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Review article
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a b s t r a c t

In this review we examine the influence of the line tension s on droplets and particles at
surfaces. The line tension influences the nucleation behavior and contact angle of liquid
droplets at both liquid and solid surfaces and alters the attachment energetics of solid par-
ticles to liquid surfaces. Many factors, occurring over a wide range of length scales, con-
tribute to the line tension. On atomic scales, atomic rearrangements and reorientations
of submolecular components give rise to an atomic line tension contribution satom
(�1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface com-
position compared with the surface upon which it resides. At nanometer length scales, an
integration over the van der Waals interfacial potential gives rise to a mesoscale contribu-
tion |svdW| � 1–100 pN while, at millimeter length scales, the gravitational potential pro-
vides a gravitational contribution sgrav � +1–10 lN. sgrav is always positive, whereas, svdW
can have either sign. Near wetting, for very small contact angle droplets, a negative line
tension may give rise to a contact line instability. We examine these and other issues in this
review.

� 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Two bulk phases, i and j, intersect at a surface. This surface possesses an associated surface tension, or, energy per unit area
rij. Similarly, three bulk phases meet at a line, the three-phase contact line. This contact line possesses an associated line ten-
sion, or, energy per unit length s. In this review we summarize our views on the line tension associated with a three-phase
contact line. Thus, the ideas in this review are directly applicable to liquid droplets at a solid (Fig. 1a) or liquid (Fig. 1b) surface,
particles at a liquid surface (Fig. 1c), as well as, thin films or foams in contact with a bulk liquid phase (Fig. 1d). The term ‘‘line
tension” is also used to describe the two-dimensional surface discontinuity for an (insoluble) surface monolayer at a liquid
surface [1,2] (Fig. 1e), however, this review is restricted solely to the line tension at three-phase contact lines (Fig. 1a–d).

The line tension plays an important role in governing the statics, dynamics, and stability of numerous soft matter systems.
For example, the line tension determines droplet contact angles around fibers [3], at liquid [4], solid [5], and heterogeneous
solid [6,7] surfaces, as well as, strongly influencing droplet behavior in the vicinity of wetting transitions [8–12]. When con-
sidering surface nucleation [13–17] and vaporization [18] phenomena, line tension contributions should be included. Surface
dynamics, such as, droplet spreading [19,20] and droplet fragmentation [21,22] are both influenced by line tension effects.
The stability of films [23], foams [24,25], liquid filaments [26,27], spherical droplets [28,29], and nanobubbles [30] are all
governed by line tension effects. Line tension contributions are important in determining the depletion interaction between
nanoparticles adsorbed at liquid surfaces [31], as well as, nanoparticle adsorption to [32] and deattachment from [33,34]
these surfaces. Hence, the line tension plays a role in mineral separation via the flotation process [35].

Despite the importance that the line tension plays inmany surface related phenomena, line tension studies have often pro-
ven controversial. This controversy stemsmainly fromdiscrepancies in the line tensionmagnitudebetweenmeanfield theories
(|stheory| � 10�12–10�10 N), computer simulations (|sMD| � 10�12–10�11 N), and experimental measurements
(|sexpt| � 10�12–10�6 N) [36,37]. The experimental range for the line tension magnitude is very broad where, although a num-
ber of experiments agree with theory and computer simulations, there are many other experiments (usually for large
millimeter-sized liquid droplets at surfaces [38]) which differ by many orders of magnitude from mean field theoretical pre-
dictions. An added complication, originally pointed out by Gibbs [39], is that the line tensionmay be of either sign and, in fact,
both positive and negative line tensions have been determined via theory, computer simulations, and experiment. Thus, the
line tensionhas sometimesbeen characterized as being ill-defined, both inmagnitude and in sign,where the reliability ofmany
experimentalmeasurements have been called into question. This has led to the rather unfortunate situationwhere the concept
of the line tension is sometimes completely ignored in situationswhere it plays an important role. The origin of thewide range
in experimental line tensionmagnitudes |sexpt| is addressed in a number of sections in this review (Sections 2.3,3.1.1,4, and 5).

There are other less contentious controversies in this field, some of which have now been resolved, while others are still
generating significant discussion. In the partial wetting region a droplet on a solid surface will possess a finite, non-zero con-
tact angle (h > 0�) where the three-phase solid-liquid-vapor contact line (Fig. 1a) possesses an associated line tension s. As a
wetting transition is approached (eg. by increasing the temperature) the contact angle h decreases and becomes equal to zero
at and above the wetting transition. The solid surface is now covered by a thick wetting film. Thus, the three-phase contact
line disappears at a wetting transition. This disappearance of the three-phase contact line gives rise to many questions. What
is the functional behavior of the line tension as the wetting transition is approached? Is the line tension zero, finite, or
infinite at the wetting transition? If the line tension is finite at the wetting transition, what is the sign of the line tension?
Questions such as these generated significant theoretical discussion where differing groups arrived at differing answers.
Much of this debate now appears to have been resolved [8]. The answers depend upon the order of the wetting transition
(first or second order), as well as, the range of the surface interactions. These issues, including the origin of the sign of
the line tension, will be discussed briefly in Section 2.3.
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An additional controversy is still ongoing. A number of years ago Clarke [40,41], as well as, Steigmann and Li [28,42]
claimed that the three-phase contact line of a liquid droplet would be unstable if this contact line possesses a negative line
tension. A number of groups examined this issue theoretically and found, on the contrary, that the three-phase contact line
remains stable even for droplets possessing a negative line tension [43,44]. This issue of the contact line stability for droplets
possessing a negative line tension has been re-examined recently. The latest findings indicate that such droplets possess
regions of stability and instability to contact line fluctuations [26,27,29]. These issues are discussed in more detail in Sections
3.2.2 and 3.2.3.

There have been many excellent reviews of the line tension at three-phase contact lines [36,37,45–49]. The purpose of the
current line tension review is multifold:

(a) Provide a pedagogical description of the line tension, aimed at the level of a senior undergraduate student, with suf-
ficient details so that the reader can understand how the theoretical and computer simulation predictions arise (Sec-
tion 2), which will provide a perspective on their range of validity.

(b) Develop the theory used to deduce the line tension from experimental measurements (Section 3). Thus, the range of
validity of the experimental line tension measurements can also be assessed. The experiments considered in this sec-
tion are taken from our published work where interrelated work, by others, is also discussed. Inevitably the theory for
determining the line tension from experimental measurements involves considerations of the equilibriummechanical
energy E of an object at a surface including both surface and line tension terms. Therefore, a governing theme through-
out this review that a student should keep in mind is that the equilibrium position of an object is just determined by
its minimum mechanical energy. Thus, it is a matter of simple calculus where, for equilibrium, dE/dh = 0 and d2E/
dh2 > 0. Sufficient details are provided in this review so that an undergraduate student can reproduce the results, how-
ever, if the calculations are deemed too complicated or tedious, then a broad outline is given and the interested reader
is directed to the relevant literature.

(c) With this perspective on the theoretical, computer simulation, and experimental estimates of the line tension it will
then be possible to address current topics and controversies within the line tension field including the wide range in
experimental line tension magnitudes |sexpt| � 10�12–10�6 N (Sections 4 and 5), as well as, the conditions under which
a negative line tension leads to a three-phase contact line instability (Sections 3.2.2 and 3.2.3).

This review is set out as follows. It is divided into three major sections: Sections 2, 3, and 4. Sections 2 and 3 provide,
respectively, a theoretical and experimental perspective on the line tension, in the absence of any gravitational effects. Sec-
tion 4 considers the issue of large millimeter-sized droplets of order the capillary length, or larger, where gravity will play a
role and contribute to the line tension. An important component of this review is our critique and personal assessment of the
validity and reliability of each of the line tension measurements (Sections 3.1.3,3.2.3, and 3.3.2). In these critiques, as a ser-
vice to the reader, we additionally point out what we perceive as misconceptions or errors in the literature. Sec. 5 provides a
summary, discussion, and assessment of the line tension at three-phase contact lines.

2. Theoretical perspectives on the line tension

Two length scales play a prominent role in this field:

(i) The capillary length [50]

j�1 ¼
ffiffiffiffiffiffiffiffi
rLV

qg

r
� 1 mm ð1Þ

Fig. 1. Examples of three-phase contact lines, possessing line tension s, where three bulk phases meet: (a) liquid (L) droplet at a solid(S)-vapor(V) surface,
(b) liquid droplet at a liquid-vapor surface, (c) solid particle at a liquid-vapor surface, and (d) thin film meeting a bulk liquid phase. Example of a two-
dimensional discontinuity: (e) insoluble monolayer at a liquid-vapor surface.

B.M. Law et al. / Progress in Surface Science 92 (2017) 1–39 3



where q is the liquid density (relative to air if we are considering a liquid droplet on a solid surface in air) while g is the
acceleration due to gravity. For small liquid droplets, much less than the capillary length, surface tension effects play the
dominant role. Droplets in this regime exhibit a spherical cap shape and, in most cases, gravity can be ignored; however,
see Eq. (63) and the associated discussion. For liquid droplets of the order of the capillary length and larger, gravitational
effects must always be considered (Section 4).

(ii) The total energy of an object, residing at a surface, is determined by its surface energies r (an energy per unit area) and
its line tension s (an energy per unit length). Thus, the ratio of these two quantities defines the ‘‘line tension length”
n ¼ js=rj ð2Þ

below which the line tension plays a prominent role, and above which the surface tension plays a prominent role.
Ascertaining the correct line tension magnitude is therefore very important. If mean field estimates for the line tension
are correct (|stheory| � 10�12–10�10 N), as the surface tension for many organic liquids is r � 20 mJ/m2, then the maximum
value for n would be

ntheoryðmaxÞ � 5 nm ð3Þ
and for most surface phenomena, except at nanometer length scales, one could safely ignore the issue of the line tension.
However, if |s|� 10�10 N, as reportedly observed in many experiments, then n could be considerably larger. This reasoning
is strictly valid only far from a wetting transition. Near a wetting transition (eg. a liquid wetting a solid surface), one must
compare the solid/vapor surface, of surface energy rSV, with the same surface when covered by a (macroscopic) liquid layer,
of surface energy rSL + rLV. The relevant quantity to consider is, therefore, the spreading coefficient defined as

S ¼ rSV � ðrSL þ rLV Þ; ð4Þ
where, in the partial wetting regime, S < 0. The spreading coefficient S should be compared with the line tension s because
what is of interest is ‘‘Does the line tension assist in advancing this (partially wetting) droplet across the solid surface?” For
very large droplets (i.e. in the absence of line tension effects) the macroscopic droplet contact h1 is determined by Young’s
equation [51]

cos h1 ¼ rSV � rSL

rLV
ð5aÞ

¼ 1þ S
rLV

ð5bÞ

where Eq. (4) has been used in deducing Eq. (5b). Hence, the relevant length scale should be the spreading pressure line ten-
sion length [40]

nS ¼
s
S

��� ��� ¼ s
rLV ðcos h1 � 1Þ
����

����: ð6Þ

See Eq. (75) and the accompanying discussion. Near a wetting transition nS can become very large, for example, if h1 = 1�
then nS � 50 lm and line tension effects are very important near wetting transitions.

A comment on notation. h1 represents the contact angle of a macroscopic droplet determined by the surface energies rij,
as described by Young’s equation [Eq. (5a)]. By contrast, h describes the contact angle of a finite-sized object of line tension s
at a surface. h differs from h1 due to the presence of the line tension s and due to the object’s finite-size. The dependence of h
on line tension s and object size is described by the modified Young’s equation. For example, the modified Young’s equation
for a spherical particle at a liquid surface [derived later in Eq. (29)] is

cos h ¼ cos h1½1� s=brLV ��1
; ð7aÞ

whereas, the modified Young’s equation for a liquid droplet at a solid surface [derived in Eq. (56a)] is

cos h ¼ cos h1 � s
rLV r

: ð7bÞ

In these equations b and r are, respectively, the lateral radius of the particle and droplet defined in Sections 3.1.1 and 3.2.1.
These modified Young’s equations [Eqs. (7a) and (7b)] help to clarify the difference between h and h1. One readily observes
that in the limit that either s? 0 or the object becomes infinitely large (b?1 or r?1) then h? h1.

2.1. Theoretical and computer simulation estimates for the line tension magnitude

Many different groups have theoretically estimated the magnitude and sign of the line tension for a variety of the con-
figurations depicted in Fig. 1. For example, De Feijter and Vrij [52], as well as, Rowlinson and Widom [53] (RW) have esti-
mated the line tension for a soap film (or Newton black film) of thickness s in contact with a bulk liquid phase (Fig. 1d). For
symmetric systems where the two vapor phases are equal (V1 = V2) then RW demonstrate that the line tension is negative,
which is the same sign determined by de Feijter and Vrij. If the system is asymmetric (V1– V2) then the line tension may be
positive. In the RW calculation the line magnitude |s| � rs where r is the surface tension and, therefore, for a Plateau border
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|s| � 10�12 to 10�10 N. Getta and Dietrich [54] and Koch, Dietrich and Napiórkowski [55] have used mean field microscopic
Density Functional Theory to study the line tension of liquid films at, respectively, homogeneous and chemical structured
substrates where they have taken into account the interactions between the fluid and the substrate. They find that
|s| � e/

P � 10�11 N where e and
P

are, respectively, the interaction strength and well depth. The Density Functional Theory
approach has also been used to calculate line tensions for electrolytic solutions adsorbed on solid substrates. The line ten-
sions are of order 1 pN and increase with the ionic strength of the solution [56]. The small values for the line tension are
consistent with the estimates from dimensional analysis, where s � kBT

a ¼ 10�11N [53], with a being an atomic length scale
�0.1 nm. Such small values are expected for simple fluids far from critical conditions.

Computer simulations of 1–5 nm diameter spherical colloidal particles at either a liquid-vapor [57,58] or liquid-liquid
[59] interface determined line tension magnitudes of |s| � 10�12 to 10�11 N in agreement with these theoretical estimates.
Negative line tensions were observed at the liquid-vapor surface, whereas, at the liquid-liquid surface negative (positive) line
tensions were observed for the smallest (largest) particles. In these early computer simulations, colloidal particles were rep-
resented by structureless spheres possessing a diameter as well as a Lennard-Jones interaction potential between the fluid
molecules and the colloidal sphere. The line tension of nanoparticles at interfaces can also be estimated from an analysis of
the depletion forces of particle pairs adsorbed at fluid interfaces. This approach predicts line tensions that agree in sign and
magnitude with those extracted from the analysis of single particles [31]. In a later computer simulation [60], a colloidal par-
ticle at the air-water surface was represented by a more realistic all atom simulation where the gold core was surrounded by
a passivating alkyl-like ligand shell. The ligand shell deformed at the interface. Line tension estimates were not attempted in
this later simulation. The line tension of nanodroplets adsorbed on solid substrates has also been considered in the context of
computer simulations [61–64]. These simulations focused on simple fluids modeled using the Lennard-Jones potential. Com-
putation of the line tension involved simulation of spherical and cylindrical droplets possessing different curvatures. It has
been observed that the spherical droplets feature a linear dependence with curvature, consistent with the corrected Young’s
equation predictions, while such dependence is not observed, as would be expected, for cylindrical droplets. The line
tensions obtained from this simulation analysis vary in the range 1–10 pN, are negative and depend upon the wettability
of the substrate [61]. These observations are broadly consistent with those inferred from simulations of nanoparticles
[57–59]. The line tension magnitude is also consistent with the estimates of Density Functional Theory [61] using the sharp
kink approximation [54]. Very large values of the line tension in the range 10–100 pN (positive) have been reported for water
droplets adsorbed on graphite [65–67]. In one of these studies it has been shown that quantum nuclear degrees of freedom
do not influence the value of the contact angle [67].

The line tension has also been computed using Monte Carlo simulations [68,69], which can also provide a direct route to
the free energy, and hence do not rely on computations of the contact angle. This approach has been applied to the calcu-
lation of the line tension for models of ternary mixtures [68], as well as, for the Ising model [69]. For the ternary mixtures
negative line tensions of sa

kBT
� �0:1 were obtained. For atomic length scales of 0.1 nm and a temperature T � 300 K, this value

corresponds to line tensions of the order of pN.
Overall, theoretical and computational approaches predict line tension values that fit broadly in the interval 1–10 pN.

Both positive and negative values have been reported. The estimates of water-graphite are on the higher side, and values
of up to 100 pN have been reported. The origin of these very large values warrant further investigation.

