the 1959 re-
covery of a well-preserved subadult
cranium with similar teeth (OH 5)
that was assigned to Zinjanthropus
boisei (Fig. 3).8

No mandibles to match the OH 5
cranium have been found at Olduvai
Gorge, but the recovery in 1964 of a
well-preserved, robust-bodied, adult
mandible with megadont postcanine
tooth crowns (Peninj 1) from a site on
the western shore of Tanzania’s Lake
Natron seemed to provide evidence of
the type of mandible that would be
compatible with OH 5.9 Three years
later, another hominin mandible with
postcanine megadontia was recovered

from the Omo Shungura Formation

in southern Ethiopia (Omo 18.18).10

Since 1967, many additional mandi-

bles and isolated teeth similar to these

megadont fossils have been collected

from these same sediments.11–14

Beginning in 1968, a series of P. boi-
sei fossils was uncovered near what
was then known as East Rudolf (now
called Koobi Fora) in northern Kenya.
This series included the recovery in
1969 of a well-preserved but edentu-
lous adult cranium (KNM-ER 406)
and the recovery in 1970 of an adult
hemicranium preserving the majority
of the vault, the right side of the face,
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and part of the right side of the cranial
base (KNM-ER 732) (Fig. 4). Several
mandibular specimens have also been
found at Koobi Fora and elsewhere,
so that numerically it is the best-
sampled region of the P. boisei skele-
ton (Fig. 5).1 About the same time that
many of the Koobi Fora fossils were
being discovered, the Chemoigut For-

mation at Chesowanja, Kenya also
provided evidence of P. boisei, most
notably in the form of a cranium
discovered in 1970 that preserved
the right side of the face and the ante-
rior part of the cranial base (KNM-
CH 1).15

The intensive prospecting in the
Omo Shungura Formation and at

Koobi Fora in the late 1960s and early
1970s resulted in the rate of discovery
of P. boisei fossils reaching its peak in
the second decade (1966–1975) of the
taxon’s history (Fig. 6). After that
time, cranial remains belonging to P.
boisei continued to be recovered from
Koobi Fora and began to be found at
West Turkana.1,4,16–18 Two notewor-
thy P. boisei-like specimens fromWest
Turkana, a mandible (KNM-WT
16005) and a cranium (KNM-WT
17000), were recovered in sediments
dating to ca. 2.5 Ma.16,19 Along with
Omo 18.18 and others, these speci-
mens have been suggested as possible
representatives of a second megadont
taxon in East Africa, Paranthropus
aethiopicus, which was geologically
older than P. boisei. They therefore
have particular relevance to the
debate about the origin and subse-
quent evolution of megadont archaic
hominins. Additional evidence of P.
boisei has come from sites elsewhere
in East Africa, most notably in 1993,
when a well-preserved skull of P. boi-
sei (KGA 10-525) was recovered in
Ethiopia at Konso (formerly called
Konso Gardula).20 This skull was not
only the geologically youngest known
specimen of P. boisei, at 1.4 Ma, but
also increased the geographical range
of the taxon. Moreover, this was the
first time that cranial and mandibular
evidence from the same individual
had been found in proximity, affirm-
ing the presumed associations
between the ‘‘robust’’ crania and large
jaws made by previous researchers.
Also, in 1999, a P. boisei-like maxilla
was recovered from Malema, Malawi,
thus substantially expanding the
southern extent of P. boisei’s range by
more than 1,000 km.21

FOSSIL EVIDENCE

Cranial

More than 111 craniodental speci-
mens are now attributed to P. boisei
sensu stricto; an additional 56 are
assigned to P. aethiopicus. Only the
most complete and well-preserved of
these are reviewed here.
Similarities between the type speci-

men (OH 5, Fig. 3) and the large,
crested cranium from Koobi Fora
(KNM-ER 406, Fig. 4) were noted at

Figure 1. Map of P. boisei sites in East Africa highlighting the change in its known geo-
graphic range over the past five decades. The only new site discovered between 1975
and 1985 was West Turkana; no new sites were discovered between 1985 and 1995. The
last decade has seen a significant increase in the range of P. boisei due mainly to the
discovery of Malema in Malawi, but also Konso in Ethiopia. Adapted from Delson and
coworkers.99
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the time of the latter’s announce-
ment.22 Most researchers have con-

cluded that the differences between
these two large, presumedmale crania
are best interpreted as evidence of
intraspecific and not interspecific var-
iation.1 The morphology of two other
partial crania from Koobi Fora
(KNM-ER 13750 and 23000) and of
the skull from Konso is also suffi-
ciently similar to that of OH5 and
KNM-ER 406 to suggest that all five
crania belong to P. boisei. Some
aspects of their morphology, such as
the topography of the ectocranial
crests and the face, vary within the
presumed male morph of P. boisei,
while other regions, such as the cra-
nial base, are relatively invari-
ant.17,23,24

A calvarium (KNM-ER 407) and a
partial hemicranium (KNM-ER 732)
differ in both size and shape from the
presumed male P. boisei crania. In the
case of KNM-ER 407, the contrast in
morphology was considered to be so
great that its initial taxonomic assess-
ment concluded it was ‘‘either a grac-
ile species of Australopithecus or else a
very early representative of Homo
. . ..’’22 In contrast it was suggested
that KNM-ER 406 and 732 ‘‘represent
the two sexes of the same species.’’25

Most researchers now agree with this
assessment, interpreting these crania
as smaller-bodied, presumably female
representatives of P. boisei,1,26,27 thus
providing evidence of substantial cra-
nial sexual dimorphism within this
taxon (Fig. 4). Another cranium re-
covered from Koobi Fora (KNM-WT
17400) has lost some of the diagnostic
morphology of the face, but what
remains of its osseous and dental
morphology leaves little doubt that
this specimen represents another
example of the small, presumably
female morph of P. boisei.

