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ABSTRACT 
 
Given the difficulty of surgical resection of brain neoplasms located adjacent to vital structures 

of the brain as well as the challenges posed by the blood-brain-barrier for the efficacy of 

chemotherapeutic agents, whole brain radiation therapy (WBRT) and stereotactic radiosurgery 

(SRS) are often turned to for patients with brain metastases as well as primary brain neoplasms. 

Though radiation therapy may be successful in local control of these tumors, many patients 

experience treatment-related neurocognitive issues, later in life. In this review, we examine 

cognitive dysfunction in brain tumor patients following radiation therapy, with an emphasis on 

the pediatric population. Articles were found using NCBI’s PubMed and relevant search terms. 

We first review the hypotheses regarding the biological mechanisms underlying these neurologic 

manifestations such as neuroinflammation, extracellular matrix disruption, and inhibition of 

angiogenesis. Cognitive defects and related effects on health-related quality of life in brain tumor 

patients treated with radiotherapy are then discussed. We also address novel treatment strategies 

aimed at minimizing neurocognitive delays such as hippocampal-sparing radiotherapy planning, 

intensive chemotherapy regimens, and the growing field of proton therapy. Possible molecular 

therapeutic targets are discussed as well as preclinical studies examining human embryonic and 

neural stem cell transplantations. Finally, we examine the role of aerobic exercise, 

multidisciplinary rehabilitation, and other interventions that may help to curb the negative effects 

of radiotherapy on cognitive development and function. 
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Introduction 
 

Approximately 210,000 cases of primary and metastatic brain tumors are estimated to be 

diagnosed each year in the United States. Notably, primary brain tumors are the most common 

type of solid tumors in children (4,600 primary brain neoplasms are estimated to be diagnosed 

this year) and are the leading cause of cancer-related deaths in children under the age of 20. (1)  

 

Generally, surgery is the first method of treatment for brain tumor patients. However, tumors 

deeply-seated within the brain or located near critical structures that control important functions 

are difficult to remove due to possible iatrogenic neurologic damage. (2) Also, chemotherapy 

may be utilized for treatment, though the clinical applications of chemotherapy may be limited as 

a result of both significant side effects and insufficient delivery due to the blood-brain-barrier. 

(3)   

 

Thus, radiation therapy is often turned to for the treatment of both primary and metastatic brain 

neoplasms. (4,5) Roughly 200,000 brain tumor patients in the US are treated with some form of 

radiation each year. (6)  Specifically for brain cancers, stereotactic radiosurgery (SRS) and whole 

brain radiation therapy (WBRT) are often used. SRS delivers a high dose of radiation in one 

session, whereas WBRT administers ionizing radiation to the entire brain. However, the use of 

radiation therapy for the treatment of brain tumors is limited by the risk of radiation-induced 

damage and subsequent functional deficits. This review aims to summarize the neurocognitive 

effects following radiation therapy in patients with brain tumors with an emphasis on the 

pediatric population, novel methods of treatment aimed at minimizing cognitive dysfunction, as 

well as interventions that may be attempted should cognitive delays present. 

 

Methods 
 

We utilized NCBI’s PubMed to identify relevant articles using combinations of search terms 

such as: brain tumor, cognition, cognitive deficits, radiation therapy, proton therapy, stereotactic 

radiosurgery, whole brain radiation therapy, intervention, exercise, and pediatric. A total of 94 

papers were chosen for inclusion in this review. 

 

Hypotheses Explaining Radiation-Induced Cognitive Dysfunction 

There are many hypotheses that aim to explain the mechanisms underlying cognitive declines 

following radiation therapy. Most intuitive is the assumption that direct damage and subsequent 

death of parenchymal cells (oligodendrocytes, neurons, astrocytes, and microglia) contributes to 

cognitive decline. Damage to oligodendrocytes, which are responsible for myelination of the 

CNS, has been thought to play a role. Though studies examining rats undergoing fractionated 

WBRT did find a decrease in the number of oligodendrocytes, no change in the number of 

myelinated axons or the thickness of myelin sheaths were noted 12 months following treatment. 

