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Antifreeze proteins (AFPs) are a subset of ice-binding proteins that
control ice crystal growth. They have potential for the cryopreser-
vation of cells, tissues, and organs, as well as for production and
storage of food and protection of crops from frost. However, the
detailed mechanism of action of AFPs is still unclear. Specifically,
there is controversy regarding reversibility of binding of AFPs to
crystal surfaces. The experimentally observeddependenceof activity
ofAFPson their concentration in solution appears to indicate that the
binding is reversible. Here, by a series of experiments in tempera-
ture-controlledmicrofluidic devices, where themedium surrounding
ice crystals can be exchanged, we show that the binding of
hyperactive TenebriomolitorAFP to ice crystals is practically irrevers-
ible and that surface-bound AFPs are sufficient to inhibit ice crystal
growth even in solutions depleted of AFPs. These findings rule
out theories of AFP activity relying on the presence of unbound
protein molecules.

thermal hysteresis | ice structuring proteins

Antifreeze proteins (AFPs) are found in a variety of cold-
adapted organisms, where they serve as inhibitors of ice crystal

growth and recrystallization (1, 2). These proteins are a subset of
an expanding group of identified proteins, whose salient feature is
ice binding (3, 4). AFPs are characterized by their ability to cause
a temperature difference (hysteresis) in themelting and freezing of
ice and are classified as hyperactive ormoderately active according
to the magnitude of their freezing hysteresis (FH) activity (5). The
FH activity is defined as the difference between the melting tem-
perature of ice crystals and the nonequilibrium freezing tempera-
ture at which rapid crystal growth commences. Although the FH
activity has been investigated for more than four decades, the ac-
tual mechanism of action of AFPs is still not clear. This is partly
because the interactions between molecules of AFPs, water, and
ice at the ice–water interface are difficult to study experimentally
due to the delicate, transitory nature of the ice–water interface.
FH activity is thought to be due to an adsorption-inhibition

mechanism that states that AFPs bind to ice surfaces and allow
ice crystal growth only in surface regions between the bound AFP
molecules (6, 7). This patchy growth pattern causes increased local
microcurvature of the ice front that leads to larger surface energy,
making the transformation of water into ice less energetically fa-
vorable and thus reducing the freezing temperature (Gibbs–
Thompson effect). It has been argued that the binding of AFPs to
ice surfaces must be irreversible, because AFP desorption would
result in rapid crystal growth in the areas where theAFPmolecules
have been desorbed from the ice surface (6, 8). This theory has
been criticized for assuming that the ice–water interface is sharp,
contrary to the experimental evidence that the transitions from an
ordered solid phase to a liquid phase at the ice–water interfaces
are gradual and occur over several layers of water molecules (9–
12). Perhaps the hardest criticism to answer is related to the ex-
perimentally observed dependence of FH activity on AFP

concentration, which strongly suggests a dynamic exchange be-
tween adsorbed AFPs and free AFPs in the surrounding solution
(11, 13–18).
A few theories relating the kinetics of adsorption of AFP mol-

ecules to the ice surface with the observed FH activity have been
suggested (19, 20). Several experimental studies have examined the
kinetics of AFP binding to ice, but the questions of reversibility of
the AFP binding and of the contribution of AFP molecules in so-
lution to the inhibition of ice growth have not been resolved. For
instance, Ba et al. used NMR to study the binding of fish type I
AFPs to ice and suggested that an increment in the NMR signal
over timewas an evidence of desorption ofAFPmolecules from the
ice surface (21). Additionally, based on the observed loss of fluo-
rescence intensity at an edge of a growing ice crystal in experiments
with fluorescently labeled antifreeze glycoproteins, Zepeda et al.
argued that AFPs on the ice surface were released upon growth of
a new layer of ice (9). Thus, the authors concluded that the binding
of these proteins to the ice surface was weak. In contrast to the
above results, Pertaya et al. (22), who used fish AFP type III (23)
tagged with green fluorescent protein (GFP) and the technique of
fluorescence recovery after photobleaching (FRAP), found the
binding of AFPs to ice surfaces to be irreversible. Nevertheless,
these experiments did not directly address the question of the in-
fluence of AFPs in solution on the FH activity. To answer this
question, one needs to be able to vary the concentration of AFPs in
solution in the vicinity of ice crystals without perturbing the crystals
or changing the amount of AFPs bound to their surfaces.
Recently, microfluidic devices have been used to study ice nu-

