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ABSTRACT

Time Scales calculus, first introduced by Stefan Hilger in 1988, is the unification of the theory

of difference equations with that of differential equations unifying differential and integral

calculus with the calculus of finite differences. Using the properties of delta derivative, delta

anti-derivative and the concept of Hilger’s Complex Plane, we discuss the analytical and

graphical behavior of particularly chosen first order dynamic equation, y∆(t) = 1
2
y(t) with

initial condition y∆(0) = 1
2

and the second order linear homogeneous equation y∆∆ = −y

with the initial conditions y∆∆(0) = 0 and y∆(0) = 1 on different time scales. We create a

sequence of time scales that tends to a chosen time scale T. Each time scale in the sequence is

the union of two disconnected closed intervals. In this thesis, our claim is that if we decrease

the gap of two closed intervals of the time scales, the solution converges towards solution on

the original time scale T.



1. INTRODUCTION

The theory of time scales calculus was first initiated by Stefan Hilger in his PhD dis-

sertation in 1988 in order to unify continuous and discrete analysis. It is a unification of

the theory of difference equations with that of differential equations unifying differential

and integral calculus with the calculus of finite differences and offering a formal study for

hybrid discrete-continuous dynamical systems. If we differentiate a function defined on the

real numbers, then the definition of derivative is equal to that of standard differentiation.

But if the function is defined on the integers then it is equivalent to the forward difference

operator. On the basis of Stefan Hilger’s work, Martin Bohner and Allan Peterson published

a book Dynamic Equations on Time Scales- An Introduction with Applications, which has

made an important contribution in the field of time scales. Many results concerning dif-

ferential equations carry over quite easily to corresponding results for difference equations,

whereas other results seem to be completely different in nature from their continuous coun-

terparts. The study of dynamic equations on time scales reveals such discrepancies and helps

avoid proving results twice, once for differential equations and once for difference equations.

The general idea is to prove a result for a dynamic equation in which the domain of the

unknown function is a so-called time scale, an arbitrary nonempty closed subset of the real

numbers.

In this thesis, we will discuss the basic terms, related theorems on differentiation (delta-

derivative) and integration (delta-antiderivative) on time scales. We also define the expo-

nential function, as introduced by Stefan Hilger, and give several important properties of

the delta derivative and the delta antiderivative. The most exciting part of this work will

show the solutions of some first and second order linear differential equations on varying

1
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time scales solved in the Differential Analyzer Lab at Marshall University, led by Dr. Bonita

A. Lawrence. First, we will exhibit the behavior of the exponential function as a solution

of a first order dynamic equation and we will present interesting outcomes that we obtained

using the Differential Analyzer machine. The main goal here is to observe the results of some

first and second order linear dynamic equations on varying time scales.

Most importantly, first we will run the particular first order linear dynamic equation

y∆ =
1

2
y, y(0) = 1,

on the time scale T = [0, 6]. Then we will create a sequence of time scales, Ti, that converges

to T = [0, 6] and analyze the solutions of our dynamic equation on these time scales graphi-

cally using the differential analyzer. Each time scale in the sequence will be a union of two

closed intervals. The important issue we will discuss is the behavior of the solutions after

the jump from one closed interval to the other with solutions obtained from a single initial

condition. By gradually decreasing the gap between the two disconnected pieces, the solu-

tions converge point-wise to the solution of our first order dynamic equation on T = [0, 6].

Similarly, we are considering the second order dynamic equation

y∆∆ = −y,

with the initial conditions y∆∆(0) = 0 and y∆(0) = 1. We will give basic definitions,

theorems, and a short analytical discussion of this particular second order DE, and we will

present the graphical solution on the given time scales obtained in the Differential Analyzer

Machine of Marshall University.



2. TIME SCALES CALCULUS

In this section, we give an introduction of the basic terms and some of the interesting

properties that we should know before reading the new results obtained in the remaining

sections. Let us look at some essential terms and their descriptions.

2.1. BASIC DEFINITIONS

A time scale, denoted by T, is an arbitrary closed subset of real numbers, R, where

T has the topology that it inherits from the real numbers with the standard topology. The

set of reals, R, the set of integers, Z, the natural numbers, N, and the nonnegative integers

N0 are examples of time scales. The rational numbers Q, complex numbers C and the open

interval (2, 3) are not time scales.

Definition 2.1. (i) For t ∈ T, we define the forward jump operator σ : T :→ T by

σ(t) := inf{s ∈ T : s > t}.

(ii) For t ∈ T, we define the backward jump operator ρ : T :→ T by

ρ(t) := sup{s ∈ T : s < t}.N

An important property should be noted about σ and ρ: We define inf ∅ ≡ supT, so

that σ(t) = t if t is the maximum of T. Similarly, we define sup ∅ ≡ inf T, so that ρ(t) = t if

t is the minimum of T.

3
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For t ∈ T, and σ(t) > t, we say that t is right-scattered, and for the case when ρ(t) < t,

we say that t is left-scattered.

Points in a time scale are said to be isolated if they are right scattered and left scattered

at the same time. A point t in T is called right-dense if t < supT and σ(t) = t. In a similar

way, the point t in the time scale T is said to be left dense if t > inf T and ρ(t) = t. Points

are said to be dense if they are right-dense and left-dense at the same time. We also should

be curious about the distance from a point t to σ(t) which we name as graininess function.

Definition 2.2. Define the function µ := T → [0,∞) by µ(t) := σ(t) − t which is called

the right-graininess function. Our assumption throughout this section will be that T is

unbounded above and the graininess function, µ is bounded.N

Now let us define a set Tk, which plays a very important role in later sections that we

obtained from the time scale T:

Definition 2.3. If T has a left-scattered maximum m, then Tk = T−m. Otherwise, Tk = T

i.e.;

Tk =

T− (ρ(supT), supT) if supT <∞;

T, if supT =∞.N

We use the symbol fσ and foσ equivalently in the coming sections. If f : T→ R is a

function, then we define the function fσ : T→ R by

fσ(t) = f(σ(t)), for all t ∈ T,

i.e. fσ = f ◦ σ.

Let us look at some examples and determine σ(t), ρ(t), which are isolated points and the

graininess, µ(t), for various t values in the given time scale, T.
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Figure 2.1.

Example 2.4. Let T = {1− 1
n

: n ∈ N} ∪ {1}. Then:

(i) For t = 1− 1
n
, n = 2, 3, 4, ......,

σ(t) = σ(1− 1
n
) = inf{s ∈ T : s > 1− 1

n
; for n ∈ N} = 1

2−t ,

ρ(t) = sup{s ∈ T : s < 1− 1
n
; for n ∈ N} = 2t−1

t
and

µ(t) = σ(t)− t = (t−1)2

2−t .

We note that these t values are left-scattered and right-scattered, hence isolated.

(ii) For t = 0,

σ(0) = inf{s ∈ T : s > 0} = 1
2
,

ρ(0) = sup{s ∈ T : s < 0} = 0, (since sup ∅ ≡ inf T) and

µ(0) = σ(0)− 0 = 1
2
.
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Figure 2.2.

In this case, t is left-dense and right-scattered.

(iii) For t = 1,

σ(1) = inf{s ∈ T : s > 1} = 1, (since inf ∅ ≡ supT),

ρ(1) = sup{s ∈ T : s < 1} = 1 and

µ(1) = σ(1)− 1 = 0.

In this case, t is dense.

Now, we want to talk about an example of a time scale consisting of the union of two closed

intervals of R and compute σ(t), ρ(t) and µ(t) for various t ∈ T. We use this example in a

later sections in our analytical study of the behavior of solutions of a first order dynamic

equation.

Example 2.5. Let T = [0, 0.45] ∪ [5.55, 6].

Using the definitions inf ∅ ≡ supT and sup ∅ ≡ inf T, we have from Figure 2.2:

(i) For t ∈ (0, 0.45) ∪ (5.55, 6),
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σ(t) = inf{s ∈ T : s > t} = t,

ρ(t) = sup{s ∈ T : s < t} = t and

µ(t) = σ(t)− t = t− t = 0.

For these particular t values, t is dense.

(ii) For t = 0,

σ(0) = inf{s ∈ T : s > 0} = 0

ρ(0) = sup{s ∈ T : s < 0} = 0 and

µ(0) = σ(0)− 0 = 0.

Therefore, t = 0 is also a dense point.

(iii) For t = 0.45

σ(0.45) = inf{s ∈ T : s > 0.45} = 5.55,

ρ(0.45) = sup{s ∈ T : s < 0.45} = 0.45 and

µ(0.45) = σ(0.45)− 0.45 = 5.55− 0.45 = 5.10.

In this case, t is right-scattered and left dense.

(iv) For t = 5.55,

σ(5.55) = inf{s ∈ T : s > 5.55} = 5.55,

ρ(5.55) = sup{s ∈ T : s < 5.55} = 0.45 and

µ(5.55) = σ(t)− t = 5.55− 5.55 = 0.

Hence, t is left-scattered and right dense.

(v) For t = 6,

σ(6) = inf{s ∈ T : s > 6} = 6,
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ρ(6) = sup{s ∈ T : s < 6} = 6 and

µ(6) = 6− 6 = 0.

Thus, point t is dense in this case.

Using these basic terms, in the next section we discuss some details about how differ-

entiation works in time scale calculus.

2.2. DIFFERENTIATION

In this section, we give an introduction of differentiation in time scale calculus, including

some examples and useful theorems. This will give us an idea of how to do a comparison of

the derivative from the usual calculus.

We begin with the formal definition of the derivative from time scale calculus. We call

this the delta derivative.

Definition 2.6. (Bohner and Peterson [1]) Assume f : T→ R is a function and let t ∈ Tk.