(7,8)  Neurons in irradiated rodent brains are found to have altered expression of the immediate-

early gene activity-regulated cytoskeleton-associated protein, N-methyl-D-aspartate (NMDA) 

receptors, glutaminergic transmission, and hippocampal long-term potentiation, all of which are 

essential to synaptic plasticity and thus cognition. (9) The response of both astrocytes and 



 

microglia to radiation is thought to contribute to changes in the cellular microenvironment which 

will be discussed below. 

 

With regards to cognitive decline, radiation damage of the temporal lobe (specifically the 

hippocampus) likely plays a role. Both memory and learning are influenced by the proliferation 

of neural stem cells in the hippocampal granule cell layer, which allows for neuron renewal and 

synapse restructuring. In mature rats, the proliferative potential of this layer has been observed to 

be greatly reduced following radiation at doses lower than those typically required to injure 

dysplastic glial cells. (10)  However, in vivo studies have demonstrated that older rats 

experienced cognitive declines following WBRT without impaired hippocampal neurogenesis or 

demyelination seen in younger rats, suggesting that other mechanisms in non-hippocampal 

regions are likely to also contribute to neurocognitive issues. (9) 

 

As such, much of the literature has addressed disruption of the integrity of the blood-brain-

barrier (BBB) following radiotherapy as a possible explanation for impaired cognition. Increased 

inflammation following radiation therapy has been implicated. The up regulation of cytokines, 

which are thought to be expressed by microglia following radiation, and pro-inflammatory 

transcription factors in the brain are thought to contribute to endothelial cell dysfunction and 

consequent disruption of the BBB. (11,12)  The disruption of the extracellular matrix of the BBB 

may also be involved as WBRT has been previously documented as altering the expression of 

matrix metalloproteinases (MMP), leading to collagen IV degradation in both in vitro and in vivo 

studies. (13) Also, radiation inhibits physiologic angiogenesis in the brain, as evidenced by 

increased vascular permeability and impaired endothelial cell proliferation in irradiated tissues. 

(14) Studies have demonstrated that brain samples of rats exhibiting cognitive decline following 

fractionated WBRT had decreases in vessel density, cerebral blood flow, the number of 

endothelial cells, and angiogenic factors such as vascular endothelial growth factor (VEGF). 

(15,16)  

 

In addition to disruption of the BBB, the changes mentioned above may also play a role in stem 

cell lineage. Notably, a study by Monje et al. found that the changes outlined above were 

observed in the neural microenvironment of radiation-treated mice and resulted in hippocampal 

progenitor cells differentiating into glial rather than neural cells.17 In spite of these findings, there 

is still a poor understanding of the cellular or molecular mechanisms leading to cognitive 

dysfunction following radiotherapy. Elucidation of the hypotheses above has led to studies 

exploring them as potential therapeutic targets that will be discussed shortly. 

 

Cognitive Dysfunction and Related Effects on Quality of Life 
 

Retrospective studies estimate that neurologic handicaps and impaired cognition are observed in 

65% and 85%, respectively, of patients who were under 3 years of age when they underwent 

radiotherapy. (18) Many studies have aimed at particular cognitive defects to specific tumor type 

and location. For example, in children previously treated for pilocytic astrocytoma with normal 

intelligence prior to diagnosis, all children were noted to have deficits with sustained speech and 

speed of speech; radiotherapy in these patients further contributed to lower cognitive 

functioning. Notably, 60% of patients in this study had difficulty with academics 3 years after 

treatment. (19) Pediatric patients treated for medulloblastoma were not noted to have visual 



 

memory deficits as have been noted in other studies, though attention deficits were quite 

prominent and were correlated with impaired math and reading performance. (20) In comparing 

intellectual outcomes of children diagnosed with either ependymomas or medulloblastomas and 

subsequently treated with WBRT, only 10% of medulloblastoma patients had an IQ above 90 

after 10 years as compared to 60% of ependymoma patients and was hypothesized to be due to 

cerebral hemisphere radiation (given that this was the only significant difference between the 

two groups). (21) Notably, declines in both IQ as well as verbal comprehension seems to be 

dose-dependent, as children with posterior fossa tumors having received 35 Gy of radiation had 

lower average scores in both categories as compared to those receiving 0 and 25 Gy. (22)  

Similar studies have found that compared to age-matched controls, brain tumor patients treated 

with radiotherapy have significantly lower verbal IQ, processing speed, visual and verbal 

immediate memory, learning deficits, and selective attention. (23-26)  Interestingly, children with 

brain tumors have also been demonstrated to have significantly poorer working and verbal 

memory as well as attention deficits even prior to treatment, suggesting that interventions are 

necessary to mitigate the effects of both the disease process as well as radiotherapy on cognition. 

