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RESEARCH Open Access

Effects of canola and corn oil mimetic on
Jurkat cells
Gabriela Ion1*, Kayla Fazio1,2, Juliana A Akinsete1 and W Elaine Hardman1

Abstract

Background: The Western diet is high in omega-6 fatty acids and low in omega-3 fatty acids. Canola oil contains
a healthier omega 3 to omega 6 ratio than corn oil. Jurkat T leukemia cells were treated with free fatty acids
mixtures in ratios mimicking that found in commercially available canola oil (7% a-linolenic, 30% linoleic, 54%
oleic) or corn oil (59% linoleic, 24% oleic) to determine the cell survival or cell death and changes in expression
levels of inflammatory cytokines and receptors following oil treatment.

Methods: Fatty acid uptake was assessed by gas chromatography. Cell survival and cell death were evaluated by
cell cycle analyses, propidium-iodide staining, trypan blue exclusion and phosphatidylserine externalization. mRNA
levels of inflammatory cytokines and receptors were assessed by RT-PCR.

Results: There was a significant difference in the lipid profiles of the cells after treatment. Differential action of the
oils on inflammatory molecules, following treatment at non-cytotoxic levels, indicated that canola oil mimetic was
anti-inflammatory whereas corn oil mimetic was pro-inflammatory.

Significance: These results indicate that use of canola oil in the diet instead of corn oil might be beneficial for
diseases promoted by inflammation.

Keywords: Lymphocytes, Canola oil mimetic, Corn oil mimetic, Apoptosis, Inflammation

Background
The ratio of omega-3 to omega-6 in the average western
diet is heavily weighted in favor of omega-6 [1]. When
tested as single fatty acids, omega 6 fatty acids tend to
be pro-inflammatory but omega-3 fatty acids tend to be
anti-inflammatory. Therefore, omega-3 deficiencies have
been implicated in inflammatory diseases, cancer, cardi-
ovascular diseases, dyslipidaemia and metabolic syn-
drome [1,2].
The human diet is very complex and foods provide a

mixture of fatty acids in different ratios not just one sin-
gle fatty acid at a time. Food is the source of two essen-
tial fatty acids, linoleic (omega-6) and a-linolenic acid
(omega-3), which cannot be synthesized de novo in ani-
mal cells and, therefore, must be obtained from the diet.
A good dietary source of omega-3 with an omega-6 to
omega-3 ratio of 3:1 is canola oil. We hypothesize that

consuming canola oil in the diet instead of corn oil
could decrease pro-inflammatory stimuli.
There is a lack of data aimed at exploring the effect of

complex combinations of food fats in in vitro models. In
general, many in vitro models focus on only single fatty
acids at different concentrations [3-6]. Therefore, to be
more relevant to human health, it might be beneficial to
consider an experimental design closer to the ratios of
the components found in the food which might be
consumed.
There is a body of evidence demonstrating that fatty

acids affect T lymphocyte functions. In vitro and in vivo
studies have shown that fatty acids modulate cytokine
release, proliferation, cell death, activation by antigens,
surface proteins expression and signaling proteins
[7-14]. Single free fatty acids have been shown to induce
cell death when used at various concentrations in differ-
ent cellular models [4,5,8,15,16]. To study the pro- or
anti-inflammatory effects of fatty acids combinations on
cytokine production by lymphocytes it is important to
explore the effects of fatty acids at non cytotoxic doses.
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These data would be more relevant to a typical diet
where food ingested does not have a cytotoxic effect
and could demonstrate alterations in inflammatory
cytokines.
In spite of the well-recognized beneficial effects of

omega-3 fatty acids for human health, there is a lack of
data regarding the effect of canola oil, a common food
source rich in a-linolenic acid (omega-3 fatty acid) ver-
sus corn oil rich in linoleic acid (omega-6 fatty acid), on
lymphocytes. In this study, Jurkat T leukemia cells were
treated with free fatty acids mixtures in ratios mimick-
ing that found in commercially available canola oil (7%
a-linolenic, 30% linoleic, 54% oleic) or corn oil (59%
linoleic, 24% oleic) at non cytotoxic dose to determine
changes in expression levels of inflammatory cytokines
and receptors following oil treatment.