Postcranial

The only sure way for researchers to
know what the postcranial hypodigm
of a hominin taxon looks like is to find
diagnostic craniodental remains to-
gether with elements of the postcra-
nial skeleton. Unfortunately, there is
no compelling evidence of an associ-
ated skeleton for P. boisei (but see
Grausz and coworkers28). Thus, the
problem researchers have faced at
Olduvai Gorge, Koobi Fora, and else-
where is how to tell which of the unas-
sociated hominin postcranial fossils
should be assigned to P. boisei and

TABLE 1. Some Characteristic and Distinctive Features of Paranthropus boisei

sensu stricto

Cranium
– Orthognathic facial profile
– Broad mid-face with anteriorly positioned and laterally flaring zygomatic

bones
– High degree of postorbital constriction
– Overlap of parietotemporal sutures with marked striae parietales
– Polymorphic pattern of sagittal and nuchal cresting in presumed males
– Anteriorly positioned, heart-shaped foramen magnum
Mandible
– Deep and wide corpus with a rounded base
– Substantial superior and inferior transverse tori at the symphysis
– Tall and wide ramus
Dentition
– Very small anterior teeth relative to the posterior teeth
– Very large posterior teeth relative to skull size
– Maxillary premolars having large crowns with a relatively large paracone;

2 or 3 roots
– Maxillary molars, M1 < M2 ¼ M3; large crowns with high incidence of a

Carabelli’s cusp; 3 roots
– Mandibular premolars, P4 crown base area is ca. 140% that of P3; talonid

area is positively allometric relative to total crown area; 2 plate-like roots
– Mandibular molars-M1 < M2 < M3; expanded talonid; usually > 6 cusps;

usually at least one C6; unlikely to have a C7; 2 plate-like roots
– ‘‘Hyper-thick’’ enamel with relatively little enamel decussation on

postcanine crowns

Figure 2. The first evidence of Paranthropus
boisei. The deciduous right M2 of OH 3 in
occlusal (A), alveolar (B), mesial (C), distal
(D), buccal (E), and lingual (F) views. From
Tobias.100

Figure 3. Early photo of OH 5 in lateral view
shortly after its reconstruction. The mandi-
ble was created based on the known mor-
phology of the cranium. Its size and shape
were later affirmed by the discovery of the
Peninj mandible at Lake Natron, which
closely resembles the one created for OH 5.
Photo by Bob Campbell.

ARTICLES The Evolution of Zinjanthropus boisei 51



which should be assigned to the con-
temporaneous speciesHomo habilis.
The only unassociated hominin

postcranial fossil recovered at Olduvai
Gorge to be explicitly assigned to P.
boisei is a proximal femoral fragment
(OH 20, Fig. 7).29 A detailed analysis
of OH 20 suggested that it shares a
suite of features with two proximal
femora attributed to P. robustus (SK

82 and 97). These features prompted
Day29 to remark that ‘‘it would seem
reasonable to allocate the new femo-
ral fragment to Australopithecus cf.
boisei’’ (Note that Australopithecus
boisei is the same taxon as Paranthro-
pus boisei. The reason for the contin-
ued disagreement about whether to
attribute these fossils to Australopithe-
cus or Paranthropus will be discussed
later). At that time, no one knew what
an H. habilis femur looked like, so it
seemed logical to link a P. robustus-
like proximal femur with P. boisei, as
well as to link what were then inter-
preted as the more modern human-
like Olduvai Bed I and II postcranial
specimens (for example, OH 8 and 10)
withH. habilis.

The discovery of a modern human-
like ankle bone (the talus KNM-ER
813) at Koobi Fora30 weakened the
case for assuming that the OH 8 foot
belonged to H. habilis, since the OH 8
talus more closely resembles a talus
assigned to P. robustus (TM

1517).31,32 Wood31 argued that the
logic that had led to the interpretation
of Olduvai foot fossils (OH 8 and 10)
as modern human-like was flawed and
suggested that they have as much
claim to be attributed to P. boisei as
they have toH. habilis.
At approximately the same time

that these reassessments of the Oldu-

Figure 4. Right anterosuperior view of the
presumed male cranium KNM-ER 406 (A)
and anterior view of the presumed female
cranium KNM-ER 732 (B).

Figure 5. Occlusal views of KNM-ER 729 (A)
and KNM-ER 992 (B) casts. KNM-ER 729 has
been attributed to P. boisei. Easily visible
are its huge molar teeth, molarized premo-
lars, and thick corpus. KNM-ER 992 is the
type specimen of Homo ergaster. Although
its postcanine teeth are larger than those of
modern humans, they are clearly much
smaller than those of P. boisei.

Figure 6. The number of P. boisei speci-
mens discovered each decade for the
past 50 years. The large number of speci-
mens discovered between 1965 and 1975
was mostly due to the beginning of field
work at Koobi Fora and the Omo.