(27) 

 

Also of note is the strong correlation between cognitive dysfunction stemming from radiotherapy 

and a lower quality of life. (28,29)  Adults that had been previously diagnosed and treated for 

brain tumors in childhood have been found to have a 10%-23% lower likelihood of attaining a 

basic education, and this effect was even more marked for female survivors at a 45% lower 

probability compared to age-matched controls. A younger age of diagnosis was also significantly 

associated with a lower likelihood of completing basic education. (30,31)  Also, patients that had 

been previously diagnosed with CNS neoplasms and treated with WBRT had a roughly 10% 

lower likelihood of ever being married in their lifetime (this effect is even more pronounced at an 

estimated 29-38% lower likelihood for male CNS survivors older than 30 years of age). (32) 

Similar studies have found that CNS neoplasms survivors often have lower rates of educational 

attainment, employment, and marriage and consequently a significantly lower quality of life. 

(33) Survivors’ outlook on life is also impaired, as brain tumor survivors that underwent WBRT 

exhibit low present and expected future life satisfaction as well as higher rates of psychological 

distress as compared to survivors of other solid tumors.(34) The impaired psychosocial 

development of brain tumor survivors is also apparent as patients have been shown to be 50% 

more likely to experience depression or anxiety and 70% more likely to exhibit antisocial 

behaviors, with cranial irradiation being noted as a specific risk factor for both. (35) 

 

Alternative Radiotherapy Treatment Planning and the Promise of Proton Therapy 
 

Clinical studies have demonstrated that patients receiving higher doses of radiation (and 

subsequently larger volumes of the brain being treated) have worse prognosis regarding 

cognitive outcomes. (36,37)  Dose-dependent effects in pediatric brain tumor patients have been 

demonstrated with regard to motor skills/dexterity (hippocampus and temporal lobe), verbal 

learning (cerebrum), and visual perception (temporal lobe). Though declines relative to age-

matched controls were noted in a variety of other areas, no association was found between the 

neurologic structure radiated and the cognitive defect experienced for others tested (such as 

visuospatial working memory or vocabulary). (38) 

 



 

As such, many studies have examined alternative treatment strategies, such as utilizing SRS 

alone as opposed to WBRT and SRS to minimize the exposure of the brain to radiation. Patients 

with brain metastases treated with SRS alone experienced declines in Mini Mental Status 

Examination (MMSE) scores 9 months earlier than those assigned to WBRT and SRS, which 

suggests that control of tumor growth should be the primary concern for maintaining cognitive 

function. (39) However, other studies have found that patients treated with SRS alone had a 

lower incidence of experiencing decline in learning and memory function (24%) 4 months after 

treatment than those with WBRT and SRS (52%); consequently, the authors recommended initial 

SRS with close clinical monitoring before moving to use of WBRT. (40) Similarly, recent 

findings from a phase III randomized clinical trial of 213 patients with brain metastases (median 

follow-up: 7.3 months) found a significantly greater incidence of cognitive decline in patients 

treated with WBRT + SRS (91.7%) as compared to those receiving SRS alone (63.5%), with 

lower immediate recall, memory, verbal fluency and subsequently quality of life. (41)   

 

The advent of intensity-modulated radiotherapy (IMRT) has also allowed for treatment planning 

and contouring to avoid radiating hippocampal neural stem cells with WBRT.  Previous 

retrospective studies have demonstrated that WBRT with hippocampal sparing via IMRT 

reduced doses delivered on a per-fraction basis to the hippocampus by 87% (0.49 Gy) and 81% 