We say f∆(t), the delta (or Hilger) derivative of f at t, provided f∆(t) exists , is the number

with the property: Given ε ≥ 0, there exists a neighborhood U of t, that is, U = (t−δ, t+δ)∩T

for some δ > 0 such that

|(f(σ(t))− f(s))− f∆(t)(σ(t)− s)|6 ε|σ(t)− s|,

for all s ∈ U .N

Throughout this work we use the symbol f∆(t) to denote the derivative of f at t and when

we refer to the derivative we mean the delta derivative.

As in our usual calculus, the following theorems are very essential theorems on time

scales. These theorems, involving differentiation, continuity and limits play an important

role in the connection with the properties of integration.
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Theorem 2.7. (Bohner and Peterson [1]) Assume f : T→ R is a function and let t ∈ Tk.

Then we have the following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, then f is differentiable at t if and only if the

lim
s→t

f(t)− f(s)

t− s

exists as a finite number.

In this case, we have f∆(t) = lims→t
f(t)−f(s)

t−s .

(iv) If f is differentiable at t, then f(σ(t)) = f(t) + µ(t)f∆(t).

Example 2.8. If T = R, f∆(t) = f ′(t), and if T = Z, f∆(t) = ∆f(t) = f(t+ 1)− f(t).

Example 2.9. Consider our time scale from Example 2.5, T = [0, 0.45] ∪ [5.55, 6]. We want

to compute the derivative at points 0.30, 0.45, 5.55 and 5.80.

Using the definition of derivative, for any continuous function f , we have:

(i) Because the point t = 0.30 is dense, then using part (iii) of Theorem (2.7),

f∆(t) = lim
s→t

f(t)− f(s)

t− s

So that

f∆(0.30) = lim
s→0.30

f(0.30)− f(s)

0.30− s
.
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(ii) The point t = 0.45 is right-dense, we then have

f∆(0.45) =
f(σ(0.45))− f(0.45)

µ(0.45)

=
f(5.55)− f(0.45)

5.55− 0.45

=
f(5.55)− f(0.45)

5.10
.

(iii) This is similar to that of part (i), t = 5.55 is right dense, so,

f∆(5.55) = lim
s→5.55

f(5.55)− f(s)

5.55− s
.

(iv) We know that t = 5.80 is dense, so that

f∆(5.80) = lim
s→5.80

f(5.80)− f(s)

5.80− s
.

Note that the part (iv) of the Theorem 2.7 is true for any time scale T. This is an important

formula that we frequently use in the later discussions of our work.

The following theorem establishes formulas for the sum, product and quotient of two

differentiable functions f and g, the derivative of the product of a function with a constant

and the differentiation formula for the inverse of a function.

Theorem 2.10. (Bohner and Peterson [1]) Assume f, g : T→ R are differentiable at t ∈ Tk.

Then:

(i) The sum f + g : T→ R is differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).
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(ii) For any constant α, αf : T→ R is differentiable at t with

(αf)∆(t) = αf∆(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).

(iv) If f(t)f(σ(t)) 6= 0, then 1
f

is differentiable at t with

(
1

f
)∆(t) = − f∆(t)

f(t)f(σ(t))
.

(v) If g(t)g(σ(t)) 6= 0, then f
g

is differentiable at t with

(
f

g
)∆(t) =

f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

Remark 2.11. Let us note some of the important properties of delta differentiation:

(i) If x, y, z and r are delta differentiable at t, then we have

(xyzr)∆ = x∆yzr + xσy∆zr + xσyσz∆r + xσyσzσr∆ holds at t.

(ii) The delta derivative of (f 3) is calculated as follows:

(f 3)∆ = (f.f 2)∆ = f∆(f 2) + fσ(f 2)∆

= f∆(f 2) + fσ(f∆f + fσf∆)

= f∆(f 2) + fσf∆f + fσfσf∆.
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(iii) If the functions f and g are twice differentiable, the product fg is not always twice

differentiable.

(iv) If f and g are twice differentiable and if fσ is differentiable, then we have

(fg)∆∆ = f∆∆g + (f∆σ + fσ∆)g∆ + (fσσ)g∆∆.

(v) If both f∆σ
and fσ∆ exists, f∆σ

is always not equal to fσ∆.

Now, we want to talk about the chain rule briefly to show that how it works in time

scale calculus and also state some chain rules under different conditions as given in Bohner

and Peterson [1].

2.3. CHAIN RULES

If f, g : R → R, then the chain rule from the usual calculus is given by the relation

(fog)
′
(t) = f

′
(g(t))g′(t) where g is differentiable at t and if f is differentiable at g(t).

The chain rule that we know from the usual calculus does not hold in general for the time

scale. i.e; in general, (fog)∆(t) 6= f∆(g(t))g∆(t).

To prove this, consider an example in whcih the time scale T = Z such that f : Z→ Z and

g : Z→ Z defined by f(t) = t3 and g(t) = t2, for all t ∈ T.

Then, (fog)(t) = f(t2) = t6 and by definition of delta derivative,

(f ◦ g)∆(t) =
(fog)(σ(t))− (fog)(t)

σ(t)− t

=
(σ(t))6 − t6

1

= (t+ 1)6 − t6

= 6t5 + 15t4 + 20t3 + 15t2 + 6t+ 1.
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Also,

f∆(g(t)) =
f(σ(g(t)))− f(g(t))

σ(t)− t

=
f(t2 + 1)3 − t6

t+ 1− t
= t6 + 3t4 + 3t2 + 1− t6

= 3t4 + 3t2 + 1.

And,

g∆(t) =
g(σ(t))− g(t)

σ(t)− t

= (t+ 1)2 − t2

= 2t+ 1.

Now,

f∆(g(t)).g∆(t) = (3t4 + 3t2 + 1)(2t+ 1)

= 6t5 + 3t4 + 6t3 + 3t2 + 2t+ 1

6= (6t5 + 15t4 + 20t3 + 15t2 + 6t+ 1)

= (fog)∆(t).

Hence we have proved that (f ◦ g)∆(t) 6= f∆(g(t))g∆(t) for all t ∈ T.

Next, we want to mention two theorems that offer two different forms for the chain

rule. They are important for differentiation on time scales.

The following chain rule is useful on time scales if f and g are continuous functions

and defined from R to R.

Theorem 2.12. (Bohner and Peterson [1]) Assume g : R→ R is continuous, g : T→ R is

delta differentiable on Tk, and f : R→ R is continuously differentiable. Then there exists c

in the real interval [t, σ(t)] with

(f ◦ g)∆(t) = f
′
(g(c))g∆(t)
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for all t ∈ T.

The following chain rule is useful to compute (f ◦ g)∆ if g : T → R and f : R → R.

This chain rule is first derived by Christian Postzshe in 1998 (which is also mentioned in

Stefan Keller’s PhD thesis).

Theorem 2.13. Let f : R → R be continuously differentiable and suppose g : T → R is

delta differentiable. Then f ◦ g : T→ R is delta differentiable and the formula

(f ◦ g)∆(t) =


1∫

0

f
′
(g(t) + hµ(t)g∆(t))dh

 g∆(t)

holds.

In the next section, we will present the formal definition of delta antiderivative as well

as its important properties.

2.4. INTEGRATION

To describe classes of functions that are integrable, we need the concept of regulated

functions and right-dense continuous functions. Let us define them and state some of the

important theorems and properties on delta antiderivative.

Definition 2.14. (Bohner and Peterson [1]) A function f : T → R is said to be regulated

provided its right-sided limits exists (finite) at all right-dense points in T and its left-sided

limits exists (finite) at all left-dense points in T.N

Definition 2.15. (Bohner and Peterson [1]) A function f : T→ R is said to be right-dense

continuous (or rd-continuous) provided it is continuous at right-dense points in T and its

left-sided limits exist (finite) at left-dense points in T.N

The following important theorem gives us the results concerning continuous functions

and right-dense continuity.
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Theorem 2.16. (Bohner and Peterson [1]) Assume f : T→ R, then:

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is regulated.

(iii) The jump operator σ is rd-continuous.

(iv) If f is rd-continuous on T, then fσ is rd-continuous on T.

(v) Assume f is continuous and g : T → R is rd-continuous, then the composite function

fog is rd-continuous.

(vi) If f and g are rd-continuous on T, then the sum f + g and the product f.g of the

functions f and g are rd-continuous on T.

Before defining our delta antiderivative, we need the concept of pre-differentiable function

and the existence of pre-antiderivatives.

Definition 2.17. (Bohner and Peterson [1]) A function f : T→ R is said to be pre-differentiable

in the region D, if Tk\D, D ⊂ Tk is countable and has no right-scattered points of T, and

f is differentiable for all t ∈ D.N

The following theorem shows the existence of pre-antiderivative.

Theorem 2.18. (Bohner and Peterson [1]) Let f be a regulated function. Then there exists a

function F which is pre-differentiable with region of differentiation D such that F∆(t) = f(t)

holds for all t in D.

With the existence of pre-differentiable, F (t), we can define the indefinite integral of a

regulated function f .
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Definition 2.19. (Bohner and Peterson [1]) Assume f : T → R is a regulated function.

Any function F as in Theorem 2.18 is said to be a pre-antiderivative of f and the indefinite

integral of a regulated function is given by the expression

∫
f(t)∆t = F (t) + C,

where C is an arbitrary constant and F is pre-antiderivative of f .N

Now we are ready for the formal definition of the delta antiderivative of a function F

from the time scale T to R.

Definition 2.20. (Bohner and Peterson [1]) A function F : T→ R is called the delta antiderivative

of the function f : T→ R if F∆(t) = f(t) holds for all t ∈ T. Here we define the integral of

f by

b∫
a

f(t)∆t = F (b)− F (a),

for all t ∈ T.N

The next theorem gives us some familiar results for integration on time scales for the

right-dense continuous functions f and g.