Figure 7. The proximal left femur OH 20 in
anterior (A) and posterior (B) views.
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vai hominin postcranial fossils were
taking place, Richard Leakey and his
team had begun to recover hominin
postcranial remains from Koobi Fora.
Most were femoral specimens; provi-
sional comparisons suggested that
they could be divided into those that
were more like the femora of modern
humans and those that were ‘‘not
unlike other femoral fragments that
have been collected elsewhere and
assigned to Australopithecus.’’25 How-
ever, the attributions of the more
primitive specimens to Australopithe-
cus and, by inference, to Australopi-
thecus cf. boisei, depended on the
untested assumption that the femora
of H. habilis were recognizably more
modern human-like than were the
femora of P. boisei. The subsequent
discovery of an H. habilis partial skel-
eton (OH 62) challenged this assump-
tion. The partial skeleton is poorly
preserved and its interpretation re-
mains controversial. Nevertheless, its
femoral morphology is evidently simi-
lar enough to that of femora from
Olduvai and Koobi Fora that had
been assigned to Australopithecus and
thence to P. boisei33 to make these lat-
ter attributions suspect. Conse-
quently, there is no current way of tell-
ing to which taxon or taxa the
‘‘Australopithecus-like’’ hominin post-
cranial evidence from Olduvai and
Koobi Fora belongs. For the time
being, it would be prudent to regard
this fossil evidence as Hominini gen.
et sp. indet.
Attempts to identify the postcranial

skeleton of P. boisei at sites other than
Olduvai and Koobi Fora have been ad
hoc, and none has been particularly
convincing. So where does that leave
us? In short, we are badly in need of
an associated skeleton that includes
cranial elements diagnostic of P. boi-
sei. Finding archaic-looking femora is
not enough because at least one other
synchronic East African hominin, H.
habilis, exhibits similar morphology.
It may be that some of the hominin
postcranial specimens assigned to
H. habilis actually belong to P. boisei
but, for the time being, we have no
way of telling. We suggest it is better
to accept that for various reasons no
postcranial remains can be confi-
dently assigned to P. boisei than to
continue with the present confusion.

SYSTEMATICS

Upon the discovery of OH 5, Louis
Leakey8 drew attention to twenty dif-
ferences between this cranium and
crania already attributed to Australo-
pithecus and Paranthropus, which at
the time were only known from south-
ern Africa. The following year Robin-
son34 went through Leakey’s claimed
‘‘major differences’’ and, to the for-
mer’s satisfaction, refuted the vast
majority. Robinson suggested that the
genus name Zinjanthropus be aban-
doned and proposed that OH 5 be
included within the existing genus
Paranthropus.

How Many Species?

There are currently three main
debates about the taxonomy of P. boi-
sei. The first focuses on whether
there are sufficient differences

. . . we are badly in need
of an associated
skeleton that includes
cranial elements
diagnostic of P. boisei.

between P. boisei and P. aethiopicus to
justify retaining P. aethiopicus as a
separate species. The second asks
whether recent discoveries have
blurred the distinction between P. boi-
sei and the megadont taxon from
southern Africa, Paranthropus robus-
tus. The third debate concerns
whether the differences in size and
shape subsumed within P. boisei are
consistent with a sexually dimorphic
early hominin taxon or whether they
are an indication that even P. boisei
sensu stricto subsumes more than one
taxon.

If the hypodigm of P. boisei is re-
stricted to the post-2.3 Ma fossil re-
cord, then the name P. boisei sensu
stricto should be retained for the main
hypodigm and P. aethiopicus should
be used as the species name for the
earlier fossil evidence. However, if the
P. boisei hypodigm is judged to

include the pre-2.3 Ma fossils, among
them Omo 18.18, L338y-6, and KNM-
WT 17000, then P. aethiopicus
becomes a junior synonym of P. boisei
sensu lato. The point at issue is
whether the differences between
KNM-WT 17000 and the < 2.3 Ma cra-
nia belonging to the P. boisei sensu
stricto hypodigm (for example, OH 5,
KNM-ER 406) justify a specific dis-
tinction for the West Turkana cra-
nium and the early megadont jaws
and teeth attributed to P. aethiopi-
cus.10 Two studies have looked at this
problem in detail. Suwa35 concluded
that there are differences in mandibu-
lar premolar cusp morphology
between the pre-2.3 Ma and the post-
2.3 Ma megadont fossil evidence, with
the later material having larger and
more elaborate talonids. Wood,
Wood, and Konigsberg23 found that
several features of the mandible and
the mandibular dentition (other than
the premolar morphology referred to
by Suwa35) also change at ca. 2.3 Ma.
These authors supported the interpre-
tation that the early stage of the Para-
nthropus lineage in East Africa should
be recognized as a different species.
The main differences between the two
East African Paranthropus species are
the greater facial prognathism, larger
incisors, flatter cranial base, smaller
mandibular corpus, and shorter post-
canine tooth row of P. aethiopicus.23

Tobias36 cogently made the case for
distinguishing between P. boisei and
P. robustus and, until recently, the
enlargement of the two hypodigms
had not materially altered that assess-
ment. However, the discovery of a
megadont hominin skull (KGA 10-
525) at Konso prompted Suwa and
coworkers20 to suggest that some
aspects of its morphology are com-
mon to both P. boisei and P. robustus.
This, together with the recovery of
additional cranial material from
Koobi Fora (for example, KNM-ER
23000)17 and the publication of the
detailed analysis of a cranium from
the Omo (Omo 323–896)14 prompted
at least one commentator to suggest
that Paranthropus taxonomy should
be reassessed.37 In addition, the re-
covery of a large, ‘‘P. boisei size’’ molar
from Gondolin38 suggests that it
would be worthwhile to consider
whether the recent discoveries in
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southern Africa at this site and at Dri-
molen39 may have closed the morpho-
logical gap between P. robustus and P.
boisei. However, recent studies
addressing these issues have found no
support for taxonomic revision based
on the current evidence. Wood and
Lieberman24 concluded that ‘‘the
Konso specimens fit within the popu-
lation parameters of P. boisei pre-
dicted by the ‘pre-Konso’ hypodigm.
When Constantino and Wood40 com-
pared the regional hypodigms of Par-
anthropus before and after addition of
the new material from Drimolen and
Gondolin, they found that the number
of significant metrical differences be-
tween the postcanine dentition from
East and southern Africa increased
rather than decreased.
As for whether the P. boisei hypo-

digm samples more than one hominin
taxon, it has been suggested that the
degree of size variation in the mandib-
ular hypodigm of P. boisei is excep-
tional.41,42 However, much of this ‘‘ex-
cessive’’ variation can be explained by
post mortem cracks that fill with ma-
trix and artificially inflate the size of
the mandibular corpus of larger indi-
viduals, while erosion of surface bone
has reduced the size of the corpus of
some of the smaller individuals in the
hypodigm.1,43 Apart from these ex-
trinsic causes of differences in overall
size, the size and shape of the mandib-
ular corpus of P. boisei is remarkably
stable through geological time23 (see