cleation processes (24–26), cell injury by freezing (27), and thaw–
freezing cycle valves (28). Here we used a sensitive temperature-
controlled system and custom-built microfluidic devices to slowly
remove AFPs from the solution around individual ice crystals
without perturbing the crystals or changing the temperature. The
AFPs were fused with GFP, enabling their visualization in solution
and on ice crystals under a fluorescence microscope. Our experi-
ments provide direct evidence that the binding of hyperactive
Tenebrio molitor AFP (TmAFP) molecules to ice crystals is prac-
tically irreversible and that, at a given amount of AFPs bound to an
ice crystal surface, the FH activity is virtually independent of the
concentration of AFPs in solution. These findings contradict
a broadly accepted view that the FH activity depends on the
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concentration of AFPs in solution, suggesting that the existing
theories relating the concentration of AFPs in solution to the ob-
served FH activity need to be reexamined.

Results
Exchanging GFP-AFP Solution Around an Ice Crystal. The reversibility
of binding of AFPs to ice was examined in a solution-exchange
experiment. The microfluidic devices used in the experiments were
designed to allow the growth of an ice crystal in a small chamber,
with an option to exchange the solution around the ice crystal at
minimal flow rate, thus minimizing the perturbation to the crystal
(Figs. 1 and 2A andMaterials andMethods). The protein used in the
study was a fusion of the insect hyperactive TmAFP (29) and GFP.
An 8-μM GFP-TmAFP solution in ammonium bicarbonate buffer
was introduced into the microfluidic device and frozen by cooling
the device to –20 °C. The temperature was gradually increased until
a single ice crystal remained in one of the microchambers of the
device (Fig. 2B). The temperature was then decreased to 0.05 °C
below the melting point (still within the FH range) and kept con-
stant throughout the experiment. The ice crystal was incubated in
theGFP-TmAFP solution for 20min.Next, themain channel of the
microfluidic device was slowly perfused with plain buffer, gradually
removing unbound AFP molecules from the microchamber. After
∼30 min of perfusion, fluorescence intensity of the solution sur-
rounding the crystal became nearly undetectable (Fig. 2 B and C),
indicating that only a small fraction (∼2%) of the initial amount of
GFP-TmAFP remained in the microchamber (Fig. 2C, black line).
In contrast, the fluorescence signal from the ice crystal surface was
practically unchanged (Fig. 2C, green line), indicating that the
GFP-TmAFP molecules bound to the ice crystal remained adsor-
bed over the course of themediumexchange process.Weestimated
the density of the GFP-TmAFPmolecules on the ice surfaces from
measurements of fluorescence intensity in the solution and at the
ice surfaces, as described previously (22). We found surface den-
sities ranging from 3,000 to 25,000 molecules per square microm-
eter, depending on the concentration in solution, plane of
adsorption examined, and time allowed for accumulation. These
surface densities correspond to distances between GFP-TmAFP
molecules ranging from 6 nm to 18 nm. These values of surface
density are higher than those previously reported for AFGP and
type III AFP (9, 22).

In repeated experiments (n = 13), ice crystals grown in con-
centrated AFP solutions (5–40 μM) and then left in supercooled
(by 0.05–0.10 °C) AFP-depleted solutions consistently showed no
detectable growth for up to several hours (within our experimental
resolution of ∼1 μm). In contrast, ice crystals in water supercooled
by 0.02 °C grew at a rate of ∼4 μm/s. These results clearly dem-
onstrated that AFP molecules bound to the ice surface did not
readily desorb and return to the solution, and that these bound
molecules were sufficient to prevent the ice crystals from growing.