Methods
Reagents
The following reagents were used: propidium iodide,
Tri-Reagent, 2-propanol, 1 bromo-3-chloro propane,
RNase A, ethanol, 3-sodium citrate, butylated hydroxy-
toluene (BHT) from Sigma-Aldrich; a-linolenic acid
(Cayman Chemical Company), linoleic acid and oleic
acid (MP-Biomedicals, LLC); Triton-X100 (IBI Shelton
Scientific, Inc.); Chloroform and Hexane (Honeywell,
Burdick & Jackson™), Methanol (Fisher Scientific), Iso-
octane (EMD).

Cell Lines
Jurkat, Clone E6-1 cells (gift from Dr. Pyali Dasgupta,
MU) were maintained in 10% FBS (Hyclone) in RPMI-
1640 (ATCC) supplemented with 100 units/ml penicillin
and 0.1 mg/ml streptomycin (Sigma-Aldrich). The cells
were kept in a humidified atmosphere, at 37°C, contain-
ing 5% CO2. The cells were seeded at a cell density of
3 × 105 per ml for all experimental designs.

Fatty acid treatment
The free fatty acids, in ratios mimicking that found in
commercially available canola oil (7% a-linolenic, 30%
linoleic, 54% oleic) or corn oil (59% linoleic, 24% oleic)
were dissolved in ethanol. Cells were treated with an oil
concentration of 75 μM, 100 μM or 150 μM for 48 or
72 hours. The final concentration of ethanol in culture
media did not exceed 0.15%.

Cell viability and membrane integrity
Cell viability and membrane integrity were assessed by
Trypan Blue exclusion and propidium iodide staining,
respectively. After treatment, the cells were washed with
PBS and stained with propidium iodide (20 μg/ml) for
15 min in the dark, at room temperature. The cells
were analyzed on a FACSAria flow cytometer (Becton

Dickinson) using DIVA software (Becton Dickinson) and
the propidium iodide positive population was evaluated.
The Trypan Blue exclusion assay was used to determine
cell viability, and the live cells (negative for staining) and
dead cells (positive for staining) were enumerated using a
hemocytometer.

Annexin V labeling
Jurkat cells were treated as indicated, then washed twice
with PBS and resuspended in Annexin V binding buffer
(0.01 M HEPES, 0.14 M NaCl and 2.5 mM CaCl2).
Annexin V-Pacific Blue™ conjugate (Invitorgen, Mole-
cular Probes) and propidium iodide (20 μg/ml) were
added to the cells for 15 min in the dark, at room tem-
perature. Cells were analyzed on a FACSAria flow cyt-
ometer using DIVA software and the Annexin V
positive/propidium iodide negative population was con-
sidered early apoptotic.

Cell cycle and DNA fragmentation
Treated cells were subjected to DNA content analysis.
Briefly, the cells were harvested and washed two times
with PBS and fixed with cold 70% ethanol for at least 24
hours. The ethanol was removed and followed by two
PBS washes. Cells were stained in the following solution:
PBS supplemented with 0.1% Triton X-100, 0.1% Na3-
citrate, 30 μg/ml RNase and 20 μg/ml propidium iodide.
After incubation in the dark for 30 minutes at room
temperature the cells were analyzed on a FACSAria flow
cytometer. DNA fragmentation was determined by cell
cycle analysis using DIVA software.

Gas chromatography
The fatty acid composition of treated cells was ana-
lyzed by gas chromatography. After treatment, cells
were washed four times in PBS then homogenized in
distilled water containing 0.1% BHT to prevent fatty
acid oxidation. Lipids were extracted with chloroform/
methanol, and the fatty acids were methylated followed
by separation and identification using gas chromato-
graphy. Briefly, gas chromatography was performed
using a PerkinElmer Clarus 500 Gas Chromatograph
(Shelton, CT) with a Elite-WAX Polyethylene Glycol
Capillary Column (Length: 30 m, Inner Diameter:
0.53 mm), at 220°C for 100 min with a helium carrier
gas flow rate of 2 ml/min. A fatty acid methyl ester
standard (Nu-Chek-Prep, Elysian, MN) GLC #704,
which contains 10 fatty acids (methyl esters of stearate,
oleate, linoleate, alpha linolenate, gamma liniolenate,
homogamma linolenate, arachidonate, eicosapentaeno-
ate, docosapentaenoate, and docosahexaenoate) was
used for peak identification. The fatty acid methyl
esters were reported as the percent of the total methy-
lated fatty acids (area under the curve).
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Gene expression assay
Human Inflammatory Cytokines and Receptors RT2 Pro-
filer™ PCR Array, RT2 First Strand Kit and SuperArray
RT2 qPCR Master Mix (SuperArray Bioscience Corpora-
tion, Frederick, MD) were used to analyze the expres-
sion of a panel of genes in cells treated at 75 μM oil
concentration for 72 hours. After treatment, cells were
homogenized in Tri Reagent following the protocol of
the manufacturer to isolate the RNA. RNA quality con-
trol was performed for all samples. The gene expression
assay followed the protocol provided by SuperArray.
The relative fold differences in gene expression and sta-
tistical analyses were calculated on SuperArray software.

