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The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood
pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis,
renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt
diet. Reactive oxygen species (ROS) are an important modulator of nephron ion transport. As there is limited knowledge regarding
the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine
the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption.

1. Introduction

According to the American Heart Association (AHA), over
70 million people in the United States aged 20 and older
have high blood pressure (BP). The cause of 90–95 percent
of the cases of high BP is unknown, yet in the last decade
the associated morbidity and mortality from high BP has
increased precipitously. In the 2008 AHA Scientific State-
ment [1], excessive dietary salt intake is listed as one of
the major lifestyle factors which significantly contributes
to the development of hypertension and tends to be more
pronounced in typical salt-sensitive patients. Modest dietary
salt restriction and diuretic therapy, therefore, are recom-
mended for treatment of resistant hypertension, especially
in the salt-sensitive subgroup [1, 2]. Renal sodium handling
is a key determinant of long-term BP regulation [3]. The
relationship between dietary sodium, salt sensitivity, and
BP has been established on an epidemiological and clinical
basis. It is estimated that hypertension affects 25% to 35%
of the world population aged 18 and older [4], and more
hypertensive subjects (∼50%) are significantly salt sensitive
than normotensive subjects (∼25%) [5]. In the DASH-
Sodium clinical trial, BP reduction was correlated with
sodium restriction in the salt-sensitive subjects regardless

of diet [6]. Interestingly, animal renal cross-transplantation
experiments [7–10] and studies of human renal transplanta-
tion [11] demonstrate that BP levels “travel with the donor’s
kidney,” providing compelling evidence for the role of renal
function in the pathogenesis of hypertension. In clinical and
experimental models, renal proximal tubule (RPT) sodium
handling accounts for over 60% reabsorption of filtered
sodium and is an independent determinant of BP response
to salt intake, playing a critical role in the pathogenesis
of salt-sensitive hypertension. Recently, accumulating data
indicate that cardiotonic steroids (CTS) signaling through
the Na/K-ATPase contribute to RPT sodium handling and
salt sensitivity [12–18].

2. CTS and Na/K-ATPase Signaling

CTS (also known as endogenous digitalis-like substances)
include plant-derived digitalis drugs, such as digoxin and
ouabain, and vertebrate-derived aglycones such as bufalin
and marinobufagenin (MBG) [16, 18]. Recent studies have
identified both ouabain and MBG as endogenous steroids
whose production, and secretion are regulated by stimuli
including angiotensin II (Ang II) [18–21]. The Na/K-ATPase
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belongs to the P-type ATPases family and consists of two
noncovalently linked α and β subunits [22–24]. Several α
and β isoforms, expressed in a tissue-specific manner, have
been identified and functionally characterized [22–25]. The
α1 subunit contains multiple structural motifs that interact
with soluble, membrane and structural proteins including
Src, caveolin-1, phospholipase C-γ, PI3 kinase, IP3 receptor,
BiP, calnexin, cofilin, and ankyrin [26–36]. Binding to these
proteins not only regulates the ion-pumping function of
the enzyme, but it also conveys signal-transducing functions
to the Na/K-ATPase [18, 32, 37–39]. In LLC-PK1 cells,
the Na/K-ATPase α1 subunit and Src form a functional
receptor in which the binding of CTS to the α1 subunit
activates Src and consequent signaling cascade [39]. The
signaling function of the Na/K-ATPase regulates numerous
cell functions in various types of organs and cells including
cell motility, cell proliferation, cancer, endothelin release,
glycogen synthesis, apoptosis, hypertension, intracellular
calcium signaling, cardiac hypertrophy, cardiac remodeling,
renal remodeling, epithelial cell tight junction, vascular tone
homeostasis, and sodium homeostasis [26, 40–59]. The topic
of CTS-Na/K-ATPase signaling and its downstream patho-
physiological implications has been extensively reviewed in
the last few years [12–16, 18, 21, 32, 39, 59–64], and we will
not discuss them in detail in this review.

