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ABSTRACT 

The growing application of cerium oxide nanoparticles (CeO2 NP) in several industrial 

products is likely to be associated with increased risk of inhalation and exposure. How the 

inhalation of CeO2 NP may affect cardiac structure and function has to our knowledge, not been 

examined. To examine whether inhalation of CeO2 NP affects cardiac structure and function, 

male Sprague Dawley rats underwent a single intra tracheal instillation of nanoparticles (7 

mg/kg body weight). Animals were sacrificed 1, 3, 14, and 28 days after instillation and protein 

isolates from the hearts were examined for the presence of oxidative stress, autophagy and 

apoptosis. Compared to 1 day saline controls, heart weights after instillation were decreased by 

7.8 ± 1.9%, 12.2 ± 3.4%, 10.7 ± 3.2%, and 18.6 ± 3.9% at 1, 3, 14, and 28 days, respectively 

(p<0.05). Decreases in heart weight were associated with elevations in the expression of heat 

shock proteins (HSP) and NF-kB while the expression of AMPK-α was decreased suggesting the 

induction of oxidative stress subsequent to CeO2 NP exposure. Further analysis demonstrated 

that the inhalation of the nanoparticles was also associated with elevations in the amount of 

Beclin-1 and LC3 which suggests that CeO2 NP exposure can induce autophagy in the rat heart. 

Taken together, these data suggest that the inhalation of CeO2 NP can cause increased cardiac 

oxidative stress and autophagy.  

 

Key words: CeO2 NP; oxidative stress; autophagy; apoptosis. 
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Chapter 1 

Introduction 

There is a great deal of interest in the effects that environmental pollutants and 

particulate matter may have on the development of respiratory and cardiovascular disease. 

While air born microscopic particles are a ubiquitous result of industrialization, the  advent of 

nanotechnology and its rapid development has led to a concern related to the manufacturing 

and use of large quantities of nanoparticles (NP) (1). Many of the chemical and physical 

properties of nano-materials, such as a large surface to volume ratio and enhanced reactivity 

allow for different effects than that seen in their bulky counterparts. As such, the health effects 

of NP are attracting considerable concern from the public and governments worldwide (2).  

One particular type NP of interest is that which is composed of cerium oxide (CeO2). 

CeO2 is the most abundant member of lanthanide series of metals. CeO2 NP play a key role in 

technology and industrial applications for solar cells, fuel cells, gas sensors, oxygen pumps, and 

glass/ceramic applications (3). In addition, CeO2 NPs have also been widely used in the 

automobile industries to reduce particulate matter emissions. Given its fluorite lattice structure 

and oxygen vacancies, CeO2 NP can either give or take the oxygen atoms depending on the 

surrounding oxygen concentration (4). Recent work has also shown that the addition of cerium 

oxide to fuel reduces the nitric oxide and sulfur dioxide emissions, decreases fuel consumption 

and aids in the conversion of harmful carbon monoxide to carbon dioxide. These properties 

make cerium oxide NP an efficient catalytic converter for thermal applications such as natural 

gas combustion (4). 
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Recent studies have also suggested the CeO2 NP may have potential for biomedical 

applications. CeO2 NP have been used to suppress the inflammatory processes in the 

myocardium and in the reduction of oxidative stress (5), to help protect neurons from oxidative 

toxicity (6), for the treatment of macular degeneration and other retinal diseases by inhibiting 

reactive oxygen species levels (7) and for protecting tissues from the damaging effects of 

radiation (8).  

How CeO2 NP may cause cellular toxicity is not well understood. Most of work done to 

date has been in-vitro using cultured cells (9-11).  Based on previous studies, the toxicity of 

CeO2 NP appears to vary with size, particle shape and degree of aggregation. Because of its 

widespread application as a polishing agent in the manufacturing sector it is likely that the most 

common route of exposure to CeO2 NP will occur via inhalation.  Although recent studies have 

shown that inhaled CeO2 NP can cause lung damage and fibrosis, whether CeO2 NP can exit the 

lungs after inhalation, and if able, whether CeO2 NP are capable of damaging other organs and 

tissues is not well understood.  

In the lung, exposure to CeO2 NP is thought to be associated with increased oxidative 

stress, tissue fibrosis and evidence of increased endoplasmic reticulum stress (12). Whether 

CeO2 NP exhibit similar effects in the heart, has to our knowledge, not been investigated.  
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Significance of the study 

The growing application of CeO2 NP in several industrial applications is likely to be 

associated with increased risk of exposure to these materials. A greater understanding of 

whether exposure to CeO2 NP is toxic is needed to ensure worker safety. Thus far, the potential 

effects of inhaled CeO2 NP on the heart are not well understood. This study is designed to 

specifically address this gap in our understanding.  

 

Hypothesis 

The primary objective of this study is to determine whether the inhalation of CeO2 NP is 

associated with cardiac damage. We hypothesize that CeO2 NP are capable of moving from the 

lung to the heart and that the presence of CeO2 NP in the heart will be associated with indices 

of cellular stress. To test this hypothesis, two specific aims will be pursued: 

 

Specific Aim 1: To determine if inhaled CeO2 NP can induce oxidative stress in the rat heart. 

Hypothesis: Inhaled CeO2 NP will be associated with increased cardiac oxidative stress.  

 

Specific Aim 2: To determine if inhaled CeO2 NP can induce autophagy and/or apoptosis in the 

rat heart.  