Theorem 2.21. (Bohner and Peterson [1]) If a, b and c ∈ T, α ∈ R, f and g are right-dense

continuous functions, then the following results hold:

(i)
b∫
a

[f(t) + g(t)]∆t =
b∫
a

f(t)∆t+
b∫
a

g(t)∆t;

(ii)
b∫
a

(αf)(t)∆t = α
b∫
a

f(t)∆t;

(iii)
b∫
a

f(t)∆t = −
a∫
b

f(t)∆t;
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(iv)
b∫
a

f(t)∆t =
c∫
a

f(t)∆t+
b∫
c

f(t)∆t, a < c < b;

(v)
b∫
a

f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−
b∫
a

f∆(t)g(t)∆t;

(vi)
b∫
a

f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−
b∫
a

f∆(t)g(σ(t))∆t;

(vii)
a∫
a

f(t)∆t = 0;

(viii) If |f(t)| ≤ g(t) on [a, b), then

|
b∫
a

f(t)∆t|≤
b∫
a

g(t)∆t;

(ix) If f(t) ≥ 0 for all a ≤ t < b, then
b∫
a

f(t)∆t ≥ 0.

The next theorem gives an important expression for the integration of a rd-continuous

function defined in an interval [t, σ(t)].

Theorem 2.22. (Bohner and Peterson [1]) If f : T→ R is rd-continuous then

σ(t)∫
t

f(τ)∆τ = µ(t)f(t),

where µ is the graininess function and σ is the right jump operator.

The following theorem is a consequence of the previous results of integration on time

scales.

Theorem 2.23. (Bohner and Peterson [1]) Assume a, b ∈ T and f : T → R is a rd-

continuous function. Then the integral has the following properties:

(i) If T = R, then
b∫
a

f(t)∆t =
b∫
a

f(t)dt,

where the integral on the right is the usual Reimann integral from calculus.
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(ii) If [a, b] consists of only isolated points, then

b∫
a

f(t)∆t =



∑
t∈[a,b) µ(t)f(t) if a < b;

0 if a = b;

−
∑

t∈[b,a) µ(t)f(t) if a > b.

where µ(t) is the graininess function.

(iii) If T = hZ = {hk : k ∈ Z}, where h > 0, then

b∫
a

f(t)∆t =



∑ b
h
−1

k= a
h
f(kh)h if a < b;

0 if a = b;

−
∑ a

h
−1

k= a
h
f(kh)h if a > b.

(iv) If T = Z, then

b∫
a

f(t)∆t =



∑b−1
t=a f(t) if a < b;

0 if a = b;

−
∑a−1

t=b f(t) if a > b.

In the next section, we will give the definition of and the notation for a first and second

order linear dynamic equation and discuss the Hilger complex plane. We will present some of

the definitions and properties that we need before defining our general exponential function

on time scales, the solution of the first order linear homogeneous dynamic equations.



3. SOLUTIONS OF FIRST AND SECOND ORDER DYNAMIC EQUATIONS

Now we give the definitions and notation for first and second order linear dynamic

equations on a time scale and then talk about the Hilger complex plane.

For the first order problem, consider a function f : T× R2 → R. Then the equation

y∆ = f(t, y, yσ) (3.1)

is called a first order dynamic equation.

Equation (3.1) is said to be a linear equation if we express f(t, y, yσ) in the form

f(t, y, yσ) = f1(t)yσ + f2(t) or f(t, y, yσ) = f1(t)y + f2(t).

A function u : T → R is called a solution of equation (3.1) if y = u(t) satisfies the

dynamic equation (3.1), that is, u∆(t) = f(t, u(t), uσ(t)) is satisfied for all t ∈ Tk.

Assume that f , p and q are right-dense continuous functions. Then the second order

linear dynamic equation takes the form:

y∆∆ + p(t)y∆ + q(t)y = f(t).

If t0 ∈ Tk, then the second order initial value problem is given by

y∆∆ + p(t)y∆ + q(t)y = f(t). (3.2)

with the initial conditions y(t0) = y0, and y∆(t0) = y∆
0 , where y0 and y∆

0 are given constants.

19
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We want to obtain y, the solution of equation (3.2) in a time scale T. For this, let us begin

with an operator L2.

Definition 3.1. (Bohner and Peterson [1]) For all t ∈ Tk2
, L2 : C2

rd → Crd is given by the

expression

L2y(t) = y∆∆(t) + p(t)y∆ + q(t)y(t).

We note that Crd is the set of rd-continuous functions f : T→ R. The set C1
rd contains rd-

continuous functions that are once differentiable and similarly the set C2
rd contains functions

that are twice differentiable. N

Now the DE (3.2) can be written in the the alternate form of L2y = f on the time scale

T. Note that y(t) is said to be a solution of L2y = f on T if y is in C2
rd and L2y(t) = f(t) for

every t ∈ Tk2
. If f(t) = 0, equation (3.2) yields a homogeneous dynamic equation L2y = 0,

otherwise it is said to be a nonhomogeneous equation.

The solutions of a particular family of dynamic equations y∆ = p(t)y are defined

in terms of the exponential function. For example: when T = R, we have y∆ = y′ and

our solution is defined in terms of the function f(t) = et. Similarly, the solutions of the

family of a particular second order linear dynamic equation (3.2) has solutions defined in

terms of the sine, cosine and exponential functions. To define the generalized exponential

function associated with a time scale, Hilger introduced the complex plane, so called ”Hilger’s

Complex Plane”.

3.1. HILGER’S COMPLEX PLANE

From Bohner and Peterson [1], in the Hilger complex plane, the Hilger imaginary circle

is tangent to the imaginary axis and the diameter of the circle is the reciprocal of the

graininess, h. For all positive h, the Hilger complex numbers, the Hilger real axis, the Hilger

alternating axis and the Hilger imaginary circle are defined, respectively, as follows:
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Ch := {z ∈ C : z 6= −1

h
};

Rh := {z ∈ Ch : z ∈ R and z > −1

h
};

Ah := {z ∈ Ch : z ∈ R and z < −1

h
};

and

Ih := {z ∈ Ch : |z +
1

h
| = 1

h
}.

Note that for the case h = 0, we have C0 ≡ C,R0 ≡ R, I0 ≡ iR and A0 ≡ ∅.

Next we present the definition of the Hilger real part and imaginary part of a complex

number z.

Definition 3.2. (Bohner and Peterson [1]) Let h > 0. Then for all z ∈ Ch, we define the

Hilger real part of z by

Reh(z) =
|zh+ 1| − 1

h

and the Hilger imaginary part of z by

Imh(z) =
Arg(zh+ 1)

h
,

where −π < Arg(z) ≤ π.N

To obtain the geometrical interpretation of the real part and the imaginary part of a complex

number in the Hilger complex plane, let us consider Figure 3.1 and make some notes on

Reh(z) and Imh(z) and depict them clearly.

Using the definition of the Hilger real part and the absolute value of a complex number, we

have
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Figure 3.1. The Hilger’s Complex Plane.

Reh(z) =
|zh+ 1| − 1

h

=
|xh+ iyh+ 1| − 1

h

=

√
(xh+ 1)2 + (yh)2 − 1

h

=

√
(x+

1

h
)2 + (y)2 − 1

h

= |z +
1

h
| − 1

h
.

Thus, the Hilger real part of a complex number z has value of the magnitude of z+ 1
h
, |z+ 1

h
|,

reduced by 1
h
.

Similarly, from the definition of the imaginary part, we have
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Imh(z) =
Arg(zh+ 1)

h

=
1

h
Arg(z +

1

h
).

Therefore, the Hilger imaginary part of z is the usual principal argument of z shifted 1
h

then divided by h. This is an angle measure. Hilger’s real part of z is on the Hilger real

axis, that is; Reh(z) ∈ Rh. Thus, the Hilger real part of z lies between − 1
h

and ∞. Since

−π ≤ Arg(z) ≤ π, from Definition 3.1, we have − 1
h
< Reh(z) <∞ and − π

h
< Imh(z) ≤ π

h
.

Also important to our discussion is the Hilger purely imaginary number (see Bohner

and Peterson [1])

Definition 3.3. Hilger’s purely imaginary number is denoted by the symbol
◦
ιω and defined

by the formula
◦
ιω =

eiωh − 1

h
,

where −π
h
< ω ≤ π

h
.N

For a point z in the Hilger complex plane, the product of i and the Hilger imaginary

part lies on the Hilger imaginary circle, that is; for each z ∈ Ch, iImh(z) ∈ Ih.

We here note that
◦
ιω =

eiωh − 1

h

=
cosωh+ isinωh− 1

h

=
cosωh− 1

h
+ i(

sinωh

h
)

= (
cosωh

h
+ i

sinωh

h
)− 1

h
.

This clarifies that the purely imaginary number
◦
ιω is on the Hilger imaginary circle, a circle

of radius 1
h

and positioned 1
h

units to the left of the origin.
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Remark 3.4. Let us state an important remark about the Hilger real and imaginary part: If h

approaches zero, the Hilger real part of z tends to the real part of z and the Hilger imaginary

part of z tends to imaginary part of z, that is; limh→0[Reh(z) +
◦
ιImh(z)] = Rez + iImz.

The following collection of definitions (Bohner and Peterson [1]) of “circle plus” and

“circle minus” on the Ch, the cylindrical transformation and the inverse cylindrical trans-

formation will be used to define our exponential function on a time scale.

Definition 3.5. The “circle plus” addition ⊕ on Ch is defined by the formula

z ⊕ w := z + w + zwh.