(0.73 Gy) via helical tomotherapy and linear accelerator-based treatments, respectively, with 

median doses of 5.5 Gy and 7.8 Gy delivered via the same methodologies. (42)  Similar studies 

adopting this approach for adult patients with brain metastases have reported significantly lower 

rates of memory loss 4 months post-treatment and with no treatment-related decline in quality of 

life.(43) A prospective phase II trial utilizing hippocampal sparing WBRT reported no 

significant declines in immediate verbal and nonverbal, executive functioning, or psychomotor 

speed following treatment, with delayed memory recall being the only neurocognitive function 

significantly affected. (44) 

 

Another approach is utilizing a lower dose of radiation with adjuvant chemotherapy. Early 

findings indicate that such an approach for lower to medium risk brain neoplasms can be curative 

and may be associated with declines in verbal, nonverbal, and full-scale IQ scores but less than 

those observed with higher doses of radiation alone.(45-48)  Other studies examining the role of 

postoperative chemotherapy to allow for a delay in radiotherapy for a variety of brain neoplasms 

had similar progression-free survival as compared to standard treatment plans including radiation 

with minimal observed cognitive dysfunction. (49,50) 

 

Most prominent among these trials are the “Head Start” trials, which attempt to use 

chemotherapy in place of radiotherapy for malignant brain neoplasms. Patients are placed on 

multiple cycles of chemotherapy for 5 months to reduce the size of the tumor and are then given 

a single large myeloablatic dose of chemotherapy followed by rescue with autologous 

hematopoietic stem cells. If no disease is seen on MRI following treatment, then radiotherapy is 

not used. Studies examining the effectiveness of this approach for supratentorial primitive 

neuroectodermal tumors (sPNETs), which typically have a poor prognosis, found a survival 

advantage as well as a significant decline in patients requiring radiation for local control. (51) 

Similarly, a majority of patients under the age of 3 years old with non-metastatic 

medulloblastoma treated under this regimen did not require radiation and consequently had both 

intelligence and quality of life scores within normal ranges, though there was a high toxicity-



 

related mortality rate (4/21). (52) Venkatramani et al. also reported the ability to defer radiation 

for supretentorial ependymomas, though for infratentorial ependymomas such an approach 

appears to be ineffective. (53) However, studies have previously demonstrated that 40% of 

cancer survivors of other sites experienced significant cognitive dysfunction after high dose 

chemotherapy followed by hematopoietic cell transplantation rescue 1 and 5 years post-

treatment; as such, monitoring patients on similar treatment protocols over a long time frame is 

needed. (54,55) 

 

Another novel treatment method that holds promise is proton-beam radiotherapy. Proton therapy 

is believed to result in greater sparing of healthy tissue and better outcomes due to narrower 

beams that may allow for a more-targeted delivery of radiation as well as a smaller penetration of 

tissue beyond the tumor. (56)  Given the new nature of this technology, relatively few clinical 

studies have been completed examining the theoretical advantages of proton therapy for brain 

neoplasms. Studies that have been done to estimate the clinical benefit of proton therapy based 

on simulated proton therapy for pediatric medulloblastoma cases found that the mean dose of 

radiation to the hippocampus could be limited to almost half that of IMRT and consequently 

lower the risk of cognitive issues later in life.(57) Notably, initial studies have demonstrated that 

the quality of life of 142 pediatric brain tumor patients 3 years after proton therapy improved to 

levels similar to healthy age-matched peers, though a comparison was not done comparing such 

patients to those treated with conventional radiotherapy and thus merits further study.(58) 

 

Results of Potential Therapeutic Targets and Stem Cell Therapies in Preclinical 
Trials 
 

Given the various radiation-induced mechanisms previously covered that are hypothesized to 

interfere with the integrity of the BBB and subsequently lead to cognitive dysfunction, a variety 

of molecular targets implicated in these mechanisms have been studied. For example, known 

anti-inflammatory agents such as NSAIDs, peroxisome proliferator-activated receptors (PPARδ) 

agonists, atorvastatin, and ramipril have been tested following WBRT in mice and rats to reduce 

microglial activation and subsequent inhibition of hippocampal neurogenesis. However, 

preclinical studies with the goal of minimizing neuroinflammation have yielded mixed results in 

preventing cognitive declines.(59-64) Though the possible role that MMPs may have in ECM 

degradation were previously discussed, presently no work has been done to examine whether this 

may provide benefit in pre-clinical irradiated brain studies. With regards to angiogenesis, 

systemic hypoxia following WBRT restored cerebrovascular density and reversed learning and 

memory impairments. As such, radio-protective drugs have been evaluated in preclinical trials 

and have been shown to be effective at protection of brain vasculature via preventing loss of 

endothelial cells and also lowering the proportion of rats brains demonstrating white matter 

necrosis.(15,65,66) However, studies utilizing any of these approaches have not been attempted 

in the clinic. 