Hypothesis: Inhalation of CeO2 NP will induce autophagy and/or apoptosis. 
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Chapter 2 

 

A review of the literature pertinent to the present study will be discussed in this 

chapter. The following areas will be addressed: (i.) increasing importance of nanotechnology, 

(ii.) nanoceria applications, (iii.) toxic effects of CeO2 nanoparticles, (iv.) oxidative stress 

induced by cerium oxide nanoparticles, (v.) role of heat shock proteins (HSP) in oxidative stress, 

(vi.) AMPK alpha in oxidative stress, (vii.) autophagy in response to oxidative stress, and (viii.) 

eEF-2K role in autophagy. 

 

 Increasing importance of Nanotechnology 

Nanotechnology is defined as technological applications of materials and assemblies at 

the nanometric scale (1-100 nm) (13). At the nanometer scale, the physical, chemical and 

biological properties of materials are fundamentally different from those of individual atoms, 

molecules and bulk materials (14). Nanomaterials exhibit a tremendous amount of potential for 

electronic, biomedical, pharmaceutical, cosmetic, energy, environmental, catalytic and material 

applications.  The use of nanoparticles may be of significant benefit to many aspects of our 

lives, but the possible impact(s) that these materials may have on human health is not known. 

In addition to risks from use of the nanomedicine products, there are also concerns about the 

occupational and environmental risks associated with the manufacture and disposal of nano-

drugs and nano-devices. As such, increasing our understanding of nanotoxicity is becoming a 

growing area of concern (13). 

 



5 
 

 

 Nanoceria applications 

Ceria exhibits two valance states (Ce+3 and Ce+4). CeO2 nanoparticles (CeO2NP) are 

widely used in industrial applications as well as biomedical applications. Industrial uses includes  

solar cells, fuel cells,  gas sensors, oxygen pumps,  glass/ceramic applications and the 

automobile industry (3). The addition of cerium oxide to fuel acts to reduce particulate 

emissions like nitric oxide and sulfur dioxide while it also converts harmful carbon monoxide to 

carbon dioxide (4). 

Cerium oxide nanoparticles have also been shown to act as free radical scavengers and 

may promote cell and organism longevity (15). Schubert et al., demonstrated that CeO2 

nanoparticles are able to rescue HT22 cells from oxidative stress-induced cell death (1). 

Similarly, CeO2 nanoparticles have also been shown to protect normal human breast cells from 

radiation-induced apoptotic cell death (16). In the heart, CeO2 nanoparticles have been 

demonstrated to provide protection against cardiac dysfunction and remodeling induced by 

oxidative stress and inflammation, most likely due to causing a reduction of the inflammatory 

cytokines, TNF-alpha and IL-6 (5). Nanoceria have also been shown to exhibit super oxide 

dismutase (SOD) and catalase mimetic activity in a redox-state dependent manner (17). Other 

work has demonstrated that CeO2 NP may also protect the neurons from oxidative damage (6), 

prevent macular degeneration (7) and that these particles may exhibit promise for protecting 

tissues from the damaging effects of radiation (8). 
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 Toxic effects of CeO2 nanoparticles 

The inhalation of nanoparticles is increasingly recognized as a major cause of adverse 

health effects and may be associated with increased cardiovascular disease morbidity and 

mortality (18). The results of Gómez-Aracena et al., 2006 have suggested a relationship 

between chronic cerium exposure and increased risk of acute myocardial infarction (19). In 

certain geographic regions soil containing higher levels of cerium appears to be correlated with 

higher levels of cerium in serum and cardiac tissue of individuals with endomyocardial fibrosis 

(20-22).  

Endocardial fibrosis has been shown by Kumar et al., 1995 after the administration of 

cerium chloride (1.3 mg/kg) into the tail vein of female Sprague-Dawley rats. These data were 

consistent with other work by Kumar et al., who reported that incubation of cardiac fibroblasts 

in vitro with 100 nM cerium increased RNA synthesis by 64% (Shivakumar et al., 1992).  Taken 

together, these findings suggest that low levels of cerium exposure may act at the 

transcriptional level to stimulate collagen and non-collagen protein synthesis which may 

contribute to the accumulation of collagen in endocardial fibrosis. 

 

Oxidative stress induced by cerium oxide nanoparticles 

Oxidative stress is the imbalance between production of reactive oxygen and nitrogen 

species and the ability of a system to detoxify them. Reactive oxygen species (ROS) are a group 

of free radicals having unpaired electrons (23). ROS are highly reactive and can cause oxidative 
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damage to lipids, proteins and DNA (24). It is thought that the mitochondria are a major source 

of free radical generation. To counteract these adverse effects, cells utilize antioxidant enzymes 

such as superoxide dismutase, glutathione and catalase (25). An imbalance between the 

production and degradation of ROS results in ROS accumulation and further cell damage.  

Until now, very little has been known about how nanoparticles may cause toxicity and 

the induction of oxidative stress which if unchecked can lead to apoptosis, cell cycle arrest and 

the inhibition of antioxidant enzymes. In vivo studies with aquatic species has showed that 

fullerenes can cause oxidative damage and a reduction in glutathione levels (26). Recent studies 

indicated the toxic effects of CeO2 NP are mainly through induction of oxidative stress (3, 11). In 

vitro studies using A549 cells and E. coli treated with CeO2 NP have shown elevations in cellular 

ROS, lipid peroxidation, cellular damage and reductions in cell viability (9, 27).  

It has been postulated that one of the important upstream signaling mechanisms 

responsible for regulating oxidative stress are the mitogen-activated protein kinase (MAPK) 

cascades. There are three main groups of MAPK proteins: the extracellular signal-regulating 

kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) (28).  In 2008, Park et al., showed that while 

CeO2 NP exposure did not alter total MAPK expression it was associated with increased p38-

MAPK phosphorylation (3). Most of the studies involving ROS formation and MAP kinase 

signaling suggest that CeO2 NP provoke oxidative stress (3, 11). Moreover, oxidative stress 

induced by the CeO2 NP has been shown to cause 2-8 fold increases in cellular apoptosis (11). 