We note that (Ch,⊕) forms an abelian guoup.N

Note that for z ∈ Ch,

Reh(z)⊕ ◦ιImh(z)

=
|zh+ 1| − 1

h
⊕ ◦ιArg(zh+ 1)

h

=
|zh+ 1| − 1

h
⊕ ◦ιexp(iArg(zh+ 1))− 1

h

=
|zh+ 1| − 1

h
+
exp(iArg(zh+ 1))− 1

h
+
|zh+ 1| − 1

h
× exp(iArg(zh+ 1))− 1

h
× h

=
1

h
|zh+ 1| − 1 + exp(iArg(xh+ 1))− 1 + [|zh+ 1| − 1][exp(iArt(zh+ 1))− 1]

=
1

h
|zh+ 1|exp(iArg(zh+ 1))− 1

=
(zh+ 1)− 1

h

= z

= x+ iy

= Re(z) + iIm(z).
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Thus, we have Reh(z)⊕ ◦ιImh(z) = z = Re(z) + iIm(z).

We also have the concept of the subtraction on Ch known as the circle minus which is defined

as below:

Definition 3.6. The “circle minus” subtraction 	 on Ch is defined by the expression

z 	 w := z ⊕ (	w),

where 	w := −w
1+zh

.N

The following definition of the cylinder transformation is very important for defining the

exponential function of our interest.

Definition 3.7. For h = 0, we define ξ0(z) ≡ 0 for all z ∈ C. The cylinder transformation

ξh : Ch → Zh, for h > 0, is defined by the expression

ξh(z) =
1

h
Log(1 + zh),

where Log is the principal logarithm function and Zh is the strip defined by

Zh := {z ∈ C : −π
h
< Im(z) ≤ π

h
}

for all h > 0. N

Recall that if z = reθi,

Logz = lnr + i θ

= ln|z|+ iArg z

Definition 3.8. The inverse transformation of the cylinder transformation ξh is given by

ξh
−1(z) =

1

h
(ezh − 1),
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for z ∈ Zh.N

The idea of cylinder transformation is that if we join (glue) the bordering line of Im(z) = −π
h

and Im(z) = π
h

of Zh, the shape will be like a cylinder. The most important remark here is

that for all positive h, the cylinder transformation maps open rays coming from the point

− 1
h

in C onto horizontal lines on the cylinder ξh. Further, it can be seen that the circles

centered at − 1
h

are mapped onto the vertical lines on the strip ξh.

The following definition is mentioned in Bohner and Peterson [1] tells us the formula

for the addition of two members on Zh.

Definition 3.9. We have addition on Zh given by the relation

z + w := z + w (mod
2πi

h
) for z, w ∈ Zh.N

Now with this foundation we are ready to define the initial value problem of a dynamic

equation and discuss regressive functions before defining the generalized exponential function.

3.2. FIRST ORDER INITIAL VALUE PROBLEMS

Given t0 ∈ T and y0 ∈ R, the problem

y∆ = f(t, y, yσ), y(t0) = y0. (3.3)

is called an initial value problem of the dynamic equation (3.1). A solution of (3.1) with the

initial condition y(t0) = y0, is called a solution of this initial value problem (3.3).

Here, our focus is to construct solutions of the particular initial value problem

y∆ = p(t)y, y(t0) = 1,

explicitly.
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To achieve this goal, using our previous discussion about Hilger’s complex plane we now offer

some necessary definitions and properties. Before proving the existence and the uniqueness

theorem for the initial value problem of the dynamic equation (3.3), we define a regressive

function, p.

Definition 3.10. (Bohner and Peterson [1]) A function p : T → R is called regressive if

1 + µ(t)p(t) 6= 0, for all t ∈ Tk. The collection of all regressive and rd-continuous functions

f : T→ R is denoted by

R = R(T) = R(T,R).N

Next we present the definition of the exponential function, the solution of the first

order linear homogeneous dynamic equations. For instance, if T = R, then the solution of

the dynamic equation

y′ = y, with y(0) = 1

is the exponential function y = et.

Definition 3.11. (Bohner and Peterson [1]): If p ∈ R, then for all s, t ∈ T, the generalized

exponential function is denoted by ep(t, s) and defined by the formula

ep(t, s) = exp

 t∫
s

ξµ(τ)(p(τ))∆τ

 ,

where

ξµ(τ) =
1

µ(τ)
Log(1 + zµ(τ)),

is the cylinder transformation with respect to µ(τ) and Log is the principal logarithm.N

Next we establish an important lemma known as the semigroup property which is useful

in proving nice theorems offering us solutions of the initial value problem

y∆ = p(t)y, y(t0) = 1.
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Lemma 3.12. If p ∈ R, then the semigroup property

ep(t, r)ep(r, s) = ep(t, s), for all r, s, t ∈ T

holds.

Proof. : Let us assume that p ∈ R and r, s and t ∈ T.

Using the definition of exponential function and the property of integration

b∫
a

f(t)∆t =

c∫
a

f(t)∆t+

b∫
c

f(t)∆t,

we have

ep(t, r)ep(r, s) = exp

 t∫
r

ξµ(τ)(p(τ))∆τ

 exp

 r∫
s

ξµ(τ)(p(τ))∆τ


= exp

 t∫
r

ξµ(τ)(p(τ))∆τ +

r∫
s

ξµ(τ)(p(τ))∆τ


= exp

 t∫
s

ξµ(τ)(p(τ))∆τ


= ep(t, s).

Hence we established that ep(t, r)ep(r, s) = ep(t, s), for all r, s, t ∈ T.

The following definition, as stated in Bohner and Peterson, [1], tells us about a regressive

linear dynamic equation.

Definition 3.13. If p ∈ R, then the first order linear dynamic equation y∆ = p(t)y is called

regressive.N

Now we present a nice proof of the theorem which gives us ep(., t0) as the solution of the

initial value problem y∆ = p(t)y, y(t0) = 1.
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Theorem 3.14. (Bohner and Peterson [1]) If the first order linear dynamic equation y∆ =

p(t)y, p ∈ R is regressive and t0 ∈ T, then ep(., t0) is a solution of the initial value problem

y∆ = p(t)y, y(t0) = 1 on T.

Proof. : Let t0 ∈ T and suppose p ∈ R.

If t = t0, we have ep(t0, t0) = 1. To complete the proof, we need to show that the

exponential function ep(t, t0) satisfies the dynamic equation y∆ = p(t)y. For this, fix t ∈ Tk,

then we can see two cases:

Case I:

For the case when σ(t) > t, using the definition of derivative, the Lemma 3.12 and the

definition of ξ−1
h (z), we have

e∆
p (t, t0) =

exp(
σ(t)∫
t0

ξµ(r)(p(r))∆r)− exp(
t∫
t0

ξµ(r)(p(r))∆r)

µ(t)

=

exp(
t∫
t0

ξµ(r)(p(r))exp(
σ(t)∫
t

ξµ(r)(p(r))∆r)− exp(
t∫
t0

ξµ(r)(p(r))∆r)

µ(t)

=

exp(
σ(t)∫
t

ξµ(r)(p(r))∆r)− 1

µ(t)
ep(t, t0)

=
eξµ(t)(p(t))µ(t) − 1

µ(t)
ep(t, t0)

= ξ−1
µ(t)(ξµ(t)(p(t)))× ep(t, t0)

= p(t).ep(t, t0).

Case II: For the case when σ(t) = t, using Lemma 3.12 and the triangle inequality, we have,
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|y(t)− y(s)− p(t)y(t)(t− s)|

= |ep(t, t0)− ep(s, t0)− p(t)ep(t, t0)(t− s)|

= |ep(t, t0)| × |1− ep(s, t)− p(t)(t− s)|

= |ep(t, t0)| × |1− ep(s, t)− p(t)(t− s)−
t∫

s

ξµ(τ)(p(τ))∆τ +

t∫
s

ξµ(τ)(p(τ))∆τ |

≤ |ep(t, t0)| × |1−
t∫

s

ξµ(τ)(p(τ))∆τ − ep(s, t)|+ |ep(t, t0)| × |
t∫

s

ξµ(τ)(p(τ))∆τ − p(t)(t− s)|

≤ |ep(t, t0)| × |1−
t∫

s

ξµ(τ)(p(τ))∆τ − ep(s, t)|+ |ep(t, t0)| × |
t∫

s

[ξµ(τ)(p(τ))− ξo(p(t))]∆τ |.

Let ε > 0 be given. The function p is right-dense continuous and σ(t) = t so that

limr→t ξµ(r)(p(r)) = ξ0(p(t)).

Therefore we can obtain

|ξµ(τ)(p(τ))− ξo(p(t))| <
ε

3|ep(t, t0)|

for all τ ∈ U1, where U1 is a neighborhood of t.

Then, if s ∈ U1, we have

|ep(t, t0)| × |
t∫
s

[ξµ(τ)(p(τ))− ξo(p(t))]∆τ |

≤ |ep(t, t0)| ×
t∫

s

|[ξµ(τ)(p(τ))− ξo(p(t))]∆τ |

<
ε

3
|t− s|.
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We have, by L’Hospital’s rule, that,

lim
z→0

1− z − e−z

z
= 0,

and hence we have

|
1−

t∫
s

ξµ(τ)(p(τ))∆τ − ep(s, t)

t∫
s

ξµ(τ)(p(τ))∆τ

| < ε∗,

where, ε∗ = min{1, ε
1+3|p(t)ep(t,t0)|} and s ∈ U2, a neighborhood of t.

Now for s ∈ U := U1 ∩ U2, then,

|ep(t, t0)| × |1−
t∫
s

ξµ(τ)(p(τ))∆τ − ep(s, t)|

< |ep(t, t0)| × ε∗|
t∫

s

ξµ(τ)(p(τ))∆τ |

≤ |ep(t, t0)| × ε∗[|
t∫

s

[ξµ(τ)(p(τ))− ξo(p(t))]∆τ |+ |p(t)||t− s|]

≤ |ep(t, t0)| × |
t∫

s

[ξµ(τ)(p(τ))− ξo(p(t))]∆τ |+ |ep(t, t0)| × ε∗|p(t)||t− s|

≤ ε

3
|t− s|+ |ep(t, t0)| × ε∗|p(t)||t− s|

≤ ε

3
|t− s|+ ε

3
|t− s|

=
2ε

3
|t− s|.
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Hence using previous two inequalities, we have

|y(t)− y(s)− p(t)y(t)(t− s)| < ε

This proves that ep(., t0) is a solution of the IVP y∆ = p(t)y, y(t0) = 1 on T

Hence we have shown the existence of a solution to the initial value problem

y∆ = p(t)y, y(t0) = 1 on T.

