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Received 

 

 Semifluorinated polymer latexes were prepared by emulsion polymerization of  2.5-25% 

of a fluoroalkyl methacrylate, 25% chloromethylstyrene, 1% styrylmethyl(trimethyl)ammonium 

chloride, and the remainder 2-ethylhexyl methacrylate under surfactant-free conditions. The 

chloromethylstyrene units were converted to quaternary ammonium ions with trimethylamine. In 

aqueous dispersions at particle concentrations of less than 1 mg mL-1 the quaternary ammonium 

ion latexes promoted hydrolyses of p-nitrophenyl hexanoate (PNPH) in pH 9.4 borate buffer and 

of diethyl p-nitrophenyl phosphate (Paraoxon) in 0.1 M NaOH at 30 oC with half-lives of less 

than 10 minutes. Thin 0.7-2 µm films of the latexes on glass promoted fast hydrolysis of 

Paraoxon but not of PNPH under the same conditions. Even after annealing the quaternary 

ammonium ion polymer films at temperatures well above their glass transition temperatures, 

AFM images of the film surfaces had textures of particles. Contact angle measurements of the 

annealed films against water and against hexadecane showed that the surfaces were not highly 

fluorinated. 
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Introduction 

 

In aqueous-organic mixtures quaternary ammonium ions in the forms of phase transfer 

agents,1 surfactant micelles,2 soluble polyelectrolytes,3 colloidal particles,4-7 and Merrifield-like 

resins8-11 promote reactions between organic-soluble reactants and the nucleophilic or basic 

anions of water-soluble salts. In a general mechanism, the organic reactants and the reactive 

anions partition favorably from a large volume of water into a smaller volume of the quaternary 

ammonium ion polymer or association colloid in which the local reactant concentrations are 

much higher than in the overall mixture. Consequently the bimolecular reaction rates also are 

much higher than in water alone. The kinetics of the reactions fit a pseudophase ion exchange 

model that was derived for micellar catalysis2 and also applies to catalysis by quaternary 

ammonium ion polymers.3-7 

 In this paper we report the use of semi-fluorinated latex particles and films to promote 

hydrolyses of p-nitrophenyl hexanoate (PNPH) in pH 9.4 borate buffer and of diethyl p-

nitrophenyl phosphate (the insecticide Paraoxon) in 0.1 M NaOH. These compounds are 

structurally similar to, and have rates of hydrolysis similar to, organophosphate chemical warfare 

agents.12-15 

 Our interest in semi-fluorinated polymer particles continues from a previous investigation 

in which we examined these same reactions using other polymer particles dispersed both in water 

and in the fluorous solvent HFE-2200 (perfluorobutyl ethyl ether) to simulate decontamination of 

fluorous solutions of toxic organic chemicals (TOC).7 HFE solvents efficiently extract organic 

compounds out of the nooks and crannies of electronic equipment.16 In our work colloidal 

quaternary ammonium ion polymers, which dispersed into HFE-2200 due to a semifluorinated 
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block copolymer stabilizer,17 proved to be only moderately active for the hydrolyses of PNPH 

and Paraoxon in two phase HFE/aqueous mixtures. On the other hand polymer particles lacking 

the fluorous stabilizer, which dispersed into the aqueous phase, were much more active, 

comparable with quaternary ammonium ion surfactants such as hexadecyltrimethylammonium 

bromide, for the same reactions.7 

 Semifluorinated latex coatings have been investigated extensively because their films 

repel both water and organic compounds due to low surface tensions.18-30 In this work our 

objective was to create films that both are repellent and contain anion exchange catalytic sites for 

decomposition of any TOCs that manage to penetrate the surface of the film. Latex particles 

were designed to have a core-shell morphology with the semifluorinated monomer in the shell, 

so that upon annealing particle films in air the hydrophobic and oleophobic fluoroalkyl groups 

could migrate to the surface, and the hydrophilic quaternary ammonium ions could migrate 

beneath the surface. Here we report the syntheses of the latex particles, their catalytic activities 

for hydrolyses of PNPH and Paraoxon in the forms of both colloidal dispersions and films, and 

the characterization of the surfaces of the films by AFM and by dynamic contact angle 

measurements.  