3. CTS and Sodium Homeostasis

Endogenous CTS were first proposed many years ago to
function as a natriuretic hormone. Although their patho-
physiological significance has been a subject of debate for
many years [65], the concept of a natriuretic hormone is
supported by the experimental observations in animal mod-
els of ouabain-induced natriuresis [66, 67]. Recently, several
elegant reports have confirmed this concept with different
approaches. Gene replacement studies have unequivocally
demonstrated an important role of endogenous CTS in
regulation of renal sodium excretion and BP [68, 69]. In
transgenic mice expressing ouabain-sensitive Na/K-ATPase
α1 subunit, a significant observation is an augmented
natriuretic response to both acute salt load and ouabain
infusion, indicating that the ouabain-binding site of Na/K-
ATPase α1 subunit participates in the natriuretic response to
salt load by responding to endogenous ouabain. Moreover,
the augmented natriuretic response in the ouabain-sensitive
α1 isoform mice can be blocked with administration of
an anti-digoxin antibody fragment [68, 69]. In normal
male Wistar rats, endogenous circulatory ouabain has
physiological roles controlling vasculature tone and sodium
homeostasis, showing endogenous ouabain regulates renal
sodium excretion in normal animals [70]. A significant
inhibition of natriuresis is observed in rats that were passively
immunized with anti-ouabain antibody and in rats that
were actively immunized with ouabain-albumin antigen, in
which endogenous ouabain levels were reduced in both cases.
Like ouabain, MBG has both natriuretic and vasoconstrictor
effects [12, 71, 72]. High salt intake induced an initial tran-
sient stimulation of ouabain and a subsequent progressive

increase of MBG both in Dahl salt-sensitive (S) rats and in
humans [12, 73]. In Dahl S rats, the increase in natriuresis
stimulated by an acute salt loading is prevented by admin-
istration of both an anti-ouabain antibody and an anti-
MBG antibody [72]. Furthermore, endogenous CTS have
also been implied in age-related increases in salt sensitivity
of BP in human normotensive subjects [73]. It is estimated
that approximately 50% of humans with untreated essential
hypertension have significantly elevated levels of endogenous
ouabain [74] which is involved in the regulation of vascular
tone homeostasis through stimulation of interaction between
the Na/K-ATPase and sodium/calcium exchanger [59]. In
normotensive human males, both a high salt diet and system-
atic sodium depletion (by hydrochlorothiazide) significantly
increase plasma ouabain concentration [75].

Release of endogenous ouabain from the brain hypotha-
lamus stimulated by a high salt diet leads to inhibition of
the Na/K-ATPase activity and central sympathetic activation
(reviewed in [76, 77]), which plays a crucial role in the pres-
sor effects of high salt intake in spontaneously hypertensive
rats (SHR) and Dahl S rats. In Dahl S rats, elevation in brain
ouabain increased MBG secretion from the adrenal cortex,
and this effect was blocked by the AT1 receptor antagonist
losartan [78, 79]. The data suggest that the observed CTS-
induced natriuretic effect might be a result of the combined
effects of ouabain and MBG [60]. Furthermore, CTS not
only induced hypertension in rats but also caused significant
cardiovascular remodeling and natriuresis independent of
their effect on BP [49, 51, 70, 80, 81].

4. CTS and Oxidative Stress in Cardiac and
Renal Fibrosis

CTS binding to the Na/K-ATPase induces cellular reactive
oxygen species (ROS) production and its downstream effects,
such as cardiac and renal fibrosis, and these effects can be
prevented by ROS scavenging [80, 82–84]. In kidney and
heart, the central role of CTS in the development of fibrosis
has been demonstrated both in vivo, in the partial (5/6th)
nephrectomy model, and in vitro cell culture, including
cardiac and renal fibroblasts. 5/6th nephrectomy increases
circulating levels of MBG and stimulates cardiac fibrosis
in both rat and mouse [80, 84, 85]. Rats subjected to
5/6th nephrectomy develop systemic oxidant stress that is
similar to that seen in rats subjected to MBG infusion as
evidenced by significant elevation of plasma carbonylated
protein. Active immunization against MBG and reduction
of circulating levels of MBG by adrenalectomy substan-
tially attenuate 5/6th nephrectomy and MBG infusion-
mediated cardiac fibrosis and oxidant stress, an effect that
is independent of BP [80, 84]. In primary culture of rat
cardiac and human dermal fibroblasts as well as a cell
line derived from rat renal fibroblasts, MBG and ouabain
stimulate [3H]proline incorporation as well as gene and
protein expression of collagen [86]. MBG induced a PLC-
dependant translocation of PKC-δ to the nucleus, resulting
in the phosphorylation and degradation of transcription
factor Friend leukemia integration-1 (Fli-1), a negative
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Figure 1: Schematic illustration of the effect of CTS on fibrosis.