Now, we want to present an important theorem which gives the uniqueness of such a solution,

namely, ep(., t0).

Theorem 3.15. (Bohner and Peterson [1]) If the dynamic equation y∆ = p(t)y is regressive,

then the only solution of the initial value problem y∆ = p(t)y, y(t0) = 1 on T is given by

ep(., t0).

Proof. : Begin with y, a solution of the initial value problem y∆ = p(t)y, y(t0) = 1. We can

consider the quotient y(t)
ep(.,t0)

, since for all s, t ∈ T, ep(t, s) 6= 0. Using the quotient rule for

the delta derivative, we have,

(
y(t)

ep(., t0)
)∆(t) =

y∆(t)ep(t, t0)− y(t)e∆
p (t, t0)

ep(t, t0)ep(σ(t), t0)

=
p(t)y(t)ep(., t0)− y(t)p(t)ep(., t0)

ep(., t0)ep(σ(t)

= 0.

Using the fact that f is a constant function if f∆(t) = 0 for all t in its domain T, we have

that y(t)
ep(.,t0)

is constant.
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Thus,

(
y(t)

ep(., t0)
) ≡ (

y(t0)

ep(t0, t0)
)

=
1

1

= 1.

Finally, we have y(t) = ep(., t0). This proves that y(t) is the unique solution of the initial

value problem

y∆ = p(t)y, y(t0) = 1.

In the next section we will discuss second order linear equations and the behavior of

the particular dynamic equation on varying time scale.

3.3. SOLVING A PARTICULAR SECOND ORDER DE ON VARYING TIME

SCALES

First, we define the second order regressive dynamic equation as we have discussed for first

order dynamic equation.

Definition 3.16. (Bohner and Peterson [1]) We say that the dynamic equation

y∆∆ + p(t)y∆ + q(t)y = f(t) (3.4)

is regressive if 1−µ(t)p(t) +µ2(t)q(t) 6= 0, where p, q, and f are rd-continuous functions for

all t ∈ Tk.N

Before discussing uniqueness and existence of solutions of the dynamic equations, we

need the concept of the Wronskian.



34

Definition 3.17. (Bohner and Peterson [1]) If y1 and y2 are two differentiable functions

then, we denote the Wronskian by the symbol W = W (y1, y2) and define it by the formula

W (t) = det


y1(t) y2(t)

y∆
1 (t) y∆

2 (t)

 .N

If W (y1(t), y2(t)) 6= 0, for all t ∈ Tk, the solutions y1 and y2 form a fundamental system

for the homogeneous equation L2y = 0.

The following theorem states the existence and uniqueness of solutions of dynamic

equation (3.4). We omit the proof of theorems that follow because our goal is to analyze

the behavior of a particular second order linear homogeneous dynamic equation and give the

graphical solutions on different time scales using these theorems, definitions and properties.

Theorem 3.18. (Bohner and Peterson [1]) Assume that the dynamic equation (3.4) is

regressive. If t0 ∈ Tk, then the initial value problem

L2y = f(t), y(t0) = y0, y
∆(t0) = y∆

0 ,

where y0 and y∆
0 are given constants, has a unique solution, and this solution is defined on

the whole time scale T.

The next theorem, known as the principle of superposition, reveals that the operator L2 is

linear.

Theorem 3.19. (Bohner and Peterson [1]) The operator L2 : C2
rd → Crd is a linear operator,

i.e.,

L2(αy1 + βy2) = αL2(y1) + βL2(y2),
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for all α, β ∈ R and y1, y2 ∈ C2
rd.

If y1 and y2 solve the homogeneous equation L2y = 0, then so does y = αy1 + βy2, where α

and β are real constants.

The following theorem gives the general solution of the homogeneous linear dynamic

equation L2y = 0, and the solution of the IVP

L2y = 0, y(t0) = y0, y∆(t0) = y∆
0 .

Theorem 3.20. (Bohner and Peterson [1]). If the pair of functions y1, y2 forms a funda-

mental system of solutions for L2y = 0, then

y(t) = αy1(t) + βy2(t),

where α and β are constants, is a general solution of L2y = 0. By general solution we mean

every function of this form is a solution and every solution is in this form. In particular,

the solution of the initial value problem L2y = 0, y(t0) = y0, y
∆(t0) = y∆

0 is given by

y(t) =
y∆

2 (t0)y0 − y2(t0)y∆
0

W (y1, y2)(t0)
y1(t) +

y1(t0)y∆
0 − y∆

1 (t0)y0

W (y1, y2)(t0)
y2(t).

To achieve our goal of finding the analytical and graphical solutions of the particular

second order linear homogeneous DE

y∆∆ = −y, y∆∆(0) = 0 and y∆(0) = 1,

we now present an important theorem concerning the second order linear dynamic equation

with the constant coefficients, α and β in R. This type of equation takes the form

y∆∆ + αy∆ + βy = 0, (3.5)
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with α, β ∈ R defined on a time scale T. The DE (3.5) is assumed to be regressive, i.e.,

1− αµ(t) + βµ2(t) 6= 0, i.e., βµ− α ∈ R for t ∈ Tk.

Theorem 3.21. (Bohner and Peterson [1]). Suppose α2 − 4β 6= 0. If βµ − α ∈ R, then a

fundamental system of (3.5) is given by

eλ1(., t0) and eλ2(., t0),

where t0 ∈ Tk and λ1, λ2 are given by the characteristic equation λ2 + αλ+ β = 0 of the DE

(3.5). The solution of the initial value problem

y∆∆ + αy∆ + βy = 0, y(t0) = y0, y∆(t0) = y∆
0

is given by

y(t) = y0
eλ1(., t0) + eλ2(., t0)

2
+
αy0 + 2y∆

0√
α2 − 4β

× eλ2(., t0)− eλ1(., t0)

2
.

The following theorem addresses the case when α2 − 4β > 0.

Theorem 3.22. (Bohner and Peterson [1]) Suppose α2 − 4β > 0. Define

p = −α
2

and q =

√
α2 − 4β

2
.

If p and µβ − α are regressive, then a fundamental system of (3.5) is given by

cosh q
1+µp

(., t0)ep(., t0) and sinh q
1+µp

(., t0)ep(., t0),

where t0 ∈ T and the Wronskian of these two solutions is

q eµβ−α(., t0).
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The solution of the IVP

y∆∆ + αy∆ + βy = 0, y(t0) = y0, y
∆(t0) = y∆

0

is given by

[y0 cosh q
1+µp

(., t0) +
y∆

0 − py0

q
sinh q

1+µp
(., t0)]ep(., t0).

Note that coshp = ep+e−p
2

and sinhp = ep−e−p
2

Also, we include a theorem as stated ( Bohner and Peterson [1]) which gives the solution for

the case α2 − 4β < 0.

Theorem 3.23. Suppose α2 − 4β < 0. Define

p = −α
2

and q =

√
4β − α2

2
.

If p and µβ − α are regressive, then a fundamental system of (3.5) is given by

cos q
1+µp

(., t0)ep(., t0) and sin q
1+µp

(., t0)ep(., t0),

where t0 ∈ T and the Wronskian of these two solutions is

qeµβ−α(., t0).

The solution of the IVP

y∆∆ + αy∆ + βy = 0, y(t0) = y0 and y∆(t0) = y∆
0

is given by

[y0 cos q
1+µp

(., t0) +
y∆

0 − py0

q
sin q

1+µp
(., t0)]ep(., t0).
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Note that cosp =
eip+e−ip

2
and sinp =

eip−e−ip
2i

where eip(t, t0) = cosp(t, t0) + i sinp(t, t0).

The solution of the second order DE depends on whether the roots are distinct, repeated or

complex.

(i) If the characteristic equation has distinct roots λ1 and λ2, the general solution is given

by

y(t) = c1eλ1(t, t0) + c2eλ2(t, t0),

where constants c1 and c2 can be obtained using the initial conditions.

(ii) If the characteristic equation has repeated roots λ, then the general solution is given

by

y(t) = c1eλ(t, t0) + c2eλ(t, t0)

t∫
t0

1

µτ + λ
∆τ,

where constants c1 and c2 can be obtained using the initial conditions.

(iii) If the dynamic equation has complex roots of the form α± β, the the general solution

is represented by

y(t) = [c1 cos β
1+αµ(t)

(t, t0) + c2 sin β
1+αµ(t)

(t, t0)]ep(t, t0),

where constants c1 and c2 can be obtained using the initial conditions.

In the next section, we give a short discussion of the Differential Analyzer Machine.



4. THE DIFFERENTIAL ANALYZER MACHINE

4.1. INTRODUCTION

The differential analyzer was designed to solve differential equations using the method

of mechanical integration. A wheel and disk system was developed to accomplish the me-

chanical equivalent of integration. The differential analyzer was the first analogue computer

used to solve nonlinear differential equations. In this thesis, our goal is to analyze the graph-

ical behavior of solutions of dynamic equations using the Marshall Differential Analyzer

Machine. For this purpose, we now give a short description of the differential analyzer in its

early period and some discussion of present progress. In addition, we will give a description

of how this type of machine solves a dynamic equation on a given time scale.