2.2. Wetting and phase diagrams

In order to better understand both the sign of the line tension and its variation with temperature in the vicinity of a sur-
face phase transition, it is necessary to describe wetting phenomena and how wetting is influenced by the interfacial poten-
tial. We begin by considering a liquid droplet L in the partial wetting region on a molecularly smooth and homogeneous
substrate S in vapor phase V (Fig. 2a). This droplet, of lateral radius r, makes a contact angle h with the solid substrate. If this
droplet is sufficiently large (i.e. r large but less than the capillary length j�1 � 1 mm, so that gravitational effects can be
ignored) the contact angle is determined to a good approximation solely by surface energy effects and h is now denoted
by h1 (the macroscopic contact angle). By balancing the forces per unit length (or surface energies) along the substrate,
one obtains Young’s equation [Eq. (5a)], which relates h1 to the surface energies rij between adjacent phases i and j. Alter-
natively, h1 can be expressed in terms of the spreading coefficient S as given in Eq. (5b). The spreading coefficient compares
the surface energy difference between the solid substrate in contact with a vapor phase (of surface energy rSV) and the same
substrate covered by a macroscopic liquid layer (of surface energy rSL + rLV). In the partial wetting regime rSV < rSL + rLV,
hence, S < 0 and the droplet possesses a finite, non-zero contact angle with the solid substrate (h1 > 0).

As the droplet radius r decreases, the line tension s associated with the three-phase solid-liquid-vapor contact line of cir-
cumference 2pr must become more important and cause the contact angle h to deviate from its macroscopic value h1, as
described by the modified Young’s equation [Eq. (7b)]. In the partial wetting regime where h1 < 90�, a positive (negative)
line tension tends to decrease (increase) the size of the droplet circumference in order to minimize the total droplet energy,
hence, the contact angle h will increase above (decrease below) h1 for a non-zero line tension. In the partial drying regime,
where h1 > 90�, analogous considerations apply.

In order to estimate the line tension theoretically, the microscopic surface structure and surface interactions in the imme-
diate vicinity of the three-phase contact line must be taken into account. One can idealize the three-phase solid-liquid-vapor
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contact line as consisting of a liquid wedge which makes an angle h with the solid substrate, as shown in Fig. 2b, where we
assume that the three-phase contact line is situated in the vicinity of the origin x = 0. The thickness of the liquid layer on the
solid substrate l(x) will therefore be a function of distance x where, well away from the liquid droplet (x? �1) the solid
substrate is covered by an adsorbed film of thickness la and surface energy rSV. Within the macroscopic liquid droplet
(x? +1), the film thickness approaches a thick liquid wedge possessing a contact angle h and surface energy rSL + rLV for
sufficiently large film thicknesses (l� 100 nm). At intermediate values of the liquid film thickness (la < l < 100 nm) the sur-
face energy [or surface interaction potential V(l)] is determined by the long range and short range forces that act upon the
liquid film of thickness l. The forces that are present in a system are determined by the molecular constituents of the liquid,
solid, and vapor phases. The interfacial potential V(l) takes the following approximate form

VðlÞ � rSV ½1þ ðl� laÞ2�; l � la ð8aÞ

� VvdWðlÞ þ VCðlÞ þ VcxðlÞ þ rSL þ rLV ; l >> la: ð8bÞ
At small l � la, we assume a harmonic potential for V(l) [Eq. (8a)]. At larger l [Eq. (8b)], numerous terms may contribute to V
(l), depending upon the circumstance, including the van der Waals VvdW, screened Coulombic VC, and off-coexistence Vcx sur-
face potentials. We briefly describe each of these terms and when they are applicable. The surface energies rSL + rLV are
always present in Eq. (8b) if a mesoscopic liquid layer covers the solid substrate. The van der Waals surface potential VvdW(l)
arises from an integration over pair interactions between molecules in the wetting layer, solid substrate, and vapor phase.
Pairs of molecules experience a van der Waals interaction, due to fluctuating dipole moments, where the van der Waals force
between two molecules varies as �1/d6 at small separations d and �1/d7 at large d where the finite speed of light has been
accounted for. These force laws at small and large d give rise to, respectively, the non-retarded [Eq. (9a)] and retarded [Eq.
(9b)] van der Waals potential VvdW(l) which have the approximate forms [70]

VvdWðlÞ � A

l2
; l � 10 nm ð9aÞ

� B

l3
; l > 50 nm: ð9bÞ

Eq. (9b) takes into account the ‘‘retardation” experienced by the dispersion forces due to the finite speed of light. In many
situations, seen in practice, it is sufficient to assume a non-retarded van der Waals potential [Eq. (9a)] where the Hamaker
constant A can be approximated as the sum of a zero frequency Am=0 and an optical frequency Am>0 contribution [70]

A � Am¼0 þ Am>0 ð10Þ

Am¼0 � �ðeL � eV ÞðeL � eSÞkBT ð11aÞ

Am>0 � �ðn2
L � n2

V Þðn2
L � n2

S Þhme ð11bÞ
where ei (ni) is the static dielectric constant (optical refractive index) of phase i, kBT is the thermal energy and hme a charac-
teristic electronic excitation energy at frequency me. The zero frequency term is only important for highly polar components
(eg. water). In many cases, Am=0 can be neglected and the Hamaker constant is therefore determined by the optical refractive
indices of the various components.

Eq. (9) represents only an approximation for the complete van der Waals or dispersion potential. The dispersion potential
should, in reality, be described by the Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) theory for dispersion interactions [71], which
takes into account the summation over the frequency dependent dielectric constant of the liquid layer (of thickness l), sub-

Fig. 2. (a) Liquid droplet (L) of lateral radius r and contact angle h at a substrate (S) – vapor (V) surface. (b) In the immediate vicinity of the three-phase SLV
contact line, the liquid thickness l(x) varies with distance x along the substrate, from an adsorption thickness la on the vapor side (x� 0), to a ‘‘liquid wedge”
of contact angle h and thickness variation l(x) on the liquid side (x� 0).
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strate, and vapor phase. A good description of the approximate theory, as given in Eqs. (9)–(11), can be found in the well-
known book by Israelachvili [70]. A simple and clear description of the DLP theory, along with a description of how to cal-
culate this interaction from experimental dielectric data, can be found in Hough and White [72].

The van der Waals surface potential VvdW is always present in Eq. (8b) for finite l, whereas, the other terms (VC and Vcx)
may or may not be present depending upon the circumstance. The screened Coulombic potential VC(l) is only present for ion-
ized systems, for example, in electrolytic solutions or for surfaces which have undergone surface dissociation [70]. VC(l) pos-
sesses the approximate form of a Yukawa potential,

VCðlÞ � ro expð�l=lCÞ ð12Þ
where ro is a constant that measures the interaction strength. This potential is sometimes called a short-ranged potential
because of its exponential decay over a screening length lC.

A number of different physical processes can remove the substrate liquid layer (of thickness l) away from bulk two-phase
coexistence, in which case, the off-coexistence term Vcx(l) in Eq. (8b) will be non-zero. In order to obtain a better physical
understanding of this statement, we first discuss two-phase liquid-vapor coexistence. Fig. 3a depicts a typical liquid-
vapor phase diagram. The heavy solid black line represents the two-phase coexistence curve, which separates the one-
phase region from the two-phase region. In the two-phase region (below the coexistence curve), at a particular temperature
T (horizontal red dotted line), the two vertical red dotted lines determine the liquid (qL) and vapor (qV) densities, which are
in coexistence (Fig. 3b). Above the coexistence curve, in the one-phase region, only a single vapor or liquid phase exists
(Fig. 3c). On this phase diagram qc and Tc represent the critical density and critical temperature, respectively; the liquid
and vapor phases are indistinguishable at this critical point. If the system is prepared at the critical density qc one can pass
continuously from the two-phase region into the one-phase region (i.e. via a second-order phase transition). For any point,
other than (qc,Tc), on the coexistence curve the system undergoes a first-order phase transition, with its associated latent
heat, in passing from the two-phase region into the one-phase region. The precise shape of the coexistence curve, especially
in the vicinity of the critical point (qc,Tc), is a complex topic which will not be discussed here and interested readers should
consult other sources [73]. The presence of an interfacial potential V(l) may stabilize an adsorption or wetting (Fig. 3b)/
prewetting (Fig. 3c) layer on the container walls.

Whenever a liquid layer on a substrate (or container wall) is removed from bulk liquid coexistence the off-coexistence
term

VcxðlÞ ¼ Dll ð13Þ
will be non-zero. Here Dl ¼ l� lcx is the difference in chemical potentials (an energy per unit volume) between the liquid
layer (l) and bulk liquid (lcx). Dl can take many different forms.

Fig. 3. (a) Liquid-vapor phase diagram where the coexistence curve (heavy solid line) separates the two-phase region from the one-phase region. At a given
temperature (horizontal red dotted line), the two vertical red dotted lines determine the liquid (qL) and vapor (qV) densities. As the temperature is increased
towards the critical temperature Tc, qV and qL approach each other and become identical and equal to the critical density qc at Tc. The critical point (qc,Tc)
therefore represents a second-order phase transition where one can pass continuously from the two-phase region into the one-phase region. For any other
point on the coexistence curve, the system undergoes a first-order phase transition in passing from the two-phase region into the one-phase region. The
horizontal blue dashed line corresponds to the wetting temperature Tw, below (above) which a macroscopic droplet of contact angle h1 on a solid substrate
is greater than (equal to) zero. In the one-phase region a prewetting line (light solid line) joins onto the coexistence curve at Tw. The prewetting line
terminates at a prewetting critical point at the prewetting critical temperature Tpwc. (b) Two-phase system, below the coexistence curve, with liquid (L) and
vapor (V) phases of densities qL and qV in coexistence. The interfacial potential V(l) may stabilize an adsorption or wetting layer on the container walls at
height H. (c) One-phase system, above the coexistence curve, at low density (i.e. vapor phase). The interfacial potential V(l) may stabilize an adsorption or
prewetting layer on the container walls, as described in the text. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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(i) For example, in Fig. 3b, the system is in two-phase coexistence where the bulk liquid and vapor phases are in equilib-
rium. At height H the van der Waals attraction has caused a liquid layer to form on the container wall. The chemical
potential (l) of this liquid layer differs from the chemical potential of the bulk liquid (lcx) due to an additional grav-
itational potential energy where
Dl � Dlgrav ¼ DqgH ð14aÞ
and the density difference Dq = qL–qV.

(ii) In Fig. 3c, we consider a situation in the one-phase region (above the coexistence curve) in the vapor phase at fixed
temperature T. The liquid phase is not a stable bulk phase. The system has been removed from bulk liquid-vapor coex-
istence by the vapor pressure p relative to the saturated vapor pressure psat. (At psat, vapor condenses to a bulk liquid.)
For this situation

Dl � Dlp ¼ � kBT
v log10

p
psat

� �
: ð14bÞ

where v is the liquid phase molecular volume. As depicted in Fig. 3c an adsorbed layer or a pre-wetting layer may form
on the container walls, in the one phase region, due to the interfacial potential V(l) as discussed below.

(iii) In Fig. 3b and c we have assumed that the system is at constant temperature T. There are practical difficulties in
achieving a constant temperature throughout a system. For example, in configuration Fig. 3b there may exist an inten-
tional or unintentional temperature difference DT = T–T(bulk) between the wetting layer and the bulk liquid phase. If
DT > 0 this temperature difference thins the wetting layer and contributes to the chemical potential difference [74,75]

Dl � Dlgrav þ DlT ¼ DqgH þ nDTL
T

� nDTL
T

ð14cÞ

where L is the latent heat per molecule, and n is the number density of molecules in the wetting layer. In most practical
cases DlT dominates Dlgrav . For example, for Dlgrav � DlT we require that DT� 10�4 �C where we have assumed that
Dq = 1 g/cm3, H = 1 cm, T = 300 K, L = 5 	 10�20 J/molecule and n = 5.5 	 1027 molecules/m3. This level of temperature
uniformity (0.1 mK/cm) is extremely difficult to achieve in practice. Therefore, in most practical cases, DlT � Dlp. This could
explain why the van derWaals surface potential on occasion does not describe the adsorption or wetting layer thickness very
well [76]. Unintentional temperature differences could be present in the system under study. Despite these concerns regard-
ing thermal uniformity, in the following, we assume that DlT ¼ 0, as is normal. However, situations may arise where DlT

may play a dominant role.
Thus far we have only described individual terms which enter Eq. (8) but not how these individual terms interact and

control the shape of V(l) which, in turn, influence the wetting behavior of droplets on a surface. As a prelude to understand-
ing V(l), we first examine the wetting behavior of droplets. Let us reconsider Fig. 3b. If we decrease the amount of liquid or
increase the container size, eventually we will end up with a liquid droplet residing on the bottom of the container or, equiv-
alently, a droplet residing on a solid substrate (Fig. 2a). The liquid and vapor phases are still in coexistence. If the temper-
ature is now increased, rLV decreases faster than the difference rSV–rSL because the thermal expansion coefficient of
liquids are, in general, larger than solids. Hence, according to Young’s equation [Eq. (5a)], the contact angle h1 decreases with
increasing temperature where both h1 and S [Eq. (5b)] are equal to zero at the wetting transition temperature Tw. Fig. 4a
provides an example of this decrease in h1 with increasing temperature. At and above Tw the solid substrate is covered
by a macroscopically thick wetting film (complete wetting). Below Tw, where S < 0 and h1 > 0, the solid surface around
the liquid droplet is preferentially covered by an adsorbed film of thickness la and energy rSV. The horizontal blue dashed
line in Fig. 3a represents the wetting temperature Tw, below which one finds partial wetting (h1 > 0) and above which
one finds complete wetting (h1 = 0). The wetting of the solid substrate, above Tw, also surprisingly influences the surface
behavior in the one-phase region (where the bulk liquid is no longer a stable phase). A prewetting line (light solid line,
Fig. 3a) adjoins the coexistence curve at Tw [77–79]. Consider a fixed vapor density qV in the one phase region (Fig 3c) where
one decreases the temperature and crosses the prewetting line. Above the prewetting line an adsorbed layer covers the solid
substrate (or container walls). As one crosses the prewetting line, the film thickness on the solid substrate undergoes a first-
order jump and the solid substrate is covered by a prewetting layer, the thickness of which approaches the wetting layer
thickness on the coexistence curve. The prewetting line ends at a prewetting critical point at temperature Tpwc (Fig. 3a),
as discussed later.

How is the physics of this liquid-solid wetting transition captured within the temperature variation of the interfacial
potential V(l)? Let us consider a specific example, namely, the wetting of a hexadecyltrichlorosilane (HTS) coated silicon
wafer by an n-octane droplet. (Such a silicon wafer is coated by an alkane-like layer, which is sixteen carbons long.) Two
parameters control this wetting transition due to, respectively, the short-range and long-range interactions at the surface.
The short-ranged interaction is controlled by the hexadecyltrichlorosilane layer, which coats the silicon wafer, more specif-
ically, the methyl terminal group (–CH3) of this monolayer determines the short-ranged interactions. The critical surface ten-
sion for a methyl terminal group is rcrit � 19–21 mN/m where this range in values originates from slight variations in the
surface density of the alkyl silane coating layer (governed by the surface preparation). Liquids with rLV < rcrit completely
wet the solid substrate with h1 = 0, whereas, liquids with rLV > rcrit partially wet the solid substrate with h1 > 0 [80]. Hence,
rLV = rcrit is equivalent to S = 0, namely,
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rcrit ¼ rSV � rSL ð15Þ
according to Eq. (4).

As rLV(octane) = 21.8 mN/m, an n-octane droplet will be partially wetting this HTS coated solid substrate at room temper-
ature, however, as rLV decreases with increasing temperature the octane droplet will undergo a wetting transition at some
higher temperature (Fig. 4a). For an octane droplet on a HTS coated silicon wafer, as this system is uncharged (VC = 0) and at
liquid-vapor coexistence (Vcx = 0), the non-retarded van der Waals potential [Eq. (9a)] determines the long-range interaction
where the optical contribution primarily determines the Hamaker constant (as octane is non-polar). Therefore, A > 0 because
nS(silicon) > nL(octane) in Eq. (11b). These short- and long-range interactions imply that the interaction potential V(l) [Eq. (8)]
possesses the form depicted in Fig. 5a for T < Tw where S < 0 and h1 > 0 according to Eq. (5b) in the partial wetting regime. For
this situation, a finite contact angle droplet is surrounded by an adsorbed layer of thickness la. With increasing temperature,
|S| decreases and therefore h1 decreases until, at the (first-order) wetting transition temperature Tw, S = 0 and therefore
h1 = 0 and the liquid completely wets the solid substrate. Fig. 5 documents how the interaction potential V(l) varies as a
function of temperature below, at and above the wetting transition Tw. Fig. 4a shows the temperature dependence of cosh1
for an n-octane or octene droplet on a hexadecyltrichlorosilane coated silicon wafer where h1 approaches zero at the wetting
transition where Tw � 46 �C for n-octane [9].