Fig. 2E), with both small and large
mandibles in the sample retaining
their characteristically robust corpus
and rounded base.1,23

Is Paranthropus Monophyletic?

Regardless of whether one or two
Paranthropus species are recognized
in East Africa, dental metrical evi-
dence still indicates that P. boisei is
distinct from P. robustus.40 But did
the East and southern African mega-
dont taxa evolve from a recent com-
mon ancestor exclusive to themselves
and thus form a monophyletic group,
or did the various regional Paranthro-
pus taxa evolve independently (Fig. 8)?

In 1988 Wood44 reviewed fifteen
hominin cladistic studies, all of which
concluded that the two regional var-
iants of Paranthropus are sister taxa.
An independent review published in
the same year also found that one
of the few reliable parts of the homi-
nin cladogram is the Paranthropus
clade.45 The major cladistic study by
Strait, Grine, and Moniz46 also found
that the most parsimonious clado-
grams support Paranthropus mono-
phyly. As part of their comprehensive
morphological analysis of the cranial
remains of Au. afarensis, Kimbel, Rak,
and Johanson3 also found consistent
support for a ‘‘robust’’ australopith clade.

Given the near unanimity of the
conclusions of these studies, what rea-
sons are there to continue to scruti-

nize the hypothesis of ‘‘robust’’ mono-
phyly? First, the average confidence
interval for hominin cladistic analyses
of ca. 0.65 means that approximately
35% of the characters used in the
analyses must have been independ-
ently acquired; that is, they are homo-
plasies. If these homoplasies are con-
centrated in one anatomical region
such as the skull, and if that region
has a major influence on the shape of
the cladograms, then an analysis of
the preserved morphology may not
result in an accurate reconstruction of
evolutionary relationships. Second,
many of the characters that link Para-
nthropus taxa are related to the masti-
catory system. For example, when
Wood and Chamberlain47 organized
characters according to anatomical
region, they found that support for a
Paranthropus clade relied heavily on
characters from the face, palate, and
mandible. These regions all reflect
masticatory adaptations and are thus
likely to be functionally integrated.
Therefore, the characters derived
from those regions are potentially
‘‘non-independent’’ and if so, should
not be coded as individual characters
in a cladistic analysis. Skelton and
McHenry48 reached a comparable
conclusion. Evidence from other
groups of mammals (see, for example,
Maglio49 and Vrba50,51) also suggests
that the masticatory system might be
the equivalent of a ‘‘homoplasy
ghetto.’’ It should be noted, however,

Figure 8. Adaptations of two proposed phylogenies for Plio-Pleistocene hominin evolution with the ‘‘robust’’ australopiths highlighted in
bold. The phylogeny by Skelton and McHenry48 shows the ‘‘robust’’ australopiths as a polyphyletic group descended from two different
ancestors, with many of the morphological features that are shared between Au. (P.) aethiopicus and the Au. (P.)boisei/Au. P. robustus

clade having evolved through parallel or convergent evolution. The phylogeny by Strait, Grine, and Moniz46 shows the ‘‘robust’’ austral-

opiths as monophyletic (all evolving from the same recent common ancestor). The length of the lines is arbitrary and not meant to be

reflective of time. In the phylogeny by Strait, Grine, and Moniz,46 ‘‘Au. afarensis’’ is in quotes because the authors designated a new
taxon name for members of this group. ‘‘Au. afarensis’’ is retained here for clarity of comparison with the Skelton and McHenry phylog-
eny. Also for ease of comparison, additional taxa such as Kenyanthropus platyops and Au. garhi are not included.
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that even when Strait, Grine, and
Moniz46 excluded masticatory charac-
ters from one of their cladistic analy-
ses they still found strong support for
a Paranthropus clade.
A third argument for questioning

Paranthropus monophyly is that a
study that used Patterson’s52 similar-
ity and ontogenetic criteria to test the
hypothesis of Paranthropus mono-
phyly44 with respect to mandibular
molar cusp morphology and mandib-
ular premolar root form produced
mixed results in terms of supporting
or falsifying the hypothesis. In a fur-
ther examination of Paranthropus
postcanine cusp morphology, Suwa,
Wood, and White53 noted that ‘‘the
individual cups involved in the talonid
expansion are not always the same,’’
with the hypoconid and the entoconid
contributing more to talonid expan-
sion in P. boisei and P. robustus, res-
pectively. This suggests that the de-
rived dental morphology in the two
Paranthropus taxa may not have the
same developmental basis.
The question of Paranthropus mo-

nophyly is therefore unresolved.
Future research will have to deter-
mine whether the shared skull mor-
phology of East and southern African
Paranthropus is due to common an-
cestry or convergent evolution. If one
is sanguine that hard-tissue morphol-
ogy is capable of recovering phyloge-
netic relationships established on the
basis of independent genetic evidence,
then Paranthropus monophyly must
be the hypothesis of choice. But if one
is more skeptical about its ability to
do so, then what others interpret as
overwhelming evidence for Paranthro-
pus monophyly looks less compelling.
This has taxonomic implications since
the genus name Paranthropus is only
appropriate if these taxa form a mo-
nophyletic group. Otherwise, they
cannot be included in their own sepa-
rate genus and should be included as
members of the genus Australopithe-
cus. Because the majority of phyloge-
netic analyses currently support Para-
nthropus monophyly, we suggest that
until the evidence demonstrates oth-
erwise, the genus name Paranthropus
should be used to recognize the strong
possibility that megadont taxa in both
regions form an adaptively distinctive
and monophyletic group.