 

Results 

 

Synthesis of Quaternary Ammonium Ion Latexes. The semi-fluorinated latexes were 

synthesized by surfactant-free shot-growth emulsion polymerization as shown in Scheme 1. By 

the shot-growth method the solvent monomer 2-ethylhexyl methacrylate (EHMA) and the 

functional monomer vinylbenzyl chloride (VBC) were polymerized to incomplete conversion 
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using the cationic monomer vinylbenzyl(trimethyl)ammonium chloride (VBTMACl) and the 

cationic initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride for charge stabilization of 

the colloidal particles. More EHMA, VBC, and VBTMACl, and one of the fluoroalkyl 

methacrylate monomers (1H,1H,2H,2H-perfluorooctyl methacrylate (PFOMA), 1H,1H,2H,2H-

perfluorohexyl methacrylate (PFHMA), or 2,2,2-trifluoroethyl methacrylate (TFEMA)) were 

added in the second stage to form a particle outer shell that was rich in fluoroalkyl groups. Table 

1 reports the products of polymerizations containing 2.5, 5, 10, and 25 wt % of the 

fluoromonomers and 25 wt% of VBC. Most of the polymerizations gave high yields. The few 

yields of <50% may have been due to inadequate stirring of the polymerizing mixtures. Dynamic 

light scattering measurements of the colloidal dispersions showed narrow particle size 

distributions and average diameters of 88-162 nm. Attempts at similar polymerizations using 

10% VBC and 10% of the fluoromonomers gave low yields and colloidally unstable dispersions.  
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  Scheme 1. Synthesis of cationic polymer colloids. 
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Table 1. Copolymer Latex Particles  

 

copoly- 

mer 

F  

monomer 

wt %a yieldb 

(%) 

diameterc 

(nm) 

1F TFEMA 2.5 89   94 

2F PFOMA 2.5 48   94 

3F TFEMA 5.0 84   92 

4F PFOMA 5.0 90   88 

5F TFEMA 10.0 38   98 

6F PFOMA 10.0 32 120 

10F PFHMA 10.0 34 142 

11F PFOMA 25.0 97 105 

12F PFHMA 25.0 97 162 

13F TFEMA 25.0 96 132 

 

aWeight percent fluoromonomer. The other monomers were 25% VBC, 

1% VBTMACl, and the remainder EHMA. bCalculated from the weight 

of copolymer obtained and the weight of monomer mixture used for 

polymerization. cHydrodynamic diameter from dynamic light scattering. 

 

The copolymers were treated with aqueous trimethylamine to convert the vinylbenzyl 

chloride units to the quaternary ammonium units needed for phase transfer catalytsts, as shown 

in the last step of Scheme 1. The change of chemical structure of the polymers was confirmed by 

the disappearance of the peak at 1262 cm-1 due to CH2Cl in the FTIR spectrum of sample 13F. 

The yields of quaternary ammonium ions, which are reported in Table 2, ranged from 40% to 

82%. The higher yields were obtained by repeated additions of trimethylamine to the reaction 

mixtures. The yields were measured by chloride-selective electrode titration of the chloride 
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counter ions of the quaternary ammonium ions in the polymers. The diameters of the quaternized 

particles were substantially larger than those of the starting copolymers, partly due to a gain of 

mass from the trimethylamine, and mainly due to swelling of the ionic polymers by water. The 

ratios of the volumes of the quaternized particles to the volumes of the copolymers in aqueous 

dispersions are listed in Table 2. 

 

Table 2. Quaternized Latex Particlesa 

sample yield 

(%) 

diameter 

(nm)b 

volume    

ratioc 

N+Cl- 

(mmol/g) 

Tg 

(oC)d 

1QF 43 140   3.3 0.67 e 

2QF 40 113   1.7 0.58 e 

3QF 42 129   2.8 0.66 e 

4QF 59 140   4.2 0.91 e 

5QF 65 173   5.5 1.00 106 

6QF 82 279 12.6 1.25   83 

10QF 69 279   3.8 1.06 e 

11QF 53 207   7.6 0.63 102 

12QF 56 280   5.2 0.67   94 

13QF 56 198   3.4 0.67   91 

 

aDerived from the latexes listed in Table 1. bHydrodynamic diameter from dynamic light 

scattering, c(Volume of quaternized polymer particle)/(volume of precursor polymer 
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particle) calculated from swollen particle diameters.  dGlass transition teperature of dry 

particles. eNot measured.         

 

In the past we included a cross-linking monomer in the copolymers to insure that none of 

the polymer produced after quaternization of the VBC units was water-soluble polyelectrolyte.5,6 

In this work with semi-fluorinated latexes we used no cross-linking monomer because a cross-

linked latex might not cure to form smooth coatings. 

