

Gravitational-Waveform Extraction by the Characteristic Method

Maria Babiuc-Hamilton

Abstract

- When a pair of black holes spiral into each other and collide, the very fabric of space-time shakes, and gravitational waves are created.
- · Gravitational waves carry information about their source, and will increase our understanding of relativistic systems in astrophysics.
- Gravitational wave observatories like LIGO and Virgo are tuned to detect the emission of these waves from the inspiral and merger of binary black holes, neutron starts, supernovae, etc...
- Problem: any small vibration is detected, so templates are essential to discern the real signal.
- It is hard to compute the waveforms obtained from numerical simulations accurately gravitational radiation is properly defined only at null infinity, but is estimated at a finite radius.
- · Cauchy-Characteristic Extraction (CCE) is the most precise and refined "extraction" method available. The CCE technique connects the strong-field "Cauchy" evolution of the space-time near the merger to the "characteristic" evolution far from the merger – at null infinity, where the waveform is extracted and detectors measure it.
- · We present a stand-alone "characteristic" waveform extraction tool that has demonstrated accuracy and convergence of the numerical error and is used by the numerical relativity groups for the unambiguous extraction of waveforms.
- We prove that the numerical error of CCE satisfies the standards of the detection criteria required for Advanced LIGO data analysis.
- The tool provides a means for accurate calculation of waveforms generated by evolution codes based upon different analytic and numerical formulations of the Einstein equations

Anticipated reach of Advanced LIGO

Department of Physics, Marshall University

Formalism Cauchy-characteristic method covers all spacetime by combining 2 regions

- 1. A timelike (Cauchy) close to BBH
- 2. A null (characteristic) far field.
- · The characteristic evolution is embedded in the Cauchy evolution
- · Cauchy + characteristic initial-values
- Cauchy Initial data:

orbital frequency o.o5.

· Close quasicircular black hole binary inspiral with

Characteristic initial Data Weyl condition on the initial null hypersurface to suppress incoming radiation, vanishes at infinity.

- The data is decomposed in Chebyshev and spherical harmonics coefficients on a band R±dr.
- · Then is reconstructed in characteristic Bondi-Sachs coordinates, and evolved on the light cones
- Infinity is included in the computational grid by Penrose compactification of the radial coordinate:

$$x = \frac{r}{R_E + r}$$

• Einstein equations G_{uv} =o evolved radially outward in Bondi-Sachs coordinates

$$ds^{2} = -\left(e^{2\beta}\frac{V}{r} - r^{2}h_{AB}U^{A}U^{B}\right)du^{2} - 2e^{2\beta}dudr - 2r^{2}h_{AB}U^{B}dudx^{A} + r^{2}h_{AB}dx^{A}dx^{B}$$

· Waveforms computed at null infinity in conformal compactified Bondi coordinates l=1/r

$$d\hat{s} = -(e^{2\beta}Vl^3 - h_{AB}U^AU^B)du^2 + 2e^{2\beta}dudl - 2h_{AB}U^Bdudx^A + h_{AB}dx^Adx^B$$

Waveforms

The waveform is extracted in terms of the Bondi News N and the Weyl tensor Ψ_4

$$N = N_{+} + iN_{\times} = \partial_{t}h_{+} + \partial_{t}h_{\times}, \quad \Psi_{4} = l\partial_{u}N + O(l^{2})$$

- Plots of the dominant(l=2, m=2) mode of Richardson extrapolated waveform N_E(t) obtained with extraction radii $R_F=20M$, 50M, and 100M.
- The $R_F=50M$ and $R_F=100M$ waveforms are shifted backward in time to be in phase at the peak.
- Two sources of "junk" radiation:
 - Choice of conformally flat initial Cauchy data 2 Initial Cauchy and characteristic data mismatch
- The three waveforms are in good agreement in the inspiral and merger stage, with relative difference between the R_c=20M and R_c =100M is 0.6%

Advanced Accuracy Standards

- Sensibility of detector, given in frequency domain
- Translated into the time domain, the error of a numerical waveform for strain, news and Ψ_{ι} comp: $\varepsilon_0 = \|\delta h\| / \|h\|, \varepsilon_1 = \|\delta N\| / \|N\|, \varepsilon_2 = \|\delta \Psi_4\| / \|\Psi_4\|$
 - Criteria for waveform accuracy
 - Accuracy for detection
 - $\varepsilon_k \leq C_k \sqrt{2\varepsilon_{\text{max}}}$; $\varepsilon_{\text{max}} template \ mismatch$
 - ② Accuracy for measurement

$$\varepsilon_k \le C_k \frac{\eta_c}{\rho}$$
; η_c – detector calibration

- Required accuracy or detection:
- $\varepsilon_{max} = 0.005$, $0.24 \le C_1 \le 0.8 = > \varepsilon_1 \le 0.1C_1 \le 0.024$
- Required accuracy for measurement:
- $h_{min} = 0.4$, $C_1 = 0.24$, $r = 100 = > \epsilon_1 \le 9.6 \times 10^{-2}/r \le 9.6 \times 10^{-4}$

Requirements for the Bondi News

- 1. The criterion for detection is satisfied throughout the entire binary mass range and is unaffected by choice of extraction radius.
- The criterion for measurement is also satisfied throughout the entire binary mass range.

Variable	Re	Im
$\mathcal{E}_1(N)_{R=20}$	8.76×10^{-4}	
$\mathcal{E}_1(N)_{R=50}$	2.62×10^{-4}	2.60×10^{-4}
$\mathcal{E}_1(N)_{R=100}$		1.22×10^{-4}
$\mathcal{E}_1(N_{\Delta R(20,100)})$	5.41×10^{-3}	5.55×10^{-3}
$\mathcal{E}_1(N_{\Delta R(50,100)})$	4.28×10^{-3}	4.51×10^{-3}

Requirements for the Weyl Tensor

- The criterion for detection is satisfied throughout the entire binary mass range in the high mass limit.
- 2. The values at all three extraction radii satisfy the measurement requirement for advanced LIGO signal-to-noise ratio $\rho = 100$.

Variable	Re	Im
$\mathcal{E}_2(\Psi)_{R=20}$	1.138×10^{-3}	1.174×10^{-3}
$\mathcal{E}_2(\Psi)_{R=50}$	4.038×10^{-4}	3.531×10^{-4}
		2.093×10^{-4}
$\mathcal{E}_2(\Psi_{\Delta R(20,100)})$	5.391×10^{-2}	4.148×10^{-2}
$\mathcal{E}_2(\Psi_{\Delta R(50,100)})$	1.937×10^{-2}	1.905×10^{-2}

Conclusions

- The aim of **CCE** is to provide a standardized gravitational waveform extraction tool.
- The new extraction tool contains major improvements and corrections to previous versions and displays convergence.
- The error introduced by CCE satisfies the time domain criteria required for advanced LIGO data
- The importance of accurate waveforms to the gravitational wave astronomy has created an urgency for tools like CCE.
- The source code has been released to the public and is available as part of the Einstein Toolkit.
- We welcome applications to a variety of generic numeric codes implementing Einstein Equations of General Relativity.