What about the evolutionary rela-

tionships between Paranthropus and

nonrobust taxa? A recent attempt to

use morphological evidence to reeval-

uate the phylogenetic relationships of

Au. afarensis has revealed several sim-

ilarities in cranial morphology

between that taxon and P. boisei sensu
lato,3 but failed to support a direct

phyletic link between these hominins.

Interestingly, another hominin with

postcanine megadontia, Australopi-
thecus garhi, has been recovered from

ca. 2.5 Ma sediments in the Middle

Awash of Ethiopia.54 While it does not

seem to be a member of the Para-
nthropus clade based on other aspects

of its craniofacial morphology, it is

too early to know how it is related to

other hominins. Finally, most

researchers accept that the derived

morphology shared between Para-
nthropus and Homo, such as cranial

base flexion, either evolved independ-

ently in the two lineages or was inher-

ited from an as-yet undiscovered

recent common ancestor of the Para-
nthropus and Homo clades. The dis-

tinctness of other aspects of their

morphology leaves little doubt that H.
habilis and P. boisei are at least sepa-

rate species, probably belonging to dif-

ferent genera. Thus, the existing fossil

evidence suggests that the genus Para-
nthropus went extinct without contrib-

uting to the evolution of later hominins.

CONTEXT

Geographical and
Temporal Range

Paranthropus boisei sensu lato (P.
boisei sensu stricto plus P. aethiopicus)
is currently known from eight sites in
East Africa and spans a geological age
range of ca. 2.6–1.4 Ma (Figs. 1 and 9).
With the exception of the Omo, no
major East African sites are known to
have fossiliferous deposits dated to
between ca. 1.4 and 1.0 Ma or between
3.0 and 2.5 Ma. Therefore, it could be
argued that there is a gap of half a mil-
lion years on each side of the temporal
range of P. boisei sensu lato. We do
not know how far into those gaps Par-
anthropus fossils extend, but the appa-
rent absence of Paranthropus fossils
in the older Omo sediments suggests

that the currently accepted temporal
range of ca. 1.2 Ma is likely to be close
to the true temporal range.

Paleohabitat

There have been various interpreta-

tions of the habitat preferences of Par-

anthropus in East Africa. Shipman
and Harris55 concluded that P. boisei
sensu lato probably preferred closed
and wet habitats, while Reed56 sug-
gested that these hominins lived in
more open environments such as eda-
phic grasslands. Some P. boisei sites
not included in these analyses, such
as Peninj and Chesowanja, do not
have detailed paleoenvironmental
data available for the relevant strati-
graphic levels, but habitats have been
reconstructed at the more recently
discovered sites of Konso and Mal-
ema. The nine Konso specimens are
associated with a ‘‘predominantly dry
grassland fauna’’20 close to a paleo-
lake,57 with no P. boisei fossils coming
from the more mesic (moderately
wet) localities. The faunal assemblage
found with the P. boisei maxillary
fragment21 at Malema is sparse and
highly biased, but it is dominated by
open-habitat mammals including
alcelaphines, antilopines, Hipparion,
and the pig Notochoerus scotti, sug-
gesting that P. boisei was preserved in
a relatively open environment at that
site as well. The results of earlier
work58 also indicate the proximity of a
large paleolake at Malema. Thus, at
both Konso and Malema, the evidence
supports the assertion that P. boisei
favored open habitats near permanent
water, as advocated by Reed.56

BEHAVIOR

Given the lack of postcranial bones
that can be confidently attributed to P.
boisei, there is not much that can be
said of this taxon’s dexterity, posture,
or locomotion except that data on the
relative position of the foramen mag-
num67,68 indicate that the habitual
posture of P. boisei was similar to that
of modern humans. This section will
therefore focus on the evidence we
have regarding diet and the function
of the masticatory system, followed by
a brief discussion of attempts to infer
social structure frommorphology.
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Diet

There has not been much success
in determining the diet of P. boisei.
This is somewhat surprising consid-

ering the predominance of cranial,
gnathic, and dental evidence in its
hypodigm, the likely role diet played
in the evolution of its derived masti-
catory morphology, and the potential

for diet to provide information
regarding the divergence between
Paranthropus and early Homo. We
will review what has been done to
understand P. boisei’s diet in terms

Figure 9. Stratigraphic location of the P. boisei hypodigm. Shaded areas indicate levels where P. boisei fossils have been found. The spe-
cific positions of key specimens mentioned in the text are shown. The oldest known specimens of P. aethiopicus are from the Omo and
are dated to ca. 2.6 Ma, while the oldest fossils of P. boisei sensu stricto are from Malema and are approximately 2.3 Ma, based on fau-
nal correlations with the Omo. The specimens from Konso are the youngest known for P. boisei, at ca. 1.4 M.
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of dental morphology, masticatory
biomechanics, dental microwear,
and chemical analyses of bones and
teeth.