Results
Lipid composition of treated cells
Gas chromatography was performed to investigate
whether the cells were able to uptake the canola and
corn oil mimetic. Jurkat cells were treated with 150 μM
canola or corn oil mimetic for 72 hours. When compar-
ing the canola oil mimetic treatment with the corn oil
mimetic treatment, the canola oil mimetic treated cells
had significantly more a-linolenic (LIN) acid and more
of the biosynthetic omega-3 fatty acids products (EPA,

DPA) (n = 4, p < 0.005) (Figure 1). The corn oil
mimetic treated cells showed increased levels of linoleic
acid (LA) and the biosynthetic omega-6 fatty acids pro-
ducts (GLA, HGLIN, AA) at a higher fraction than
canola oil mimetic (n = 4, p < 0.005) (Figure 1).
Ethanol was used as a carrier for the fatty acids and

addition to cell culture did not induce any change in
lipid content compared to non-treated cells. As was
expected, comparison of either fatty acid treatment
(canola or corn oil mimetic) to ethanol and non-treated
controls demonstrates a change in the lipid content.
Both the canola and corn oil mimetic increased the per-
centage of linoleic acid (an omega-6 fatty acid) when
compared to ethanol and non-treated cells. Although
the canola mimetic contains more omega-3 fatty acids
than corn oil mimetic, it is essential to note that it also
contains a percentage (30%) of linoleic acid, although
less than the corn oil mimetic (59%). Therefore, the
increase in linoleic acid for both treatments is expected.
In contrast, when comparing the two oil mimetics, it is
apparent that the canola oil mimetic (containing just 7%
a-linolenic acid) is generating a higher fraction of
omega-3 fatty acids than the corn oil mimetic. Despite
the comparable percentages of EPA or DPA between

Figure 1 Lipid composition of Jurkat cells treated with 150 μM canola or corn oil mimetics. The values are presented as mean +/- SEM of
four samples. * p < 0.005 for comparison between the canola versus corn oil mimetic treatment by t-test. OL–oleic acid; LIN–a-linolenic acid;
LA–linoleic acid; EPA–eicosapentaenoic acid; GLA–gamma linolenic acid; DPA–docosapentaenoic acid; HGLIN–homo-gamma linolenic acid; DHA–
docosahexaenoic acid; AA–arachidonic acid.
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controls (non treated and ethanol treated cells) and the
canola oil mimetic, noteworthy is the decrease in
omega-3 fatty acids in the presence of the corn oil
mimetic.

Membrane Integrity
Trypan Blue exclusion (Figure 2A) showed that treat-
ment with 100 and 150 μM canola or corn oil mimetic
treatment for 72 hours significantly decreased the per-
centage of viable cells when compared to the controls

(non-treated and ethanol treated cells) (n = 6, p < 0.05).
Among the treatments, 150 μM corn oil mimetic
showed the highest decrease of cell viability by Trypan
blue (n = 6, p < 0.05) (Figure 2A). Propidium-iodide
staining (Figure 2B) showed a significant increase in the
percentage of cells that lost of membrane integrity in
the treated cells (150 μM canola or corn oil mimetic for
48 hours) when compared to the controls (non-treated
and ethanol treated cell) (n = 3 for non-treated, n = 4
for all other samples, p < 0.05).

A

B

Figure 2 Membrane integrity of Jurkat cells treated with canola and corn oil mimetics. A. Percentage of viable cells, treated for 72 hours
with 75, 100 and 150 μM oil mimetics, showed by Trypan Blue exclusion. The values are presented as mean +/- SEM of six samples.* p < 0.05
by Newman-Keuls multiple comparison test, when compared to controls (non-treated and ethanol treated cells); ℓ p < 0.05 by Newman-Keuls
multiple comparison test, when compared to the controls and all other treatments. B. percentage of cells losing the membrane integrity, treated
for 48 hours with 150 μM oil mimetics, showed by propidium-iodide staining * p < 0.05 by Newman-Keuls multiple comparison test n = 3 for
non-treated, n = 4 for all other samples.
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Apoptosis
The loss of membrane asymmetry and the exposure of
phosphatidylserine on the outer surface of the cell mem-
brane as an early apoptotic marker was detected with
Pacific Blue labeled AnnexinV. Jurkat cells treated with
canola or corn oil mimetic at 100 μM and 150 μM for
48 hours showed a significant increase in Annexin V
+/propidium iodide- population compared to the con-
trols (non-treated and ethanol treated cells) (n = 3 for
150 μM non-treated, n = 4 for all other samples, p <
0.05) (Figure 3A).