Freezing Hysteresis Experiments in the Microfluidic Devices. To verify
that the surface-bound AFPs remained active after the solution
exchange and that the FH activity was not directly dependent on
the AFP concentration in solution, a multistep experiment was
performed (Fig. 3). As before, a GFP-TmAFP solution was first
frozen and slowly melted to obtain a single ice crystal in a micro-
chamber (Fig. 3A). The ice crystal was incubated at a temperature
0.10 °C below the melting point for a period of 10 min. Following
this stabilization period, the temperature was slowly decreased,
while the size of the crystal was monitored. At a certain point,
a sudden rapid growth of the crystal was observed (Fig. 3B), and the
temperature at this point was defined as the nonequilibrium
freezing temperature. The difference between the melting tem-
perature and the nonequilibrium freezing temperature was called
the freezing hysteresis activity before theAFPdilution, “FH-before”.
The frozen sample was then melted again until only a small ice
crystal remained (Fig. 3C). The crystal was stabilized again for 10
min at a temperature 0.10 °C below the melting point. Following
the stabilization period, the microfluidic device was perfused with
plain buffer to gradually deplete GFP-TmAFPmolecules from the
solution in the microchamber around the ice crystal (Fig. 3D, Fig.
S1, andMovie S1). After GFP-TmAFP was substantially depleted,
a second FHmeasurement was conducted by gradually cooling the
crystal until the nonequilibrium freezing point was reached, and
the temperature difference between the melting and the new
freezing point was called “FH-after”. The FH-after and FH-before
were close in value, with a ratio of 0.89 ± 0.08 (mean ± SEM; n =
8), even though the GFP-TmAFP depletion reduced its concen-
tration in solution by a factor >20 on average (Table S1 and Figs.
S1 and S2). For example, in an experiment with an initial GFP-
TmAFP concentration of 13.3 μM and FH-before activity of
0.54 °C, after the solution was exchanged, its fluorescence intensity
was reduced to 2% of its initial value, corresponding to 0.3 μM of
GFP-TmAFP. Nevertheless, the FH-after activity wasmeasured as
0.50 °C, which was ∼10 times greater than a typical value of FH
activity of a 0.3-μM solution of GFP-TmAFP (∼0.05 °C). As
a control, we performed experiments in which the solutions in the
microchambers were frozen after the solution exchange and mel-
ted back to form new ice crystals from the AFP-depleted solution.
The FH activity values of these crystals were just a few hundredths
of a degree centigrade, matching the values for solutions with low
concentrations of GFP-TmAFP that we measured with a nano-
liter osmometer. These findings indicate that the AFP molecules
retained on a crystal surface during and after a major depletion of
AFPs from solution are sufficient to protect the crystal to nearly
the same extent as AFP molecules on the crystal surface at equi-
librium with the initial, high-concentration AFP solution.
In yet another type of experiment, the same protocol as before

was followed all of the way to the point of the FH-after measure-
ment. The newly formed ice was then melted until an ice crystal
slightly larger than the original crystal was obtained. Some of the
outer regions of this new crystal were formed after the solution was
exchanged and the AFP was greatly depleted, as indicated by
substantially reduced fluorescence of these regions compared with
an internal region of the crystal (which was a part of the original
crystal). Therefore, the newly formed surface of this crystal was
not expected to be as strongly protected by AFPs as the previous
crystal. Indeed, the FH of this crystal was measured to be 0.02 °C,

Fig. 1. Schematics of the experimental apparatus. The temperature in the
microfluidic device is set using two temperature controllers connected to
thermoelectric cooling elements (blue and purple), T1 from the bottom of
the device through the copper plate and T2 from the top of the device
through the copper wires (orange). A detailed description of the apparatus
is provided in SI Materials and Methods.
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which was significantly lower than either the FH-before or the FH-
after value (0.32 °C or 0.17 °C, respectively). As a next step, the
temperature was increased to 0.002 °C above the melting tem-
perature, and the ice crystal was melted until all newly formed
regions with low fluorescence disappeared and the entire crystal
surface was strongly fluorescent, indicating the presence of a dense
layer of previously adsorbed AFPs. At this point, the crystal
melting stopped, likely because of melting inhibition by the sur-
face-adsorbed AFPs (30, 31). The FH of this third crystal was
measured to be 0.25 °C, similar to the FH-before and FH-after
values. The results of this experiment further corroborated that

FH activity is provided by the surface-adsorbed AFPs and is not
a direct function of concentration of AFPs in solution.