Dental morphology

The small incisors of P. boisei appear to
indicate a diet that did not require a sig-

nificant amount of incisal preparation

such as one consisting of leaves or ber-

ries.69 Therefore, if P. boisei was eating

fruit, then the fruit either lacked thick

husks or fleshy pulp or was small

enough to need little preparation before

mastication with the postcanine teeth.

However, the possibility that foods were

being prepared outside of the mouth

must be considered (see Box 1).

The very large, bunodont postca-
nine tooth crowns of P. boisei may
have been an adaptation to disperse
high occlusal loads or simply to
increase the surface area over which
food could be processed at any one
time. Lucas, Corlett, and Luke,70

showed that the ratio of the area of
M1 to M3 (both upper and lower) in
primates was inversely related to the
amount of leaves consumed and sug-
gested that the low M1:M3 ratio of
Paranthropus indicates that they were
‘‘probably consuming small mouth-
fuls of leaves and seeds.’’ However, the
low shearing crests71 and rounded
cusps of these teeth suggest that a diet
high in fibrous leaves or grasses was
unlikely. Nevertheless, it is still possi-
ble that seeds and plant underground
storage organs such as tubers, bulbs,

roots, and rhizomes made up a signifi-
cant proportion of P. boisei’s diet.72,73

All post-4 Ma hominins have rela-
tively thick enamel but, as with post-
canine crown area, P. boisei was even
more derived along this morphocline
than were other hominins; its enamel
has been described as ‘‘hyper-thick’’74

(p. 33). The functional role of thick
enamel is still unclear, but it has been
suggested that it is part of a strategy
to resist wear and/or withstand high
occlusal loads caused by abrasive or
hard foods. Gantt and Rafter75 sug-
gested that the hyper-thick enamel of
P. boisei was linked with ‘‘increased
crushing and grinding and adaptation
to savanna habitat.’’ While few would
disagree with this statement, there is
still no consensus as to what it was that
P. boiseiwas ‘‘crushing and grinding.’’

Masticatory biomechanics

The cranial attachments for the mass-
eter muscles are more anteriorly posi-
tioned in P. boisei than they are in
other early hominins76 and, to judge
from the size of the ectocranial crests,
zygomatic bones, and other muscle
attachment areas, P. boisei probably
had larger masticatory muscles as
well (Fig. 10).77 However, it is unclear
whether these larger masticatory
muscles would have resulted in higher

When the OH 5 cranium was discov-
ered at FLK I, it was assumed to be
the manufacturer of the stone tools
found on the ‘‘living floor.’’8 How-
ever, the career of P. boisei as the
maker of the Oldowan stone tools
ended just five years later, when
Louis Leakey was forced to consider
the implications of the subsequent
discovery of Homo habilis fossils in
association with the Oldowan cul-
ture at three other localities at Oldu-
vai. He concluded that ‘‘while it is
possible that Zinjanthropus and
Homo habilis both made stone tools,
it is probable that the latter was the
more advanced tool maker and that
the Zinjanthropus skull represents an
intruder (or a victim) on a Homo
habilis living site.’’59 This conclusion
was reached not because any evi-
dence suggested that P. boisei could
not be the toolmaker, but because H.
habilis, with its larger brain and
apparently modern human-like hand
bones, seemed a more likely tool-
maker than did P. boisei.
Since 1964, virtually all research-

ers have come to agree that H.
habilis made stone tools. Most of
these researchers have relegated P.

boisei to the sidelines of cultural
evolution. However, a few have
entertained the possibility that
members of more than one hominin
lineage may have had the ability to
manufacture simple stone tools.60–
64 The truth is that there is no direct
evidence linking any of these early
hominin species with stone tools.
No hand bones can be confidently
assigned to either P. aethiopicus or
P. boisei, so we do not know whether
these taxa were dexterous enough to
make or use stone tools. Hand bones
tentatively attributed to P. robustus
in southern Africa reportedly indi-
cate that these hominins were capa-
ble of a human-like precision grip.65

Both stone and bone tools have been
found in loose association with P.

robustus at Swartkrans61 and Sterk-

fontein.66 However, even if these an-

atomical and archeological associa-

tions prove to be sound, it is unclear

what the implications would be for

P. boisei. Thus far, there is no firm

evidence that P. boisei made and

used stone tools, but there is also no

firm evidence that members of this

taxon were incapable of doing so.

BOX 1: Was Paranthropus boisei a maker and
user of stone tools?

Figure 10. KNM-ER 406 (A) and KNM-ER
3733 (B) in superior view. The large and lat-
erally flaring zygomatic arches of KNM-ER
406 can be seen clearly. Coupled with the
shorter anteroposterior length of the cra-
nium, this gives P. boisei a much more cir-
cular cranial circumference when viewed
from this angle. Also apparent in this pho-
tograph are the high degree of postorbital
constriction and sagittal crest develop-
ment in P. boisei, both related to its smaller
relative brain size. One can also see evi-
dence of the convergence in facial
orthognathy between P. boisei and Homo.
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occlusal forces. As Demes and Creel78

have pointed out (and as Walker79

pointed out earlier for P. robustus), P.
boisei would have been able to gener-
ate exceptionally high bite forces rela-
tive to those of other hominins, but
the occlusal forces at the molars
would not have been exceptional if
they were distributed over the entire
occlusal surface. Only if P. boisei was
feeding on limited numbers of small
objects at any one time would increased
force on any single object result.
Since, under certain circumstances,

P. boisei could generate significantly
higher bite forces than could other
hominins, it is not surprising that they
also appear to have had the ability to
withstand high bite forces. Hylander80

has suggested that the thick mandibu-
lar symphysis and the deep, thick
mandibular corpus of P. boisei, which
is approximately three times larger
than would be expected in a general-
ized hominoid of the same body
mass,81 allowed these creatures to
resist high stresses caused by masti-
cating very hard or tough food items.