regulator of collagen synthesis [86]. Both CTS-induced
Na/K-ATPase signaling and oxidative stress are necessary in
the pathogenesis of cardiac and renal fibrosis as evidenced
by CTS-stimulated phosphorylation of both Src and MAPK
which is effectively blocked not only by ROS scavenging
and Src inhibition but also through possible competitive
inhibition of CTS binding to Na/K-ATPase by spironolactone
and canrenone [80, 84, 87, 88]. MBG infusion causes renal
fibrosis mainly in the cortex of the kidney by stimulation
of the transcription factor Snail expression and its nuclear
localization in the tubular epithelia, which is associated with
epithelial-to-mesenchymal transition (EMT) during renal
fibrosis [89]. This EMT phenomenon is also demonstrated
in LLC-PK1 cells, indicating that MBG may cause damage
of renal proximal tubules. CTS-induced fibrosis in heart and
kidney might shift the cardiac and renal function curve to
favor a higher set point of pressure natriuresis (Figure 1).

5. Na/K-ATPase Signaling and RPT
Sodium Handling

It has been postulated for decades that endogenous CTS
stimulated by increased sodium intake increases natriuresis
and diuresis by directly inhibiting renal tubular Na/K-
ATPase to prevent renal reabsorption of filtered sodium [90–
92]. There is accumulating evidence supporting this idea
under conditions such as high salt intake, chronic renal
sodium retention, renal ischemia, uremic cardiomyopathy,
and volume expansion in various animal models and human
beings [12, 13, 15, 60, 62, 75, 93–107]. Although the
direct inhibition of the Na/K-ATPase enzymatic activity
and sodium reabsorption in RPTs by CTS has not been
validated, recent observations indicate that ligand-mediated
RPT sodium reabsorption via Na/K-ATPase/c-Src signaling
counterbalances the sodium retention-mediated increases
in BP, such as that seen in salt-sensitive hypertension

[108–114]. Ouabain, a ligand of the Na/K-ATPase, acti-
vates the Na/K-ATPase/c-Src signaling pathway and sub-
sequently redistributes basolateral Na/K-ATPase and apical
sodium/hydrogen exchanger isoform 3 (NHE3) in RPTs,
leading to reduced RPT sodium reabsorption and increased
urinary sodium excretion.

In LLC-PK1 cells, ouabain activates Na/K-ATPase/c-Src
signaling pathways and reduces cell surface Na/K-ATPase and
NHE3, leading to a significant inhibition of active transcel-
lular 22Na+ flux from the apical to basolateral compartment
[108–112]. MBG, an important CTS species, and depro-
teinated extract of serum (derived from patients with chronic
renal failure) also induce Na/K-ATPase endocytosis and
inhibition of active transepithelial 22Na+ flux. However, it is
still not clear how ouabain-activated Na/K-ATPase signaling
regulates NHE3, since, at concentrations of ouabain used,
no significant change in intracellular Na+ concentration was
observed [108]. Interestingly, this phenomenon is either not
observed or is much less significant in MDCK cells (a canine
renal distal tubule cell line). These in vitro data suggest that
CTS-Na/K-ATPase signaling has a profound effect on RPT
sodium handling, but not in distal tubules.