Although not fully understood, exposure to CeO2 nanoparticles has also been observed to cause 

elevations in caspase-3 and chromatin condensation (3).  
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Oxidative stress and increased production of ROS after nutrient deprivation and 

ischemia-reperfusion are also associated with autophagy (29). Kirkland et al., showed that loss 

of mitochondrial inner membrane lipid cardiolipin causes increased apoptosis and autophagy, 

and that this process is mediated by increases in cellular free radicals (30).  

 

 Role of heat shock proteins (HSP) in oxidative stress 

Increased production of heat shock proteins have been found to occur following cellular 

exposure to elevated temperatures, hypoxia, ischemia, heavy metal intoxication and increased 

cellular ROS levels (31). Heat shock proteins help stabilize improperly folded proteins and 

protect them from degradation (32). Hsp27 also known as HspB1 will interact with several 

cytoskeleton components like actin, microtubules and intermediate metabolites (33). The 

microfilament network is an early target of oxidative stress and is protected from degradation 

by Hsp 27 (34). Hsp27 also has a protective role following exposure to heavy metals (35). Hsp27 

also has a role in controlling apoptosis and the regulation of caspase expression (36). Other 

work has shown that Hsp27 may also play a protective role in dilated cardiomyopathy and 

ischemia-reperfusion injury (37). It is thought that HSP27 over expression increases NF-kB 

activity which may function to suppress apoptosis (38). According to Kim H, et al, inhibition of 

Hsp60 will suppress autophagy under conditions of increased oxidative stress (39). It appears 

that Hsp60 exhibits anti-apoptotic effects by the suppression of caspase activity (40).  
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 Role of AMPK alpha in oxidative stress  

The adenosine mono phosphate-activated protein kinase (AMPK) is an enzyme which is 

a key regulator of cellular energy balance (41). AMP-activated protein kinase is a 

serine/threonine kinase consisting of α, β and γ subunits. Among these, the α subunit consists 

of two isoforms α1 and α2. It is thought that the α subunit is catalytic in nature while the β and γ 

function to maintain the stability of the complex. Recent studies have suggested that 

suppression of AMPK activity is linked with oxidative stress (42)  and the inflammatory response 

(43). Other data has shown that inhibition of AMPK activity can ameliorate oxidative damage 

(44) and inflammation (45). Similarly, AMPK has been shown to play a protective role during 

oxidative stress while reductions of AMPK activity are associated with increases in NAD(P)H 

oxidase activity and ROS production. The AMPK activator, Metformin, has been shown to 

reduce oxidative stress in aortic endothelial cells (46). Likewise, the activation of AMPK through 

AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) inhibits the ROS-induced 

apoptosis in endothelial cells (47). AMPK may also have an effect on NF-kB activation as the 

activity of this pathway can be suppressed by activated AMPK which leads to decreased 

expression of NAD(P)H oxidase (42). According to Chao Liu et al., AMPK α activation promotes 

cell survival through increasing NF-kB mediated expression and suppression of apoptosis (48).  

 

Autophagy in response to oxidative stress 

Programmed cell death (PCD) has been described as an important protective 

mechanism. It is thought that there are two different forms of PCD; apoptosis and autophagy 
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(49). Autophagy is a lysosomal dependent protein degradation pathway, which involves the 

degradation of pathogens and damaged organelles allowing the reuse of nutrients under 

nutrient deprived conditions. If excessive, autophagy can be detrimental to cells and lead to cell 

death. Recent studies have shown that apoptosis and autophagy, can act simultaneously in the 

cell death processes (50).  

During autophagy, a membrane is formed around the cytoplasmic contents of interest. 

Once formed, this structure binds with lysosomes through and the components are subjected 

to enzymatic reactions within the lysosomes. Hydrolases play a key role in this enzymatic 

degradation. The resulting molecules will be released into cytoplasm for further recycling (51).  

In the last decade approximately 30 autophagy related genes (ATG genes) have been 

identified in yeast cells and 16 homologous genes have been identified in mammalian cells (52). 

Among these genes, the Beclin-1 and LC3 (microtubule associated protein light chain 3) are 

thought to play a key role in mammalian autophagy. Beclin-1 (the mammalian homolog of yeast 

Atg6 gene), is required for autophagic vesicle formation (53). Beclin 1 is identified as an 

important point of convergence between apoptosis and autophagy as it is associated with anti 

apoptotic Bcl2 like proteins (54). 

  LC3, a mammalian homolog of yeast Atg8 and is considered a reliable marker of 

autophagy as it represents the amount of autophagosomes at that particular time. Conversion 

of LC3I to LC3II is indicative of autophagic activity. Because the half-life of LC3II is short, 

autophagosomes are transient structures. LC3II levels are representative of autophagic activity 

at any one moment in time (55). During autophagy, the cytoplasmic form (LC3I) is processed 

and recruited to the autophagosomes, where LC3II is generated by site specific proteolysis near 
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the C-terminus. The hallmark of autophagic activation is thus the formation of cellular 

autophagosome punctae containing LC3II, while autophagic activity is measured biochemically 

as the amount of LC3II that accumulates in the absence or presence of lysosomal activity. It is 

thought that exposure to some nanomaterials is associated with the autophagy dysregulation in 

autophagy leading to an increase in the number of autophagosomes (56).  

 eEF-2K role in autophagy  

 eEF2 (Eukaryotic elongation factor) is required for mRNA translation elongation (57, 58). 