Time Dependence of FH Activity. The dependence of the FH activity
on the time that was allowed for the adsorption of AFPs on an ice
crystal was examined for GFP-TmAFP with a custom-built nano-
liter osmometer (32). We found that the FH activity increased
with the time of exposure of the ice crystals to an AFP solution.
Importantly, the activity improvement was significant even past
the first 10 min of exposure, indicating that AFP adsorption to ice
is a slow process (Fig. S3).

Fig. 2. Removal of free AFPs from the solution surrounding an AFP-coated ice crystal by solution exchange. (A) A schematic diagram of the microfluidic
device and a magnified drawing of the area in the dashed-line box, showing a fragment of the main perfusion channel and three crystallization micro-
chambers. (B) Fluorescence images of a microchamber with a single ice crystal grown in GFP-TmAFP solution. The images were taken immediately before and
during the solution exchange process. (C) Fluorescence intensity vs. time during the solution exchange for a region of the solution adjacent to the ice crystal
(black box), for a region at the edge of the ice crystal (red box), and for the latter region excluding the contribution of fluorescence of GFP-TmAFPs in solution
(green). The last set of data points represents the fluorescence intensity of GFP-TmAFPs adsorbed on the ice surface (Ice) and is calculated from the two first
datasets, Solution and Edge, respectively, using the equation Ice = Edge − Const × Solution, where Const is a fitting parameter, which reflects the contribution
of GFP-TmAFPs in solution into the fluorescence at the edge of the ice crystal (22).

Fig. 3. Freezing hysteresis measurements in the microfluidic devices. Schematic plot shows the time course of changes in the temperature in crystallization
chambers of the microfluidic device (note: the temperature changes are not to scale) juxtaposed with representative images of ice crystals at different stages
of the experiment. (A) An AFP solution was frozen and melted back to form an ice crystal. The temperature was then slightly reduced (to stop the melting)
and kept constant for ∼10 min, with the ice crystal exposed to the AFP solution. (B) Next, the temperature was slowly reduced until the crystal started
growing, and the ice freezing temperature was recorded. The difference between the melting temperature and this freezing temperature in the original AFP
solution was defined as FH-before. (C) The ice was subsequently melted back, until a single small ice crystal remained. The temperature was again slightly
reduced and kept constant for ∼10 min. (D) The solution in the crystallization chamber was then exchanged with plain buffer, leading to nearly complete
depletion of AFPs in solution around the crystal. Finally, the temperature was slowly reduced until the ice crystal started growing, and the new freezing
temperature was used to calculate the value of FH-after, the FH activity after the depletion of AFPs.
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Discussion
Several theoretical studies explained the experimentally observed
concentration dependence of the FH activity by assuming that the
adsorption of AFPs is reversible (11, 15–17). To investigate the
binding kinetics at the ice–water interface and the dependence of
FH on AFP concentration, it is important to understand the re-
spective roles of AFPs in solution and AFPs bound to the ice
surface. The use of microfluidics and the sensitive temperature-
controlled system enabled slow removal of AFPs from the solu-
tion around individual small AFP-coated ice crystals without
perturbing the temperature or exposing the crystals to any sub-
stantial hydrodynamic flow. The use of GFP-tagged AFPs and
fluorescence microscopy made it possible to dynamically visualize
and quantify the AFP depletion. In our experiments with hyper-
active AFP from T. molitor fused with GFP, the fluorescence of
ice crystals during and after the depletion of GFP-TmAFP from
the surrounding solution indicated a strong adsorption of AFPs to
ice surfaces, to the point that it could be considered an irre-
versible binding. Importantly, the experiments clearly demon-
strated that AFPs adsorbed on the surface of a supercooled ice
crystal prevented it from growing even in the absence of AFPs in
solution. It is evident from our experiments that once there is
sufficient surface coverage of TmAFP, FH activity is practically
independent of concentration of AFPs in the solution. Our results
do not support the theories that are based on the reversible-
binding mechanism (9, 11, 15–17, 21, 33).
Knight and DeVries discussed the dynamic nature of con-