 

Another field of study that have begun to draw interest are stem cell therapies, given prior 

studies in mouse models of Alzheimer’s disease that have demonstrated improved cognitive 

functioning following neural stem cell transplantation. A variety of mechanisms such as 

restoration of brain-derived neutrophic factor (BDNF) levels (involved in neuronal 



 

differentiation, neurogenesis, and synaptic plasticity necessary for long-term memory) as well as 

attenuation of inflammation via reduced cytokine expression has been proposed. (67-73) 

 

With regards to brain tumors and radiotherapy, it is believed that transplantation of stem cells 

can alleviate radiation-induced cognitive dysfunction by increasing the number of neurons via 

differentiation. Stem cells may also alter the neural microenvironment in the hippocampus to 

promote synaptic plasticity necessary for memory formation and information processing. 

Preclinical studies have found that athymic rats that had been both irradiated and had 

intrahippocampal transplantation of human neural stem cells (hNSCs) expressed activity-

regulated cytoskeleton-associated protein (Arc, an established marker for detecting active 

neurons) at similar levels to control levels. Rats undergoing transplantation were found to have 

consequently improved hippocampal spatial memory and a significantly lower decline in 

cognitive dysfunction. (74,75)  Intrahippocampal nHSCs transplantation has also been 

demonstrated to provide cognitive benefit lasting 8 months post-radiation (which was not 

observed following human embryonic stem cell transplantation) and may also attenuate 

radiation-induced neuroinflammation. (76,77)  Notably, transplantations were found to result in 

the greatest cognitive outcomes if given 4 weeks following radiation as opposed to 2 days or 1 

week after radiotherapy, with nearly 40% of surviving stem cells following a neuronal lineage in 

the CA1 and CA3 subfields of the hippocampus.(77) Also, human embryonic stem cell-derived 

oligodendrocytes in irradiated rats have been found to successfully migrate throughout major 

white matter tracts to participate in functional repair, which resulted in complete recovery of 

cognitive function to baseline levels. Motor deficits were also found to improve following 

transplantation of stem cell-derived oligodendrocytes into the cerebellum. (78) However, no 

significant clinical studies have been documented to our knowledge to date assessing the 

effectiveness of neural or embryonic stem cell intrahippocampal transplantations in either the 

pediatric or adult brain tumor populations. 

 

Aerobic Exercise, Multidisciplinary Rehabilitation, and Other Interventions 
 

In addition to the treatment options discussed earlier, many other interventions such as 

cardiovascular exercise may be helpful in improving cognitive functioning. Preclinical models 

have aimed at better elucidating whether exercise does attenuate radiation-induced cognitive 

dysfunction and the molecular mechanisms by which it may do so. Studies in mice have 

demonstrated that voluntary running starting 1 month following WBRT prevented marked 

declines in spacial memory, with possible mechanisms including partial neuron regeneration in 

the dentate gyrus and increased hippocampal expression of VEGF and IGF-1.(79)  Similar 

studies in irradiated rats have demonstrated that 3 weeks of forced running attenuated radiation-

induced declines in hippocampal neurons and expression of BDNF and was correlated with 

improved behavioral performance.(80) Declines in BDNF have been implicated in playing a 

large role in radiation-induced cognitive dysfunction, as other studies in rats subject to 30 Gy of 

WBRT have demonstrated significant declines in BDNF gene transcription via an epigenetic 

mechanism. Notably, a decrease in histone-deacetylase 1 (HDAC1) - dependent H3 acetylation 

was noted at BDNF gene promoters, which was reversed following administration of an HDAC 

inhibitor with consequent improved hippocampal neurogenesis.(81) As discussed earlier, BDNF 

plays a key role in memory formation via promotion of neuronal differentiation and 

neurogenesis, and attenuation of declines of BDNF in Alzheimer’s disease models and other 



 

neurocognitive disorders have been associated with improved learning and memory in preclinical 

models. 