4.2. HISTORY OF THE DIFFERENTIAL ANALYZER

In 1876, James Thompson and his brother, Lord Kelvin, published a paper [2] that

was the description of a device (James named this an “integrating machine”) that could

solve differential equations of any order, theoretically. Thompson and Kelvin did not ever

build such a machine to solve DE’s. The first credit for constructing a differential analyzer

goes to Dr. Vannevar Bush, a professor of electrical engineering at Massachusetts Institute

of Technology. Using the idea from Thompson and Kelvin’s paper, Dr. Bush designed and

built the first differential analyzer with six integrators in the late 1920’s at MIT [3]. A

few years later, using the ideas of Dr. Bush, a machine with four integrators was built

under the direction of Dr. Douglas Hartree by his student Arthur Porter at the Manchester

University in England. The Manchester DA, the first DA in England, was constructed from

39
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Meccano components. After Bush’s and Hartree’s work, additional machines were built at

Cambridge University, Queen’s University Belfast, and the Royal Aircraft Establishment in

Farnborough. Also, the Oslo Analyzer, a Bush type machine, with 12 integrators was built

in Norway in 1938.

4.3. PRESENT

Historical DA machines, built in the beginning of the early 1900s are now in museums.

The Marshall University Differential Analyzer machine, the newest machine of its size was

built by a team lead by Dr. Bonita Lawrence. Dr. Lawrence and her husband Dr. Clayton

Brooks started researching of differential analyzers after their trip to London Science of

Museum, where they saw part of Manchester Machine in 2004. In the process of their

work, the team found a working DA built by an electronics engineer in California, Mr.Tim

Robinson. Mr. Robinson incorporated Dr. Porter’s torque amplifier design and used many

of Dr. Bush’s ideas and built his own. The team was happy to meet Dr. Arthur Porter

in 2005 in North Carolina. With the inspiration of Dr. Porter and Mr. Tim Robinson’s

guidance concerning torque amplification, the team built another DA with two integrators in

2006 and named this machine “Lizzie”. After a persistent attempt, the Marshall Differential

Analyzer Team built a machine with four integrators in 2009 and they named this machine

“Art” after Dr. Arthur Porter. The DA team recently built a small sized DA with two

integrators and named it “DA Vinci”. The DA Vinci is designed for effective classroom

use. To obtain the results for our work, we used “Art” and “DA Vinci”. These machines

at Marshall University are used for demonstrating the visual concept of mathematics to the
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students at the university and in high schools around the country and students interested in

researching about the behavior of solutions of dynamic equation.

4.4. HOW DOES THE DA WORK?

A differential analyzer machine is made of metal rods and gears. A particular machine

can solve DE’s of order up to the number of integrator units that it contains. We need

the combination of the following main components to run and obtain the desired outcome

from a DA machine. They are: input and output tables, integrators, multipliers, the system

of inter-connect, adders and torque amplifiers. The integrators, input-output tables and

multipliers are joined together using the section of inter-connect with a series of cross shafts

and metal gears. Pre-plotted information can be fed into the machine by way of an input

table. We draw a desired function first on a paper using the output table. The output table

plots a graphical solution of the differential equation drawn by a pen on paper in the form

of curve. Figure 4.1 shows the mechanical components of integration on differential analyzer

machine. The integrator consists of a horizontally placed disk rotating about a vertical rod

through its center. The wheel is positioned on the top of the disk. Three main shafts are

associated with each integrator: two input shafts (integrand and independent variable), and

one output shaft.

As shown in the Figure 4.1, let the radius of the wheel be a inches and y′ be the distance

in inches the wheel sits from the center of the disk. If the wheel is at this position, we have

y′ = a. We note that the number of turns made by the wheel is equal to the number of

turns made by the disk. The circumference of the wheel is 2πa inches and the length of the

path of the wheel on the disk is 2πy′x′ inches, where x′ denote the number of the turns of

the disk. The number of the turns of the wheel can be described by

1

a
y′(x)∆(x′).
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Figure 4.1. Principle of Integrator

For a discrete set of positions of the wheel on the disk, the number of turns of the wheel is

given by the expression
1

a

n∑
i=1

y′(x′i)∆(x′i).

If ∆(x′i)→ 0 then the number of turns of the wheel is

1

a

∫ xn

x0

y′(x′)dx′.

Now, we would like to rewrite the expression 1
a

∫ xn
x0
y′(x′)dx′ in terms of the shaft rotations

of the three integrator shafts. Let y be the number of turns of the integrand shaft required

to produce a linear displacement y′ of the disk along the center of the disk, then we have the

relation y = y′

P
where P is the pitch of the displacement lead screw. If K is the reduction

gear between the shaft representing the variable of integration and the disk axle, the number

of turns x of the disk is given by x = x′

K
. Now, substituting the value of x′ and y′ in the
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expression
1

a

n∑
i=1

y′(x′i)∆(x′i),

we get the following expression for rotation of the output shaft from an integrator

KP

a

∫
ydx.

The term a
KP

is called the integrator constant.

Another set of components that we need within the structure of the machine is adders.

Sometimes we need to change the sign for a term within the differential equation that we

would like to solve. For example, to set up the differential equation y∆ = −y on the machine,

we need to change the sign of the motion y(t) to get −y(t). For this we use two gears of

same size and we mesh them on two adjoining rods. They turn the opposite direction. This

will give us the negative sign and we can send this motion as needed. Similarly, torque

amplifiers are very important on the differential analyzer machine. We need to send the

motion of the output shaft of the wheel through the system of inter-connect into the next

integrator. This process can be done using the torque amplifier. The motion of the shaft of

the integrator wheel is fed into a torque amplifier which amplifies the torque and sends to

the next integrator to use as needed. Marshall DA Art Lab uses torque amplifiers designed

by Mr. Tim Robinson.

4.5. THE BUSH SCHEMATIC

In this section, our goal will be to consider solutions of a particular initial value problem

on different time scales. For this, we select an IVP

y∆ =
1

2
y
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Figure 4.2. Schematic Diagram

with an initial condition y∆(0) = 1
2
.

To solve this type of problem, it is essential to give some details about how we set up

in the Differential Analyzer machine. For simplicity, we use a diagram called a schematic



45

diagram introduced by Dr. Bush at MIT. According to Bush’s schematic, we start with

the highest order of the derivative and we work down to the dependent variable, along the

way getting the lower order derivatives. Figure (4.2) is the Bush’s schematic for the chosen

dynamic equation

y∆ =
1

2
y, y∆(0) =

1

2
.

In the Figure (4.2), one can see that the larger rectangular part represents the inte-

grator, the circular part represent the disk, the part which seems like a straight line at the

center of the disk represents the wheel (a view from above) and the smaller rectangular

shaped piece is the disc drive. The horizontal lines represent the connecting rods. The first

arrow sent to the integrator represents the independent variable, (scaled)250t, which is fed

into the disk drive. This means 250 rotations of the disk is equivalent to one unit of time in

the analytical sense on the counter. Similarly, the first derivative term we scale as 50y∆ is the

motion which is sent through the second horizontal rod and directs the carriage movement.

The output now can be seen in the third horizontal rod as 50y which came from the output

of the integrator.

For the integrators on our machine, incorporating the gears connected to the counters,

K = 2
5

3
10
, P = 1

32
and a = 15

16
, so using a

KP
= 250, one can easily see that

KP

a

∫
50y∆(t)d(250t)

=
1

250

∫
50y∆(t)d(250t)

= 50y(t).

Then we gear down the motion by one-half to obtain 25y(t), as presented on the fourth

horizontal rod. Finally, we send this motion to the second horizontal rod to equalize the



46

motions and obtain our first order dynamic equation 50y∆ = 25y which is equivalent to

y∆(t) =
1

2
y(t).

A schematic for our second order problem is presented in Section 6.3. Now, we analyze the

chosen first and second order dynamic equations in different time scales.



5. STATEMENT OF THE PROBLEM WITH ANALYTICAL SOLUTIONS

In this Section, we discuss the solutions of a particular first and second order linear

dynamic equations and give a brief analytical discussion of solutions on some given time

scales.

5.1. SOLVING A PARTICULAR FIRST ORDER DE ON VARYING TIME

SCALES

Figure 5.1. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T = [0, 6]

47
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We know that our initial value problem, IVP,

y∆ =
1

2
y, y∆(0) =

1

2
(5.1)

has a unique solution. We chose a particular time scale T = [0, 6] and set up this problem

on the differential analyzer machine. We will give the details of the process in Section 6.

Figure 5.1 is the graph of the solution of our IVP (5.1) on T = [0, 6]. Now consider a

sequence of time scales, each the union of two closed subsets of T0 = [0, 6] where Ti ⊂ Ti+1

for all i = 1, 2, 3, 4, .......19. For each Ti, we plotted the solution curve using the Differential

Analyzer. For simplicity, let us define Ti = [0, 0.15i] ∪ [6 − 0.15i, 6], i = 1, 2, 3, ....20. Then

time scales according to our plan are:

T0 = [0, 6],

T1 = [0, 0.15] ∪ [5.85, 6],

T2 = [0, 0.30] ∪ [5.70, 6],

T3 = [0, 0.45] ∪ [5.55, 6],

T4 = [0, 0.60] ∪ [5.40, 6],

.

.

.

T18 = [0, 2.70] ∪ [3.30, 6],

T19 = [0, 2.85] ∪ [3.15, 6]
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and

T20 = [0, 3.00] ∪ [3.00, 6].

the solution converges towards solution on the original time scale T. For these domains for our

solutions, we can see that the gap between the closed intervals are decreasing gradually. We

can see an interesting pattern using these T′is. Note that the solutions of the sequence of time

scales, Ti, created above converge towards the solution on the original time scale T0 = [0, 6].

Our goal is to analyze solutions of our dynamic equation on these time scales analytically and

graphically. Each time scale in the sequence is a union of two closed intervals. An important

issue is the behavior of the solutions after the jump in the domain from one closed interval

to the other. Solutions are obtained with the same initial condition y∆(0) = 1
2
, for all Ti. By

gradually decreasing the gap between the two disconnected pieces, the solutions tend toward

the solution of our first order dynamic equation on T0 = [0, 6].