Different species of endogenous CTS show differences in
the kinetics and tissue actions in response to salt loading in
both animal models and in human salt-sensitive hypertensive
patients [16, 18, 60, 75, 79, 105]. The Dahl salt-resistant
(R) and salt-sensitive (S) strains were developed by selective
breeding of the outbred Sprague-Dawley rat strain for
resistance or susceptibility to the hypertensive effects of high
dietary sodium [115]. RPT sodium handling is a critical
determinant of the different BP responses in these strains
[7, 116–118], and there is no Na/K-ATPase α1 gene (Atp1a1)
difference between R and S rats [119]. In comparison to
Dahl S rats that eliminate excessive sodium mainly through
pressure natriuresis at the expense of an elevated systolic
BP, a major response to salt loading in the Dahl R rats is a
greater reduction in renal sodium reabsorption to eliminate
excessive sodium without raising BP. Our recent in vivo
observation [114] is in agreement with this hypothesis and
our in vitro observations in LLC-PK1 cells. Specifically in
isolated RPTs, both a high salt diet and ouabain are able
to activate Na/K-ATPase/c-Src signaling pathways, leading to
the redistribution of Na/K-ATPase and NHE3 in the Dahl R
but not in the S rats. The R rats show significant increases in
total urinary sodium excretion and RPT-mediated fractional
sodium excretion, without BP elevation [114]. While the
BP response to salt loading in R and S rats involves many
regulatory factors [117], our data indicate that impairment
of the RPT Na/K-ATPase/c-Src signaling contributes to salt
sensitivity. Since it failed to confirm the possible difference
of Na/K-ATPase α1 gene (Atp1a1) between R and S rats
[119], other factor(s) must be present to prevent activation
of Na/K-ATPase/c-Src signaling in the S rats. The possible
effect of CTS on RPT Na/K-ATPase signaling and sodium
reabsorption is summarized in Figure 2.

The SHR rat is an established model of human essential
hypertension with the characteristic of vascular resistance.
SHR rat develops hypertension spontaneously at the age
of 7–15 weeks, regardless of salt loading, mainly through
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Figure 2: Schematic illustration of the effects of ROS and Na/K-
ATPase signaling on RPT sodium reabsorption. CTS: cardiotonic
steroids; RPT: renal proximal tubules.

increase in peripheral vascular resistance [120] including
renal vascular resistance. Interestingly, either reduction of
dietary vitamin E or caloric restriction without sodium
restriction prevents the development of hypertension [121,
122]. Like Dahl S rats, SHR rats eliminate excessive sodium
via a pressure-natriuresis mechanism but have significant
lower BP response to a high salt diet and higher systolic BP
to eliminate the same amount of sodium when compared
to Dahl S rats [123–126]. Most interestingly, comparing
to control Wistar-Kyoto (WKY) rats, regulation of the
Na/K-ATPase and NHE3 with both aging and oxidative
stress have been shown contributed to the development
and maintenance of hypertension in the SHR [127–135].
In renal cortical (proximal) tubules, activity and protein
levels of NHE-3 are significantly higher in SHR than age-
matched WKY rats at all stages during the development
and maintenance of hypertension. When NHE3 function is
determined by the rate of bicarbonate reabsorption by in
vivo stationary microperfusion in RPT, young SHR rats show
higher NHE3 activity than adult SHR and WKY rats, and
this is accompanied by changes in NHE3 phosphorylation
and distribution. In young SHR rats, the RPT Na/K-ATPase
activity is significantly higher than in age-matched WKY,
which can be prevented by treatment of the diuretic drug
hydrochlorothiazide. However, the Na-K-ATPase activity in
medullary thick ascending limb, cortical thick ascending
limb, and distal tubule is significantly lower in young SHR
rats than in age-matched WKY rats. There were no signif-
icant differences in Na/K-ATPase activity in these nephron
segments in adult SHR and WKY rats, nor in collecting duct
segments of young and adult SHR and age-matched WKY
rats. Interestingly, however, the Na/K-ATPase α1 subunit
gene expression is lower in both young and adult SHR rats
than age-matched WKY rats, indicating a posttranscriptional
regulation.

Recent study indicates that SHR rats have enhanced
renal superoxide generation and NADPH oxidase (NOX)
expression in both vascular and renal tissue before and

after development of hypertension [136]. Elevated basal level
of superoxide inhibits proximal tubule NHE3 activity and
fluid reabsorption in SHR rats in comparison to WKY rats.
This effect is prevented by the NOX inhibitor apocynin
or knockdown of the critical NOX subunit p22phox with
small interfering RNA, indicating that increased basal level
of superoxide impairs RPT function [137]. Furthermore,
in Sprague-Dawley rats, oxidative stress impairs Ang II-
mediated regulation of NHE3 [138].