centration dependence of FH and stated that there is a compe-
tition between the rate of adsorption of AFPs to the ice surfaces
and the rate of ice growth (19). Our experiments indicate that, at
least for the TmAFP, the FH is not a function of the concen-
tration of AFPs in solution. Sander and Tkachenko developed
the theory of kinetic pinning (20), which relates the concentra-
tion dependence of FH activity to the kinetics of crystal growth in
line with Knight and DeVries’ theory. According to their analysis,
after the crystal growth is arrested, AFPs continue to accumulate on
the surface until a saturation level is reached, which is imposed by
steric limitations. The AFP accumulation would imply a gradual
increase in FHover time, aswas indeed observed inour experiments
with hyperactive TmAFP solutions (Fig. S3). The extended time-
scale (>10 min), at which the FH activity increased, indicates that
the TmAFP adsorption to ice is a relatively slow dynamic process.
The existence of a slow adsorption and desorption rates was sug-
gested recently by Kubota to explain the time-dependent behavior
of the FH activity (34). The dynamic nature of the AFP adsorption
was previously reported by other groups for two moderately active
AFPs (35, 36). Thus, to ensure that the ice surface is well protected
by AFPs, we exposed ice crystals to high concentrations of GFP-
TmAFP for at least 10 min before removing AFPs from the so-
lution. Importantly, desorption of the AFPmolecules in AFP-free
solutions remained very small even at a timescale of 1 h (with both
adsorption and desorption judged by the fluorescence intensity).
Our results do not exclude AFP desorption on longer timescales
(hours to days), and further experiments with crystals and sol-
utions maintained at constant temperatures and monitored over
extended periods of time are needed to examine this possibility.
A two-step binding model was proposed by Kristiansen and

Zachariassen (33), in which they hypothesized an irreversible at-
tachment of AFPs in the freezing hysteresis gap and the possibility
of dynamic exchange of bound AFPs with free AFPs in solution at
the equilibrium melting temperature, to explain the concentration
dependence of FH. However, one could argue that the experi-
mentally found melting hysteresis (30, 31) likely prevents a true
equilibrium from forming. Additionally, the model does not take
into account the possible accumulation of the proteins on the ice
surface within the FH gap.

Ebbinghaus et al. argued that the activity of antifreeze glyco-
proteins is due to perturbation of the solution over long distances
and thus the adsorption to ice surfaces through direct bonding is
not necessarily themolecularmechanism for the antifreeze activity
(37). In contrast, our experiments strongly indicate that surface-
adsorbed AFPs are the core source of crystal protection against
freezing. The correlation between the presence of AFP molecules
andmodifications of water dynamics at the far hydration shellsmay
be a consequence of the ability of AFPs to order water molecules
on their surface (38). This ability makes AFPs compatible with the
ice surface structure, allowing them to stabilize the ice–water in-
terface (39), and this stabilization results in freezing hysteresis. A
recent work has shown that the ice-binding face of anAFP can hold
water molecules in an organized array resembling the molecular
structure of ice surfaces (40). According to this anchored clathrate
water hypothesis, the ice-binding site of the AFP forms its ligand
(an ice-like lattice of water molecules) beforemerging with the ice.
These AFP-bound water molecules can promote stable adhesion
of AFPs to the ice surfaces. Our results are in agreement with the
latter hypothesis, as well as with other studies that suggest direct
binding of AFP to ice crystals.
In summary, the present study used fluorescence microscopy,

a specially designedmicrofluidic device, and a precise temperature-
controlled experimental setup to investigate the interaction of
AFPs with ice crystals. We performed and recorded a gradual re-
moval of GFP-tagged TmAFP molecules from solution around
unperturbed ice crystals. Whereas AFP in solution was greatly
depleted, the amount of AFP molecules adsorbed on the crystal
surface remained nearly unchanged, indicating practically irre-
versible binding of TmAFPs to the ice. Furthermore, the experi-
ments showed that the presence of AFP molecules on the ice
surface leads to substantial FH activity, even if there are virtually
no AFP molecules in solution. Whereas antifreeze protein mole-
cules in solution may have physical effects of their own, the pre-
sented results suggest that these effects are not directly related to
the ice growth inhibition activity of the antifreeze protein that was
examined. The findings of this work advance the general under-
standing of the mechanism of action of AFPs, and the presented ex-
perimental setup can be a powerful tool for investigation of AFPs
and their function at precisely controlled subzero temperatures.