For the analytical discussion of the initial value problem (5.1), let us consider the time scale

T3 = [0, 0.45]∪[5.55, 6] from our sequence and compare the solution obtained with the results

we will obtained on the Differential Analyzer in the next section.

We know that the IVP y∆ = p(t)y, y(t0) = 1 has unique solution given by the formula

ep(t, t0) = exp

 t∫
t0

ξµ(τ)(p(τ))∆τ


with

ξh(z) =


Log(1+hz)

h
if h 6= 0;

z if h = 0.

For the IVP y∆ = 1
2
y, y∆(0) = 1

2
, p = 1

2
. On the time scale T3 = [0, 0.45]∪ [5.55, 6], we want

to discuss the following three cases:
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(i) For t ∈ [0, 0.45], since σ(t) = t, and using t0 = 0, we obtain

y(t) = e 1
2
(t, 0)

= e

(
t∫
0

ξµ(τ)(
1
2

)∆τ

)

= e

(
t∫
0

ξ0( 1
2

)∆τ

)

= e

(
t∫
0

( 1
2

∆τ)

)

= e
1
2
t.

(ii) For t = 5.55, since σ(0.45) = 5.55, and using Theorem (2.24),

y(5.55) = e 1
2
(5.55, 0)

= exp

 5.55∫
0

ξµ(τ)(
1

2
)∆τ


= exp

 0.45∫
0

ξ0(
1

2
)∆τ +

5.55∫
0.45

ξ5.10(
1

2
)∆τ


= exp

 0.45∫
0

(
1

2
∆τ) +

5.55∫
0.45

Log(1 + 5.10
2

)

5.10
∆τ


= exp

(
0.45

2
+ ln(1 +

5.10

2
)

)
=

(
1 +

5.10

2

)
exp

0.45

2
.
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Also, since σ(t) > t, using the simple useful formula for any differentiable function y,

y(σ(t)) = y(t) + µ(t)y∆(t), for our example we obtain

y(σ(0.45)) = y(0.45) + µ(0.45)y∆(0.45)

y(5.55) = y(0.45) + (5.55− 0.45)× y∆(0.45)

= e
1
2

(0.45) + 5.10× 1

2
e

1
2

(0.45)

=

(
1 +

5.10

2

)
e

0.45
2 .

(iii) For t ∈ (5.55, 6], since σ(t) = t,

y(t) = e 1
2
(t, 0)

= exp(

t∫
0

ξµ(τ)(
1

2
)∆τ)

= exp

 0.45∫
0

(
1

2
)∆τ +

5.55∫
0.45

ln(1 +
5.10

2
)∆τ +

t∫
5.55

(
1

2
)∆τ


= exp

(
0.45

2
+ ln(1 +

5.10

2
) +

1

2
t− 5.55

2

)
= exp(

0.45

2
)

(
1 +

5.10

2

)
× exp(

1

2
t− 5.55

2
)

Note that

y∆(5.55) = y′(5.55)

= e
0.45
2 (1 +

5.10

2
)× 1

2
e(

5.55
2
− 5.55

2 )

=
1

2
e

0.45
2 (1 +

5.10

2
)

=
1

2
y(5.55).
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Also, note that for t ∈ (5.55, 6], y(t) is not equivalent to

e 1
2
(t, 5.55) = exp

 t∫
5.55

ξ0(
1

2
)∆t


= exp

 t∫
5.55

1

2
∆t


= exp

(
1

2
t− 5.55

2

)
.

In the next section, we analyze the chosen second order linear homogeneous dynamic equation

y∆∆ = −y, with the initial conditions y∆∆(0) = 0 and y∆(0) = 1.

5.2. SOLVING A PARTICULAR SECOND ORDER DE ON VARYING TIME

SCALES

Now, from the discussion in Section 5.1, we are ready to discuss the solution of the

second order linear dynamic equations analytically. For this, let us take a time scale T0 =

[0, 3π] and create a sequence of time scales as below:

T1 = [0,
π

2
] ∪ [

3π

2
, 3π]

T2 = [0,
7π

10
] ∪ [

13π

10
, 3π]

and

T3 = [0,
9π

10
] ∪ [

11π

10
, 3π].

From this sequence, we choose T1 = [0, π
2
] ∪ [3π

2
, 3π] and particular second order linear

homogeneous IVP

y∆∆ = −y, y∆∆(0) = 0 and y∆(0) = 1. (5.2)
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Comparing this IVP with the DE y∆∆ + αy∆ + βy = 0, y(t0) = y0, y∆(t0) = y∆
0 , we have

α2 − 4β = 02 − 4 ∗ (1) = −4 < 0. Thus using Theorem 3.23, we analyze three cases as given

below:

We have α = 0, β = 1 so that p = −α
2

= 0 and q =

√
4β−α2

2
= 1. The characteristic equation

of the DE y∆∆ = −y is λ2 + 1 = 0 whose roots are λ1 = i and λ1 = −i.

(i) For t ∈ [0, π
2
], since y0 = 0, and y∆

0 = 1, we have

y(t) = [y0 cos q
1+µp

(t, t0) +
y∆

0 − py0

q
sin q

1+µp
(., t0)]ep(t, t0)

= [0× cos 1
1+0

(t, 0) +
1− 0

q
sin 1

1+0
(t, 0)]e0(t, 0)

= 0 + sin1(t, 0)

=
ei − e−i

2i

=

exp

(
t∫

0

(i)∆τ

)
− exp

(
t∫

0

(−i)∆τ
)

2i

=
eit − e−it

2i

=
cos t+ i sin t− (cos t− i sin t)

2i

=
2i sin t

2i

= sin t.
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(ii) For t = π
2
, since σ(π

2
) = 3π

2
, we have by using the definition of sin1(t, t0),

y(t) = [y0 cos q
1+µp

(t, t0) +
y∆

0 − py0

q
sin q

1+µp
(., t0)]ep(t, t0)

y((
3π

2
)) = [0 ∗ cos 1

1+0
(
3π

2
, 0) +

1− 0

1
sin 1

1+0
(
3π

2
, 0)]e0(

3π

2
, 0)

= sin1(
3π

2
, 0) exp


3π
2∫

0

ξπ(0)∆τ


= sin1(

3π

2
, 0) exp


π
2∫

0

ξ0(0)∆τ +

3π
2∫

π
2

ξπ(0)∆τ


= sin1(

3π

2
, 0) exp


3π
2∫

π
2

Log[1 + 0 ∗ π]

π
∆τ


= exp

 ln[1]

π

3π
2∫

π
2

∆τ


= exp

(π
π
× ln[1]

)
= 1

Also, since σ(t) > t, using the simple useful formula for any differentiable function y,

we have, y(σ(t)) = y(t) + µ(t)y∆(t). Then;

y(σ(
π

2
)) = y(

π

2
) + µ(

π

2
)y∆(

π

2
)

y(
3π

2
) = y(

π

2
) + (

3π

2
− π

2
) ∗ y∆(

π

2
)

= sin(
π

2
) + π × cos(

π

2
)

= 1 + π × 0

= 1
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(iii) For t ∈ (3π
2
, 3π], since σ(t) = t and using the definition of sin1(t, t0),

y(t) = [y0 cos q
1+µp

(t, t0) +
y∆

0 − py0

q
sin q

1+µp
(., t0)]ep(t, t0)

= [0 +
1− 0

1
sin 1

1+0
(t, 0)]e0(t, 0)

= −sint.

Therefore our solution on T1 = [0, π
2
] ∪ [3π

2
, 3π] has the form

y(t) =


sin t for t ∈ [0, π

2
];

1 if t = 3π
2

;

− sin t if t ∈ (3π
2
, 3π].

Now, we discuss plotting graphical solution of the IVP y∆ = 1
2
y, y∆(0) = 1

2
and y∆∆ =

−y, y∆∆(0) = 0, y∆(0) = 1 on our chosen sequences of time scales using the Differential

Analyzer.



6. SOLVING DE’S ON VARYING TIME SCALESUSING THE DIFFERENTIAL ANALYZER

There are many methods of obtaining the numerical solutions and graphical solutions of

differential equations of any order. In this study, we will examine the behavior of the solution

of the first and second order DE’s on varying time scales. We start the problem with a given

time scale and gradually increase the size of time scales and obtain solutions on the sequence

of time scales. That means we decrease the gap between the two disconnected closed intervals

of real line. We gave an introduction to the differential analyzer machine in Section 4. Now

we want to discuss some details about how we set up our problem in the Differential Analyzer

to achieve our results. We use the method of mechanical integration to lower the order as

required (we also discussed this in the Bush’s Schematic). The Differential Analyzer’s disk

and wheel mechanism integrates derivatives of the functions y. This type of machine mainly

consists of integrator units, torque amplifiers (one per integrator unit), counters (counting

units), adding units (adders), input and output tables and gearing and shafting system for

sign changes and to gear down within the differential equation and link the motions together.

For this process, for a linear equation, we send the independent variable motion, denoted by

t, to each of the integrator units through the independent variable motor. We also send the

motion describing the derivative of a function to the integrator unit through a lead screw

to obtain the desired output. The integrator consists of horizontally positioned disc and a

vertically placed wheel at the top of the disc. We note here that the disk rotates about a

vertical rod through its center. When the machine is in motion, we measure the motion

made by the turns of the disk and rotation of the wheel in terms of shaft rotations. The
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output of the integrator is sent to the other integrator, if required, through the system of

interconnect and finally it is sent to the output table to get the curve that we targeted.

6.1. SOLVING A PARTICULAR FIRST ORDER DE ON THE DA

To find the solution of the differential equation y∆ = 1
2
y, we use only one integrator,

because it is of first order. We set the initial condition using the counters for the derivatives

and the output table so it is ready to draw the solution curve. We send the motion of

the independent variable and the motion of y∆(t) to the integrator. After the process of

integration, we obtain the motion y(t) and make a careful connection to the output table.