6. Oxidative Stress and Regulation
of Na/K-ATPase

Many stimuli including hypoxia and dopamine induce a
cell- and tissue-specific endocytosis and exocytosis of Na/K-
ATPase and a change in Na/K-ATPase activity [33, 61, 139].
Ouabain-stimulated ROS generation functions as a second
messenger in ouabain-activated Na/K-ATPase signaling in
isolated rat cardiac myocytes [82, 140–142]. Binding of
ouabain to the Na/K-ATPase activates Src kinase, which in
turn transactivates EGFR, leading to activation of the Ras-
Raf-MEK-ERK pathway [32, 39, 63]. Ras activation leads to
the activation of MAPK and increase in [Ca2+]i which result
in opening of mitochondrial ATP-sensitive K+ channels
[142] and generation of mitochondrial ROS [82, 141]. ROS
subsequently activate NF-κB [141, 143] and slow [Ca2+]i

oscillations at nanomolar ouabain concentrations [40].
Additionally, ouabain-induced generation of ROS in neona-
tal myocytes is antagonized by overexpression of a dominant
negative Ras as well as myxothiazol/diphenyleneiodonium,
indicating a mitochondrial origin of the Ras-dependent ROS
generation [82]. Ouabain also stimulates ROS generation in
other cell types [144–146]. Conversely, oxidative stress can
activate the Na/K-ATPase signaling. Both a bolus of H2O2

and exogenously added glucose oxidase (which generates a
sustained low level of H2O2 by consuming glucose) activates
Na/K-ATPase signaling in cardiac myocytes [140]. Pretreat-
ment with the antioxidant N-acetyl cysteine (NAC) prevents
ouabain-Na/K-ATPase signaling and its downstream effects.
Moreover, infusion of CTS causes ROS generation and
protein oxidation in experimental animals [80, 147].

The redox sensitivity of the Na/K-ATPase was first dem-
onstrated in electric eels with treatment of H2O2 [148]. This
phenomenon was further observed in a wide range of animal
species, tissues, and other species of ROS such as hypochlor-
ous anion, hydroxyl radicals, superoxide, hyperchlorite
anions, and singlet oxygen. It has been shown that the Na/K-
ATPase in skeletal muscle is redox-sensitive and infusion
of NAC attenuated ROS-mediated inhibition of maximal
pump activity [149]. In dog kidney, oxidative modification
of kidney Na/K-ATPase by H2O2 was accompanied by a
decrease in the amount of sulfhydryl (SH) groups [150] and,
importantly, oxidative modification can result in formation
of Na/K-ATPase oligomeric structure [151]. The differences
in the number, location, and accessibility of SH groups in
Na/K-ATPase isozymes might predict their oxidative stability
[152]. Different antioxidant enzymes, natural or synthetic
antioxidants, and some inhibitors of oxidase activity can
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attenuate ROS mediated inhibition of Na/K-ATPase activity.
ROS are known to inhibit Na/K-ATPase activity in different
types of cells as well. Interestingly, the Na/K-ATPase in rat
cerebellar granule cells are redox-sensitive with an “optimal
redox potential range,” where ROS levels out of this “optimal
range” are capable of inhibiting Na/K-ATPase activity [153].
While the Na/K-ATPase does not contain heme groups, it
does contain cysteine residues located in α subunit cytosolic
loops which may determine the redox sensitivity of the α
subunit. The sensitivity of the Na/K-ATPase to redox and
oxygen status, the regulatory factors which govern these
interactions, and the implied molecular mechanism were
recently reviewed [154].