According to Fig. 5 an alternative signature of a first-order wetting transition is a jump in the liquid layer covering the
solid substrate from an adsorption thickness la, below Tw, to a wetting layer thickness lw, above Tw determined by the min-
imum in the interfacial potential [lw ?1 at liquid-vapor coexistence (Dl = 0)]. This jump in layer thickness is readily
observed away from liquid-vapor coexistence where Dll > 0 [Eq. (13)], for example, by examining the variation in liquid
layer thickness on a substrate (or on the container wall Fig. 3b) at a height H above the liquid-vapor surface as a function
of temperature. As Vcx varies linearly with l, the presence of this term changes the shape of V(l) as shown by the dashed-
dotted line in Fig. 5b. Thus, when this term is present, the wetting transition temperature Tw is expected to move to higher
temperature where additionally the wetting thickness lw is now finite, as described below. For this situation Eq. (8b)
becomes

VðlÞ � A

l2
þ Dllþ rSL þ rLV ; l � la: ð16Þ

at large layer thickness and the wetting layer thickness can be determined from the minimum in this energy, namely,

dV
dl

����
lw

¼ 0; ð17aÞ

hence,

lw ¼ 2A
Dl

� �1=3

ð17bÞ

where, as expected, lw ?1 as Dl? 0. The wetting transition is determined from the condition that

VðlaÞ ¼ VðlwÞ ð18aÞ
at Tw, namely, from Eqs. (16), (18a), and (4)

Fig. 4. (a) Variation of cosh1 with temperature T for an octane and octene droplet on a hexadecyltrichlorosilane coated silicon wafer. At Tw cos h1 = 1.
Reprinted (adapted) with permission from [9], � (1999) American Physical Society. (b) Thermal variation of wetting layer thickness on a
hexadecyltrichlorosilane coated silicon wafer at a height H � 5 mm above n-hexane (circles), n-heptane (squares) and n-octane (diamonds) liquid.
Reprinted (adapted) with permission from [81], � (2003) American Chemical Society.
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S ¼ A

l2w
þ Dllw ð18bÞ

which reduces to S = 0 when Dl = 0 and lw ?1, as expected.
Fig. 4b shows the variation in wetting layer thickness for n-hexane (open circles), n-heptane (open squares) and n-octane

(solid diamonds) vapor wetting a hexadecyltrichlorosilane coated silicon wafer [81]. This silicon wafer is suspended at a
height H � 5 mm above each liquid. n-Hexane and n-heptane, which possess a lower surface tension than n-octane, com-
pletely wet the silicon wafer. n-Octane vapor exhibits a first-order wetting transition, indicated by the jump in thickness
at a temperature Tw � 60 �C. This n-octane vapor wetting transition is about 15 �C higher than that observed for a macro-
scopic n-octane droplet wetting a hexadecyltrichlorosilane coated silicon wafer determined from contact angle measure-
ments (Fig. 4a).

Thus far, we have used the interfacial potential V(l) [Eq. (8)] to describe the first-order wetting transition. This equation
must necessarily also describe more exotic wetting transitions, such as, the prewetting transition [77–79] and the critical
wetting transition [82]. As mentioned earlier, the blue horizontal dashed line in Fig. 3a denotes a (first-order) wetting tran-
sition temperature Tw where, for T < Tw, a droplet partially wets the substrate with finite non-zero contact angle h1 > 0 while,
for T > Tw, the substrate is completely wetted by the liquid with h1 = 0. In the one phase region of the phase diagram a
prewetting line joins the bulk coexistence curve at Tw (Fig. 3a, light solid line). The presence of an interfacial potential Eq.
(8b) stabilizes a prewetting film (e.g., on the container walls, Fig. 3c) even though the bulk liquid phase is not yet a stable
phase. For example, in the gaseous phase at a fixed density qv, which intersects the prewetting line, the temperature T
can be varied above and below the prewetting line. Assuming we are not too near the critical point the vapor pressure p,
in the gaseous phase, will be approximately ideal and given by

p ¼ qvRT: ð19Þ

Fig. 5. Interaction potential V(l) as a function of liquid film thickness l on a solid substrate for Hamaker constant A > 0 for temperatures (a) below, (b) at, and
(c) above the first-order wetting transition temperature Tw. This interaction potential is applicable for an n-octane droplet on an alkyl-silane coated silicon
wafer, as described in the text. For T < Tw, in the vicinity of the three-phase SLV contact line, the film thickness varies as shown in Fig. 2b. The droplet is
surrounded by an adsorbed film of thickness la and energy rSV on the vapor side of the 3-phase contact line. On the liquid side of the 3-phase contact line, l
progressive thickens and approaches an energy of rSL + rLV. In (b) above the dashed-dotted line indicates the change in shape for V(l) due to the presence of
an off-coexistence term Vcx =Dll > 0.
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At temperatures above the prewetting line, the container wall will be coated with an adsorption film thickness la. If the tem-
perature is dropped below the prewetting line, there will be a first-order jump in film thickness (Fig. 6) dictated by Eqs. (17a)
and (17b). During this transition, the chemical potential difference Dl is removed from bulk liquid-vapor coexistence
according to Eq. (14b) where the saturated vapor pressure that appears in this equation is at temperature T, namely,
psat � psatðTÞ. The prewetting line in Fig. 3a represents a line of first-order surface wetting transitions given by Eq. (18b). This
prewetting line ends at a prewetting critical point with prewetting temperature Tpwc. The prewetting critical point corre-
sponds to a saddle point in the interfacial potential, namely, at this point

d2V

dl2

�����
lw

¼ 0 ð20Þ

along with Eqs. (17a) and (17b).
Other more exotic wetting transitions must also follow from Eq. (8). For example, at bulk liquid-vapor coexistence Dl = 0

with S > 0, B > 0 [Eq. (9b)] and if the Hamaker constant A in Eq. (9a) changes sign from negative to positive with increasing
temperature then the system will undergo a continuous or critical wetting transition (Fig. 7) at temperature Tcw where the
wetting layer thickness diverges continuously at Tcw according to [82]

lw � 1
Tcw � T

: ð21Þ

2.3. Interface displacement model for the line tension

With this prelude to wetting, and its interrelationship to the interfacial potential V(l) completed, we now return to the
subject of calculating the line tension. Here we follow the discussion of Indekeu [83] for calculating the line tension s using
the interface displacement model. The line tension s[l(x)], at the three-phase contact line of a droplet on a substrate, is a
functional of the interfacial film thickness l(x), which varies with distance x in the vicinity of the contact line (Fig. 2b).
Specifically,

s½lðxÞ� ¼
Z 1

�1
dx

1
2
rLV

dl
dx

� �2

þ VðlðxÞÞ
" #

þ const: ð22Þ

where the first and second terms in the integrand account for, respectively, the energy cost due to the surface tension rLV and
interfacial potential V(l) in the vicinity of the surface. At equilibrium, the functional s[l(x)] must be minimized with respect to
l(x), which leads to

V(l)

lla

(a)

T = Tcx

T > Tpw

T = Tpw

T     > T > Tcxpw

lpw

(b)

la

l pw

lw

l

Tcx Tpw T

Fig. 6. (a) Variation in the interfacial potential V(l) in the vicinity of the pre-wetting (Tpw) and coexistence (Tcx) temperatures. (b) Corresponding variation in
the pre-wetting thickness as a function of temperature. Heavy solid line: pre-wetting thickness at absolute minimum in V(l) for each temperature where a
discontinuous jump in thickness is observed at Tpw with decreasing temperature. Light solid line: thicker pre-wetting film (lpw) may become metastable
with increasing temperature.
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s ¼
ffiffiffi
2

p
rLVn

Z 1

0
dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðLÞ=rLV

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S=rLV

ph i
ð23aÞ

¼
ffiffiffiffiffiffiffiffiffiffiffi
2rLV

p
n½J1 � J2� ð23bÞ

In Eq. (23a), the correlation length n is a characteristic length along the substrate, while L is a dimensionless film thickness
where the origin in L has been shifted to the adsorption minimum at l = la. Indekeu derived this equation for a partially wet-
ting liquid droplet on a solid surface. Eq. (23a) possesses the same functional form as an equation derived earlier by de Feijter
and Vrij [52] for a soap film in contact with a bulk liquid phase (Fig. 1d), which suggests that Eq. (23a) is rather general and
relates the interfacial potential to the line tension for any three-phase contact line configuration. A plot of

ffiffiffiffiffiffiffiffiffi
VðlÞ

p
versus l, in

the partial wetting regime (Fig. 5a), allows a simple geometric interpretation of the line tension where the areas J1 and J2 that
appear in Eq. (23b) are shown in Fig. 8. (J1 (J2) is the area above (below)

p
-S.) One can readily see from Fig. 8 that for suf-

ficiently large |S| the area J1 must be small and therefore the line tension s < 0. With decreasing |S| the area J1 increases while
J2 decreases. The line tension s = 0 when J1 = J2 while, at the first-order wetting transition temperature Tw, J2 = 0 and hence
s > 0.

Figs. 5, 6a and 7a show the variation of V(l) with temperature T for, respectively, a first-order, pre-wetting, and critical
wetting transition. Eq. (23a) can be used to predict the variation of the line tension s with temperature T for each of these
surface phase transitions. Dodds [84] modeled pentane droplets on water and calculated the variation in the line tension s as
a function of dimensionless temperature T/Tc using the interface displacement model where a first-order wetting transition
occurs at T/Tc = 0.5 and Tc is the critical temperature for this system. As expected, from the qualitative arguments above, the
line tension s changes from a negative to a positive value on approaching a first-order wetting transition (T/Tc 6 0.5, Fig. 9)
where the line tension magnitude |s| � 1–8 pN. Similar considerations allow one to calculate the boundary tension sb
between an adsorbed film and a pre-wetting film in the one-phase region (Fig. 9, T/Tc P 0.5) where the qualitative behavior
of V(l) with T was shown in Fig. 6a.

Indekeu [83] has examined how the line tension varies as a function of temperature on approaching a continuous or
critical wetting transition. For this particular situation the line tension is predicted to be negative and then approach zero
at Tcw (Fig. 10).

Fig. 7. (a) Interfacial potential V(l) for a second-order wetting transition where the Hamaker constant A changes sign with temperature. (b) Experimental
measurements of thickness variation with temperature. Reprinted (adapted) with permission from [82], � (1996) American Physical Society.

Fig. 8. Plot of
ffiffiffiffiffiffiffiffiffi
VðlÞ

p
versus thickness l, in the partial wetting regime (Fig. 5a), where the origin has been displaced to the adsorption thickness la. The areas J1

and J2 that appear in Eq. (23b) are shown in this figure.
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Experiments which examine the variation of the line tension s on approaching a first-order wetting transition will be
described in Section 3.2.1. The predicted variations in boundary tension sb on approaching a first-order wetting transition
(Fig. 9, T/Tc P 0.5) and the line tension s on approaching a critical wetting transition (Fig. 10) still remain to be observed.

3. Experimental perspectives on the line tension

Numerous experimental techniques have been proposed for and applied to measuring the line tension. How the line ten-
sion is extracted from each of these experimental techniques is dependent upon the specific experimental geometry. We
consider a number of different geometries, specifically,

(i) spherical colloidal particles at liquid surfaces (Section 3.1),
(ii) liquid droplets at either solid or liquid surfaces (Section 3.2), and
(iii) the nucleation route to measuring the line tension (Section 3.3).

Fig. 9. Variation in line tension swith temperature for a pentane droplet on water on approaching (from below) a first-order wetting transition at T/Tc = 0.5.
The variation in the boundary tension sb with temperature between an adsorbed film and a pre-wetting film is also shown in the one phase region
(T/Tc P 0.5). Reprinted (adapted) with permission from [84], � (1999) American Chemical Society.

Fig. 10. Variation in line tension s on approaching a critical wetting transition. Reprinted (adapted) with permission from [8], � (1994) World Scientific
Publishing Co., Inc.
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In each section the theory associated with measuring the line tension, for that geometry, is first derived. A number of
experimental measurements are then reviewed. Each section ends with a critique or commentary which compares line ten-
sion measurements with theory, discusses any experimental limitations, and attempts to resolve any discrepancies between
theory and experiment.

In prior sections of this review we observed that wetting behavior is determined by considering the energy minima of the
interfacial potential V(l) [Eq. (8)] while the line tension s [Eq. (23a)] is determined by minimizing the line tension functional
s½lðxÞ� [Eq. (22)] with respect to the interfacial displacement profile l(x). For mesoscopic objects (particles or liquid droplets at
surfaces), considered in this section, with associated surface energies rij and line tension s, the behavior of this object at a
surface is determined by its mechanical stability at this surface, namely, the energy minima of this object. Mathematically,
the easiest situation to understand is the behavior of spherical colloidal particles at liquid surfaces, hence, we consider this
situation first in Section 3.1. Insights gleamed from spherical particles at liquid surfaces will enable us to understand the
mathematically more complex situations of liquid droplets at solid or liquid surfaces (Section 3.2), as well as, the nucleation
route for determining the line tension (Section 3.3).

3.1. Spherical colloidal particles at liquid surfaces

The physics of colloidal particles at liquid interfaces actually differs depending upon the colloidal particle size [32,85]. In
the absence of any hydrodynamic flow or colloidal mixing in the bulk solution, the gravitational potential energy of a particle
(relative to the thermal energy) determines how large a particle can be suspended in solution. The probability distribution of
particles of radius R at height H is given by

p � expð�4pR3DqgH=3kBTÞ ð24Þ
where Dq is the density difference between the particle and the liquid medium. For typical liquid-solid density differences
(Dq � 1–18 g/cm3), at typical sample container heights (H = 0.2–1 cm), by equating the gravitational potential energy to the
thermal energy, one determines the particle size limit where a change in behavior occurs. Specifically, for typical liquids and
solids, this particle size limit occurs at a particle radius of Rgrav � 20 nm (Fig. 11). For particles with R� Rgrav any particles in
solution settle to the bottom of the sample container. Particles can still be kinetically trapped at the liquid-vapor (LV) surface
by surface tension and line tension forces [85], as shown in the right hand side of Fig. 11. These large colloidal particles
(R� Rgrav) are inmechanical equilibrium at the liquid-vapor surface as discussed in Sec. 3.1.1 [85]. By contrast, when R� Rgrav

particles at the liquid-vapor surface are in thermodynamic equilibrium with particles suspended in the bulk liquid solution,
as depicted in the left hand side of Fig. 11. Small colloidal particles (R� Rgrav), or ‘‘nanoparticles” (NPs), are therefore in
mechanical equilibrium at the liquid-vapor surface, as well as, in thermodynamic equilibrium with NPs dissolved in the bulk
liquid solution as discussed in Section 3.1.2 [32].

3.1.1. Large spherical colloidal particles at liquid surfaces
Fig. 12 shows a large spherical colloidal particle of radius R (�Rgrav) at the liquid-vapor surface. It protrudes a distance h

above the surface and makes a contact angle h with the liquid-vapor surface. The three-phase solid-liquid-vapor contact line
possesses a lateral radius b, circumference 2pb, and line tension s. Therefore, the energy of this colloidal particle at the
liquid-vapor surface is given by

Fig. 11. Schematic of size-dependent colloidal particle behavior at liquid-vapor surfaces. When R� Rgrav (R� Rgrav), described in Section 3.1.1
(Section 3.1.2), colloidal particles sediment out of solution (remain suspended in solution).
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Es ¼ rSVA1 þ rSLA2 þ 2pbs ð25Þ
where the surface areas A1 ¼ 2pRh and A2 ¼ 4pR2 � A1. One must compare Es with the energy if this particle is completely
submerged beneath the liquid surface, namely,

Eb ¼ rSLðA1 þ A2Þ þ pb2rLV ð26Þ
where the last term in this expression represents the energy generated in the creation of an additional liquid-vapor surface
of area pb2.

From geometry b ¼ R sin h and h ¼ Rð1� cos hÞ and, therefore, the energy difference E = Es–Eb

E ¼ rLV cos h12pR2ð1� cos hÞ þ s2pR sin h� rLVpR2 sin2 h ð27Þ
where Young’s equation [Eq. (5a)] has been used in obtaining this equation. As the particle height h, above the liquid-vapor
surface, (or correspondingly contact angle h) is varied the energy E changes. The minimum in this energy is found from the
condition that

dE
dh

¼ rLV cos h12pR2 sin hþ s2pR cos h� rLVpR22 sin h cos h ¼ 0; ð28Þ

corresponding to the particle being in mechanical equilibrium. Eq. (28) gives rise to the modified Young’s equation

cos h ¼ cos h1½1� s=brLV ��1 ð29Þ
which describes how the contact angle h varies due to the presence of the line tension s where this equation necessarily
reduces to h = h1 in the absence of a line tension (s = 0).