DNA fragmentation
The degradation of the nuclear DNA as a late apoptotic
marker was assessed by the formation of the ‘sub-G1’
population [17]. Cell cycle analysis of Jurkat cells treated
with 75, 100 or 150 μM canola or corn oil mimetic for
72 hours was evaluated (Figure 3B). When comparing
the treatments to the controls (non-treated and ethanol
treated cells), there was a significant increase in the
‘sub-G1’ population for the following treatments: 100
and 150 μM canola oil mimetic and 75, 100 and 150
μM corn oil mimetic (n = 6, p < 0.05) (Figure 3B).
When comparing the 150 μM corn oil mimetic treat-
ment with the 150 μM canola oil mimetic treatment,
the ‘sub-G1’ population was significantly higher in the
corn oil mimetic treated cells.
The exposure of early apoptotic marker phosphatidyl-

serine at 48 hours followed by loss of membrane integ-
rity and DNA fragmentation at 72 hours indicates that
treatment with ≥ 100 μM canola or corn oil mimetic
induced apoptosis in Jurkat cells.

Cell cycle
There was a significant decrease in the percentage of
Jurkat cells in the G0/G1 phase for cells treated with
100 μM corn oil mimetic compared to the controls
(non-treated and ethanol treated cells) (n = 6, p < 0.05)
(Figure 3B). There was a significant decrease in the per-
centage of Jurkat cells in the G0/G1 phase for cells trea-
ted with 150 μM canola or corn oil mimetic when
compared to the controls (non-treated and ethanol trea-
ted cells) or to the other treatments (n = 6, p < 0.05)
(Figure 3B). Moreover, when comparing 150 μM corn
oil mimetic to 150 μM canola oil mimetic treatment
there was a statistically significant difference in the G0/
G1 phase between the treatments.
There was a significant decrease in the percentage of

cells in the S phase of both 150 μM canola and corn oil
mimetic treated cells when compared to the controls
(non-treated and ethanol treated cells) (n = 6, p < 0.05)
(Figure 3B). The percentage of cells in the S phase was
significantly decreased by 150 μM corn oil mimetic
when compared to all other treatments.

The percentage of cells in G2 exhibited a significant
decrease for 100 and 150 μM oil treatment when com-
pared to the controls. Cells treated with 150 μM oil
mimetic exhibited a significant decreased fraction in the
G2 phase when compared to 75 and 100 μM canola or
corn oil mimetic. Also, there was a significant difference
in the G2 phase fraction between corn and canola oil
mimetic at 150 μM concentration.

Inflammatory cytokines and receptors
The highest concentration of oil not inducing significant
changes in the cell cycle of Jurkat cells was 75 μM. This
dose was utilized to investigate the effect of canola and
corn oil mimetic on expression of inflammatory cyto-
kines and receptors. Jurkat cells treated with 75 μM
canola oil mimetic for 72 hours showed a 3.46 fold up-
regulation (n = 3, p = 0.0193) for CCL5 (RANTES),
compared to corn oil mimetic treated cells (Table 1).
Moreover, gene expression analysis following canola oil
mimetic treatment showed a trend towards down-regu-
lating expression of CCL11, CARD18, IL8 and IL8RB
when compared to the controls (non-treated and etha-
nol treated cells). Whereas, corn oil mimetic treatment
showed a trend towards up-regulating the expression for
the same genes (CCL11, CARD18, IL8, IL8RB) as com-
pared to the controls. To better assess the differences in
the gene profiling as a response to the oil mimetic treat-
ments, the oil treatment groups were compared. Table 1
shows a significant down-regulation of gene expression
in canola oil mimetic treated cells when compared to
corn oil mimetic treated cells. A low oil concentration
(75 μM) did not have a significant effect on cell cycle
but was able to induce differences in gene expression.