Dental microwear

Thus far, no study of P. boisei dental
microwear has been reported in the
literature. This is due, at least in part,
to the fact that most P. boisei fossils
are found on the surface, and surface
specimens typically exhibit a substan-
tial proportion of nondiet-related
microwear due to erosion, weather-
ing, and trampling.82 Although the
analysis of dental microwear has pro-
ven to be a valuable technique for
understanding diet in the megadont
hominins from southern Africa,83,84 it
is unclear what these results say, if
anything, about the diet of P. boisei.

Chemical analysis

The chemical analysis of bones and
teeth is another method that has sig-
nificantly increased our understand-
ing of hominin diet but, as with dental
microwear analysis, it has not yet
been used in an in-depth study of the
diet of P. boisei. One of the only chem-
ical studies that included P. boisei was
by Boaz and Hampel,85 who found

that P. boisei had lower Sr:Ca ratios
than did early Homo. This is broadly
consistent with later analyses of P.
robustus from Swartkrans86 and sug-
gests that Paranthropus may have
been consuming more meat than did
the earliest members of our own ge-
nus. However, the results of the Boaz
and Hampel study need to be inter-
preted with caution due to the small
samples used for earlyHomo.

Social Structure

Plavcan87 has been at the forefront

of efforts to predict the social struc-

ture of extinct taxa through compari-

sons of sexual dimorphism in body

size and canine crown size. Unfortu-

nately, we currently lack reliable ways

of determining the sex of most early

hominins but, as mentioned earlier,

the pattern of craniodental size

dimorphism apparent in P. boisei sug-

gests the presence of distinctive male

and female morphs. These morphs

are somewhat unusual, however, in

that they both possess relatively small

canines, despite their evident cranio-

dental and inferred body size differen-

ces. Therefore, even if we assume that

the larger specimens are males and

the smaller specimens are females,

there are no modern higher primate

analogues that show a comparable

pattern of within-species variation.
Inferences could be made about

the social structure of P. boisei by
atomizing its morphology and then
comparing the predictions from each
of the components (canine crown
height, canine crown buccolingual
width, body size, and so on), but
Plavcan87 suggested that the relation-
ships among these variables in living
higher primates are ‘‘not strong
enough to make detailed inferences
about mating systems or behavior on
the basis of dimorphism alone.’’ In a
later paper, Plavcan88 cautions
against assuming that any living
hominoid is a suitable analogue for
early hominins with respect to pre-
dicting social structure.

LIFE HISTORY

The stages through which an indi-

vidual passes during its lifetime are

collectively termed its life history.

Knowledge of the pattern and timing

of an organism’s life history can reveal

information about its strategies for

survival and reproduction. Unfortu-

nately, little is known about the life

history of P. boisei. Here we discuss

why neither life-history variables

(ones directly related to life history)

nor life-history-related variables (ones

indirectly related to life history) are
currently able to tell us much about
life history in this taxon.

Life-History Variables

Age at weaning is an indicator of
relative offspring dependence and
maternal investment. Because lacta-
tion suppresses ovulation in great
apes and humans, it is also a determi-
nant of interbirth interval. Among liv-
ing primates, weaning appears to
coincide with M1 eruption,89 but
within the hominin clade some evi-
dence suggests that weaning may pre-
date M1 emergence.90 This is certainly
the case for modern human groups
who wean infants at about the age of
2.5 years, whereas the first permanent
mandibular molar does not erupt
until children are approximately 6
years old. Determination of age at
weaning in fossil hominins has thus
been based on an assessment of the
degree and timing of the deciduous
dental attrition associated with die-
tary supplementation. Aiello, Mont-
gomery, and Dean91 showed that
specimens of P. boisei and P. robustus
judged to be between 2.5 and 3.5 years
of age exhibit high levels of deciduous
dental attrition compared to specimens
of Au. afarensis.However, these authors
acknowledged that this difference could
be related to either an earlier age at
weaning or to differences in diet.

Life-History-Related Variables

Body size

There are strong correlations between
body size and life-history variables
such as gestation length, weaning age,
age at first reproduction, interbirth
interval, and maximum life span
across subfamilies of primates.92

Researchers who have used cranial
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variables as proxies for body mass93,94

have concluded that the estimated
body mass of P. boisei is similar to
that of archaic hominin taxa in the ge-
nus Australopithecus. Thus, differen-
ces in body mass cannot be used to
account for any differences in predic-
tions about the life history of P. boisei
and other archaic hominins.

Brain size

Brain mass has also been shown to be
highly correlated with many life-his-
tory variables.92 Brain mass can be

derived from brain volume, and brain
volume can be derived from endocra-
nial volume if allowance is made for
the space occupied by the endocranial
vasculature and the intracranial extra-
cerebral cerebrospinal fluid. The
mean of the ten endocranial volumes
in the P. boisei sample is 481 cm3, with
a range of 400–545 cm3. This range
substantially overlaps with that of
extant nonhominin higher primates
and that of archaic hominins, includ-
ing H. habilis sensu stricto.95 Like
body size, therefore, brain size is not
very useful in elucidating life-history

differences between P. boisei and
closely related taxa.