Materials and Methods
Protein Sample Preparation. The recombinant fusion protein, consisting of GFP
linked to TmAFP, was expressed and purified in the laboratory of Deborah
Fass (Weizmann Institute of Science, Rehovot, Israel), as described previously
(41). Aliquots of GFP-TmAFP were stored in a 20-mM ammonium bicarbonate
buffer (pH 8) at −20 °C.

Microfluidic Apparatus. The microfluidic devices were fabricated by soft li-
thography and replica-molding techniques from polydimethylsiloxane (PDMS)
(42). The molds were prepared using photolithography of a UV-curable epoxy
(SU8 2010; Microchem), following the manufacturer’s instructions to create
a 15- to 20-μm tall relief. PDMS chips were bonded to glass coverslips, using
treatment in an oxygen plasma cleaner (Harrick Plasma Cleaner; model
PDC-32G). Each microfluidic device has two inlets, an outlet, and a vent. The
microchannel array of the device includes the main perfusion channel and
several crystallization microchambers on its sides with different shapes and
sizes ranging from 100 to 200 μm. The microfluidic device was mounted on
a copper plate with a 0.75-mm–wide slit opening, designed for visualization
of the ice crystals in the microchambers using an inverted fluorescence mi-
croscope. The small width of the slit and the high thermal conductivity of
copper minimized temperature gradients in the device. Thermal contact be-
tween the microfluidic device and the copper plate was enhanced by a thin
layer of oil. In some of the experiments, a sapphire coverslip was placed
between the glass coverslip and the copper plate, further reducing the
temperature gradient due to much higher thermal conductivity of sapphire
compared with glass. The device was placed into a temperature-controlled
cell that included two thermoelectric Peltier cooling elements, a thermistor,
and a temperature controller (model 3040 or 3150; Newport). A continuous
slow flow of dry air through the cell was used to minimize the condensation
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of water on the cold parts inside it. This custom-designed temperature-con-
trolled system enabled setting the temperature of the copper plate as low as
–25.0 °C with a 0.001 °C resolution. An additional temperature control circuit
that included a heater and copper wires embedded in the PDMS microfluidic
device adjacent to the inlets and outlet was used to locally melt the
peripheral ice.

Temperature Profile in Microfluidic Devices. The distribution of temperature in
the microfluidic device was examined using 3D simulations in Comsol Multi-
physics software. The simulations incorporated the dimensions and thermal
conductivities of the copper plate, coverslip, and PDMS microfluidic device
(further details in SIMaterials andMethods). Because of relatively low thermal
conductivities of glass and PDMS and low temperature of the copper plate
(>20 °C below the room temperature), there was an ∼0.06 °C variation
of temperature across the slit that translated into a temperature gradient of
0.01 °C/100 μmacross the crystallizationmicrochambers. For an ice crystal with
a typical size of 30 μm, the temperature nonuniformitywas expected to be less
than 0.01 °C, with only minor effects on the experimental results. The nu-
merical simulations also indicated that the use of a sapphire coverslip practi-
cally eliminated the temperature gradient in the microchambers, reducing it
to 0.001 °C/100 μm (Fig. S4), corresponding to<0.001 °C temperature variation
across an ice crystal. The sapphire coverslip (which was used only in a part of
the reported experiments) allowed obtaining stable crystals in the middle of
the microchambers rather than near their edges. Most importantly, as in-
dicated by the dynamics of the ice front in the microchambers in response to
changes in the temperature controller settings, the systemprovided∼0.002 °C
precision and stability in the control of temperature in a given area of
a microchamber (Fig. S5, Movie S2, and SI Materials and Methods).