Discussion
It is widely accepted that free fatty acids can induce cell
death in in vitro models [4,8,15,18]. Free fatty acid mix-
tures in ratios mimicking that found in commercially
available canola oil (7% a-linolenic, 30% linoleic, 54%
oleic) or corn oil (59% linoleic, 24% oleic) had a cyto-
toxic effect on Jurkat T leukemia cells at high concen-
tration (≥ 100 μM). Even though both treatments were
cytotoxic one hundred fifty micromolar canola or corn
oil mimetic treated cells resulted in different lipid com-
positions and significant differences in cell cycle and cell
death response indicating that the treatments were
doing more than just killing cells. Corn oil mimetic trea-
ted Jurkat cells had a significantly higher uptake of lino-
leic acid followed by synthesis of more longer chain
omega-6 fatty acids (gamma linolenic, homo-gamma
linolenic, arachidonic acid) than canola oil mimetic trea-
ted cells. Canola oil mimetic treated cells had a signifi-
cantly higher uptake of a-linolenic acid and were able
to synthesize more of the longer chain omega-3 fatty
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acids (eicosapentaenoic acid, docosapentaenoic acid,
docosahexaenoic acid) than corn oil mimetic treated
cells.
Both oil mimetic treatments at a concentration ≥ 100

μM increased the DNA fragmentation (’sub-G1 popula-
tion’). The DNA fragmentation was associated with a

decreased in the percentage of cells in the other phases of
cell cycle. Previous studies using individual fatty acids
showed that linoleic acid was cytotoxic at 100 μM and a-
linolenic acid had an anti-proliferative effect at 60 μM [11].
Cury-Boaventura et al. [8] showed that 50 and 100 μM
linoleic acid induced phosphatidylserine exposure, an early

A

B

Figure 3 Apoptosis A. Phosphatidylserine exposure in cells treated at 100 μM and 150 μM for 48 hours. The values are presented as
mean +/- SEM of three samples for 150 μM non-treated and four samples for all other treatments and controls. * p < 0.05 by Newman-Keuls
multiple comparison test. B. Cell cycle analysis of cells treated with 75, 100 or 150 μM oils for 72 hours. The values are presented as mean +/-
SEM of six samples. * p < 0.05 by Newman-Keuls multiple comparison test, when compared to controls (non-treated and ethanol treated cells); ℓ
p < 0.05 by Newman-Keuls multiple comparison test, when compared to the controls and 75 and 100 μM oil treatments; °p< 0.05 by Newman-
Keuls multiple comparison test, when compared to 150 μM canola oil mimetic treatments.
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marker for apoptosis, on human lymphocytes. The authors
suggested mitochondrial depolarization and ROS produc-
tion as a mechanism for cell death induced by 200 μM
linoleic acid. ROS represent key molecules involved in mul-
tiple cellular functions like cell adhesion, apoptosis, regula-
tion of immune responses [19]. On Jurkat cells 130 μM
linoleic acid or 60 μM a-linolenic acid had a prooxidant-
induced antiproliferatve effect that was negatively corre-
lated with caspase 3 activation [11]. In addition, the pro-
apoptotic activity of a-linolenic acid has been associated
with up regulation of Bax expression and cytochrome c
translocation [18]. In support of these previous studies, the
present study demonstrates that canola and corn oil
mimetic induced apoptosis and significant changes in cell
cycle at a concentration of 100 μM. Further investigations
are required to establish the mechanism involved in linoleic
and a-linolenic fatty acids modulation of cell cycle progres-
sion. Many studies have used single long chain omega 3 or
6 fatty acids to modulate cell cycle progression in different
cancer cell lines [20-23]. For example, arachidonic acid
increased expression of cyclin D1 mRNA and the percen-
tage of cells in S phase [20]. Docosahexaenoic acid reduced
cyclin D1, E, and A-associated kinase activity and pre-
vented the entry of cells in S phase [21]. Eicosapentaenoic
acid inhibited synthesis and expression of cyclin D1 and E
and blocked cell cycle in G1 [22]. Trans-10, cis-12 conju-
gated linoleic acid increased the levels of p21cip1/waf1 and
blocked the cells in G0/G1 [23]. However, there is a lack of
data regarding the effect of the two essential fatty acids,
linoleic and a-linolenic acid present in the most commonly
cook oils, corn and canola oil, respectively.
The association between inflammation and cancer is