Preparation of Films. (a) Drop Cast Method. Latex films were prepared on glass cover 

slips by placing a few drops of the aqueous dispersion onto the glass, spreading the drops with a 

plastic rod, and allowing the water to evaporate. The thicknesses of the films were 0.9-4.6 µm as 

calculated from the surface area of the glass, the volume of aqueous dispersion used, and the 

solid content of the dispersion. Because films that were dried only at room temperature peeled 

off when the glass was submerged in water, the films were made more robust by annealing at 75-

90oC.  The weights, thicknesses, and annealing temperatures of the films are reported in Table 1S 

(Supporting Information). (b) Spin Coating Method. To get smoother films, several of the 

dispersions of quaternized latexes were spin coated onto glass cover slips, dried, and annealed. 

The thicknesses of the films were 0.7-1.4 µm as calculated from the increase in weight and the 

surface area of the glass. The samples are reported in Table 1S (Supporting Information). 

Kinetics of Hydrolysis of PNPH and Paraoxon in Colloidal Particles. The cationic 

polymer colloids 1QF - 13QF, which differ by the type and composition of fluoromonomer in the 

shell (Table 2), were tested as catalysts for the basic hydrolyses of PNPH and Paraoxon. 

Balanced equations for the reactions are shown in Scheme 2.  
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Scheme 2. Hydrolyses of PNPH and Paraoxon. 

 

 

Hydrolyses of PNPH were carried out using particle dispersions in stirred pH 9.4 borate 

buffer solution in a spectrophotometer cuvette at 30 0C. Graphs of absorbance at 400 nm of the 

product p-nitrophenoxide ion (PNPO-) vs. time using many of the particle samples as catalysts 

are shown in Figure 1. The reaction was very slow in the absence of particles. At weight 

concentrations of particles in the reaction mixtures of less than 1 mg mL-1, the particles scattered 

some of the incident light but did not prevent measurement of the intensity of transmitted light. 

The concentrations of quaternary ammonium ions in the mixtures ([N+] = 1.7-3.1 x 10-4 M) 

exceeded the initial concentrations of PNPH (8.3 x 10-5 M). The data were fit to a pseudo-first-

order rate equation, and rate constants were calculated from data acquired over the first 60% 

conversion. The half-lives of PNPH hydrolysis were 2.5-7 minutes using all of the colloidal 

particle catalysts listed in Table 2. Table 2S (Supporting Information) reports the conditions, 
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first-order rate constants, half-lives, and second-order rate constants (rate constants per 

concentration of quaternary ammonium ion exchange sites, k2 = k1/[N+]) of the reactions.  

 

 

Figure 1. Change of absorbance at 400 nm due to PNPO- from hydrolysis of PNPH in pH 9.4 

borate buffer solution at 30 oC using particle catalysts a = 1QF; b = 2QF; c = 3QF; d = 4QF; e = 

5QF; f= 6QF; g=10QF; h = control experiment without particles. 

 

Although all of the reactions followed first-order kinetics, the graphs in Figure 1 show 

interesting differences. Both the initial absorbance values and the final absorbance values of the 

experiments vary widely. The varied and non-zero initial absorbance values might be due to 

differences in the amounts of light scattered by the different particles or to different amounts of 

PNPO- present at the start of the experiment. Spectrophotometer baseline was set to 0.00 with a 

cuvette of water before each experiment. Since the presence of even as much as 10% of PNPO- 

in the initial PNPH would account for only 0.15 absorbance units (see next paragraph), most of 

the differences of initial absorbance must be due to light scattering by the particles. In 

conclusion, the large initial observed absorbances in Figure 1 are due mainly to turbidity.  
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If all of the PNPO- was in the water after complete hydrolysis, and no PNPO- was present 

at time = 0, the observed absorbance would increase by 1.50 units over the course of the reaction. 

(Abs = εcl = (1.8 x 104 L mol-1 cm-1)(8.3 x 10-5 mol L-1)(1 cm) = 1.50). In no experiment in 

Figure 1 did the absorbance increase by as much as 1.5 units.  Yet all experiments followed first-

order kinetics. We attribute the low observed final absorbance values to equilibrium binding of a 

fraction of the PNPO- to the quaternary ammonium ions in the particles. PNPO- in the particles 

would not contribute to absorbance because light striking the particles is scattered whether or not 

the particles contain PNPO-. Constant observed absorbance over the last 40 minutes in most of 

the experiments in Figure 1 indicates that the amount of light scattered over the course of each 

experiment was constant. In conclusion, the increases of absorbance of much less than the 

calculated value over the course of hydrolysis of PNPH are due to binding of PNPO- to the ion 

exchange sites in the particles and to light scattering.  