We also gear down y(t) by 2 in this problem to obtain 1
2
y(t) and then connect it to the rod

that turns the lead screw on the integrator.

The interesting point made here is how we run the problem across the gap. In particular,

if our time scale is T3 = [0, 0.45] ∪ [5.55, 6], how do we run the problem? For this, on the

output table, we will let the pen plot the solution up to the point t = 0.45. At this point

we lift the pen up from the paper and we disengaged the lead screw, representing the first

derivative and moving the first integrator, via the clutch. Then, we run the machine up

to the point t = 5.55. Now, we disengage the independent and dependent variable from

the output table via the clutches. We then reengage the integrator clutches and run the

independent variable in the positive direction until the corresponding derivative, as we read

on the counter, reads a value consistent with the value described by the differential equation

with respect to the corresponding y value at the point t = 5.55. At this point, we stopped

the machine and reengage the derivative clutch and proceed on to the next y values up to

t = 6.

The main reason for disengaging the clutch is that the function is not defined for values

between t = 0.45 to t = 5.55, but from 0 to 0.45 and 5.55 to 6 we have an exponential curve

as the solution. We use the simple useful formula for the differential function and compute
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Figure 6.1. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T3 = [0, 0.45] ∪ [5.55, 6]

y(5.55), where y(5.55) = y(0.45) + (5.55− 0.45)× y∆(0.45). At this point, we are at y(0.45),

the graininess is (5.55−0.45) and we want the direction y∆(0.45). Most importantly, we also

note that only one initial condition is expected for this type of problem. Another important

thing we need to note is that the machine automatically gives the value for y where we

engaged the clutch at t = 5.55.

Figure 6.1 is the graphical solutions of the initial value problem

y∆ =
1

2
y, y∆(0) =

1

2

on the time scale T3 = [0, 6] ∪ [5.55, 6]. Figures 6.2 shows the solutions of the dynamic

equation

y∆ =
1

2
y, y∆(0) =

1

2
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Figure 6.2. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on Varying Time Scales

on varying time scales T′is that we have discussed in the Section 5.1. We can clearly see

that the gap between two disconnected pieces are decreasing and the solutions of T′is, i =

1, 2, 3, .....20 converges towards the solution of the time scale T0.

6.2. SOLVING A PARTICULAR SECOND ORDER DE ON THE DA

We take time scales T0 = [0, 3π], T1 = [0, π
2
] ∪ [3π

2
, 3π], T2 = [0, 7π

10
] ∪ [13π

10
, 3π] and

T3 = [0, 9π
10

] ∪ [11π
10
, 3π] as we have discussed for the analytical solution for our second order

homogeneous linear dynamic equation

y∆∆ = −y, y∆∆(0) = 0 and y∆ = 1.
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Let us discuss how we set up this problem on the Differential Analyzer. For this we

first describe the Bush Schematic as shown in Figure 6.3. We clearly can see in this figure

that we need two integrators for this second order problem. From the first horizontal line

(which represents time), the independent variable 250t is sent to both of the integrators

representing the first and second derivatives. The motion of 250y∆∆ moves the carriage of

the first integrator. After a process of integration, we can see the output motion as 250y∆

which is represented by the second horizontal rod. Similarly, we now send the motion of

250y∆ to the second integrator and the resulting motion can be seen on the third horizontal

rod which is 250y. Now now connect two gears of same size to allow running the motion

in the opposite direction so that we obtain the motion −250y. Finally, we sent the motion

−250y to the first integrator to equalize and obtain y∆∆ = −y.

Particularly, if our time scale is T1 = [0, π
2
] ∪ [3π

2
, 3π], let us explain how we run this

second order problem on the DA. We need two integrators because the equation is of second

order. We set up the initial conditions using the counters and we run the solution curve to

the point t = π
2

with the first integrator, the second integrator and the output table engaged.

We let the pen draw the solution curve on the paper set on the output table. We are now at

the corresponding y value of π
2
. Since we have the common useful formula of the differential

function y(3π
2

) = y(π
2
) + µ(π

2
)y∆(π

2
), we need to run from π

2
to 3π

2
with the slope of y∆(π

2
).

For this we run the output table with the first derivative held constant at y∆(π
2
). Then we

run the machine up to the point t = 3π
2

. We have the corresponding y value for 3π
2

at this

point. Then, we disconnect the output table. We require the opposite y value on the counter

of the integrator which represents the second derivative, y∆∆, and the related y∆ value. We

reconnect the lead screws to both of the integrators. Then we lift the pen disconnect the

output table and run the machine until we have the appropriate y(3π
2

) on the counter for the

first integrator but of opposite sign. Now we reconnect all the lead screws. Finally we run

up to the point t = 3π.
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Figure 6.4 was obtained on the Differential Analyzer for our second order DE y∆∆ = −y,

with the initial conditions y∆∆(0) = 0 and y∆ = 1 on time scale T2 = [0, π
2
] ∪ [3π

2
, 3π].

Next, we describe our results and present the curves that we obtained on different time

scales for the chosen first and second order dynamic equations.
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Figure 6.3. The Bush Schematic
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Figure 6.4. Solution of y∆∆ = −y, y∆∆(0) = 0, y∆(0) = 1 on The Time Scale T1 = [0, π
2
] ∪

[3π
2
, 3π]



7. CONCLUSIONS AND DA RESULTS

In this work, we have sufficiently discussed the basic terms and useful properties, with

some examples, on time scale calculus. Further, we presented the concepts of the delta

derivative, delta antiderivative, first and second order initial value problem starting with the

Hilger Complex Plane and the generalized exponential function (the solution of a first order

dynamic equations). We demonstrated analytical and graphical solutions of some initial

value problems. Particularly, we have chosen

y∆ =
1

2
y, y∆(0) =

1

2

as our first order dynamic equation and the second order linear homogeneous dynamic equa-

tion

y∆∆ = −y, y∆∆(0) = 0 and y∆ = 1.

Additionally, we demonstrated the analytical and graphical solution to these equations on

varying time scales. A major focus of this work is the use of the Differential Analyzer

Machine at Marshall University.

There are many methods for studying the graphical behavior of first and second order

dynamic equations on time scales calculus. To find the solution on the union of two discon-

nected closed intervals of real line, we realized that the best way is to analyze the behavior

of the solutions using the Differential Analyzer. This type of machine gives the qualitative

behavior of the dynamic equations of any order. The Marshall DA Team exerted painstak-

ing effort to make the successful models on the machine and particularly demonstrating the

visual concept to the mathematics and engineering students of the university as well as high

64



65

school students. Including the author of this thesis, we have had a very exciting time work-

ing with the machine. In the process of its study, we realized that this kind of machine is

very much useful for achieving the results for a variety of differential equations. The beauty

behind this machine is that one can use this machine as a working tool for his research and

create a mechanical model to get the output curve as desired for the DE problems. There

is not a unique way to solve a DE in the machine. We can get results by setting up the

problem in various ways. After understanding the visual perspective of the machine offers,

everybody can realize the beauty of the Differential Analyzer.

For our work, particularly, we used the differential analyzer machine to find graphical

solutions. For this we started with a time scale T and further we created a sequence of time

scales T′is and showed that the solution on the T′is (decreasing the gap between two closed

intervals) converges to the solution on time scale T0. We gave the detailed steps to set up

the first and second order problem on the differential analyzer.

Thus, we concluded that the solutions of these two linear dynamic equations of first

and second order in different time scales converges to the solution after gradually increasing

the time scales where T′i+1s ⊂ Ti, i = 0, 1, 2, 3, 4, ....

The figures that follow were obtained after setting up our first order DE y∆ = 1
2
y, y∆(0) =

1
2

on the Differential Analyzer in 21 different time scales and for the second order linear ho-

mogeneous dynamic equation y∆∆ = −y with the initial conditions y∆∆(0) = 0 and y∆ = 1

on 4 different time scales. Note the behavior of the solutions as the time scales converges to

the associated solution on T0.
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Figure 7.1. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T0 = [0, 6]

Figure 7.2. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T1 = [0, 0.15] ∪ [5.85, 6]
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Figure 7.3. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T2 = [0, 0.30] ∪ [5.70, 6]

Figure 7.4. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T3 = [0, 0.45] ∪ [5.55, 6]
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Figure 7.5. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T4 = [0, 0.60] ∪ [5.40, 6]

Figure 7.6. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T5 = [0, 0.75] ∪ [5.25, 6]
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Figure 7.7. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T7 = [0, 1.05] ∪ [4.95, 6]

Figure 7.8. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T10 = [0, 1.50] ∪ [4.50, 6]
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Figure 7.9. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T13 = [0, 1.95] ∪ [4.05, 6]

Figure 7.10. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T17 = [0, 2.55] ∪ [3.45, 6]
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Figure 7.11. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T18 = [0, 2.70] ∪ [3.30, 6]

Figure 7.12. Solution of y∆ = 1
2
y, y∆(0) = 1

2
on T20 = [0, 3.00] ∪ [3.00, 6]
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Figure 7.13. Solutions of y∆∆ = −y, y∆∆(0) = 0 and y∆ = 1 on T0 = [0, 3π]

Figure 7.14. Solutions of y∆∆ = −y, y∆∆(0) = 0 and y∆ = 1 on T1 = [0, π
2
] ∪ [3π

2
, 3π]
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Figure 7.15. y∆∆ = −y, y∆∆(0) = 0 and y∆ = 1 on T2 = [0, 7π
10

] ∪ [13π
10
, 3π]

Figure 7.16. y∆∆ = −y, y∆∆(0) = 0 and y∆ = 1 on T3 = [0, 9π
10

] ∪ [11π
10
, 3π]
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