Dental ontogeny

In some respects, such as incisor
crown formation and eruption
sequence, dental development in P.
boisei resembles that of modern
humans, while in others, such as the
rate of root formation, it resembles
that of chimpanzees. In still other
respects, dental development in P. boi-
sei is unique (for example, enamel for-

Figure 11. The effect of additional specimens on three P. boisei dentognathic variables including (A) P4 buccolingual breadth, (B) M3

buccolingual breadth, and (C) mandibular corpus area (h � w) at M1. Variables were chosen based on the number of available fossil
specimens. For the three variables selected, the median values stabilize after approximately 7 to 15 specimens have been assessed.
The dark horizontal line across each box is the median value; the box itself represents the interquartile range (middle 50%); the lines
(whiskers) show the complete range (excluding outliers). [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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mation in the postcanine teeth). The

premolar and molar crowns of P. boi-
sei take the same time, or less, to form

than do those of modern humans and

chimps, despite the fact that P. boisei

crowns are approximately twice the

size of human and chimp crowns.

This is due to a combination of more

enamel secretion per day by amelo-

blasts and a faster rate of ameloblast

activation.96 We need more informa-

tion before we can determine whether

these differences are due to selection

operating on life history, on diet, or

on a combination of the two.

TRACKING MORPHOLOGICAL
VARIABLES OVER TIME

Most contributions to the paleoan-
thropological literature either focus
on the latest tranche of fossil discov-
eries or look in depth at the fossil evi-
dence from a single site or from a par-
ticular region or body part. Relatively
few studies focus attention on the
accumulated hypodigm of a single
early hominin taxon.3,97

Mandibular and dental remains are
particularly well represented in the
hypodigm of P. boisei and for some
parameters the sample sizes (N > 20)
are respectable, at least by paleonto-
logical standards. For some variables,
therefore, it is possible to investigate
how much the sample parameters of
P. boisei have changed as the sample
sizes have increased. We track the pa-
rameters of three such variables (Fig.
11). These variables have been chosen
at random to the extent that they hap-
pen to be the ones represented by the
largest number of specimens. The pa-
rameters of all three variables are
remarkably consistent, and other vari-
ables with smaller hypodigms show
comparable patterns. The two largest
samples are for M3 buccolingual
breadth and mandibular corpus area
at M1. There is very little change in the
sample parameters once the hypo-
digm reaches N ¼ ca. 10. These data
contradict the notion that paleoan-
thropological samples are generally
too small to support claims of mor-
phological distinctiveness. Richard
Smith has provided a chastening dem-
onstration that this is the case for very
small samples,98 but our post-hoc
investigation of one early hominin

taxon should encourage field re-
searchers and funding agencies to
recognize that even relatively modest-
sized samples can provide useful in-
formation about the original popula-
tion from which the fossil sample was
drawn. Larger samples are still impor-
tant, however. As this review has high-
lighted, larger samples of P. boisei fos-
sils have increased our understanding
about morphological character com-
binations, the geographic and tempo-
ral range of the taxon, and variation
in nonmetrical traits such as the
patterns of ectocranial cresting.

The premolar and molar
crowns of P. boisei take
the same time, or less, to
form than do those of
modern humans and
chimps, despite the fact
that P. boisei crowns are
approximately twice the
size of human and
chimp crowns. This is
due to a combination of
more enamel secretion
per day by ameloblasts
and a faster rate of
ameloblast activation.

CONCLUSIONS AND PROSPECTS

Half a century of collection and

analysis has vindicated some of the

initial assessments of the taxonomy of

P. boisei by Leakey8 and Tobias.36 For

example, two judgments of Leakey8

appear to have been supported by the

new evidence. First, only Robinson34

has seriously doubted the wisdom of

establishing a new taxon for the P.
boisei hypodigm. Second, although

support for recognizing P. boisei

and its ilk at the level of a separate

‘‘sub-family Australopithecinae’’8 has

waned, few would demur from the

judgment that P. boisei belongs to the

same general grade of archaic homi-
nins as do taxa presently included in
the genera Australopithecus and Keny-
anthropus, albeit as the most derived
member of that grade grouping. Two
judgments about the phylogenetic
relationships of P. boisei have fared
less well. First, the enlargement of the
hypodigm has effectively falsified
Louis Leakey’s claim that OH 5
‘‘differs from both Australopithecus
and Paranthropus much more than
these two genera differ from each
other.’’8 Because phylogenetic analy-
ses seldom, if ever, put H. habilis
sensu stricto and P. boisei in the same
clade, Phillip Tobias’36 suggestion that
it is ‘‘unlikely’’ that P. boisei and H.
habilis ‘‘were genetically isolated’’ (p.
244) can be refuted.
This review highlights how much

remains to be learned about most
aspects of P. boisei’s paleobiology,
including its diet, life history, tool use,
temporal and geographical range, phy-
logenetic relationships, and even what
it looked like from the neck down. So
how can we improve our understand-
ing of the paleobiology of P. boisei?
The first priority is to find at least one,
and preferably several, taxonomically
unambiguous associated skeletons.
This would help researchers work out
which limbs go with which heads at
Olduvai and Koobi Fora. The second
priority is to extract more information
about the functional morphology of P.
boisei’s masticatory system, and thus
about its diet, from the fossil record.
Third, we need to clarify the evolution-
ary relationships between P. boisei and
the other ‘‘robust’’ taxa. Fourth on the
list would be a way of teasing out what
aspects of dental growth and develop-
ment are diet-related and what aspects
carry a signal about life history. Finally,
and perhaps the trickiest of all, is the
task of finding ways of establishing
whether, and to what extent, P. boisei
was a cultural animal. Did its cultural
repertoire go beyond that of a modern
chimpanzee? If so, how did its culture
differ from that of the other less mega-
dont archaic hominins?
The rate of discovery is on the

decline for P. boisei fossils (Fig. 6),
probably due mainly to changes in
research priorities within paleoanthro-
pology. Nevertheless, there is much to
learn about this intriguing taxon, and
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we need both additional fossils and
new analytical methods and strategies
in order to move forward.
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