Aqueous dispersions of the ion exchange latexes were used to catalyze the hydrolysis of 

Paraoxon in 0.10 M sodium hydroxide solution at 30 oC by the same experimental method used 

for PNPH hydrolysis. The data in Figure 2 show at least 80% hydrolysis within 10 minutes using 

three different quaternized latexes. The kinetic results for all ten of the quaternized polymer 

dispersions are shown Table 3S. The half-lives of Paraoxon hydrolysis using all of the particles 

listed in Table 2 were in the range 2.5-6.0 min. 
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Figure 2. Change of absorbance at 400 nm due to PNPO- from hydrolysis of Paraoxon in 0.10 M 

NaOH at 30 oC using particle catalysts: a = 11QF; b = 12QF; c = 13QF. 

 

 The rates of hydrolysis of both PNPH and Paraoxon do not depend in any systematic way 

on either the fluorine content or the N+Cl- content of the particles. The most catalytically active 

particles were 3QF, which contained 5% of the least highly fluorinated monomer triflurorethyl 

methacrylate (TFEMA). But another sample, 13QF, which contained 25% of TFEMA, was less 

active than 3QF and also less active that the samples 11QF and 12QF, which contained 25% of 

fluorinated monomers PFHMA and PFOMA. Latexes of higher N+ content (>1.00 mmol/g) were 

no more active than those of lower N+ content (0.6-0.7 mmol/g). Particles of higher N+ content 

generally were more swollen in water, but swelling did not correlate with catalytic activity. What 

is most remarkable about the ten latexes in Table 2, which differ in type and amount of fluoro 

monomer, amount of N+ groups, particle size, and swelling ratio, is that their phase transfer 

catalytic activities differ so little. 
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Hydrolysis of Paraoxon in Latex Films. The films on glass cover slips reported in 

Table 1S were inserted into the solution of 0.1 M NaOH against the side wall of a cuvette out of 

the light path and with the film side of the cover slip toward the center of the cuvette. Graphs of 

absorbance at 400 nm vs. time after adding Paraoxon to the cuvette are shown in Figure 3. The 

kinetic data are in Table 4S.  

                 

     

 

Figure 3. Change of absorbance at 400 nm due to PNPO- from hydrolysis of Paraoxon in 0.10 M 

NaOH  using spin coated films as catalysts (a = 5QF, b = 6QF, c = 10QF). The films were 0.71-

0.76 µm thick and were annealed at 120 oC. 

 

There are several interesting features to the kinetics of hydrolysis of Paraoxon using the 

latex films as catalysts. First, with the drop cast films the half-lives of hydrolysis (Table 4S) are 

about twice as long (5.5-10 minutes) as the half-lives of hydrolysis by the same latex particles in 

dispersions (2.5-6 minutes, Table 3S) even though the amounts of N+ sites available in the film 

experiments were slightly larger. The difference is likely due to slower transport of Paraoxon to 
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the N+ sites in the 0.75-1.68 µm thick drop cast films than to the sites in the 113-280 nm-

diameter dispersed particles. Since the reaction mixtures were magnetically stirred, the slow 

transport is likely due to slow diffusion of Paraoxon through the films and not to slow transport 

through the liquid. Second, the observed rates of Paraoxon hydrolysis were slower using the 

thinner (0.71-1.4 µm) spin-coated films (half-lives of 9-14 minutes) than using the thicker drop 

cast films (half-lives of 5.5-10 minutes). But when compared as second-order rate constants (k2 = 

k1/[N+]), the spin-coated films actually are more active catalysts by a factor of about 1.3 per ion 

exchange site. (The median second-order rate constant in Table 4S using six different spin-

coated films was 3.1 x 102 L mol-1 min-1 vs. 2.3 x 102 L mol-1 min-1 using drop-cast films of the 

same latexes). Faster hydrolysis using the thinner films further supports the conclusion that the 

rates of Paraoxon hydrolysis using the films are slightly slower than using the particles because 

of time required for diffusion of Paraoxon through the films to the ion exchange sites. Third, the 

drop-cast films and the spin-coated films have different surface textures and were annealed at 

different temperatures, but those factors do not appear to cause any major differences in the rates 

of Paraoxon hydrolysis. 

 Hydrolyses of PNPH in the same borate buffer solution used for particle-catalyzed 

hydrolyses were carried out with the same types of films used for hydrolysis of Paraoxon, but the 

rates were much slower. 

Surfaces of the Films. The purpose of using a fluoroalkyl methacrylate component in the 

latexes is to make the film surface both hydrophobic and lipophobic to protect the underlying 

substrate from toxic organic chemicals (TOCs). The purpose of the quaternary ammonium sites 

is decomposition of the TOC. If the TOC does penetrate the surface, it would then be 

decontaminated by hydroxide ions or another reactive counterion of the polymer. The kinetic 
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experiments demonstrate success in making films that act as phase transfer catalysts beneath the 

surface. Next we report the characterization of the film surfaces by contact angle measurements 

and atomic force microscopy (AFM).  