Increases in ROS can oxidize the Na/K-ATPase α/β
subunits and its independent regulator FXYD proteins. This
oxidation inhibits its activity and promotes its susceptibility
to degradation by proteasomal and endosomal/lysosomal
proteolytic pathways in different cell types including cardiac
myocytes, vascular smooth muscle cells, and RPTs [155–
166]. It appears that the oxidized modification of the Na/K-
ATPase is a reversible, redox-sensitive modification. How-
ever, purified enzyme has also been shown to be irreversibly
inhibited upon exposure to hydrogen peroxide, the super-
oxide anion, and the hydroxyl radical [158]. The regulation
of renal Na/K-ATPase α1 by oxidants is not dependent on
the ouabain sensitivity of the α1 subunit per se. It appears
that the α2 and α3 subunits are more sensitive to oxidants
than the α1 subunit, and ouabain-sensitive α1 (canine)
and insensitive-α1 (rat) have similar sensitivity to oxidants,
suggesting the regulation of α1 by ROS is not species specific.
Furthermore, ROS accelerates degradation of the oxidatively
damaged Na/K-ATPase and the α2 and α3 subunits, which
also appear to be more susceptible to degradation than the α1
subunit [159]. These studies indicate that differential oxidant
sensitivities of the Na/K-ATPase subunits are dictated by the
primary sequences of different subunits and different subunit
compositions of the various tissues may contribute to their
relative susceptibilities to oxidant stress. In the RPT cell
line originated from WKY rats, cadmium, a ROS generator,
stimulates ROS production and causes a toxic oxidative
damage of the Na/K-ATPase. Oxidative damage increases
Na/K-ATPase degradation through both the proteasomal
and endo-/lysosomal proteolytic pathways [163]. In purified
renal Na/K-ATPase, peroxynitrite (ONOO−) causes tyrosine
nitration and cysteine thiol group modification of the Na/K-
ATPase, but only cysteine thiol group modification is implied
in the inhibition of the enzyme activity since glutathione is
unable to reverse the inhibition [167]. In isolated rat renal
RPTs, peroxynitrite and its signaling participates in Ang II-
induced regulation of renal Na/K-ATPase activity [168].

Ang II inhibits the Na/K-ATPase via PKC-dependent
NOX activation. The dependence of Ang II-induced Na/K-
ATPase inhibition on NOX and superoxide, as well as
reversible oxidative modification of the Na/K-ATPase,
strongly suggests a role for redox signaling [164–166]. In
cardiac myocytes and pig kidney, oxidative stress induces
glutathionylation of the β1 subunit of the Na/K-ATPase.
In purified pig renal Na/K-ATPase, peroxynitrite inhibits
the enzymatic activity by stabilization of the enzyme in an

E2-prone conformation. At the same time, FXYD proteins
reverse oxidative stress-induced inhibition of the Na/K-
ATPase by facilitating deglutathionylation of the β1 subunit.
Moreover, both tyrosine kinase c-Src and cell membrane
structural component lipid rafts, which are critical in Na/K-
ATPase/c-Src signaling, are also critical in redox signaling
platform formation [169–172]. These observations, along
with the fact that c-Src is redox-sensitive [173] and its
activation regulates NOX-derived superoxide generation
[174], suggests a redox-sensitive Na/K-ATPase/c-Src signal-
ing cascade and its possible role in ROS regulation, although
the mechanism is not clear. Our unpublished data suggest
that certain basal levels of ROS might be required for the
initiation of ouabain-Na/K-ATPase/c-Src signaling. In LLC-
PK1 cells, pretreatment with higher concentrations of NAC
(5 and 10 mM for 30 min), but not with lower concentration
of 1 mM, can prevent ouabain-stimulated c-Src activation
and the redistribution of Na/K-ATPase and NHE3. This
suggests that ROS may stabilize Na/K-ATPase in a certain
conformational status in order to facilitate ouabain binding
to the Na/K-ATPase α1 subunit and favor ouabain-Na/K-
ATPase/c-Src signaling. Some pertinent questions remain
to be resolved, such as how ROS interacts with and influ-
ences the Na/K-ATPase/c-Src signaling cascade and whether
ouabain-induced ROS boosts the Na/K-ATPase signaling by
a positive feedback mechanism and chronically desensitizes
the signaling cascade by stimulating Na/K-ATPase/c-Src
endocytosis (Figure 2).

7. Oxidative Stress and Regulation
of Renal Function

ROS function as important intracellular and extracellular
second messengers to modulate many signaling molecules.
Physiological concentrations of ROS play an important
role in normal redox signaling, while pathological levels
of ROS contribute to renal and vascular dysfunction and
remodeling through oxidative damage [175–177]. Genetic
factor(s) partially contribute to high basal ROS levels and the
development of hypertension [178, 179].