Protocol to Form a Single Ice Crystal Within a Microfluidic Chamber. The flow
through the microfluidic device was driven and controlled by hydrostatically
generated differential pressure between the device’s inlets and outlet. The
two inlets of the device were connected to two reservoirs with a buffer
solution through thin lines of tubing. One of the tubing lines had a con-
nector allowing the injection of a small amount (∼3 μL) of protein solution
into a short segment of the line, serving as a miniature reservoir just up-
stream of the device inlet. This method minimized the consumption of
proteins in the experiment. The medium in the microchambers was ex-
changed by changing the inlet pressures, thus alternatively feeding solutions
with and without protein into the main channel of the device, as described
in ref. 43. For long incubation, the inlets were externally blocked. To form
isolated ice crystals in the device microchambers, the copper plate temper-
ature was first set at approximately –20 °C, thereby freezing liquid in the
entire device. Next, the stage was warmed to ∼0.02 °C below the melting
temperature. At this point, the copper wires near the device inlets and
outlet were warmed to free them from ice. Therefore, the only ice re-
maining was contained within the microchannels in the microfluidic device.
The temperature of the copper plate was then carefully increased, until only
a small ice crystal (20–50 μm) remained in one of the microchambers. From
this point on, copper wires were not heated. To exchange the solution
around the crystal, plain buffer was perfused through the main channel of
the device, causing gradual elution of AFPs from the microchamber with the

crystal. We empirically found that at flow rates in a 0.4- to 0.6-μL/min range,
corresponding to a flow velocity in the range of 2–3 mm/s in the main
channel, ice crystals remained stable for extended time intervals, whereas
higher flow rates, in a range of 6–10 μL/min, resulted in occasional melting
of the crystals. The melting might have been caused by a perturbation of the
immediate vicinity of the crystals by the flow or by relatively high temper-
ature of the perfusion liquid, which was not allowed enough time to
equilibrate with the cold copper plate. Even when ice crystals survived the
high perfusion rates, a reduction in the measured FH-after was observed.
Therefore, only the data obtained with perfusion rates of 0.4–0.6 μL/min
were included in our analysis.

Visualizing Surface-Bound GFP-TmAFPs on Ice Crystals. An inverted fluores-
cence microscope (Nikon TE2000-U; Nikon Instruments) was used to image the
samples. The imaging was performed with two long working-distance (WD)
Nikon objectives: 50×, NA 0.55, WD 8.7 mm and 10×, NA 0.25, WD 10.1 mm.
The images were analyzed using WinView32 imaging software (Roper Sci-
entific). Samples were illuminated by a 488-nm beam derived from an Argon
laser. The fluorescence signal from an ice crystal surface was treated as a sum
of fluorescence of GFP-TmAFP molecules bound to the crystal in the part of
the optical detection volume occupied by the crystal and free GFP-TmAFP
molecules in the solution part of the detection volume (22). The latter con-
tribution was appreciable because of relatively large dimensions of the de-
tection volume (and wide-field rather than confocal imaging) and was
considered to be proportional to the fluorescence intensity of the solution
away from the crystal. We measured the dependences of fluorescence of
different regions of the crystal surface on the fluorescence of solution away
from the crystal during the depletion of GFP-TmAFP from the microchamber
(Fig. 2C). The dependences could be fitted with a linear relation with a single
free parameter (the relative contribution of the solution into the fluores-
cence signal). The fluorescence of the crystal surface calculated using this
procedure was nearly independent of the fluorescence of the solution,
strongly indicating that the amount of GFP-TmAFP bound to the ice crystal
was not affected by depletion of free GFP-TmAFP from the solution. A similar
approach was used previously by Pertaya et al. (22). This finding was further
supported by the observed constant fluorescence intensity at the crystal
surface after the exchange of the GFP-TmAFP solution with plain buffer was
practically complete, as shown in the last ∼10 min of dependence in Fig. 2C.

Nanoliter Osmometer Experiments to Investigate the Time Dependence of FH.
We performed nanoliter osmometer experiments in which we varied the
exposure time of ice crystals to the AFP solutions before measuring the FH
activity, as explained in detail in SI Materials and Methods.
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