 Atomic Force Microscopy. Drop-cast films from copolymer dispersions 5F, 6F and 10F 

(before conversion of VBC units to quaternary ammonium ions, Table 1) by AFM before 

annealing showed layers of particles about the same size as those measured in dispersions by 

dynamic light scattering. Since the Tg of the copolymer 6F is 38 oC, and the other copolymers 

probably have similar Tg values, the particles were not expected to form smooth films at room 

temperature. Annealing of the drop-cast film of copolymer 6F at 60 oC for 18 hours made its 

bumpy surface appear smoother in an AFM image. 

The surfaces of the spin-coated films of quaternary ammonium ion particles annealed at 

120 oC and 165 oC still showed the presence of particles and rough surfaces. Figure 4 shows 

examples of the AFM images.  The latex particles did not coalesce to a continuous film even at 

165 oC, which was more than 60 degrees above the Tg.  
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Figure 4. 5x5μm AFM images of (top) 5QF-S120 and (bottom) 5QF-S165. 
 

 

 Contact Angles. The contact angle of a drop of liquid on a solid surface depends on the 

liquid-solid, air-liquid, and air-solid interfacial free energies.30 The lower the surface energy of 

the solid, the higher is the contact angle of water on the solid. Dynamic contact angle 

measurements indicate qualitatively the homogeneity of the chemical coating and the topology of 

the films.31 Dynamic contact angles of water on drop cast films of the both the copolymers and 

the quaternized polymers, even after annealing at 90 oC, were difficult to measure because of 

pinning of the contact line of the water drop at the surface of the film. (Pinning means that the 
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contact line did not move when the volume of the drop was increased or decreased). We attribute 

the pinning of water drops to the roughness of the surface.  

 To obtain smoother films, the quaternized polymers were spin-coated and annealed at 

120 oC. Even so dynamic contact angle measurement were difficult to obtain due to pinning of 

the contact line; the advancing contact angles of water were in the range of 94o-105o, and the 

receding contact angles of water were in the range of 64o-82o. The data are reported in Table 3. 

The films were annealed at a still higher temperature, 165 oC, in an attempt to bring more of the 

fluoroalkyl groups to the surface and to increase the contact angle against water, but no increase 

of advancing contact angle was observed.  

Films of samples 5QF and 6QF, which contained 10% of the fluoromonomer, annealed at 

75-90 oC and at 120 oC had contact angles of less than 15o against hexadecane, which spread 

rapidly over the surface and over time soaked into the polymer. Films of sample 12QF, which 

contained 25% of the fluoromonomer, had contact angles against hexadecane of 25.5o after 

annealing at 120 oC and 23o after annealing at 165 oC respectively. Samples 11QF, 12QF, and 

13QF, which contained 25% of the three different fluoromonomers and were annealed at 165 oC 

had contact angles against hexadecane that increased with the fluorine content of the 

fluoromonomer. The data, which are reported in Table 3, correspond to increasingly oleophobic 

surfaces with increasing fluorine content of the polymers. 
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Table 3. Contact Angles on the Quaternized Polymer Films 

polymer 

film 

thicknessa 

(µm) 

θA
b 

(o) 

θR
c
 

(o) 

θHex
d

 

(o) 

  5QF-S120 0.71   94 71   4 

  6QF-S120 0.76 102 82   5 

10QF-S120 0.76   96 e   8 

11QF-S120 1.41 102 65 35 

12QF-S120 0.95 101 72 23 

13QF-S120 1.21 105 73 14 
                                           

aMeasured after annealing at 120 oC. bAdvancing contact angle (±2o) against water. cReceding 

contact angle (±2o) against water. dStatic contact angle (±2o) against hexadecane of films 

annealed at 165 oC. ePinning prevented measurement. 

 

 

 
Discussion 

 

 The particles and films of this investigation were designed by two stage emulsion 

polymerization to have most of the quaternary ammonium sites beneath the surface. A typical 

200-nm-diameter particle had about 20% of quaternary ammonium ion repeat units, of which 

only a small fraction could possibly reside on the surface. More than 90% of the quaternary 

ammonium ion sites in the particles arise from reaction of trimethylamine with the hydrophobic 

VBC units, and less than 10% come from the ionic monomer VBTMACl. The particles were 

synthesized using no low molar mass surfactant, because cationic surfactant micelles have 

catalytic activity similar to that of the cationic particles, and consequently could blur the 
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distinction between micellar and latex catalysis. The intrinsic catalytic activity of the ion 

exchange sites in the water-swollen polymers is not high. In a previous kinetic analysis, using 

particles that were cross-linked with 1% divinylbenzene and contained no fluorous monomer but 

were otherwise the same, the rate of PNPH hydrolysis in the 0.117 mg mL-1 of latex particles 

was 14.4 times the rate of hydrolysis in the borate buffer because of an intraparticle PNPH 

concentration 4690 times that in water, an intraparticle hydroxide ion concentration 8.5 times 

higher, and an intraparticle second-order rate contant 1.62 times higher.6 The high PNPH 

concentration in the small volume fraction of particles was the biggest contributor to the 

enhanced rate of hydrolysis.  