Fig. 13a provides a picture of how the energy E varies as a function of particle radius R and contact angle h for specific
surface tension rLV, line tension s, and macroscopic contact angle h1. The solid line on this figure indicates a line of energy
minima corresponding to the modified Young’s equation [Eq. (29)]. This figure is more readily understood by considering
cross-sections through this figure, at fixed particle radius R, as shown in Fig. 13b. The modified Young’s minimum occurs
at h � 1 rad. For R > 124 nm, this minimum is a global minimum. If 124.0 nm > R > 81.6 nm then this modified Young’s min-
imum is a local minimum as E possesses a lower value (=0) at h = 0� (i.e. complete wetting of the colloidal particle). A col-
loidal particle residing in this local minimum will remain in this metastable state because the height of the energy barrier
(compared with the lowest energy state at h = 0�) is tens of thousands of kBT. For a sufficiently small colloidal particle,
defined by a minimum radius Rmin = 81.6 nm, the local modified Young’s minimum disappears and E exhibits saddle-point
behavior where the colloidal particle will slip below the surface into the liquid phase. The saddle-point is defined by

ðd2E=dh2Þ
���
hmin

¼ 0 where

d2E

dh2
¼ 2pR2rLV

cos h
½cos h1 � cos3 h�: ð30Þ

This leads to a minimum contact angle hmin, below which colloidal particles will slip below the surface, where

cos hmin ¼ ½cos h1�1=3: ð31Þ
Combining Eqs. (29) with (31) leads to a minimum colloidal particle radius Rmin given by

Rmin ¼ s½rLV sin hminð1� cos h1= cos hminÞ��1
: ð32Þ

Single isolated colloidal particles with R < Rmin are unstable at the liquid surface and disappear beneath the surface. Eqs. (29)
and (31) have been derived earlier, via other methods, by Scheludko, Toshev and Bojadjiev [33] and Aveyard and Clint [86].

In Fig. 13b for R = 140 nm, the particle adsorption DEa � 30,000 kBT (i.e. energy to move the particle from bulk liquid onto
the surface), desorption DEd � 50,000 kBT (i.e. energy to remove the particle from the surface into bulk liquid), and attach-

b

r

h A1

A2

Vapor
Liquid

(a) (b)

Vapor
Liquid

rR

Fig. 12. (a) Spherical colloidal particle of radius R, at a liquid-vapor surface, with protrusion height h, lateral radius b, and contact angle h. A1 (A2) is the
particle area above (below) the liquid-vapor surface. (b) Same particle submerged below the liquid-vapor surface.
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ment DEatt ¼ DEa � DEd energies are shown. The particle adsorption DEa and desorption DEd energies play an important role
in NP phase transfer kinetics from one liquid phase into another liquid phase which is usually initiated via ligand exchange
on the NP. The ligand exchange manipulates and lowers the heights of DEa and DEd so that this phase transfer is readily
achieved. In this transfer process the NP must first be transferred from one liquid to the liquid surface (DEa) and then this
NP is transferred from the liquid surface into the other liquid phase [i.e. DEd appropriately modified for transfer into the ‘‘va-
por” phase where rSV replaces rSL in Eq. (26)]. DEa, DEd, and DEatt are discussed in more detail in Section 3.1.3.

The analysis above suggests three alternative methods for determining the line tension s:

(i) Measure the contact angle h and deduce s from the modified Young’s equation [Eq. (29)].
(ii) Estimate s from Rmin [Eq. (32)], below which single isolated colloidal particles are no longer stable at the liquid/vapor

surface.
(iii) Deduce s from an estimate of the desorption energy DEd for removing a particle from the liquid surface into the bulk

liquid phase.

Early studies obtained estimates for the line tension s using all three methods by employing optical microscopy and Lang-
muir trough pressure isotherms. Optical microscopy measurements [87] of the contact angle h versus fluorinated silica par-
ticle radii (for R > 10 lm) at the dodecane/air surface placed an upper limit on the line tension s < 10�7 N (Fig. 14a), however,
this study possessed insufficient resolution to determine the precise magnitude of s. Optical microscopy estimates for Rmin,
for large silica particles (R � 50 lm), obtained line tension values of s � 10�11 N [88]. For such large particles, the weight and
buoyancy force on the particles must be included in the governing equations. As observed in a later discussion [Eq. (63)],
these weight and buoyancy contributions add a significant degree of complexity to these equations. By comparing the col-
lapse pressure of a densely packed layer of particles, at the surface of a Langmuir trough, to NDEd where N is the areal num-
ber density of particles for a closely packed layer the line tension was estimated to be s � 10�11 N [89]. Computer
simulations [90,91] and experiments [92], however, indicate that the Langmuir trough collapse pressure may not necessarily

Fig. 13. (a) Energy E/kBT [Eq. (27)] for rLV = 39.9 mN/m, s = 0.93 nN, and h1 = 64.8�. Modified Young’s equation [Eq. (29)], solid line. (b) Energy cross-
sections at fixed R = 81.6, 105.0, 124.0 and 140.0 nm where Rmin = 81.6 nm [Eq. (32)], heavy solid line. For R = 140.0 nm, particle adsorption DEa, desorption
DEd and attachment DEatt energies are shown. Reprinted (adapted) with permission from [85], � (2012) American Physical Society.
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be a good measure of the line tension. Associating NDEd with a collapse pressure assumes complete expulsion of a close-
packed NP layer into the bulk liquid phase, whereas, the collapse pressure may be more indicative of the buckling and folding
of a close-packed NP layer.

Clearly, in order to measure the line tension with high precision, an accurate estimate of the contact angle h of the NP with
the liquid surface is necessary. Grigoriev et al. [93] and, more recently, Maestro et al. [94] and Zanini and Isa [95] provide an
extensive review along with a critique of the many differing experimental techniques to estimate the contact angle of NPs at
liquid surfaces. A number of the experimental methods suggested for measuring h (ellipsometry, reflectometry, Langmuir
trough) do not measure h directly and instead require some interpretation of these measurements (a model for the surface
packing) in order to extract h. Additionally, these measurements extract an average hhiave from a layer of particles at the liq-
uid surface, whereas, the energy difference E [Eq. (27)] is strictly valid only for single isolated colloidal particles. It is not
known whether the average hhiave depends upon the particle cluster size, as clusters of particles possess an additional cohe-
sive energy Ccoh (see Fig. 11) between adjacent particles, which is not present in energy E. This question has been examined
recently in a combined neutron reflectivity and computer simulation investigation of gold nanoparticles coated with an alka-
nethiol layer [96]. Neutron reflectivity provides a route to measure the contact angle of nanoparticle monolayers in situ. Sim-
ulation and experimental contact angles exhibit good agreement. The simulations indicate that the contact angles of
particles within a monolayer are �3� larger compared with the contact angle for isolated particles. Using the energy,

DE ¼ �pR2rwð1� cosh1Þ2 (Eq. (41), where line tension effects are ignored, as a first approximation), for the detachment
of a particle into water, the nanoparticle radius (R = 7 nm), and the water surface tension rw, we estimate that a variation
in the contact angle of �3� reflects changes in the adsorption energy of about 100 kBT (T = 300 K), which corresponds to
�10% of the adsorption energy for a hydrophobic particle possessing a contact angle of h1 = 121�. This amount can be con-
sidered a small correction to the actual energy, and we therefore expect that measurements of monolayers to provide a good
approximation to the adsorption energy for isolated particles. Finally we note that if there is any buckling of the layer, or, if
multilayers of particles form on the liquid surface then the methods discussed above will lead to an erroneous determination
for h.

Nanoscopic techniques, which directly measure the contact angle h of particles at liquid surfaces are likely to provide a
more reliable measure of the line tension s. A number of novel experimental techniques have been developed. Paunov
[97,98] developed a novel gel trapping technique where spherical colloidal particles are trapped at the aqueous-air or
aqueous-oil surface by gelling the aqueous phase using a non-adsorbing hydrocolloid polymer. A replica of the colloidal par-
ticles, embedded in this gelled aqueous surface, is then made using a poly-dimethylsiloxane silicone elastomer (PDMS). The
PDMS replica of the surface can then be studied using either scanning electron microscopy (SEM) [97] or AFM [98]. This tech-
nique has been used extensively to measure particles at liquid surfaces [94]. An assumption in this gel trapping technique is
that additives (e.g., spreading solvent, non-adsorbing hydrocolloid polymer, PDMS) do not influence the contact angle that
the colloidal particle makes with the liquid surface. Recently Maestro et al. [99] noted a spreading solvent dependence to the
contact angles measured via this technique, which they attributed to the porosity/surface roughness of the particles that
they used.

Fig. 14. (a) Optical microscopy contact angle h vs particle radius for fluorinated silica particles at dodecane-air surface. Reprinted (adapted) with permission
from [86], � (1996) Royal Society of Chemistry. (b)–(d) Results for dodecyltrichlorosilane coated silica particles at PS-air surface. Reprinted (adapted) with
permission from [85],� (2012) American Physical Society. (b) AFM contact angle h vs radius R. Vertical (horizontal) dashed line Rmin (hmin). Inset: AFM phase
image and cross-sectional height. (c) Polydisperse sample of average radius �65 nmmeasured via TEM (solid rectangles and solid line), surface distribution
of this sample at PS-air surface measured via AFM (open rectangles). (d) AFM image of NPs at PS-air surface.
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Isa and coworkers [100,101] developed a freeze/fracture shadowing technique to study colloidal particles at liquid/liquid
surfaces. In this technique NPs are rapidly frozen at a liquid/liquid interface (eg. water/decane). This interface acts as a weak
fracture plane. NPs embedded in the fractured surface are shadow cast using tungsten at an oblique angle. Cyro-SEM can
then be used to image the shadow pattern from which the contact angle of the NP with the surface can be determined.

For both the gel trapping technique, as well as, the freeze/fracture shadowing technique it is difficult to assess if mechan-
ical stress, applied to the interface, in peeling the PDMS replica off or in fracturing the liquid-liquid surface perturbs the
heights h with which the NPs protrude out of the surface. Any perturbation would lead to a wider distribution in contact
angles h than is naturally present for an unfractured liquid/liquid interface.

McBride and Law developed a new experimental technique, which quantitatively tests the predictions of the modified
Young’s equation, as well as, associated equations [Eqs. (29), (31) and (32)]. The difficulty in the past has been to precisely
measure the contact angle h of NPs at the LV surface with high precision without perturbing these particles away from their
equilibrium position. These authors achieve this aim by preparing dodecyltrichlorosilane ligated silica particles at a
polystyrene(PS)-air surface in the liquid PS phase. The PS is then allowed to cool slowly below the glass transition temper-
ature so that these NPs are embedded and protrude above the PS solid-air surface. Atomic Force Microscopy (AFM) then
enables these embedded particles to be imaged with nanometer spatial resolution (Fig. 14b, inset). From a measurement
of the lateral radius b and protrusion height h one can determine the NP radius R and contact angle h for single isolated
NPs at this PS-air surface. Eleven different groups of NPs with differing average radii in the range R � 80 nm–1 lm were
made. Fig. 14b summarizes their measurements. The horizontal and vertical dashed lines on this figure represent, respec-
tively, hmin [Eq. (31)] and Rmin [Eq. (32)] below which single isolated NPs are no longer stable at the LV surface. The solid line
through the experimental data represents a best fit to the modified Young’s equation [Eq. (29)] with s = 0.93 nN. Hence, the
experimental data in Fig. 14b are in precise agreement with the predictions, which arise from the modified Young’s equation,
where the experimental data indicates that Rmin � 80 nm for this system.

As a further check on the reliability of Rmin � 80 nm, McBride and Law also studied a polydisperse NP sample possessing
an average particle radius Rave � 65 nm and a broad size distribution, as shown by the TEM size distribution in Fig. 14c (solid
rectangles and solid line). When this polydisperse sample adsorbed at the PS-air surface only large NPs, larger than �80 nm,
remained at this surface [Fig. 14c, AFM size distribution (open rectangles)], thus confirming the value for Rmin. It is somewhat
surprising that, for the AFM size distribution exhibited in Fig. 14c, even rafts of particles on the interface (Fig. 14d) did not
contain any particles smaller than Rmin. The equations in this section are strictly valid only for single isolated particles. These
equations do not preclude small particles, less than Rmin, within clusters. The absence of these small particles, within clusters,
suggests that the particle-particle cohesive energy (Ccoh in Fig. 11) is much, much smaller than E [Eq. (27)].

s � 1nN (Fig. 14b) is an order of magnitude larger than theoretical expectations arising from van der Waals contributions
to the line tension (Sections 2.1 and 2.3). This disagreement with theory is discussed in Section 3.1.3 together with a poten-
tial explanation.

X-ray and neutron reflectivity techniques have also been employed to investigate the adsorption of nanoparticles at the
air-water and water-hexane interfaces, and investigate the monolayer structure [102,103]. X-ray reflectivity has also been
applied to measure the contact angle of iron oxide nanoparticles coated with poly(ethylene glycol) [104]. Recently, Reguera
et al. [96] presented an experimental method based upon neutron reflectivity. This method, as mentioned above, provides a
route to the ‘‘in situ” measurement of the contact angle of small particles. In this way it circumvents problems associated
with indirect methods, which rely on the transport of monolayers to solid substrates for later analysis. The method was illus-
trated to measure the contact angles of 7 nm diameter gold nanoparticles coated with octanethiol (OT) layers and mixtures
of OT mercaptohexanol. The interpretation of the neutron reflectivity profiles requires a fitting to a geometrical model, which
can be validated using atomistic computer simulations.

3.1.2. Small spherical colloidal particles at liquid surfaces
As mentioned in Section 3.1, if the NPs are sufficiently small (R < Rgrav � 20 nm), then NPs adsorbed at the surface are in

thermodynamic equilibrium with NPs suspended in the bulk liquid solution. For thermodynamic equilibrium, the chemical
potential of a colloidal particle at the liquid surface must equal the chemical potential of a colloidal particle in the bulk liquid
phase. Hence, according to Prigogine and Marechal [105],

us

1�us
¼ ub

1�ub
expð�E=kBTÞ ð33Þ

where us (ub) is the surface (bulk) volume fraction of colloidal particles and E is given by Eq. (27). Additionally, the adsorbed
NPs must also be in mechanical equilibrium at the surface, i.e. the modified Young’s equation [Eq. (29)] is valid.

Wi et al. [32] used surface tension measurements to test the concepts implicit in Eq. (33). In this study the surface tension
r of the NP solution was measured as a function of bulk NP concentration in the liquid for various n-alkane solvents, from
n-nonane to n-octadecane at a temperature of 30 �C. The NPs used in these experiments were 5 nm diameter Au NPs
ligated with dodecanethiol. Fig. 15a shows this functional dependence for a selection of n-alkane solvents. The surface
tension results are complex. For pure n-alkanes, the surface tension increases with increasing n-alkane chain length
(rC18 > rC16 > rC12 > rC10 > rC9), as expected. However, at sufficiently high NP concentration (0.25 mg/mL) the surface tension
dependence is disordered, specifically, rC12 > rC16 > rC10 > rC18 > rC9.
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To deduce whether or not these surface tension results are consistent with Eq. (33) one must first relate the NP surface
volume fraction us to the solution surface tension r. The most straightforward assumption is to assume the following con-
stitutive equation

r ¼ usrNP þ ð1�usÞrsol ð34Þ

where the NP surface energy

rNP ¼ rSV � rSL ¼ rcrit � 20:9 mN=m ð35Þ

and rsol is the solvent (i.e. pure n-alkane) surface tension. The critical surface tension, rcrit, defines a property of the terminal
ligand group that coats the solid surface [80], specifically, the methyl terminal group (–CH3) for the current situation. Sol-
vents with rsol < rcrit (rsol > rcrit) completely wet (partially wet) the solid surface with h1 = 0 (h1 > 0). Eq. (34) allows one

Fig. 15. (a) Liquid-vapor NP solution surface tension r as a function of bulk dodecanethiol ligated Au NP concentration for selected n-alkane solvents. Solid
line: guide to eye. (b) Surface concentration us, deduced from Eq. (34), as a function of bulk NP concentration. Reprinted (adapted) with permission from
[32], � (2011) American Chemical Society.
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to convert each r value to us; thus, converting Fig. 15a into Fig. 15b. Figure 15b exhibits a much more systematic trend, with
increasing n-alkane chain length, than does Fig. 15a.

In order to understand how Eq. (33) may be used to interpret Fig. 15b, this equation can be rewritten more explicitly as

us

1�us
¼ ub

1�ub
exp

pb2rsol � 2pRhrNP � 2pbs
kBT

" #
: ð36Þ

Additionally

h ¼ Rð1� cos hÞ; ð37Þ

cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

R

� �2
s

; ð38Þ

and, according to Eq. (29),

s ¼ brsolð1� cos h1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb=RÞ2

q
Þ: ð39Þ

Hence, when Eqs. (37)–(39) are substituted into Eq. (36) each (us, ub) pair is a function solely of the lateral radius b. Thus, for
each (us, ub) pair in Fig. 15b one can determine the lateral radius b, or, equivalently the surface area a = pb2. Fig. 16a shows a
plot of a versus bulk NP concentration. Similarly, once b is known then h and s can be determined from, respectively, Eqs.
(38) and (39). s and h are plotted as a function of bulk NP concentration for each n-alkane solvent in, respectively,
Fig. 16b and c. Fig. 16a–c indicate that a, s, and h are independent of the bulk NP concentration, thus, average values for each
n-alkane solvent are displayed in Fig. 16d–f. a, s, and h are characteristic parameters, which define the positioning of indi-
vidual NPs at the liquid-vapor surface and, therefore, these three parameters are not expected to be a function of the bulk NP
concentration, at least, for dilute NP concentrations. At higher NP concentrations, NPs will exhibit surface clustering and the
NP-NP cohesive energy Ccoh (Fig. 11) will play a role. The independence of a, s, and h on bulk NP concentration (Fig. 16a–c)
may indicate that Ccoh plays a minor role relative to E [Eq. (27)].