Oxidative stress has been shown to regulate BP and
sodium handling in various animal models. High salt
intake increases oxidative stress, and this has important
implications for the regulation of cardiovascular and renal
systems. An increase in oxidative stress is both a cause and
consequence of hypertension [177, 180–183]. Renal NOX is
present in the renal cortex, medulla, and vasculature. NOX,
the major source of superoxide in the kidney, is of particular
interest because of its prominent expression and implication
in pathophysiology. In the kidney, increased oxidative stress
influences a number of physiologic processes including renal
sodium handling in the proximal tubule [137, 168, 184, 185]
and thick ascending limb [186], renal medulla blood flow
[183, 187–190], descending vasa recta contraction [191, 192]
in addition to interactions with other regulatory systems
such as the dopamine signaling pathway [193]. Increased
oxidative stress has been shown to contribute to salt
sensitivity [194, 195]. In macula densa cells, NOX isoform
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Nox2 is responsible for salt-induced superoxide generation,
while Nox4 regulates basal ROS [196]. In the medullar thick
ascending limb of the loop of Henle, both exogenous and
endogenous superoxides stimulate sodium absorption [197].
Also, in this nephron segment, NOX-induced generation of
superoxide enhances sodium absorption by reduction of the
bioavailability of nitric oxide (NO) to prevent NO-induced
reduction of NaCl absorption [198], which contributes to
salt-sensitive hypertension observed in Dahl salt-sensitive
rats [190].

In PRTs, in particular, increases in ROS inhibit the Na/K-
ATPase as well as the apical NHE3 and sodium/glucose
cotransporter, in order to promote RPT sodium excretion
under certain circumstances [137, 168, 184, 185]. While
elevated basal level of superoxide inhibits proximal tubule
NHE3 activity and fluid reabsorption in SHR rats in com-
parison to WKY rats [137], peroxynitrite and its signaling
participates in Ang II-induced regulation of renal Na/K-
ATPase activity in isolated rat renal RPTs [168]. In the
pathogenesis of diabetic nephropathy, a high level of glucose-
induced ROS generation induced by stimulation of mito-
chondrial metabolism and NOX activity in RPT primary
cultures leads to inhibition of the expression and activity
of the sodium/glucose cotransport system [185]. In male
Wistar rats, a high salt diet (3% NaCl for 2 weeks) promotes
sodium/water excretion and urinary 8-isoprostane excretion,
a marker of oxidative stress, which can be attenuated by
treatment with apocynin, an NOX inhibitor. The salt loading
leads to increased generation of ROS and a state of oxidative
stress in the cortex but not to such a degree in the medulla
[199].

RPT sodium and/or fluid absorption in the normal rat is
reduced by inhibition of NO synthesis, while NO promotes
RPT Na+ and/or fluid reabsorption [200]. In immortalized
and freshly isolated RPTs from the WKY and SHR rats,
the basal level of membrane NOX activity is greater in
SHRs [201]. Moreover, NOX-induced superoxide genera-
tion inhibits RPT fluid reabsorption in SHRs [137]. In
Sprague-Dawley rats treated with the oxidant L-buthionine
sulfoximine, Ang II overstimulates RPT Na/K-ATPase and
NOX and leads to increased sodium reabsorption, which
is prevented by administration of the superoxide scavenger
Tempol [202].

High salt diet, which is well documented for its stim-
ulation of systematic oxidative stress, regulates the activity
and distribution of the Na/K-ATPase and NHE3 in different
animal models [203–207]. PRT sodium reabsorption signif-
icantly affects water and sodium homeostasis by regulating
redistribution of ion transporters in response to high salt
intake [208]. Regulation of NHE3 activity and distribution as
well as PRT fluid reabsorption contribute to the development
and maintenance of hypertension in young and adult SHR
rats [127, 137, 209].

It has become clear that antioxidant agents such as
Tempol and enzymes such as heme oxygenase-1 (HO-1)
exhibit a beneficial and protective effect on BP in various
animal models of hypertension. As an example, inhibition
of HO activity reduces renal medullary blood flow [84,
210, 211], total renal blood flow (RBF) [212], glomerular