 The shot-growth emulsion polymerization method with the fluoroalkyl methacrylate 

added only in the second stage was designed to localize the fluorous monomer units in the shell 

of the core-shell latex near the surface and to minimize the amount of fluorous monomer needed 

to attain films with surfaces that were both hydrophobic and oleophobic. This synthetic method 

for EHMA-VBC copolymer particles with a cross-linking monomer and without a fluorous 

monomer yields monodisperse polymer spheres of high colloidal stability.4,6 Of course, during 

emulsion polymerization the particle surface consists of mainly ionic sites, which stabilize the 

colloidal dispersion in water. Thus from the amounts of fluorous monomer and VBC used in the 

two stages of the shot-growth polymerization, our model for the structure of a quaternary 

ammonium ion latex particle is (a) a surface of ionic VBTMACl units, (b) an outer shell 

comprised of 25 wt % of the particle that is rich in the fluorous monomer but also contains 

EHMA and quaternary ammonium ion units, and (c) a core that is almost all EHMA and 

quaternary ammonium ion units. We were concerned that the larger (up to 25 wt %) amounts of 

fluoroalkyl methacrylates might lead to colloidal instability or to a barrier to diffusion of organic 
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reactants and ions through the outer shell of the particles that would reduce the phase transfer 

catalytic activity of the internal quaternary ammonium ions. Note that the VBC and VBTMACl 

contents of the latexes were constant, and the sum of the EHMA and fluoroalkyl methacrylate 

contents was constant. Only the relative amounts of EHMA and fluoroalkyl methacrylate were 

varied in the syntheses of particles.  

The kinetics of PNPH hydrolysis and Paraoxon hydrolysis depend both on intrinsic 

activity at the N+ sites and on transport of both the p-nitrophenyl ester and of hydroxide ion 

through the shell of the particle. The kinetic results indicate that diffusion through a fluorous 

layer does not limit catalytic activity, for there was no correlation between the rates of PNPH and 

Paraoxon hydrolysis and the fluorine content of the polymer, either in the form of colloidal 

particles or in the form of a thin film. 

 To form a coherent thin film from a latex dispersion, the particles must deform and fill 

the interstitial spaces as the water evaporates.32 This requires that the temperature at which the 

film is cured be substantially higher than the Tg of the polymer. Although homopolymers of 

EHMA and of the fluoroalkyl methacrylates have low Tg, the large number of ionic repeat units 

in the quaternary ammonium ion latex particles raises Tg to around 100 oC (Table 2). 

Consequently the films as prepared at room temperature had the surface textures of particles as 

shown by AFM images. Even after annealing at 120 oC and 165 oC, the surfaces retain their 

particle history, as seen in Figure 4. Our intent was to create films with a highly fluorinated 

surface in order to repel both water and organic liquids. The lowest surface energy morphology 

of a dry polymer film would have a fluoroalkyl surface, and all ions would be located beneath 

the surface to avoid contact with air. The contact angles of the films against water and against 

hexadecane show the annealed surfaces of all films to be hydrophobic, but only the films 



 21 

prepared with 25% of a fluoroalkyl mononmer behaved at all oleophobic. Advancing contact 

angles against water as high as 115-120o have been reported for perfluoroalkyl acrylate 

copolymers, in some cases even with only minor amounts of the fluorous monomer.33,34 

Perfluoroalkyl surfactants and polymers have the lowest critical surface tensions of any known 

smooth surfaces.35,36 (Roughness is required for an ultrahydrophobic surface.)37,38 The advancing 

contact angles of our spin-coated films were 94-105o against water, which is consistent with a 

hydrocarbon or a mixed hydrocarbon-fluorocarbon surface, not a purely fluorocarbon surface. 

Likewise contact angles of <10o against hexadecane indicate a hydrocarbon-like surface of all 

films prepared with 10% of a fluoromonomer. The larger contact angles against hexadecane of 

films with 25% of a fluoromonomer indicate that only those films had sizeable fluoroalkyl 

content on the surface. The resistance to rearrangement of the surface morphology by annealing 

probably is due not only to the high ion content of the polymers but also to the random-

copolymer structures. Block or graft copolymers of fluoroalkyl methacrylates would likely 

develop fluorous surfaces at lower annealing temperatures. 