We note that s � 1 pN and changes sign at C14 (Fig. 16e). The line tension magnitude found in this study agrees well with
theoretical expectations, but is a thousand times smaller than the line tension determined in Section 3.1.1. This difference in
line tension magnitudes found in these two studies is discussed in the next section.

3.1.3. Critique on spherical colloidal particles at liquid surfaces
In this section we provide a critique on our views on the line tension associated with NPs at liquid surfaces. In Sec-

tion 3.1.2, the line tension was deduced from surface tension measurements for the adsorption of dodecanethiol ligated
Au NPs at the alkane-air surface. These results will be dependent upon the accuracy of the constitutive equation [Eq.
(34)]. Additionally, at high NP surface coverage, the single NP energy E [Eq. (27)], used in Eq. (33), will require modification
due to the cohesive energy between adjacent NPs (i.e. Ccoh in Fig. 11). Despite these deficiencies in the modeling, we believe
that the magnitude of the line tension |s| � 1 pN is approximately correct. An additional estimate for s can be obtained from
the equation for Rmin [Eq. (32)]. The surface tension results in Fig. 15a indicate that dodecanethiol ligated Au NPs do not
adsorb at the nonane-air surface. FromWi et al. [32], rsol = 21.86 mN/m for n-nonane while h1 = 16.3� for a n-nonane droplet
on a dodecylsilane coated silicon wafer. Hence, hmin = 9.45� from Eq. (31). Therefore, from Eq. (32) s = 0.4 pN where we have
used Rmin = (2.5 + 1.7) nm, namely, the sum of the Au core radius and ligand length. These line tension results for dode-
canethiol ligated Au NPs at the alkane-air surface therefore agree with the line tension estimates from theory and from com-
puter simulations (Sec. 2.1). This agreement should be contrasted with the line tension results in Sec. 3.1.1 for

Fig. 16. (a) a = pb2, (b) s, and (c) h versus bulk NP concentration for various n-alkane solvents deduced from Eqs. (36)–(39). Average values for (d) a, (e) s,
and (f) h for each n-alkane solvent. Reprinted (adapted) with permission from [32], � (2011) American Chemical Society.
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dodecyltrichlorosilane ligated silica NPs at the PS-air surface where s � 1 nN, which is at least an order of magnitude larger
than the largest theoretical estimate. This line tension value is thought to be very accurate in both magnitude and sign
because all of the experimental results in Fig. 14b and c agree precisely with all of the predictions arising from the modified
Young’s analysis in Sec. 3.1.1 [Eqs. (29), (31), and (32)]. Why should the line tension results for Au NPs at an alkane-air sur-
face differ so significantly from the line tension results for silica NPs at a PS-air surface? We believe that the explanation
arises from the difference in the ligand and solvent structure. In Sec. 3.1.2 the Au NPs were coated with an alkyl-like ligand
(12 carbons long), which is very similar in nature to the alkane solvents in which these particles were dissolved in. Thus, the
primary contributions to the line tension are expected to arise from the surface tension and van der Waals contributions
included in the theory (denoted svdW), hence, the good agreement with theory. This should be contrasted with the silica
NPs at a PS-air surface studied in Sec. 3.1.1. The silica NPs were coated with an alkyl-like ligand (12 carbons long), whereas,
the PS ([C8H8]n) consists of a long linear carbon chain where a benzene ring is attached to every odd numbered carbon along
this chain. Thus, the NP ligand coating and PS solvent possess rather different chemical structures. It is thought that an addi-
tional point contact contribution to the line tension (denoted satom), not accounted for within the mean field calculations, is
responsible for the large line tension s � 1 nN observed in Sec. 3.1.1. This point contact line tension contribution is expected
to be important when the ligand and solvent are dissimilar in chemical nature. The magnitude of satom will be dependent
upon the atomic structure of both ligand and solvent and how this atomic structure is able to reorient and reconfigure at
the three-phase contact line in order to minimize the total free energy.

Matsubara et al. have found evidence for a point contact line tension contribution, in the vicinity of an n-alkane surface
freezing transition, for n-tetradecane droplets on an aqueous surfactant-air surface [106]. In this case, there is a discontinuity
in surface structure at the air-water and air-oil surfaces which gives rise to this point contact line tension contribution. Du
et al. [107] studied the Brownian diffusion of negatively charged carboxylate-modified polystyrene particles with diameters
24 nm–2000 nm at the water-silicone oil surface. Their results could only be explained if a line tension s � �1.4 nN was pre-
sent; such a line tension would arise from satom. The line tension significantly changes the contact angle of the very smallest
particles at the liquid/liquid surface and hence influences the Brownian diffusive motion of these particles.

Rusanov, Shchekin, and Tatyanenko [108] and Schimmele, Napiórkowski and Dietrich [109] have criticized using the
modified Young’s equation [Eq. (29)] to deduce the line tension s. They demonstrate for a liquid droplet on a solid substrate
[108,109], as well as, for a liquid droplet on a liquid surface [109] that, as all interfaces are diffuse, how one defines the place-
ment of the ‘‘Gibb’s dividing surface”, which separates phases (e,g., the solid phase from the liquid phase, etc.) gives rise to
additional terms in the modified Young’s equation, specifically, the ‘‘notional derivatives” ds

dh

�� and ds
db

��. The line tensions
inferred from the modified Young’s equation may therefore be affected by the notional shifts in the interface location.
The good agreement between the experiments for silica NPs at a PS-air surface and the modified Young’s equation and asso-
ciated equations (Fig. 14b and c), in the absence of any notional derivatives, suggests that the changes associated with these
notional derivatives are small, at least, for this particular experiment.

For ligated NPs, computer simulations have demonstrated that the ligated layer may under certain circumstances, for
large ligand length to core diameter ratio, acquire liquid-like properties and deform at a surface [60] or, alternatively, exhibit
clustering of adjacent ligands thus leading to a patchy ligand layer [110]. However, not all computer simulations display evi-
dence for patchiness or liquid-like properties of the ligand layer [111]. If the ligand layer exhibited patchiness or liquid-like
properties then one might expect the experimental data for silica NPs at the PS-air surface to deviate from the predictions
arising from the modified Young’s equation for a spherical NP at a liquid surface. No deviations were observed
(Fig. 14b and c) thus indicating that the assumption of a spherical NP is most probably valid. The modified Young’s equation
is known to depend upon shape. For example, the modified Young’s equation for a spherical colloidal particle at a liquid sur-
face [Eq. (29)] differs from the modified Young’s equation for a liquid droplet at a solid surface [Eq. (7b)]. Faraudo and Bresme
[112–114] have used computer simulations to examine the stability of nonspherical NPs at liquid surfaces and found that
oblate particles are far more stable than prolate particles, indicating the sensitive nature of the free energy to particle shape
for particles at liquid surfaces. The thermodynamic model of Faraudo and Bresme has been used to estimate the line tension
of PS and PMMA micrometer size ellipsoids at liquid-liquid interfaces [115]. It was found that the contact angle of the par-
ticles increased with particle aspect ratio. This effect was interpreted in terms of an effective line tension. Line tension values
of order nN were reported in line with the observations for silica nanoparticles at the PS-air surface in Fig. 14b.

The adsorption of NPs at LV surfaces, as described by the modified Young’s equation, exhibits a very distinctive shape
(solid lines in Fig. 14a and b). The contact angle h. that the NP makes with the LV surface, only deviates significantly from
the macroscopic Young’s contact angle h1 for particle radii very close to Rmin. For particle radii R > 2Rmin, to a good
approximation, h � h1 to within about �5%. h is only a sensitive function of R for particle radii Rmin < R < 2Rmin. Of course,
if R < Rmin, single isolated NPs are unstable at the LV surface and sink below this surface into the bulk liquid phase. As Rmin

scales directly with s [Eq. (32)], the use of small particles in computer simulations (R � 1–2.5 nm) necessarily means that
these studies are only able to detect very small line tension magnitudes in the range found by theory. Namely, the detection
of larger line tensions via computer simulations requires using larger particles because small particles, with R < Rmin, are
unstable at the LV surface.

As mentioned in the preceding paragraph, for R > 2Rmin to a good approximation h � h1 therefore from Eq. (27) one
obtains for the attachment energy of the particle to the surface

DEatt � �rLVpR2ð1� cos h1Þ2 þ s2pR sin h1; R > 2Rmin: ð40Þ

B.M. Law et al. / Progress in Surface Science 92 (2017) 1–39 21



In the absence of a line tension, this reduces to the often quoted attachment energy (except for the negative sign)

DEatt ¼ �rLVpR2ð1� cos h1Þ2 ð41Þ
which has a minimumwhen h1 = 90o [116]. Occasionally, Eq. (41) is misinterpreted to imply that all particles at a liquid sur-
face possess a contact angle h1 = 90o. This is incorrect. h1 is not a variable in Eq. (41). Instead, h is a variable in Eq. (27) and,
for s = 0, E possesses a minimum energy when h = h1 [see Eq. (28)]. In other words, when s = 0, particles in equilibrium at a
liquid surface possess a contact angle h = h1, determined by Young’s equation [Eq. (5a)]. DEatt is the difference between the
modified Young’s energy minimum and the bulk energy and one must supply at least this energy to remove the particle from
the surface into the bulk liquid phase. [If a particle at the surface is removed into the bulk gaseous phase then �cosh1 is
changed to +cosh1 in Eq. (41).] In reality one must supply more than this energy |DEatt| to remove this particle from the sur-
face into the bulk liquid phase. According to Fig. 13b, one must supply a desorption energy

DEd ¼ DEa � DEatt ð42Þ
to remove a particle from the surface, which is larger than |DEatt| because of the presence of the energy barrier. From Fig. 13b,
the height of the energy barrier DEa is almost independent of the particle radius. One can obtain an estimate of DEa by noting
that this energy barrier occurs at approximately h1/3 for R > 2Rmin, namely, in this region h � h1 and then the 140 nm curve
in Fig. 13b is approximately sinusoidal up to h1 at the modified Young’s minimum. Therefore, from Eq. (27), to a good
approximation

DEa � rLV cos h12pR2ð1� cosðh1=3ÞÞ þ s2pR sinðh1=3Þ � rLVpR2 sin2ðh1=3Þ; R > 2Rmin: ð43Þ
These estimates for the adsorption DEa [Eq. (43)] and desorption DEd [Eq. (42)] energies to adsorb or desorb a particle from a
liquid/vapor surface should provide reasonable estimates for most particles provided that R > 2Rmin. In the narrow particle
range Rmin > R > 2Rmin one should return to Eq. (27) to more carefully estimate these adsorption and desorption energies.

3.2. Liquid droplets at surfaces

The ideas set out in Sec. 3.1.1, for spherical colloidal particles at liquid surfaces, can also be applied to liquid droplets at a
surface with only slight modifications. In this case, the energy of the liquid droplet is minimized by changing the droplet
shape at constant droplet volume. The essential ideas are analyzed in detail for liquid droplets at a solid surface in Sec.
3.2.1. The more complex situation of liquid droplets at liquid surfaces is considered in a more cursory fashion in Sec. 3.2.2.

3.2.1. Liquid droplets at solid surfaces
In this section the influence of the line tension on a small droplet situated on a flat solid surface is considered, where the

droplet dimensions are less than the capillary length j�1 [Eq. (1)], thus, gravity can be ignored. This liquid droplet (Fig. 17a)
possesses a contact angle h, lateral radius r, height h, liquid-vapor radius of curvature and area denoted, respectively, by R
and A. {The results in this section are also approximately correct for liquid droplets at liquid-vapor surfaces [e.g., oil droplets
at the water-air surface (Fig. 17b) in the presence of a surfactant [117], Sec. 3.2.2] provided that the liquid-vapor surface is
approximately flat.}

Following the analysis in Sec. 3.1.1, the energy of the liquid droplet at the solid-vapor surface is

Es ¼ rLVAþ rSLpr2 þ s2pr ð44Þ
while the energy of this droplet when completely removed from the solid surface (into the vapor phase) is

Eb ¼ rLVA1 þ rSVpr2 ð45Þ
where A1, the area of the LV surface, is related to the total oil droplet volume V via

A1 ¼ ð36pV2Þ1=3: ð46Þ
Geometry provides the following interconnections between V, A, h, r, and R.

V ¼ ph2ð3R� hÞ=3 ¼ phðh2 þ 3r2Þ=6; ð47Þ

A ¼ 2pRh ¼ pðh2 þ r2Þ ð48Þ
and

R ¼ ðh2 þ r2Þ=2h: ð49Þ
As in Sec. 3.1.1 the important quantity to consider is the energy difference E = Es � Eb

E ¼ rLV ðA� A1Þ þ rSLpr2 þ s2pr � rSVpr2 ð50Þ
which can be transformed to
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E ¼ �Spr2 þ rLVph2 þ s2pr � rLVA1 ð51Þ
with spreading coefficient S [Eq. (4)].

For the colloidal particle at a liquid surface (Fig. 12a) one examined how the energy E of the particle [Eq. (27)] varied as a
function of the height h (or correspondingly contact angle h) of the particle above the surface. For a droplet at a solid surface
one needs to consider the energy E [Eq. (51)] as a function of the contact angle h where the volume V of the droplet is fixed
(i.e. dV = 0). For this situation the energy minimum is given by

dE
dr

¼ 0 ¼ �S2pr � rLV
4ph2r

h2 þ r2
þ 2ps ð52Þ

where, in deriving this equation, we have used the fact that

dV ¼ 0 ¼ p
2
½ðh2 þ r2Þdhþ 2hrdr� ð53Þ

and dA1 = 0.
As

r=R ¼ sin h ð54Þ
and

h ¼ rð1� cos hÞ= sin h ð55Þ
the modified Young equation given in Eq. (52) can be transformed into the better known equation

cos h ¼ cos h1 � s
rLV r

ð56aÞ

for the situation shown in Fig. 17a or, alternatively,

cos h ¼ cos h1 � s
rOWr

ð56bÞ

for the situation shown in Fig. 17b. This modified Young’s equation describes how the droplet contact angle h changes, rel-
ative to its macroscopic value h1, due to the presence of a line tension s. Of course, in the limit of zero line tension (s = 0) or
infinitely large droplet (r?1) h? h1. This modified Young’s equation [Eq. (56a)] was first suggested without proof by Peth-
ica [118] before subsequently being confirmed by Scheludko, Toshev, and Bojadjiev [33] and Pethica [119].

As in Sec. 3.1.1, one should also examine the second energy derivative, in order to deduce the stability of the droplet at the
solid surface where [22]

d2E

dr2
¼ 2p �Sþ 2rLVh

2ð5r4 � h4Þ
ðh2 þ r2Þ3

" #
ð57aÞ

� 2p
r

½5s� 6S r� ð57bÞ

The second approximate equality [Eq. (57b)] is valid for flat droplets (i.e. h� r), near wetting, where we have used Eq. (52).

Fig. 17. (a) Liquid droplet on a flat solid substrate. Contact angle h, liquid-vapor radius of curvature R and area A, lateral radius r, and height h. (b) Oil droplet
at the water-air surface, which is assumed to be flat.
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Eq. (56a) has frequently been used, in the past, to deduce the line tension s of liquid droplets on solid surfaces by exam-
ining the functional dependence of cosh with 1/r (the inverse droplet radius) using either optical microscopy [10,47] or
Atomic Force Microscopy [6,120] techniques. If the contact angle of the droplet is small then (monochromatic) optical inter-
ference fringes, observable within the droplet (Fig. 18a and b), can be used to accurately measure h. For larger contact angle
droplets, the contact angle can no longer be deduced using optical interference techniques, thus, alternative (optical) tech-
niques must be used, for example, magnified shadow graphs of the droplet shape [121]. AFM techniques provide higher spa-
tial resolution of the droplet shape but are less frequently used. Optical interference techniques are particularly useful for
examining the variation in the line tension, in the vicinity of a wetting transition, where the contact angle is small. Wang,
Betelu and Law [9,10] examined the wetting behavior of liquid droplets of n-octane or 1-octene on a n-hexadecane silanated
silicon wafer using optical interference. As the droplets were near a wetting transition (Fig. 4a) their contact angle was small
and interference rings could be observed when the droplets were viewed using monochromatic light (Fig. 18a). From a fit to
the positioning of the interference maxima and minima one can obtain the contact angle h (Fig. 18b). By condensing more
liquid onto the droplet (at fixed silicon wafer temperature) one can study how the contact angle changes as a function of
droplet size. According to the modified Young’s equation [Eq. (56a)], cosh should vary linearly with 1/r where the slope is
proportional to the line tension s. This is indeed what is observed in Fig. 18c. By increasing the silicon wafer temperature
the droplet contact angle decreases because one is approaching a wetting transition, hence, s can therefore be studied on
approaching a first-order wetting transition. From data such as Fig. 18c one obtains a plot of s versus t = (Tw � T)/Tw
(Fig. 19). As predicted by theory (Sec. 2.3) the line tension s changes from negative to positive as one approaches a first-
order wetting transition. The line tension magnitude �0.1–0.3 nN is similar in magnitude, or slightly larger, than the largest
predictions that arise from theory.