filtration rate (GFR), and renal production of nitric oxide
[213]. Inhibition of HO-1 increases mean arterial pressure
in Sprague-Dawley rats [214, 215] and SHR rats [216].
Induction of HO-1 reduces BP in SHR rats [217–220]. The
effect of HO-1 on BP is presumably through the carbon
monoxide (CO)/HO system and depression of cytochrome
p-450-derived 20-HETE. In the Dahl salt-dependent model
of systemic hypertension, induction of HO-1 occurred in the
vasculature and is accompanied by endothelial dysfunction
[221, 222]. In Dahl salt-sensitive rats, a high salt diet
increases HO-1 expression and CO generation in aorta and
coronary arteries [221, 223], and, in Dahl salt-sensitive rats
fed low salt diet, induction of HO-1 expression attenuates
oxidative stress and reduces proteinuria and renal injury
[224]. However, most studies examining the contribution
of HO-1 to BP regulation have focused on the vasculature,
that is, pressure-natriuresis and arterial BP, and so the role
of HO-1 in RPT-mediated sodium handling is still poorly
understood. Nevertheless, increased HO expression in RPTs
could result in an increased ability to buffer locally produced
oxidants, leading to their neutralization.

The beneficial effect of antioxidants is controversial and
not seen in most clinic trials with administration of antioxi-
dants (reviewed in [177, 225]). The Dietary Approaches to
Stop Hypertension (DASH) study and subsequent studies
have demonstrated that lower BP associated with reduced
dietary salt intake may be related to reductions in oxidative
stress [6, 226–228]. Interestingly, however, while a com-
bination antioxidant supplement (with an ascorbic acid,
synthetic vitamin E, and β-carotene) had no improvement
on BP after 5-year treatment [229], another combination
antioxidant supplement (zinc, ascorbic acid, α-tocopherol,
and β-carotene) did result in a significant reduction in
systolic BP [230]. Other studies have also shown that certain
antioxidants, such as glutathione and vitamin C, have a
blood-pressure-lowering effect [231, 232]. However, antiox-
idant supplementation may be ineffective or even dangerous
[233] due to the possible “over-antioxidant-buffering” effect
of excessive antioxidant supplementation. In this scenario,
excess antioxidants might become pro-oxidants (by pro-
viding H+) if they cannot promptly be reduced by the
following antioxidant in the biological antioxidant chain.
Thus, it appears that the balance of the ROS status, within
a physiological range, may be more important to maintain
beneficial ROS signaling.

8. Perspective

Renal sodium handling is a key determinant of blood pres-
sure. ROS status, among others, is an important regulator
of vasculature and sodium handling. However, the effect
of ROS and Na/K-ATPase, especially of their interaction,
on RPT sodium reabsorption has only been explored in a
limited fashion. Coordinated regulation of two major ion
transporters, the basolateral Na/K-ATPase and the apical
NHE3, has been implicated in the counterbalancing of high
salt intake (volume expansion) mediated blood pressure
increase. The Na/K-ATPase/c-Src signaling regulates this
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coordinated regulatory mechanism and impairment of this
signaling cascade contributes to experimental Dahl salt-
sensitive hypertension. Both the Na/K-ATPase (α and β
subunit) and its proximal signaling partner c-Src are redox
sensitive, suggesting a redox-sensitive Na/K-ATPase/c-Src
signaling complex. However, the mechanisms remain largely
to be elucidated since the available data is limited [184,
234]. Nevertheless, some pertinent questions remain to be
addressed. In the future, it will be important to explore
whether ROS signaling is a link between the Na/K-ATPase/c-
Src cascade and NHE3 regulation and how oxidative stress
stimulated by high salt and CTS regulates Na/K-ATPase/c-
Src signaling in renal sodium handling and fibrosis.

References

[1] D. A. Calhoun, D. Jones, S. Textor et al., “Resistant hyper-
tension: siagnosis, evaluation, and treatment a scientific
statement from the american heart association professional
education committee of the council for high blood pressure
research,” Hypertension, vol. 51, no. 6, pp. 1403–1419, 2008.

[2] F. J. He and G. A. MacGregor, “Effect of longer-term modest
salt reduction on blood pressure,” Cochrane Database of
Systematic Reviews, no. 3, Article ID CD004937, 2004.

[3] A. C. Guyton, “Blood pressure control—special role of the
kidneys and body fluids,” Science, vol. 252, no. 5014, pp.
1813–1816, 1991.

[4] J. A. Staessen, J. Wang, G. Bianchi, and W. H. Birkenhäger,
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