 In conclusion, the semifluorinated quaternary ammonium ion latexes have the same high 

phase transfer catalytic activity as the non-fluorinated analogs for basic hydrolysis of PNPH and 

Paraoxon in particle dispersions, and the films are almost as catalytically active as the particles 

for hydrolysis of Paraoxon. A small dependence of hydrolysis rates on film thickness indicates 

that diffusion through the >0.7 µm thick films slightly limits the rates. The AFM images show 

that the particle texture of the film surface is retained even after annealing at 165 oC. Contact 

angles of the annealed films against water and hexadecane show that the perfluoroalkyl repeat 

units have very limited mobility, which is attributed to the random copolymer structure and to 

the strong electrostatic attractions of the ionic repeat units to one another. To attain more highly 
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fluorinated surfaces of copolymer latex films and still use only minor fractions of the fluorous 

monomers, lesser ion content, particularly in the shell of the core-shell emulsion polymer 

particles, will likely be necessary. 

 

Experimental Section 

 

Materials. Vinylbenzyl chloride (VBC, 96%, m/p isomeric mixture, Scientific Polymer 

Products, Inc.), 2-ethylhexyl methacrylate (EHMA, 98%, Aldrich), 1H,1H,2H,2H-perfluorooctyl 

methacrylate (PFOMA, Top Fluorochem), 1H,1H,2H,2H-perfluorohexyl methacrylate (PFHMA, 

Top Fluorochem, Shanghai, China), trifluoroethyl methacrylate (TFEMA, Aldrich) were purified 

before use by passing through basic aluminium oxide. Vinylbenzyl(trimethylammonium) 

chloride (VBTMACl, Aldrich), 2,2’-azobis(2-methylpropionamidine) dihydrochloride (Aldrich), 

trimethylamine 25% (w/w) solution in water (Aldrich), diethyl p-nitrophenyl phosphate 

(Paraoxon, Aldrich),  p-nitrophenyl hexanoate (TCI Chemicals), aluminum oxide (Al2O3, 

activated, basic, ~ 150 mesh, 58 Å, Aldrich) and acetonitrile (Aldrich) were used as received. 

Triply deionized water was used in all experiments.  

Instrumentation. DSC analyses were performed with a TA Instruments DSC Q2000 

over a temperature range of -100 oC to 150 oC with the ramp of 5 oC per minute.  Tg data are 

from the second heating cycle. Morphologies of the 120-165 oC annealed latex particles were 

studied by atomic force microscopy using an Asylum Research Molecular Force Probe 3D. Some 

AFM images of copolymers and films annealed at 75-90 oC were obtained with a Veeco 

Multimode III instrument. The samples for AFM images were prepared by spreading 45 µL of 

the dispersion on a 1 cm2 glass cover slip that was cleaned with deionized water and acetone. 
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The film was annealed at the indicated temperature for 18 h. Particle sizes and size distributions 

in aqueous dispersions at 25 oC were measured by dynamic light scattering using a Malvern 

HPPS 3.1 instrument equipped with a 3.0 mW, 633 nm He-Ne laser. One drop of aqueous 

dispersion of copolymer was diluted with 3 mL of water for DLS measurement.  Dynamic 

contact angles were measured using a long-range microscope computer analysis package from 

First Ten Angstroms (FTA 100Series). The expansion and retraction of sessile drops of water 

from a negligible volume to a maximum volume of 15 µL during the dynamic contact angle 

measurements were performed using a Kent Scientific Genie Plus syringe pump. The advancing 

contact angle of the films annealed at 120oC represents an average of all advancing angles 

between 3-10 μL, with the exception of sample 6QF-S120, where 9.2 μL was the maximum 

volume obtained in the experiment. Likewise for the average of the receding contact angle, 

volumes between 2-6 μL were used with the exceptions being samples 11QF-S120 and 13QF-

S120, where only 2-4 μL were available for measurement. 

Synthesis of Aqueous Polymer Colloid 1F. A 50 mL three-necked round bottom flask 

fitted with an addition funnel, a mechanical stirrer with a Teflon blade, and a reflux condenser 

was purged with nitrogen for 10 min. Deionized water (20 mL) was charged to the flask, and the 

head space was flushed with nitrogen for 30 min at 60 oC under continuous stirring. Solid 

VBTMACl  (10. mg) was added, and the solution was stirred for 5 min. Nitrogen-purged EHMA 

(0.740 g) and VBC (0.250 g) were added and stirred for 10 min. Initiator (10. mg) dissolved in 

1.0 mL of water was added, and the mixture was heated to 60 oC. The mixture turned cloudy due 

to nucleation of the particles within 35-40 min. After 1.0 h a mixture of EHMA (0.215 g), VBC 

(0.073 g), VBTMACl (9.0 mg), and TFEMA (33 mg) followed by initiator (3.0 mg) were added. 