As discussed later (Secs. 3.2.2 and 3.2.3) there is an ongoing debate as to whether or not a droplet possessing a negative
line tension can cause the three-phase contact line to become unstable. For a wide temperature range in Fig. 19, liquid dro-
plets possess a negative line tension. Hence, one might wonder about droplet stability in this region. According to Eq. (57b),
as S � �2 	 10�4 N/m and s � �0.4 nN then the critical radius rcrit at which d2E/dr2 = 0 occurs at

rcrit ¼ 5s
6S

� 2	 10�6 m ð58Þ

and, therefore, all of the droplets studied in Fig. 19 are stable (i.e. for all droplets r > rcrit and, hence, d2E/dr2 > 0). However, Eq.
(57b) only provides information about the overall droplet stability of spherical capped shaped droplets, rather than the sta-
bility of the three-phase contact line to contact line fluctuations. Guzzardi, Rosso, and Virga [29] therefore examined the sec-
ond variation of the free energy and demonstrated that, for the conditions in Fig. 19, the three-phase contact line is stable to
sinusoidal fluctuations of this contact line (see Sec. 3.2.3).

As discussed in Section 2.1 computer simulation studies have followed the experimental approach, discussed above, to
compute line tensions of droplets on solid surfaces [61–67]. The simulated line tensions in general involve either simple fluid
droplets modeled with the Lennard-Jones potential or water droplets. In the latter case, for water droplets at a carbon sur-
face, the reported line tensions vary in the range 1–100 pN. In several of these investigations the curvature dependence of
the surface tension is omitted and the surface tension is assumed to be the same as for a flat interface. This is expected to be a

Fig. 18. (a) Optical interference fringes observed within an n-octane droplet deposited upon a hexadecyltrichlorosilane coated silicon wafer. (b) Fit of the
maxima and minima interference fringes in deducing the droplet contact angle h in (a). (c) Plot of cosh versus 1/r from which the line tension is deduced
using Eq. (56a). Reprinted (adapted) with permission from [10], � (2001) American Physical Society.
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good approximation for large droplets however, for small droplets with nanometer radii, this approximation should be trea-
ted with caution.

3.2.2. Liquid droplets at liquid surfaces
In the previous section, the influence of line tension on a liquid droplet on a molecularly smooth flat solid surface was

examined. For liquid droplets on liquid surfaces (e.g., an oil droplet at the air-water surface), the situation is more compli-
cated because of the curvature of the air-liquid surface. In this case, the line tension influences the angles a and b in Fig. 20
according to the Neumann-Young equation [122]

rAO cosaþ rOW cos b ¼ rAW � s
r

ð59Þ

where forces parallel to the air-water interface have been accounted for and it is assumed that the angle w � 0. The angles a
and b, however, are difficult to measure independently. If these angles are sufficiently small, this equation can be trans-
formed to [4]

rAO cos
rOWd

rOW þ rAO

� �
þ rOW cos

rAOd
rOW þ rAO

� �
¼ rAW � s

r
ð60Þ

by taking into account forces normal to the air-water interface where the dihedral angle d = a + b.

Fig. 20. Oil droplet (O) of lateral radius r at the air(A)/water(W) surface with interfacial tension rij, between two phases i and j, and line tension s. The
angles a, b and w are defined in the figure.

Fig. 19. Line tension s for n-octane or 1-octene droplets on a hexadecyltrichlorosilane coated Si wafer near a first-order wetting transition. Reprinted
(adapted) with permission from [9], � (1999) American Physical Society.
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Matsubara and coworkers [106,123–125] used interferometry to measure the dihedral angle d for n-alkane oil droplets at
an aqueous surfactant air surface as a function of droplet radius r; thus, allowing the line tension to be determined using Eq.
(60). They used the cationic surfactant alkyltrimethylammonium bromide (Fig. 21a) in their studies. This surfactant pos-
sesses a hydrophilic charged head group, which resides in the water phase, as well as, a hydrophobic alkyl tail, which avoids
the water phase and protrudes into either the oil or air phase. Hence, this surfactant is found at both the water-air, as well as,
water-oil interfaces. As the temperature T or surfactant molality m in the bulk water phase is changed, the two-dimensional
(2D) surface film at the air-water surface can exist in either a 2D gaseous (G), liquid (L) or solid (S) state. Fig. 21b provides an
example of this 2D surface phase diagram [22] for a n-hexadecane oil droplet (C16) in the presence of the surfactant dode-
cyltrimethylammonium bromide (DTAB) where the corresponding line tensions in the G and L phases, at room temperature,
are shown in Fig. 21c [106]. The 2D film at the air-water interface adjoins the three-phase oil-water-air contact line and
therefore has a significant influence on the line tension of this contact line. For example, the results in Fig. 21c demonstrate
that when this 2D air-water film is in the G (L) phase the line tension is positive (negative). As discussed later in this section
the sign of the line tension may significantly influence the macroscopic behavior of oil droplets at this aqueous surfactant air
surface.

At lower temperatures when the 2D surface film freezes, this system develops considerable complexities because surface
freezing transitions can occur at the air-water and/or air-oil interfaces depending upon the n-alkane and surfactant chain
lengths. Matsubara and coworkers [106] have therefore conducted a systematic study of these effects as a function of both
n-alkane and surfactant chain length. They studied the n-alkanes tetradecane (C14), hexadecane (C16) and octadecane (C18)
and the alkyltrimethylammonium bromide surfactants DeTAB (C10S, which has an alkyl tail 10 carbons long), DTAB (C12S)
and TTAB (C14S). These various choices give rise to differing surface phase transitions at either the water-air and/or oil-air
interface. For sufficiently long n-alkane liquids (n > 14), the oil droplet undergoes a surface freezing transition at the oil-air
surface from a surface liquid state (SL) to a surface frozen state (SF) [126] as the temperature is decreased below the surface
freezing transition (Fig. 21e). The presence/absence of this surface freezing necessarily influences the line tension because
the oil phase adjoins the three-phase oil-water-air contact line. By selectively choosing differing alkyl surfactant chain
lengths, combined with differing n-alkane chain lengths, one can obtain differing solid phases at the water-air surface.
For example, for sufficiently short surfactant and n-alkane chain length (eg. TTAB-tetradecane) the mixture alkane/surfactant
film transitions from a monomolecular liquid state L to a monomolecular solid state (denoted S1 in Fig. 21d) at the air-water
surface. However, if the n-alkane is sufficiently long (eg. DTAB-hexadecane) the air-water monomolecular mixed liquid state
L now transitions to a bilayer solid state, denoted S2, which possesses a solid upper alkane monolayer atop a mixed liquid-
like lower layer (Fig. 21d). For the DTAB-hexadecane system the SL? SF transition at the oil-air surface occurred at a similar
temperature as the L? S2 transition at the water-air surface. Hence, it is difficult to separate out the effects of surface freez-

Fig. 21. (a) Chemical structure of cationic surfactant dodecyltrimethylammonium bromide (DTAB), (b) 2D surface phase diagram (molality m of DTAB
versus temperature T) for a n-hexadecane oil droplet (C16) at the aqueous surfactant air surface showing the gaseous (G), liquid (L) and solid (S) phases.
Reprinted (adapted) with permission from [22], � (2015) American Chemical Society. (c) Variation of line tension with DTAB molalitym for the C16 + DTAB
system at room temperature, (d) schematic of surface phase transitions that may occur at the air-water interface for varying surfactant concentrations and
temperatures, (e) schematic surface phase transitions that may occur at the air-oil surface for varying surfactant concentrations and temperatures where SL
(SF) denotes a surface liquid (frozen) state. Reprinted (adapted) with permission from [106], � (2014) Elsevier.
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ing at the oil-air surface from the liquid-to-bilayer solid transition happening at the water-air surface and the consequent
influence on line tension behavior. Thus, another system was studied (DeTAB-octadecane) where surface freezing occurs
at the oil-air surface in the absence of any liquid-to-solid transition at the water-air surface. The influence of these various
solid surface phase transitions at both the oil-air and water-air surface and how they impact the line tension has recently
been reviewed by Matsubara and coworkers [106] and will not be re-examined here.

A different aspect of this system is examined in the remainder of this section, namely, how the dynamics and stability of
oil droplets at the aqueous-air surface are influenced by the sign of the line tension. As noted earlier, the line tension is pos-
itive (negative) in the G (L) phase (Fig. 21c) where an explanation for the sign of the line tension in the G and L phases is
provided in Takata et al. [124]. Droplets always coalesce (fragment) in the G (L) phase. Ushijima et al. [125] have speculated
that this coalescence/fragmentation behavior could be caused by the sign of the line tension.

Paneru et al. [22] have probed this coalescence and fragmentation behavior in more depth. Fig. 22 provides an example of
coalescence in the G phase. For DTAB + hexadecane the liquid-air surface is approximately flat [117], hence, the theory devel-
oped in Sec. 3.2.1 is approximately valid and can be used to understand the observed experimental behavior. For coalescence,
both the two smaller pre-coalescence droplets, as well as, the larger post-coalescence droplet must be mechanically stable.
In other words, d2E/dr2 > 0 where the second energy derivative is given in Eq. (57b). This inequality is certainly true in the G
phase because s (�10 pN) is positive and S (��4 mN/m) is negative. A second condition for coalescence is that the total
energy decreases upon coalescence where, at the same time, the total oil droplet volume must remain constant. This condi-
tion can be encapsulated using the energy difference [22]

DE ¼ E1 � 2E2 ¼ pr1½3ð21=3 � 1ÞSr1 � 4ð22=3 � 1Þs�=2 ð61Þ

which is the difference in energy between the larger droplet of energy E1, volume V1 and radius r1 and the two smaller dro-
plets each of energy E2 and volume V1/2. Therefore, for coalescence, we additionally require thatDE < 0. As S is negative and s
is positive, in the G phase, this second requirement is also certainly valid. Additionally, as |S|r� s, the surface tension con-
tribution is the primary component, which causes coalescence. In the G phase all oil droplets coalesce such that, at the end of
the experiment, one single large oil droplet remains at the aqueous-air surface.

The L phase behavior for DTAB + hexadecane is rather complex (Fig. 23). The hexadecane oil droplet, when first deposited
upon the aqueous-air surface in the L phase forms a rather flat oil droplet many millimeters in diameter with an oil film
thickness of the order of �80 nm where the periphery of the oil droplet is decorated with ‘‘petals” composed of valleys of
oil (Fig. 23a). With increasing time this oil droplet spreads to a much thinner oil film and holes nucleate in this oil film where
the periphery of these holes is decorated with petals (Fig. 23b). The hole diameter grows linearly with time at a growth
velocity of �117 lm/s (Fig. 23c). Eventually the holes expand to such a diameter that overlapping holes collide, which leads
to the complete destruction of the oil film into much smaller oil droplets, now only a few hundred microns in diameter.
These smaller oil droplets are unstable and fluctuate rapidly in time over time scales of a few seconds and they break up
into smaller unstable and metastable droplets (Fig. 23d). Unstable droplets either have a ‘‘rubber raft” shape, with a thinner
central film and a thicker outer rim (Fig. 23d, t = 2.5 s, right droplet), or a non-symmetric shape (Fig. 23e, upper inset). Meta-
stable droplets possess a spherical cap-shape with circular interference rings (Fig. 23e, lower inset). The metastable droplets
were used to measure the line tension, in the L phase (Fig. 21c), with use of the Neumann-Young equation [Eq. (60)]. Large

Fig. 22. Coalescence of n-hexadecane oil droplets in the G phase at an aqueous DTAB air surface. Scale bar = 100 lm. Reprinted (adapted) with permission
from [22], � (2015) American Chemical Society.
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unstable droplets (Fig. 23e, circles with plus signs) evolve over time into metastable droplets (Fig. 23e, circles) where dro-
plets with average radii �r > 100 lm (< 100 lm) are unstable (metastable). Unstable droplets fluctuate rapidly on time scales
of seconds (Fig. 23d), whereas, metastable droplets are stable over time scales of many minutes. However, metastable dro-
plets eventually sink below the aqueous-air surface into the water phase. This sinking of droplets into the aqueous phase can
be qualitatively understood from Eq. (57b), which defines a critical radius

rcrit ¼ 5s
6S

� 80 lm ð62Þ

with d2E/dr2 = 0. This estimate was determined using s � �55 pN and S � �5.6 	 10�4 mN/m in the L phase. Thus, spherical
cap-shaped droplets with r > rcrit are mechanically stable as d2E/dr2 > 0, however, this does not necessarily imply that spher-
ical cap-shaped droplets possess the lowest energy state. The experimental results indicate that ‘‘petal shaped” droplets and
‘‘rubber raft shaped” droplets must possess a lower energy than spherical cap-shaped droplets. Spherical cap-shaped dro-
plets with r < rcrit are mechanically unstable, as d2E/dr2 < 0, and this will be the reason why the metastable droplets exhibited
in Fig. 23e eventually sink into the aqueous liquid phase, driven by line tension effects. {This effect is exactly analogous to the
existence of an Rmin [Eq. (32)] for spherical colloidal particles at the liquid-air surface.} The density of hexadecane
(qH = 0.77 g/cm3) is less than that of water (qW = 1.0 g/cm3), hence, although the surface and line tensions cause these dro-
plets to sink into the water phase, this effect is counterbalanced by the buoyancy and gravitational forces whose net effect is
to cause these oil droplets to float. Thus, the oil droplet at the aqueous-air surface is somewhat like an iceberg where only a
little of the oil protrudes above the liquid surface into the air phase.

The calculations in Sec. 3.1.1, for a spherical particle at a liquid surface, allow one to estimate the protrusion height of the
oil droplet into the air phase. As most of the oil is submerged below the water-air surface, this oil droplet can be approxi-
mated by a sphere of radius R. Eq. (28) determines the positioning of a spherical object at a liquid-vapor surface if surface and
line tension terms are present. If the weight and buoyancy forces, acting on the particle, are included then Eq. (28) is mod-
ified to

dE
dh

¼ dE
dh

dh
dh

¼ rLV cos h12pRþ s2p cot h� rLV2pR cos h� qHg
4
3
pR3 þ qWgVL ¼ 0 ð63Þ

where qH and qW are, respectively, the hexadecane and water densities while

VL ¼ 4
3
pR3 � 1

3
ph2ð3R� hÞ ð64Þ

is the volume of the displaced liquid. A numerical solution of Eq. (63) gives h � 0.4 lm for a droplet of radius R = 50 lm
where an estimate for cosh1 is obtained from the spreading coefficient [Eq. (5b)] while h, R and cosh are interrelated
via Eq. (37). In this calculation we have assumed that qH = 0.77 g/cm3, qW = 1.0 g/cm3, s = �55 	 10�12 N [124],
S = �5.6 	 10�4 mN/m [22], and rLV = 71 mN/m [117]. This estimate for h (�0.4 lm) agrees approximately with the

Fig. 23. Fragmentation behavior of hexadecane (C16) oil droplets at the aqueous DTAB air surface in the L phase. (a) Large �3.5 mm diameter C16 droplet
shortly after deposition. Oil ‘‘petals” decorate the three-phase contact line. (Scale bar = 1 mm.) (b) C16 droplet in (a) spreads to a thin oil film. (Scale
bar = 1 mm.) Petal decorated holes nucleate in this oil film where these holes grow linearly with time as shown in (c). (d) Overlapping holes eventually
destroy this oil film and the film breaks up into unstable fragmenting oil droplets. (Scale bar = 100 lm.) (e) Droplet distribution time evolution for unstable
(upper inset, crossed circles, rP 100 lm) and metastable droplets (lower inset, open circles, r 6 100 lm). Metastable droplets eventually sink further into
the water medium, as described in the text. (Scale bar = 100 lm.) Reprinted (adapted) with permission from [22], � (2015) American Chemical Society.
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experimental observations for the sinking of an oil droplet into the water phase when r < rcrit (see the movie ‘‘Disappearing
single droplet” in Paneru et al. [22]). Note that Eq. (63) determines the mechanical equilibrium for a spherical droplet at the
water-air surface in the presence of surface tension, line tension, buoyancy, and gravitational forces. The condition d2E/
dh2 = 0 determines the minimum radius of the droplet Rmin below which all droplets detach from the water surface and
become submerged within the aqueous phase. Eq. (63), however, does not determine the ultimate size of this oil-in-water
micelle (within the bulk water phase). Browne et al. [127] describe a simple model that determines the thermodynamic
equilibrium micelle size taking into account surface tension, bending energy, and electrostatic effects.