The phosphorylation of eEF2 at Thr-56 inactivates its inhibitory effect on mRNA translation.  

The phosphorylation of eEF2 is mediated by eEF-2K, when it is phosphorylated at Thr-366 (59). 

One of the upstream regulators of eEF-2K is transforming growth factor (TGFβ). Falguni Das and 

colleagues showed that TGF-β treatment of mesengeal cells is associated with cellular 

hypertrophy and that this process occurred via the activation of eEF2 (57). 

Both eEF2 and eEF2K are thought to play a role in the induction of autophagy. According 

to Wu et al., down regulation of eEF-2K  expression in gliobastoma cells following treatment 

with siRNA was associated with diminished autophagy and the down regulation of the 

autophagy mediator LC3 (58). Other work, using T98G gliobastoma cells that were engineered 

to over express eEF-2K has shown that elevations in eEF-2 were found to be associated with  

increased autophagy (60).  It is thought that eEF-2K plays a key role in crosstalk between 

autophagy and apoptosis as the inhibition of eEF-2K activity in tumor cells appears to suppress 

autophagy and promote apoptosis (61, 62).  
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Summary  

The toxic effects of CeO2 NP are thought to occur via the generation of ROS. If excessive, 

elevations in ROS can lead to changes in the degree of HSP, NF-kB, eEF-2K, AMPK, Beclin-1 and 

LC3 activity which can cause the induction of autophagy and apoptosis. How CeO2 NP may 

affect the intact heart is not well understood.  
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Chapter 3 

 

 

To be submitted to the Journal of Nanotoxicology 
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Abstract 

The growing application of cerium oxide nanoparticles (CeO2 NP) in several industrial 

products is likely to be associated with increased risk of inhalation and exposure. How the 

inhalation of CeO2 NP may affect cardiac structure and function has to our knowledge, not been 

examined. To examine whether inhalation of CeO2 NP affects cardiac structure and function, 

male Sprague Dawley rats underwent a single intra tracheal instillation of nanoparticles (7 

mg/kg body weight). Animals were sacrificed 1, 3, 14, and 28 days after instillation and protein 

isolates from the hearts were examined for the presence of oxidative stress, autophagy and 

apoptosis. Compared to 1 day saline controls, heart weights after instillation were decreased by 

7.8 ± 1.9%, 12.2 ± 3.4%, 10.7 ± 3.2%, and 18.6 ± 3.9% at 1, 3, 14, and 28 days, respectively 

(p<0.05). Decreases in heart weight were associated with elevations in the expression of heat 

shock proteins (HSP) and NF-kB while the expression of AMPK-α was decreased suggesting the 

induction of oxidative stress subsequent to CeO2 NP exposure. Further analysis demonstrated 

that the inhalation of the nanoparticles was also associated with elevations in the amount of 

Beclin-1 and LC3 which suggests that CeO2 NP exposure can induce autophagy in the rat heart. 

Taken together, these data suggest that the inhalation of CeO2 NP can cause increased cardiac 

oxidative stress and autophagy.  

 

Key words: CeO2 NP; oxidative stress; autophagy; apoptosis. 
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Introduction 

The ever increasing use of nanomaterials for industrial applications has led to concerns 

regarding the potential effects these materials may have on cellular life and the environment. 

When compared to bulk materials, nanoparticles exhibit an increased surface area / weight 

ratio which can leads to increased reactivity and different physico-chemical properties (2). 

Cerium dioxide nanoparticles (CeO2 NP) are widely used in the solar cells, fuel cells, gas sensors, 

and polishing industries. CeO2 NP are also used as catalysts and as fuel additives where they 

function to reduce the emission of sulfur dioxide and nitric oxide from fuel and help to covert 

carbon monoxide to carbon dioxide. Recent studies have also suggested the CeO2 NP may have 

potential for biomedical applications as antioxidant. CeO2 NP have been used to suppress the 

inflammatory processes in the myocardium and in the reduction of oxidative stress (5), to help 

protect neurons from oxidative toxicity (6), for the treatment of macular degeneration and 

other retinal diseases by inhibiting reactive oxygen species levels (7) and for protecting tissues 

from the damaging effects of radiation (8). Although very promising for in vivo application, 

whether CeO2 NP exhibit toxic effects to cells and tissues is not well understood. Thus far, most 

of work done to date has been in-vitro using cultured cells (9-11).  Although recent studies have 

shown that inhaled CeO2 NP can cause lung damage and fibrosis, whether CeO2 NP can exit the 

lungs after inhalation, and if able, whether CeO2 NP are capable of damaging other organs and 

tissues is not well understood.  

In the lung, exposure to CeO2 NP  is thought to be associated with increased oxidative 

stress, tissue fibrosis and evidence of endoplasmic reticulum stress (12). Whether CeO2 NP 

exhibit similar effects in the heart, has to our knowledge, not been investigated. Interestingly, 
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recent data has demonstrated that the inhalation of carbon nanotubes may be associated with 

the deposition of nanotubes elsewhere in the body (63). On the basis of these data, we 

hypothesized that CeO2 NP inhalation could lead to the translocation of CeO2 NP from the heart 

to the lung. In addition, we also hypothesized that the presence of CeO2 NP in the heart would 

be associated with evidence of oxidative stress. Taken together, our data suggest that the 

inhalation of CeO2 NP is associated with increased oxidative stress and autophagy in hearts of 

male Sprague Dawley rats. 
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Materials and Methods 

Particle characterization  

CeO2 nanoparticles, 10% weight in water (average diameter at ~20 nm), were obtained 

from Sigma-Aldrich (St Louis, MO).  For installation normal saline was used as vehicle. Diluted 

particle suspensions were filtered, sputter coated, and examined with a Hitachi Model S-4800 

Field Emission scanning electron microscope (Schaumburg, IL, USA) at 5 and 20 kV or placed on 

a formvar-coated copper grid to dry and imaged with a JEOL 1220 transmission electron 

microscope (Tokyo, Japan).  