thought to be a critical component for cancer develop-
ment [24]. The polyunsaturated fatty acids (n-3, n-6) are
responsible for the production of families of anti- and
pro-inflammmatory bioactive lipid mediators [25]. In
vivo studies showed that omega 3 fatty acids decreased

chemoattractant protein-1 (MCP-1), interleukin (IL)-6,
interferon (IFN)-gamma mRNA expression [26], and
TNF-a level [27]. In vitro linoleic acid and a-linolenic
acid inhibited IL-2 production [11]. In this work, a low
oil concentration (75 μM) did not have a significant
effect on cell cycle but was able to induce differences in
gene expression. One such gene, CCL5 (Regulated upon
Activation, Normal T-cell Expressed, and Secreted,
abbreviated RANTES) has a dual role regarding tumori-
genesis. CCL5 can mediate tumor cell survival, cell
growth and metastasis in a number of malignances
[28-31]. CCL5 is also proposed as a natural adjuvant to
boost anti-tumor immunity [32]. In our experimental
design, canola oil mimetic increased CCL5 expression
compared to corn oil mimetic treatment. Moreover, the
proinflammatory molecules, IL8 (interleukin8), IL8RB
(interleukin8 receptor, beta known as CXCR2), CARD18
(caspase recruitment domain family, member 18; ICE-
BERG) and CCL11 (chemokine (C-C motif) ligand 11)
were slightly down-regulated in canola oil mimetic Jur-
kat treated cells compared to slightly up-regulated in
corn oil mimetic treatment. IL-8, a chemotactic factor
for leukocytes, has been shown to contribute to human
cancer progression through its potential functions as a
mitogenic and angiogenic factor [33]. CARD18 (ICE-
BERG), induced by pro-inflammatory stimuli, inhibits
generation of IL-1b by interacting with caspase-1 and
preventing its association with RIP2 [34]. CCL11
(eotaxin-1) displays chemotactic activity for eosinophils
[35] and is a key player in the angiogenic cascade [36].
Taken together, suppression of these chemokines would
be expected to slow cancer progression.

Conclusion
This study was designed to explore the effects of oil
mimetics in ratios found in two common cooking oils
(canola and corn) on Jurkat T leukemia cells. At high

Table 1 Gene expression in Jurkat cells treated with canola or corn oil mimetic

Gene canola mimetic vs controls corn mimetic vs controls canola mimetic vs corn mimetic

Fold difference p value Fold difference p value Fold difference p value

CCL11 -1.30 0.2172 1.30 0.2112 -1.69 0.0185

CCL18 -1.30 0.2172 1.76 0.2705 -2.29 0.2413

CCL5 1.61 0.2205 -2.15 0.0959 3.46 0.0193

CCR2 1.06 0.8768 -1.94 0.2205 2.05 0.3665

CXCL11 -2.07 0.0515 -1.43 0.2968 -1.45 0.1039

CARD18 -1.48 0.1408 1.30 0.3460 -1.93 0.0364

IL5 1.54 0.3790 -2.08 0.5255 3.20 0.4556

IL8 -1.57 0.1646 1.38 0.3903 -2.17 0.0687

IL8RB -1.51 0.1071 1.30 0.2542 -1.97 0.0025

Jurkat cells were treated with oils at 75 μM for 72 hours. The values represent the fold change in canola mimetic treated cells versus controls; corn oil mimetic
treated cells versus controls; canola oil mimetic versus corn oil mimetic treated cells. n = 3 for canola or corn oil mimetic treated cells; n = 5 for controls
(non-treated and ethanol treated cells pooled together). (+) = increased fold change; (-) = decreased fold change.
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concentrations (100 and 150 μM) both types of oils
induced apoptosis. At a non-toxic dose (75 μM) the dif-
ferent oil mimetics displayed differences in their action
on pro-inflammatory molecules with canola oil being
anti-inflammatory whereas corn oil was pro- inflamma-
tory. Findings from this study emphasize the need to
investigate the effect of dietary fat within complex mix-
tures at non-cytotoxic doses when evaluating the inflam-
matory response. Oil mimetic could be enough to
induce differences in fatty acid and immune modulator
profiles. This is critical in regards to the importance of
examining conventional diet sources in human health
and disease. Oil mixtures are more physiologically rele-
vant than single fatty acids since humans must consume
both omega-3 and omega-6 fatty acids. In this respect
canola oil may have a more favorable fatty acid profile
for decreasing the chance of inflammation that is pro-
motional for development of chronic diseases.
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