Finally, before completing this section, we note that the contact angles of cylindrical nanodroplets at liquid-liquid inter-
faces have been investigated using molecular dynamics computer simulations [128]. The system was modeled using
Lennard-Jones fluids, and the spreading of the droplets was investigated by systematically varying the interactions between
the droplet and the liquid phases. Computed surface tensions and contact angles were used to test the Neumann triangle
construction [53]. It was found that this construction reproduces accurately the spreading behavior inferred from the sim-
ulations, without the need for including line tension terms. The lack of an obvious line signature could be connected to the
small value of this quantity. The line tension of the non-deformable nanoparticles adsorbed at Lennard-Jones fluid interfaces
is of the order of pN. From the Neumann-Young equation [Eq. (59)], the influence of the line tension can be estimated by
considering 1� s=ðrrAW ). For s � pN, r � 1 nm, and rAW � 20 mN/m we obtain s=ðrrAW) = 0.05, which is a small correction,
and therefore this explains the good agreement between the simulated contact angles and the Neumann construction. It
would be very interesting to explore other interfaces (e.g. carbon-water), which involve different type of interactions, and
for which larger estimates of the line tension (10–100 pN) have been reported [64–67].

3.2.3. Critique on liquid droplets at surfaces: negative line tensions and contact line stability/instability
In Sec. 3.2.1 the line tension for small (6–30 lm radii) n-octane or 1-octene droplets on a solid surface were observed to

change from a negative line tension to a positive line tension on approaching a first-order wetting transition (Fig. 19). These
observations confirm the first-order wetting predictions in Sec. 2.3. However, other theoretical predictions in Sec. 2.3 for (i)
the variation in the boundary tension on approaching a prewetting transition (Fig. 9) and (ii) the variation in the line tension
on approaching a critical wetting transition (Fig. 10) still remain untested.

Sec. 3.2.2 summarizes experimental observations for oil droplets at an aqueous surfactant air surface. In Sec. 3.2.2, oil dro-
plets possessing a positive line tension are stable and coalesce as a function of time (Fig. 22). This behavior should be con-
trasted with oil droplets possessing a negative line tension. Two types of behavior were observed for negative line tension
droplets (Fig. 23e): (a) sufficiently large droplets with average lateral radius r > 100 lm were unstable, exhibited ‘‘petal” or
‘‘rubber raft” shapes and fragmented into smaller droplets, whereas, (b) smaller droplets (r < 100 lm) were metastable and
eventually sunk into the water medium with only a little of the oil droplet protruding above the water surface where surface
tension, line tension, gravitational, and buoyancy forces must be taken into account.

As eluded to earlier (Sec. 1), there has been considerable debate in the theoretical literature as to whether or not a neg-
ative line tension can lead to an instability in the three-phase droplet contact line [28,40–44]. Droplets possessing a negative
line tension were observed in both Secs. 3.2.1 and 3.2.2. Are these observations consistent with theory? In Eq. (57) the sec-
ond energy derivative for a spherical cap shaped droplet on a flat surface was determined. This second energy derivative only
provides information about the stability of the droplet as a whole, relative to this droplet being submerged in one or other of
the bulk phases. In order to understand the stability of the three-phase contact line of a liquid droplet one must consider the
second variation of the energy. Rosso and Virga [26] and Brinkmann, Kierfeld and Lipowsky [27] have used the second energy
variation to study contact line stability for liquid filaments on a solid substrate where there are regions of stability, as well as,
regions of instability when the line tension is negative. Of relevance to the current review, in this regard, is the work of
Guzzardi, Rosso and Virga [29] who studied three-phase contact line stability for spherical cap shaped droplets on a solid
surface. Fig. 24 is taken from this publication (their Fig. 7) which plots �log10js
j versus cos h1 where the reduced line
tension

s
 ¼ s
rLV

ffiffiffiffiffiffiffiffiffiffiffiffi
3V=p3

p ð65Þ

and the lines are residual stability curves with index frommrs = 2 (lower curve) to 100 (upper curve) for droplets possessing a
negative line tension. The higher the residual stability index, the more stable is the droplet to sinusoidal perturbations of the
three-phase contact line. The pluses are experimental data from Wang, Betelu and Law [10] for negative line tension n-
octane droplets on a hexadecyltrichlorosilane coated silicon wafer at various temperatures approaching a first-order wetting
transition (Sec. 3.2.1 and Fig. 19 in this review). Most of this data lies near a curve with residual stability index mrs = 50,
hence, these droplets are highly stable to sinusoidal fluctuations of the three-phase contact line.

One might wonder whether or not this contact line instability theory of Guzzardi, Rosso and Virga [29] can qualitatively
explain the experimental observations in Fig. 23e where droplets with radii r > 100 lm (r < 100 lm) are unstable
(metastable)? In applying the Guzzardi, Rosso and Virga theory one must keep in mind that their theory is strictly applicable
only for liquid droplets situated upon a solid substrate, whereas, the data in Fig. 23e is for an oil droplet at the aqueous-air
surface (where this surface is almost flat). We will ignore this technicality here. For this system, S = �5.6 	 10�4 mN/m,
rOW = 30 mN/m, and s = �55 pN, therefore,
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cos h1 ¼ 1þ S
rOW

� 0:99998; ð66Þ

the reduced line tension

s
 ¼ s
rOW

ffiffiffiffiffiffiffiffiffiffiffiffi
3V=p3

p ¼ �5:3	 10�5 ð67Þ

for droplets with a radius r � 100 lm and height h � 2.3 lm, hence

�log10js
j � þ4:3: ð68Þ
Eqs. (66) and (68) would correspond to a point lying approximately on the unstable-residual stable boundary on Fig. 24. At
fixed cosh1, if the volume V is increased then �log10|s⁄| also increases. Hence, the Guzzardi, Rosso and Virga theory seems to
indicate that larger droplets are more stable than smaller droplets, which disagrees with the observations in Fig. 23e. The
reason for this discrepancy between the Guzzardi, Rosso and Virga theory and experiment is not understood at this time.

A phenomenological theory of Clarke [40,41] considers sinusoidal perturbations of the three-phase contact line, in a man-
ner similar to Guzzardi, Rosso and Virga [29]. The Clarke theory qualitatively explains the contact line instabilities observed
in Fig. 23, as described below. Clarke considers sinusoidal contact line fluctuations at a three-phase contact line consisting of
either two fluid phases and a solid phase [40], or, three fluid phases [41]. Although the later work [41], involving three fluid
phases, is more consistent with the experimental geometry actually used in Sec. 3.2.2 (Fig. 20), this geometry involves exper-
imental parameters which are more difficult to assess. Therefore, akin to the approximation used in Fig. 17b, the earlier
Clarke publication [40] (for two fluid phases and a solid phase) is used to estimate the contact line fluctuation wavelengths
which are unstable. A contact line fluctuation of wave vector q and amplitude gq possesses an energy

WðqÞ ¼ Ws þWr þWg ¼ 1
2
jgqj2rOWh21½ksjqj2 þ jqj þ k�2

g jqj�1�; ð69Þ

whereWs,Wr, andWg are the energies that arise from, respectively, line tension, fringe elasticity [50], and gravitational con-
tributions. Here

ks ¼ s
rOWh21

ð70aÞ

and

kg ¼ 2rOW

gDq

� �1=2

: ð70bÞ

Fig. 24. Stability diagram for liquid droplets on a solid substrate where s⁄ is the reduced line tension [Eq. (65)] while the lines correspond to a residual
stability indexmrs of 2 (lower curve), 5, 10, 20, 30, 40, 50, 70 and 100 (upper curve). The pluses are from experimental data for n-octane droplets on a silane-
coated substrate [10]. Reprinted (adapted) with permission from [29], � (2006) American Physical Society.
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Therefore, for a negative line tension s, fluctuations possessing sufficiently large wave vectors q are unstable and grow
because W(q) is negative. [When W(q) is negative, it is energetically favorable to make the amplitude of this fluctuation
(gq) larger because this decreases the overall energy of the system.] As a first approximation, ignoring the gravitational term,
there is a critical wave vector

jqcritj �
2p
kcrit

¼ �k�1
s ð71Þ

above which all wave vectors are unstable. Hence, for s = �55 pN, S = �5.6 	 10�4 mN/m, and rOW = 45 mN/m, the critical
wavelength kcrit � 300 lm. This critical wavelength is of order the size of the instabilities observed in
Fig. 23a and Fig. 23d (t = 0 s). Wavelengths k less than kcrit are unstable (i.e. q larger than qcrit are unstable) and the Clarke
theory therefore also qualitatively explains the appearance of petals at hole boundaries in Fig. 23b. Inclusion of the gravita-
tional term in Eq. (69) does not significantly alter the magnitude of the critical wavelength kcrit. Unfortunately, a quantitative
comparison between experiment and theory is not yet possible because the Clarke theory [40] only considers the energy of a
fluctuation of wavevector q, where all wavevectors q greater than qcrit are unstable (and grow). This theory needs to be
extended to include fluid transport where this fluid motion is opposed by the fluid viscosity; a ‘‘fastest” growing wavevector
qfast (>qcrit), possessing a characteristic time scale, would then arise to dominate the three-phase contact line instability (in
analogy to the considerations of Vrij [129] and Vrij and Overbeek [130] who examined the instability process that occurs in
thin film rupture). The differing theoretical approaches of Clarke [40,41] and Guzzardi, Rosso and Virga [29] provide valuable
insights into how sinusoidal perturbations of the three-phase contact line give rise to a contact line instability when the line
tension is negative. An examination of the interconnection, similarities, and differences between these two theoretical
approaches would prove useful.

3.3. Droplet nucleation at surfaces

3.3.1. Nucleated wetting
If rSV > rSL + rLV then, at equilibrium, a surface is covered by an equilibrium liquid wetting layer of thickness lw given by

Eq. (17b) where the interfacial potential V(l) is depicted in Fig. 5c. If the system initially starts in the metastable SV state, how
does this system evolve to the equilibrium wetting layer? The system must first nucleate droplets at the surface. These dro-
plets eventually coalesce into a liquid layer of thickness l. If l < lw then one will observe layer growth with time (Fig. 25a)
[131]. If, however, l > lw then this liquid layer must undergo a hydrodynamic instability to reduce its thickness to lw [132].

The surface nucleation process, at a metastable surface, invariably involves the line tension s. Law [13,133] studied this
surface nucleated wetting process using a critical binary liquid mixture of the two liquids, acetone and hexadecane. This
mixture was prepared at the critical composition, which has a hexadecane volume fraction vc � 0.5 and critical temperature
Tc = 31.1 �C. For T > Tc the system is in the one-phase region where acetone and hexadecane are completely miscible. As the
temperature T is lowered below Tc the system undergoes a bulk second-order phase transition at Tc and phase separates out
into a lighter hexadecane-rich a phase and a heavier acetone-rich b phase. If Tc > T > Tw then, at equilibrium, one will find a b
wetting layer at the a-air (av) surface (Fig. 25b).1 In order to study the formation of this equilibrium wetting layer, the system
was first prepared 10 mK above Tc and then quenched to various temperatures T below Tc, but above the wetting transition tem-
perature Tw. The system phase separates into bulk a and b phases (Fig. 25b) with compositions governed by the reduced tem-
perature t = (Tc–T)/Tc. The av surface is in a metastable (‘‘critical adsorption”) state [133] and it remains in this state until a b
droplet nucleates at this surface at an incubation or nucleation time TN. In order to study this surface nucleation process a
focused laser beam was reflected off this liquid-air surface and the ellipticity �q was measured. For a uniform film �q provides
a measure of the film thickness l. If the surface is decorated with droplets then �q will be very noisy. Fig. 26a and b provide
two examples of �q measured as a function of time. In Fig. 26a the system has been quenched 0.013 �C below Tc, into the
two-phase region; the surface remains in the metastable critical adsorption surface state until the nucleation time TN. After time
TN the film thickens continuously where at late times it saturates to a constant film thickness. Rather differing behavior can be
observed in Fig. 26b where the system has been quenched 0.668 �C into the two phase region. The systems remains in the meta-
stable critical adsorption state until time TN (region A). At TN droplets nucleate on the surface and the ellipticity becomes very,
very noisy (region B). At late times these droplets coalesce into a uniform film (region C) and, thus, �q settles down to a constant
value. In Fig. 26c the nucleation time TN is plotted as a function of reduced temperature t for many different quench experi-
ments. In order to interpret this TN data one must have a model for the surface nucleation process.

The energy for this nucleated droplet is given approximately by [13]

E � �Spr2 þ s2pr þ Apr2=h2 þ DqgHV ð72Þ
The first two terms on the right are the well-known surface and line tension contributions while the third and fourth terms
are, respectively, a van der Waals estimate and gravitational contribution where H is the height at which the b droplet is
above the bulk b phase (i.e. vertical height of a phase). Here Dq = qb – qa is the difference in densities between the b and

1 The phase diagram for a critical binary liquid mixture is completely analogous to the phase diagram for a critical liquid mixture (Fig. 3a) except that the
density q is replaced by the volume fraction v of one of the components of the critical binary liquid mixture [73].
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a phases while the Hamaker constant A occurred previously in Eq. (9a). Eq. (72) is very similar to Eq. (51) except that in Eq.
(72) we have assumed that h is very small because the nucleating droplet is in the wetting region (where the contact angle
will be exceptionally small). Of course Eq. (51) describes a macroscopic droplet and, therefore, the van der Waals term can be
neglected. For nanoscopic nucleated droplets [Eq. (72)] including a van der Waals term is necessary in order to capture all of
the essential physics. The volume of this droplet can be approximated as

T > Tc

αα

ββ

Metastable
surface 

state

Equilibrium
β wetting

layerγ

Air Air Air(b)

Metastable surface Equilibrium 
wetting layer

Layer growthDroplet nucleation

(a)
lwl

T  > T > Tc w T  > T > Tc w

Fig. 25. (a) Schematic evolution of an equilibrium wetting layer on a surface. Droplets nucleate on a metastable surface, coalesce to a layer which then
thickens to its equilibrium thickness lw. (b) In practice, a metastable surface state can be prepared as follows. At a temperature above the critical
temperature Tc, a critical binary liquid mixture exists in the one phase region c (left). This system is quenched into the two phase region, with a and b
phases, but above the wetting transition temperature Tw. The surface of this system is metastable (middle). At equilibrium, the surface in contact with the
air, evolves to an equilibrium wetting layer with composition b (right).