 

Animals 

All procedures were performed in accordance with the Marshall University Institutional 

Animal Care and Use Committee (IACUC) guidelines, using the criteria outlined by the 

Assessment and Accreditation of Laboratory Animal Care (AAALAC). 5 weeks old 150-174 g 

weighing Specific pathogen-free male Sprague-Dawley (Hla: SD-CVF) rats were purchased from 

Hilltop Lab Animals, Inc. (Scottdale, PA, USA). Rats were housed two per cage in an AAALAC 

approved vivarium with a 12-h light–dark cycle, temperature maintained at 22 ± 2 °C, and fed 

ad libitum. All animals were allowed to acclimatize for 2 weeks before initiation of any 

treatment or procedures. All animals were examined for precipitous weight loss, failure to 

thrive or unexpected gait. Periodic weight measurements were taken throughout the duration 

of the study. 
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Materials 

Beclin-1 (#3738), LC3B (#2775), Phospho AMPK-α Thr 172(#2535), AMPK-α ( #2532), Bax ( 

#2772), Bcl-2( # 2870), Phospho eEF-2k Ser 366( #3691), eEF-2k(#3692), Hsp60(D307)(#4870) 

Mouse IgG, and Rabbit IgG antibodies were purchased from cell signaling technology(Beverly, 

MA). NF-kB p50 (E-10)(sc-8414), Hsp27 (M-20)(sc-1049), HeLa whole cell lysate (sc-2200) and 

L6+ IGF lysate(sc-24727) were purchased from Santa Cruz Biotechnology(Santa Cruz, CA). 

Enhance chemiluminescence (ECL) western blotting detection reagent was purchased from 

Amersham Biosciences (Piscataway, NJ). Restore western blot stripping buffer was obtained 

from Pierce (Rockford, IL). Dihydroethidium (5mM standard solution in DMSO) was purchased 

from molecular probes (Invitrogen, OR). TUNEL assay kit was purchased from Roche diagnostics 

corporation (Mannheim, Germany). All other chemicals were purchased from Sigma Aldrich 

(St.Louis,MO) or Fisher Scientific (Hanover, IL). 

 

Rationale for Dose at the rate of 7mg/kg B.wt 

The dose i.e 7mg/kg B.wt was determined by an estimation of the amount of CeO2 that can be 

inhaled from diesel exhaust over an 8 hr period is 0.09 μg/kg (HEI, 2001). The total lung burden 

after 40 years of occupational exposure can be estimated as the following as 0.09 ug/kg/d X 5 

d/week X 52 week/year X 40 years = 936 μg/kg and the safety factor conversion from humans 

to rodents is 10. So it is reasonable to examine the systemic toxicological effects of CeO2 

nanoparticles exposure from 1.0 mg/kg to 7.0mg/kg. Previous studies show that it took 28 days 

to observe histological alterations in the lungs (64). So we investigated the effects of CeO2 NP 

on the heart for 28 days. 
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Instillation of CeO2 nanoparticles 

After acclimatization, animals were divided randomly into 8 groups (n=6 per group). 

Each group of the animals were anesthetized with sodium methohexital (35 mg/kg, i.p.) and 

placed on an inclined restraint board before instillation with 0.3 ml of saline suspension of CeO2 

nanoparticles at a dose rate of 7mg/kg B.wt. All animals were humanely treated and were 

monitored for any potential suffering. Rats were euthanized and collected the tissues at 1, 3, 

14, and 28 days post exposure of CeO2 nanoparticles and control groups with normal saline 

according to the Guidelines for the Care and Use of Laboratory Animals. 

 

Tissue collection 

Rats were anesthetized with a ketamine–xylazine (4:1) cocktail (50 mg/kg, I/P) and 

supplemented as necessary for reflexive response before tissue collections. The heart was 

removed and placed in Krebs–Ringer bicarbonate buffer (KRB) containing; 118 mM NaCl, 4.7 

mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 24.2 mM NaHCO3, and 10 mM α-D-

glucose (pH 7.4) equilibrated with 5%CO2/95%O2 and maintained at 370 C. Blood and other 

tissue materials are removed from the Isolated hearts, then weighed, and immediately snap 

frozen in liquid nitrogen.  

 

TUNEL staining 

Heart tissues (control, day 1, 3 and 14 post exposure) were sectioned (8 µm) using an 

IEC Microtome cryostat and collected on poly-lysine coated slides. DNA fragmentation was 

determined by TdT-mediated dUTP nick end labeling (TUNEL) as outlined by the manufacturer 
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(In Situ Cell Death Detection Kit, Roche Diagnostics, Mannheim, Germany). Briefly, sections 

were fixed with 4% paraformaldehyde, washed with PBS (pH 7.4), and then permeabilized with 

0.1% sodium citrate and 0.1% Triton-X.  Nuclei were counter stained using DAPI (VECTASHIELD 

Hard Set Mounting Medium, Vector Laboratories, Burlingame, CA). Heart cross sections were 

visualized by epifluorescence using an Olympus fluorescence microscope (Melville, NY) fitted 

with 20X and 40X objectives and images were recorded digitally using a CCD camera (Olympus, 

Melville, NY). The number of TUNEL positive nuclei was counted in three randomly selected 

regions in each slide. Three different animals were counted from each group. Tissue sections 

treated with DNase I to induce DNA fragmentation were used as a positive control. 