The reaction mixture was stirred for 4 h at 60 oC, cooled, and filtered through a cotton plug to 
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remove traces of coagulum to give stable dispersion 1F. The same procedure was repeated using 

different amounts of PFHMA, PFOMA, and TFEMA and of VBC to give the stable polymer 

colloids in Table 1.  

Quaternization of Copolymer 1F. A mixture of 10 mL of 1F (0.550 g of solid, 0.90 

mmol of VBC groups) diluted with 7 mL of deionized water and 0.160 g of 25 wt% aqueous 

trimethylamine (2.7 mmol) was transferred to a 50 mL round bottom flask. The reaction mixture 

was stirred magnetically at 60 oC. More trimethylamine (0.160 g) was added two times per day. 

After 48 h the excess trimethylamine was removed by bubbling nitrogen through the latex for 2 h 

to give stable cationic dispersion of BK-1QF. The same procedure was applied using the other 

copolymers in Table 1 to give the cationic polymer colloids in Table 2. Quaternary ammonium 

chloride contents of the latexes were measured by potentiometric titration with an Orion 9617 

chloride-selective electrode.7 

Solid Content of Latexes. The solid content of all colloidal dispersions was measured by 

weighing 1.0 mL of the latex accurately and drying to constant weight at 110 oC. Determinations 

performed in triplicate were reproducible within 3% of the mean. 

Preparation of Films. (a) Drop cast films. To a rectangular glass cover slip having an 

area of 3.2 cm2, 25 µL of 1QF (0.85 mg of particles, [N+] = 2.4 x 10-4 M in the whole mixture) 

dispersion was applied at room temperature. The polymer was spread using a syringe plunger 

and then dried in air. The film was annealed at 75 oC for 18 h. The thickness of the final film was 

calculated from the weight of particles, the surface area, and an assumed polymer density of 1.0 

g cm-3. Data for amounts of particles and thicknesses of films are in Table 1S. (b) Spin-coated 

films. The glass cover slips were treated with a mixture of potassium hydroxide and isopropyl 

alcohol for 1.0 h and were washed with water and dried. Polymer dispersions (90 µL) were 
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applied and spun at 1200 rpm. The films were dried in air, and the spin-coating process was 

repeated several times. The film thickness was calculated from the increase in weight and the 

surface area of the glass. Amounts of particles and thicknesses of films are reported in Table 1S.  

Kinetic Measurements. Stock solutions of 2.5 mM p-nitrophenyl hexanoate and 2.5 mM  

Paraoxon in acetonitrile were prepared on the day of use. The 0.10 M NaOH solution was 

prepared in nitrogen-purged water and stored in an air-tight container. Borate buffer solution (pH 

9.40, 0.020 M) was prepared from aqueous boric acid solution by titration with sodium 

hydroxide.  

Hydrolysis of PNPH. (a) Colloidal Particles. Colloidal particles as a dispersion of 1QF 

(0.60 mg in 25 µL) and 2.2 mL of helium-purged borate buffer solution were added to a 

polystyrene cuvette. The solution was equilibrated at 30 ±1 oC for 20 min with magnetic stirring 

in the thermostated cell compartment of a Varian Cary 5000 spectrophotometer. Then 74 µL of 

the PNPH stock solution in acetonitrile was added by syringe to make the reaction mixture 

concentrations [PNPH] = 8.3 x 10-5 M and [N+] = 1.7 x 10-4 M. The absorbance of the solution at 

400 nm was recorded every 0.9 s with continued stirring. Hydrolyses using the other colloidal 

particles listed in Table 2 were carried out by the same procedure. The amounts and 

concentrations of quaternary ammonium ion exchange catalysts are shown in Table 2S.  

Hydrolysis of Paraoxon. The procedures were identical to those used for hydrolysis of 

PNPH except for 0.10 M NaOH in place of the borate buffer.  The data for particle catalysis are 

in Table 3S, and data for catalysis by films are in Table 4S.  

Kinetics calculations. First-order observed rate constants kobs were calculated using the 

equation 

             kobst =  ln[(A∞-Ao)/(A∞-At)]  
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where t = time, Ao = measured absorbance at t = 0, A∞ = measured absorbance after at least 98% 

conversion, At = measured absorbance at time t. The slope kobs was calculated by the linear least 

squares method from the data over the first 60% conversion.  
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