 

Surprisingly, there have been a limited number of studies examining the effectiveness of exercise 

and other cognitive rehabilitations for both pediatric and adult brain tumor populations. Studies 

utilizing fMRIs for pediatric posterior fossa cancer survivors have demonstrated that declines in 

executive function, notably working memory, can be improved via cardiorespiratory exercise. 

(82)  However, levels of exercise among pediatric brain tumor survivors are reported to be 

greater than one standard deviation below age-matched peers, and as such interventions may be 

necessary to promote activity among such patients to realize potential cognitive benefits from 

exercise. (83-85) Furthermore, cognitive rehabilitation in glioma patients has been demonstrated 

to lead to improved verbal memory and attention with less mental fatigue 6 months after 

intervention as compared to control subjects.(86)  Four-week conventional rehabilitation 

programs (including physical and neuromuscular electrical stimulation as well as aerobic 

exercise) for brain tumor patients have noted similar success with significant rises in MMSE 

scores as well as visual attention, selective, and auditory attention.(87) Similarly, Gehring et al. 

reported significantly higher attention and visual memory scores among 140 adult survivors of 

low-grade and anaplastic astrocytoma patients 6-months following cognitive rehabilitation with 

less mental fatigue reported by patients undergoing rehabilitation. (88) Also, a cohort of 11 adult 

patients diagnosed with higher-grade gliomas (i.e. glioblastoma multiforme) with Karnofsky 

performance scores of 80% or higher participating in weekly neurocognitive rehabilitation 

sessions for 3 months exhibited higher mean attention, verbal, and memory scores, though only 

verbal scores exhibited significant increases from baseline.(89) A larger controlled clinical trial 

of over 100 adult glioma survivors participating in a multidisciplinary rehabilitation program 

found significant increases in self-care, locomotion, mobility, communication, and psychosocial 

scores at 3 month follow-up among the patients participating in the program compared to 

control, though only gains in cognition and communication were noted at 6 month follow-

up.(90) 

 

However, it is important to note that systemic reviews of multidisciplinary rehabilitation in brain 

tumor patients have found a “low-level” quality of evidence supporting rehabilitation for long-

term cognitive improvement.  Also, no studies thus far have clearly demonstrated significant 

improvements in health-related quality of life following such interventions. As such, studies 

examining the effect of exercise and cognitive rehabilitation on longer-term cognitive 

performance are warranted to better define the optimal setting, type, intensity, and duration of 

neurocognitive interventions, especially given the paucity of literature in the pediatric brain 

tumor population. (91) 

 

A variety of other alternative interventions have been attempted to prevent cognitive declines. 

Notably, Meyers et al. found that half of brain tumor patients who took the CNS stimulant 

methylphenidate before and during radiotherapy experienced cognitive function increases despite 

neurologic injury demonstrated on MRI. (92) However, more recent studies have found 

prophylactic methylphenidate does not result in a significant rise in MMSE scores or increases in 

quality of life. (93) Memantine, an NMDA antagonist commonly used in Alzheimer’s, and 

Ginkgo biloba (also used in Alzheimer’s to disease to improve cognitive deterioration) has been 

found to significantly prolong the time until onset of declining executive function and processing 



 

speed for patients with brain metastases treated with WBRT of up to 24 weeks with some 

improvements in quality of life. (94,95) 

 

Conclusion 
 

While great advances have been made in the treatment of cancer, cognitive disabilities may  

persist in patients (particularly children) with brain tumors for which radiotherapy remains a 

mainstay of treatment. Current research efforts aim to reduce neurotoxicity and associated 

cognitive dysfunction of treatment by alternative treatment planning such as larger doses of 

chemotherapy or avoiding vital structures such as the hippocampus during radiation planning via 

IMRT. It is a worthwhile endeavor to further elucidate the mechanisms by which radiation 

impairs cognitive abilities to allow for cellular and molecular pathways to be targeted in the 

future. Other innovative treatment modalities, namely proton therapy and intrahippocampal stem 

cell transplantations, may also have a large role to play in times to come given promising early 

findings with the objective of improving quality of life for cancer survivors. 
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