 

DHE staining 

Hydroethidine (HE) staining was used to detect superoxide radical generation. 

Hydroethidine is cell permeable and in the presence of free oxygen radicals becomes oxidized 

to ethidium bromide which intercalates with DNA (65). Heart tissue sections (8 µm) were 

incubated with 5 µM dihydroethidium stain (Invitrogen, OR) at 370 C for 30 min. After thorough 

washing with PBS (pH 7.4) mounting with DAPI (VECTASHIELD Hard Set Mounting Medium, 

Vector Laboratories, Burlingame, CA) sections were visualized for epifluorescence using an 

Olympus fluorescence microscope (Melville, NY). Images were recorded digitally using a CCD 

camera (Olympus, Melville, NY). Images from four randomly selected regions from each slide 

were collected for observation. Data was collected from at least three animals at each time 

point. Images were quantified by AlphaView image analysis software (Alpha Innotech, San 

Leandro,CA).  
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Immunoblotting analysis  

Portions of individual heart tissues (100-150mg) were homogenized in buffer (T-PER, 8 

mL/g tissue; Pierce, Rockford, IL) containing protease (P8340, Sigma-Aldrich, Inc., St. Louis, MO, 

USA) and phosphatase inhibitors (P5726, Sigma-Aldrich, Inc., St. Louis, MO). Tissue 

homogenates were sonicated (3 x 30 sec cycles at 50 W) and the supernatant collected by 

centrifuging (12,000g x 5 min at 4 °C). Protein concentrations were determined in triplicate 

using the 660 nm assay method (Thermo Scientific, Rockford, IL). Equal concentrations of the 

protein samples were prepared from each of the individual samples by adding equal quantities 

of sample buffer and adjusting the protein concentration with the TPER lysis buffer. Samples 

were boiled in a Laemmli sample buffer (Sigma-Aldrich, Inc., St. Louis, MO) for 5 min. Forty 

micrograms of total protein for each sample was separated on a 10% PAGEr Gold Precast gel 

(Lonza, Rockland, ME) and then transferred to nitrocellulose membranes (Amersham, NJ). Gels 

were stained with a RAPID Stain protein stain reagent (G-Biosciences, St. Louis, MO, USA) to 

verify transfer efficiency. Membranes were stained with Ponceau S and the amount of protein 

was quantified by densitometry to confirm successful transfer of proteins and equal loading of 

lanes. Membranes were blocked with 5% milk in Tris Buffered Saline (TBS) containing 0.05% 

Tween-20 (TBST) for 1 h and then incubated with primary antibody overnight at 4C. After 

washing with 1%TBST, the membranes were incubated with the corresponding secondary 

antibodies conjugating with horseradish peroxidase (HRP) (anti-rabbit (#7074) or anti-mouse 

(#7076), Cell Signaling Technology, Danvers, MA) for 1 h at room temperature. Protein bands 

were visualized following reaction with ECL reagent (Amersham ECL Western Blotting reagent 
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NJ). Target protein levels were quantified by AlphaView image analysis software (Alpha 

Innotech, San Leandro, CA).  

 

Data Analysis 

Results are presented as mean ± SEM. Data were analyzed using the Sigma Plot 11.0 

statistical program. One-way analysis of variance was performed for overall comparisons, while 

the Student–Newman–Keuls post hoc test used to determine differences between groups. 

Values of P<0.05 were considered to be statistically significant. 

 

 

Results 

CeO2 NP inhalation decreases heart weight 

Compared to control animals, CeO2 NP exposure did not affect feed intake and weight 

gain (Table 2). Compared to age matched control animals, heart weights were 7.8 ± 1.9%, 12.2 

± 3.4%, 10.7 ± 3.2%, and 18.6 ± 3.9% less at 1, 3, 14 and 28 days, respectively (P<0.05) (Table 1). 

 

CeO2 NP inhalation increases superoxide levels but not TUNEL reactivity 

The quantification of O2
- was determined semi-quantitatively by assessing the oxidation 

of hydroethidine to ethidium bromide. Compared to control animals, the amount of ethidium 

fluorescence was 34.4 ± 12.3%, 78.6 ± 6.4%, and 72.1 ± 8.6% higher at 1, 3, and 14 days post 

exposure, respectively (P<0.05)(Figure 1). Compared to control animals, CeO2 inhalation did not 

increase the number of TUNEL reactive cells at any time (Data not shown).  
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CeO2 NP inhalation increases HSP27 and HSP60 expression   

The abundance of HSP27 and HSP60 were determined from protein isolates obtained 

from each of the different groups. Compared to control animals, the amount of HSP27 was 27.1 

± 3.8%, 33.7 ± 4.6%, 36.7 ± 5.1%, and 17.4 ± 6.2% higher at 1, 3, 14 and 28 days after CeO2 

instillation, respectively (P<0.05) (Figure 2). Similarly, HSP60 expression was 9.9 ± 5.8%, 41.4 ± 

2.8%, 58.2 ± 7.0%, and 48.7 ± 4.8% higher after 1, 3, 14, and 28 days, respectively (P<0.05) 

(Figure 3). 

 

CeO2 NP inhalation alters AMPK-α phosphorylation and NF-kB expression  

Compared to control animals, CeO2 NP inhalation decreased the amount of 

phosphorylated AMPK-α by 23.5 ± 1.8% and 27.2 ± 1.2% at 1 and 3 days post instillation 

(P<0.05). Conversely, CeO2 NP inhalation, appeared to increase AMPK-α phosphorylation by 

15.5 ± 5.1% and 20.6 ± 5.7% at days 14 and 28 post exposure (P<0.05) (Figure 5). Compared to 

that observed in the control animals, NF-kB p50 protein levels in CeO2 exposed animals were 

42.8 ± 9.5% and 25.4 ± 7.5% higher at days 14 and 28 day, respectively (P<0.05) (Figure 4). 

 

CeO2 NP inhalation increases the ratio of Bax/Bcl-2 protein one day after exposure  

Compared to control animals, the ratio of Bax / Bcl-2 protein was 42.4 ± 6.9% higher in 

CeO2 exposed animals at day 1 (P<0.05). Conversely, the ratio of Bax / Bcl-2 was 26.4 ± 3.3% 

lower at day 14 post exposure (P<0.05) (Figure 6). 
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CeO2 NP inhalation appears to be associated with increased cardiac autophagy 

Compared to control animals, the expression of Beclin-1 was 21.0 ± 2.2%, 18.9 ± 1.9%, 

and 13.9 ± 2.3% higher 1, 3 and 14 days post exposure, respectively (P<0.05) (Figure 7). 

Similarly, LC3-II protein content was 26.1 ± 1.9 and 57.4 ± 11.7 higher 3 and 28 days post 

exposure (P<0.05) (Figure 8).  Compared to control animals, with CeO2 inhalation, the 

phosphorylation of eEF-2K was 18.1 ± 3.5%, 19.9 ± 5.2%, and 19.5 ± 4.5% higher at days 1, 3, 

and 14 day post exposure (P<0.05) (Figure 9). 

 

Discussion 

CeO2 NP are widely used in a number of industrial applications and in the fuel cell, solar 

cell and polishing industries. It is thought that CeO2 NP may also exhibit potential medical use 

given their ability to act as a free radical scavenger. Recent in vitro studies have suggested that 

CeO2 NP may also have toxic effects given their proclivity to increase the generation of reactive 

oxygen species and decease intracellular glutathione levels in cells at higher concentrations (3). 

Whether CeO2 NP are toxic to cardiac cells in vivo, has to our knowledge, not been investigated. 

The primary finding of this study is that CeO2 NP inhalation appears to be associated with 

evidence of increased oxidative stress in the Sprague Dawley rat heart (Figure 1). This increase 

in oxidative stress was found to be associated with alterations in the amount of autophagic 

(Beclin-1, LC3-II), transcriptional (NF-kB) and heat shock (HSP27, HSP 60) protein expression 

(Figures 2- 9).  

How nanoparticles may cause cellular toxicity is not well understood. Recent data has 

suggested that nanoparticles exposure is oftentimes associated with increases in cellular 
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reactive oxygen species (3, 9, 11, 26, 27). We observed similar findings in the present study 

(Figure 1). On the basis of previous reports showing that HSP expression are regulated, at least 

in part, by oxidative stress levels (31, 34), we next examined if cerium oxide inhalation was 

associated with increases in the amount of cardiac heat shock protein HSP27 and HSP60. It is 

thought that HSP function in various capacities to minimize cellular damage (32). As an 

example, the Hsp27 has been shown to exhibit anti-apoptotic activity (36) while other work has 

also shown that Hsp27 over expression can increase the activity of NF-kB (38). Compared to 

control animals, our data suggest that CeO2 NP inhalation is associated with elevations in both 

Hsp27 and Hsp60 levels (Figure 2 and 3). Like that observed for the HSPs, the expression of NF-

kB was also elevated after inhalation CeO2 NP (Figure 4). Similar to the HSPs, elevations in NF-kB 

have also been shown to induced by increases in cellular ROS (66) where they, like the HSPs 

may function to protect the cell from apoptosis (37). Whether these elevations in HSP and NF-

kB protein expression are a direct result of the increased oxidative stress associated with the 

inhalation of CeO2 NP is currently unclear. 

Interestingly, we found that the amount of phosphorylated AMPK was lower in the 

animals that were sacrificed after 1- and 3 days of CeO2 inhalation and higher, compared to 

control, in animals that were sacrificed after 14- and 28 days of CeO2 inhalation (Figure 5). It is 

thought that the AMPK functions as an energy sensor and that diminished AMPK 

phosphorylation can be caused by increases in oxidative stress or by cellular inflammation (42, 

43). Some studies indicated increased AMPK phosphorylation will cause increased expression of 

NF-kB protein and further suppression of apoptosis (48). Our results indicated increased 
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expression of AMPK in 14 and 28 days post exposure. The other pathways influenced the 

increased expression of NF-kB protein is unclear and further investigation is needed. 

Two downstream outcomes of increased oxidative stress are the induction of 

programmed cell death and autophagy. It is thought that the transition to cellular apoptosis is 

controlled, at least in part, by the ratio of the pro-apoptotic Bax protein and the anti-apoptotic 

Bcl-2 proteins (67). Herein, we found an elevation in the ratio of Bax / Bcl-2 one day after CeO2 

exposure suggesting that cerium oxide inhalation may be associated with increases in cardiac 

apoptosis (Figure 6). Whether this latter possibility actually occurs will require further 

investigation.  

Similar to that seen with apoptosis, previous work has suggested that autophagy 

proteins may play a protective role in maintaining overall tissue function (51). To examine if 

cerium oxide inhalation is associated with cardiac authophagy we next examined the tissue 

levels of the autophagy regulators beclin-1 and LC3-II levels (53, 54). Our data demonstrated 

increases in amount of beclin-1 at 1, 3, and 14 days post exposure (Figure 7). Consistent with 

these data, we also found increases in LC3-II protein levels at days 3 and 28 day (Figure 8). 

Similar to what we observed for beclin-1, and consistent with the induction of autophagy (60), 

eEF-2K protein levels were found to be elevated at 1, 3 and 14 days post exposure (Figure 9). 

Elevated expression of these three autophagy related proteins clearly indicated there is 

increased autophagy in the absence of apoptosis which suggest that this process is a pro-

survival mechanism rather than one associated with cell death.  

Taken together, our data suggest that intra tracheal instillation of CeO2 NP in male 

Sprague Dawley rats is associated with increased oxidative stress in the heart, elevations in the 
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amount of Hsp27, Hsp60, and NF-kB protein expression. These alterations were, in turn, also 

associated with evidence of cardiac autophagy (Figure 10). Given these findings, future work to 

further examine how cerium oxide inhalation may affect cardiac function may be warranted.  
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APPENDIX 

TABLES AND FIGURES 

 

Table 1. Effect of CeO2 inhalation on rat body and heart weight. 

 

                                    Groups                      

 

                                  Control            1day                3 day              14 day                    28 day  
                                                         CeO2 NP        CeO2 NP          CeO2 NP                CeO2 NP 

 
 

Body weight, g      319.6±6.4 319.6±6.2   331.6±9.8       332.3±8.6             411.3±11.9 

 

Heart weight, g       1.1±0.03 1.2±0.11     1.0±0.02        1.1±0.03              1.3±0.04 

 

Heart wt / B.wt           3.64±0.02        3.36±0.02*   3.2±0.03*              3.25±0.03*                2.96±0.04* 

 

(Mean±SEM), * significantly different than 1 day saline control (p<0.05) 

 

 

 

 

            

 

 

 



29 
 

 

Table 2. Effect of CeO2 inhalation on rat feed intake and body weight gain per week 

 

 

                                    Groups                      

 

                                  14 day              14 day                  28 day                           28 day                      
                                  Control            CeO2 NP         Control      CeO2 NP   
                

 
 

Feed intake (g)      179.1±10.0 196.1±15.5              192.3±4.5                          189.2±4.1 

 

Body weight gain (g)      21±1.1               18.6±2.1                       26.2±1.4                         23.2±1.5 

 

(Mean±SEM) 
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Figure 1 

 

Figure 1. CeO2 NP instillation increases cardiac superoxide levels.  

Cardiac ROS determined by intensity of fluorescent ethidium bromide – stained nuclei. Results 
are expressed as a means ± SEM. * significantly different from 1 day control (p<0.05). n=4 
hearts per group. 

 

 

 

 

  



31 
 

Figure 2 

 

 
 
Figure 2. Expression of Hsp27 is altered with CeO2 NP instillation. 

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by 
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control (p<0.05). 
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Figure 3 

 
 

 
Figure 3. Expression of Hsp60 is altered with CeO2 NP instillation.  

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by 
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control (p<0.05). 
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Figure 4 

 

 

Figure 4. Expression of NF-kB p50 is altered with CeO2 NP instillation. 

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by 
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control (p<0.05). 
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                                                                      Figure 5 

 

 Figure 5. Phosphorylation of AMPK α is altered with CeO2 NP instillation. 

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by 
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control (p<0.05). 
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Figure 6 
 
 

  Figure 6. Expression of Bax/Bcl-2 is altered with CeO2 NP instillation.  

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by 
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control (p<0.05). 
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Figure 7

 

Figure 7. Expression of Beclin-1 is altered with CeO2 NP instillation.  

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by 
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control (p<0.05). 
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Figure 8 

 

 
 
Figure 8. Conversion of LC3 is altered with CeO2 NP instillation.  

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by 
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control(p<0.05). 
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                                                                Figure 9 

 

 
 
Figure 9. Phosphorylation of eEF-2K is altered with CeO2 NP instillation. 

Protein samples from 1 day control, 1 day, 3 day, 14 day, and 28 day CeO2 NP were analyzed by     
immunoblotting. Results are expressed as a means ± SEM. * significantly different from 1 day 
control (p<0.05). 
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Figure 10 

 
 
  

 
 
 
Figure 10. Effects of CeO2 NP inhalation on the Sprague Dawley rat heart. 
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Chapter 4 

Conclusions      

Cerium oxide is widely used in several industrial applications and may also exhibit potential 

use for the treatment of various biomedical conditions. Here we examine the potential 

toxicological effects of inhaled CeO2 NP on the heart. Our data suggest that the inhalation of 

CeO2 NP is associated with increased cardiac oxidative stress and evidence of cardiac 

autophagy.  

Specifically, our data suggest the following:  

1. Inhalation of CeO2 NPs is associated with diminished heart mass. 

2. Inhalation of CeO2 NPs is associated with evidence of increased cardiac superoxide 

levels. 

3. Inhalation of CeO2 NPs is associated with increased expression of heat shock proteins in 

the heart.  

4. Inhalation of CeO2 NPs is associated with evidence of increased cardiac autophagy in the 

absence of cardiac apoptosis.  

Future directions 

Our results suggest that the inhalation of CeO2 NP poses a potential toxicity risk to the 

heart. The time course of this study was relatively short in that it only last four weeks. As such, 

it is not clear if the effects we observed at one month post exposure represent long term 

changes or not. On the basis of these data, it may be useful for future studies to investigate the 
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long term effects of inhalation exposure to CeO2 NP. In addition, it is not clear if CeO2 NP 

accumulate over time in the heart. This lack in our understanding could also be addressed. 

Similarly it is unclear if the changes we see at the biochemical level are associated with changes 

in cardiac structure and function. To address this, future studies could also be done using 

echocardiography to see if CeO2 exposure is associated with changes in cardiac performance.  
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