Fig. 26. Nucleated wetting of a critical acetone-hexadecane mixture. (a) Ellipticity �q from the liquid-vapor surface as a function of time. The system is
quenched (at time 0 s) from the one-phase into the two-phase region to a temperature DT = Tc–T = 0.013 �C below Tc. At nucleation time TN a uniform film
nucleates and grows. Reprinted (adapted) with permission from [133], � (1992) American Physical Society. (b) Corresponding behavior for a quench to a
temperature 0.688 �C. A = metastable critical adsorption surface state, B = surface droplets at liquid-air surface, C = droplets have coalesced to a uniform
wetting film. (c) Plot of nucleation time TN versus reduced temperature t = (Tc–T)/Tc. Reprinted (adapted) with permission from [13], � (1994) American
Physical Society.
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V � pr2h=2 ð73Þ

which corresponds to Eq. (47) with the approximation that h� r. The analysis for nucleating droplets necessarily closely
follows the analysis in Sec. 3.2.1 (for liquid droplets on a solid surface). For a given droplet volume V, the droplet will change
its shape at constant V so that the droplet is in mechanical equilibrium and possesses the minimum energy. Hence,

dE=dr ¼ 0 ð74Þ

where, together with dV = 0, from Eqs. (72) and (73) leads to

s=r � Sþ 3A=h2 ¼ 0: ð75Þ

Eq. (75) describes how the presence of a line tension s changes the shape of this nucleating droplet. This equation is com-
pletely equivalent to the modified Young’s equation [Eq. (52)] for h � 0 together with a van der Waals contribution. It is
important to note that the van der Waals interaction plays a central role in this nucleation process because, as h is small,
the van der Waals contribution in Eq. (72) will be large. Any droplet nucleation calculations, which omit this van der Waals
interaction term, exclude an essential component of the physics. Various limiting forms of Eq. (75) have appeared in the lit-
erature in the past. For example, if A = 0, then Eq. (75) reduces to the two-dimensional analogue of the Laplace equation
[134,135] which we have already encountered in Eq. (6). By contrast, if s = 0 in Eq. (75), then the droplet thickness

h ¼
ffiffiffiffiffiffi
3A
S

r
ð76Þ

which has been used to estimate the thickness of mesa shaped droplets spreading upon a surface [50].
Determination of the nucleation time TN follows from Eqs. (72), (73), and (75). We sketch the essential ideas behind the

calculation here where the details are given in Law [13]. Eq. (73) can be used to eliminate r from Eq. (72) so that E can be
expressed as a function of h and V, namely, E(h,V). Similarly, but mathematically this is more complicated, Eq. (75) can be
used to eliminate h from this equation, thus, now E(V). Physically, E(V) represents the minimum energy for that particular
volume V because of the use of Eq. (75). In classical nucleation theory there is a critical volume Vc above which droplets grow
(i.e. for V > Vc, dE/dV < 0) and below which droplets evaporate (i.e. for V < Vc, dE/dV > 0). Hence, the critical volume Vc is deter-
mined by the condition that

dEðVÞ
dV

����
Vc

¼ 0: ð77Þ

Eqs. (6) and (7) in Law [13] provide a rather complicated expression for Vc. The energy to nucleate a droplet of volume Vc is
therefore determined by substituting this expression for Vc into E(V), specifically,

EðVcÞ ¼ ps20t2x�b

SOðtb1�b � COÞ
ð78Þ

where Co is a constant given in Law [13], t = (Tc–T)/Tc is the reduced temperature, b (�0.33) and b1 (�0.83) are critical expo-
nents, while so and x are the amplitude and critical exponent for the line tension. Namely, in Eq. (78) it has been assumed
that s = sotx and S = Sot

b1 and, actually, the experimental nucleation data discussed below cannot be explained without these
assumptions. The probability for nucleating a droplet of volume Vc is therefore given by

p � exp½�EðVcÞ=kBT� ð79Þ

where kBT is the thermal energy at temperature T with kB the Boltzmann constant. The nucleation time measured in exper-
iments TN � 1/p and, hence,

TN ¼ Ao exp½EðVcÞ=kBT� ð80Þ

where Ao is a fitting constant (proportional to the inverse attempt frequency for nucleation). The solid line in Fig. 26c is a best
fit to the experimental TN data where so � 1 pN and x = 0.76 ± 0.02. The amplitude of the line tension so agrees with theo-
retical expectations (Sec. 2.3). The value of the critical exponent x still needs a theoretical explanation.

The nucleation of droplets at a surface can occur via either homogeneous or heterogeneous nucleation. In homogeneous
nucleation the nucleation process is induced by the underlying thermal fluctuations present in all systems at a finite non-
zero temperature T. Heterogeneous nucleation originates from some other system dependent process which influence the
attempt rate Ao in Eq. (80). Law and Pak [136] have demonstrated that a small transverse gradient »T �mK/cm, which in
practice is extremely difficult to eliminate, is the cause for the heterogeneous nucleation of surface droplets. Small transverse
thermal gradients give rise to convective flow in the a phase of Fig. 25b, thus, transporting small nuclei of the b phase to the
air-liquid surface which in turn influences the attempt rate Ao. Law and Pak [136] found that Ao � (»T)�1, which supports the
idea that it is the surface flow with velocity v � »T which is inducing this heterogeneous surface nucleation process.
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3.3.2. Critique on the nucleation route to line tension
Blossey and Bausch [137–140] and Blokhuis [134] have considered the nucleation of droplets at a metastable surface from

a theoretical perspective. Their considerations are similar to those presented in Sec. 3.3.1 although not necessarily with all of
the energy terms considered therein. Interested readers should refer to these authors for their perspective on the nucleation
route to line tension.

A line tension contribution has been used to explain the experimental nucleation results for a number of other systems.
Hienola et al. [141] studied the heterogeneous nucleation of n-nonane, n-propanol, and their mixtures on silver particles
possessing radii in the range 3–13 nm. Their experimental results were explained using classical nucleation theory supple-
mented with a line tension term. The line tension was negative for all particle sizes varying from s � �0.1 pN, for the small-
est particles, and increasing to s � �0.4 nN, for the largest particles. Guillemot et al. [30] studied the drying dynamics of
hydrophobic cylindrical porous silica material with radii 1–2 nm filled with liquid water under high pressure. The pores
empty when the pressure is lowered. The drying pressure is interpreted via thermally activated vapor bubble nucleation
where a line tension is required to quantitatively explain the experimental data with s � �0.3 nN. The presence of a line ten-
sion, of this magnitude, may explain the high stability of nanobubbles at the interface between water and a hydrophobic
surface [30].

4. Gravitational line tension contribution for millimeter-sized droplets

Perhaps the greatest controversy in this field is the observation of very large positive line tension values sgrav,expt � 1 lN,
measured by Neumann and coworkers [121,142–146] and Drelich and Miller [147,148] (see David and Neumann [38] for a
summary), which are at least 4 orders of magnitude larger than the largest values predicted via mean field theory, where
|svdW,th| � 1–100 pN (Sec. 2.1). The line tension subscripts, in the previous sentence, denote the (perceived) origins for each
of these line tension contributions. The mean field estimates for the line tension svdW,th originate via consideration of surface
tension and van der Waals interactions in the vicinity of an interface (Sec. 2.3). sgrav,expt has been measured for large
millimeter-sized liquid droplets on a solid surface. At such length scales, of order the capillary length j�1 � 1 mm
[Eq. (1)], the gravitational potential should be included within the line tension calculation.

De Gennes, Brochard-Wyart and Quéré [50] have estimated the gravitational contribution to the line tension sgrav for
liquid puddles on a solid substrate using a generalization of the ‘‘gradient-squared approximation” [149] contained in
Eq. (22). In this generalization, valid for arbitrary sloped droplets, the line tension functional for liquid puddles is

ŝ½lðxÞ� ¼
Z 1

�1
dx rLV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdl=dxÞ2

q
� 1

� �
þ 1
2
qgðe� lðxÞÞ

� �
ð81Þ

where the gravitational interaction has been included, whereas, the van der Waals interaction has been omitted (as this later
contribution is negligible at millimeter length scales). Here, q is the liquid density, g the acceleration due to gravity, and e is
the thickness of the puddle. [In the limit of small droplet slopes, dl/dx� 1, Eq. (81) reverts to the gradient-squared approx-
imation of Eq. (22).] Minimization of Eq. (81), with respect to l(x), provides an estimate for sgrav

sgravðpuddleÞ ¼ 4
3
rLVj�1 1� cos3

h1
2

� �
� þ10 lN: ð82Þ

However, sgrav ðpuddleÞ should not be compared with sgrav,expt, mentioned above, which was measured for �1–5 mm radii ses-
sile droplets on a solid surface, as these liquid droplets are not strictly puddles. One can obtain an estimate for sgrav ðdropletÞ
by incorporating the gravitational contribution into the squared-gradient expression for the line tension [Eq. (23a)].
Specifically, in this case, the gravitational surface potential [150,151]

VgravðdropletÞ ¼ �Sþ 1
2
qgl2 ð83Þ

and, therefore, Eq. (23a) becomes

sgravðdropletÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2rLV

p Z lmax

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Sþ 1

2
qgl2

r
�

ffiffiffiffiffiffiffi
�S

p" #
dl ð84aÞ

¼ j�1qgl2maxC ð84bÞ
where the constant of integration

C ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
þ 1
2
a2 ln

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

a

�����
������ a ð85Þ

with

a2 ¼ � 2S

qgl2max

¼ 2ð1� cos h1Þ j�1

lmax

� �2

: ð86Þ
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Eqs. (1) and (5b) have been used in deriving Eq. (86). Thus, from Eq. (84b),

sgravðdropletÞ � þ10 lN ð87Þ
where the capillary length j�1 � 1 mm, droplet height lmax � 1 mm, density q � 1 g=cm3 and C � 1 were used in obtaining
this estimate.

This squared-gradient estimate for sgravðdropletÞ [Eq. (84b)] is strictly valid only when dl/dx� 1. This result is in need of
generalization to arbitrary dl/dx [akin to Eq. (81)], as the line tension experimental measurements for millimeter-sized
droplets, in general, possess large contact angles (h1 � 90�). It would be surprising if such a generalization to arbitrary
dl/dx changed the order of magnitude of sgrav � + 10 lN [Eqs. (82) and (87)] significantly. We note that sgrav ðdropletÞ
[Eq. (84b)] is strictly positive, in agreement with experiments for sgrav;expt . sgravðdropletÞ � þ10 lN is closer in magnitude
to the experimental values measured for millimeter-sized droplets (sgrav ;expt þ 1 lN) compared with svdW ;th, however,
sgravðdropletÞ and sgrav ;expt still differ by an order of magnitude. We believe this discrepancy may arise from the experimental
determination of sgrav ;expt where the authors have used the modified Young’s equation given in Eq. (56a) to determine
sgrav ;expt . Eq. (56a) is strictly valid only for liquid droplets much smaller than the capillary length j�1 [Eq. (1)] where the grav-
itational energy can be ignored. For large millimeter-sized liquid droplets a gravitational energy should be added to Eq. (44)
and the energy minimized. Shapiro et al. [152] have partially carried out this calculation (in the absence of a line tension
term and assuming spherical cap shaped droplets). They find that

cos h ¼ cos h1 � qgR2

rLV

cos h
3

� cos 2h
12

� 1
4

� �
ð88Þ

where R is the radius of the liquid-vapor surface of the droplet. This equation needs to be generalized to include a line ten-
sion contribution. A likely generalization is

cos h ¼ cos h1 � qgR2
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ð89Þ

obtained by combining Eqs. (56a) and (88). Ansatz Eq. (89) reproduces the correct limits when either g? 0 or s? 0. The
experimental contact angle data for millimeter-sized droplets should be compared with Eq. (89) in order to deduce the line
tension s. However, in doing so, one must keep in mind that Eq. (89) assumes that the spherical cap approximation is valid.
Ideally one should derive the correct modified Young’s equation for millimeter-sized droplets in the presence of surface ten-
sion, line tension, as well as, gravitational contributions without assuming a spherical cap approximation [35].

5. Summary and discussion of line tension effects

This review summarizes our views on the line tension, or, energy per unit length associated with three-phase contact
lines, specifically, solid-liquid-vapor and liquid-liquid-vapor contact lines. The traditional view has been that the line tension
arises from a functional minimization of surface tension and van der Waals interactions in the vicinity of a three-phase con-
tact line (Sec. 2.3). Such a minimization leads to a line tension of magnitude |svdW| � 1–100 pN which is important on
nanometer length scales. Although a number of experiments have found line tension magnitudes in agreement with these
theoretical estimates, numerous other experiments measured significantly larger line tension magnitudes, sometimes, many
orders of magnitude larger. This disagreement between theory and experiment has led to significant controversy and debate
concerning the reliability of many line tension measurements. Computer simulation studies have also reported values in this
range (1–100 pN). Most of the computer simulation data, for nanoparticles at fluid interfaces and droplets at solid surfaces,
are in the range 1–10 pN. Larger computer simulation values of up to �100 pN have been reported for water droplets at a
carbon surface.

Recent work, as summarized in this review, indicates that the line tension is far more complex and interesting than this
traditional view point. Differing physical phenomena, at differing length scales, contribute to the line tension. At atomic
length scales, the re-orientation and re-organization of sub-molecular groups, in order to minimize their energies in the
vicinity of a three-phase contact line, contribute to the line tension. This contribution is expected to be particularly impor-
tant if dissimilar surfaces meet at a three-phase contact line. Atomic force microscopy experiments provide evidence for this
atomic scale contribution to the line tension where the magnitude of this contribution |satom| � 1 nN (Secs. 3.1.1 and 3.1.3).
As far as the authors are aware, no theoretical studies of these sub-molecular contributions to the line tension are currently
available. If similar surfaces meet at a three-phase contact line then satom is expected to be unimportant and the van der
Waals contribution to the line tension svdW, at nanometer length scales, is expected to play the dominant role provided that
the object under study is not too large. svdW can be of either sign, determined by the shape of the interfacial potential (Sec.
2.3). For large objects of order the capillary length j�1 � 1 mm [Eq. (1)], the gravitational contribution sgrav (�1–10 lN),
which is always positive, dominates the line tension (Sec. 4). Provided that each line tension contribution is independent,
the total line tension is

stot ¼ satom þ svdW þ sgrav : ð90Þ
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Table 1 provides a summary of these various line tension contributions, including their magnitude and sign, the length scale
of the respective physical phenomena, as well as, the ‘‘line tension length” n = |s/r| [Eq. (2)] below which the line tension will
play a significant role. In this estimate for n it is assumed that the surface tension r � 20 mN/m. Fig. 27 (solid lines) provide a
pictorial overview for the various spatial scales at which the line tension lengths natom, nvdW, and ngrav are expected to be
important. It is therefore perhaps not so surprising that line tension effects of differing magnitudes (Table 1) measured over
many different length scales (Fig. 27) have been observed. One should keep in mind that the line tension length n estimates,
contained in Table 1, are strictly valid only if one is far from any wetting transition. Near a wetting transition the ‘‘spreading
coefficient” line tension length nS = |s/S| [Eq. (6)] must be used. For example, when S? 0 (eg. h1 � 1� then S � �3 lN/m), the
van der Waals line tension length may become very, very large, as depicted by the dashed line in Fig. 27 [nvdW(S? 0)].

A coherent picture of the three-phase line tension magnitude and sign has now emerged. Any physical phenomena which
modifies either the interfacial potential V[l(x)] (e.g., van der Waals, electrical double layer, gravitational interactions, or sur-
face phase transitions, such as, the wetting, prewetting, or surface freezing transition) or the local atomic structure at a
three-phase contact line will influence the line tension associated with this contact line. In this review we have mainly dis-
cussed the influence of the atomic, van der Waals, and gravitational interactions of uncharged fluids upon the line tension
either near or far from a wetting transition, or, near a bulk critical point. Ions in solution are predicted to influence the line
tension at three-phase contact lines [153–155]. Matsubara, Takiue, and Aratono and coworkers [123–125,156] have exten-
sively studied the influence of cationic surfactants on the line tension for n-alkane oil droplets at an aqueous-air surface.
They investigated the influence of numerous parameters including surfactant concentration and chain length, n-alkane chain
length, temperature, and the presence of surface freezing on the line tension, as summarized in a recent review [106].

A profitable area of continuing theoretical and experimental study would be to obtain a better understanding of satom, as
only one experiment [85] has quantitatively explored atomic scale contributions to the line tension. Lineactants [157], or line
active molecules which preferentially adsorb at a contact line, are expected to form another profitable area for future
research. Lineactants are the 1D analog of surfactants; surfactants preferentially adsorb at the surface between two bulk
phases and decrease the associated surface tension. Lineactants have primarily been studied at the perimeter of 2D mono-
layer structures at surfaces [157–159] (Fig. 1e), which possess a ‘‘2D line tension”. The influence of lineactants upon the line
tension at a three-phase contact line has been examined theoretically [160] but, as yet, there are no experiments. Lineactants
are expected to decrease the line tension.

The interrelationship between a negative line tension and the stability of a three-phase contact line was discussed in Secs.
3.2.2 and 3.2.3. A negative line tension causes a three-phase contact line to become unstable only for sufficiently small
spreading coefficient S. In Sec. 3.2.2 the contact line was unstable for S = �5.6 	 10�4 mN/m, rOW = 45 mN/m [corresponding
to h1 � 0.3�, Eq. (5b)], and s � �55 pN. Larger contact angle droplets (h1 > 5�) may be stable even for negative line tension, as
observed in Sec. 3.2.1. The interrelationship between a negative line tension s, spreading coefficient S, and the onset of a
three-phase contact line instability is incompletely understood, at least from an experimental perspective; additional exper-
iments examining this issue would be a profitable area for future research. The phenomenological theory of Clarke [40,41]
should provide guidance for how sinusoidal perturbations of the three-phase contact line induce contact line instabilities
when the line tension is negative (Sec. 3.2.3).

Acknowledgements

BML thanks colleagues at the University of Kyushu in Fukuoka, Japan and the Institute for Basic Science (IBS) in Ulsan,
Korea for their kind hospitality and financial support during the writing of this review. Numerous discussions with col-
leagues and collaborators have assisted in the clarification of these ideas.

Table 1
Line tension contributions.

Magnitude s Sign s Length scale of phenomena Line tension length, n = s/r Review sections

Atomic, satom �1 nN �0.1 nm �10�7 m 3.1.1, 3.1.3
Van der Waals, svdW �1–100 pN + or � �1–100 nm �10�9 m 2.3, 3.1.2, 3.3.1
Gravity, sgrav �1–10 lN + �1 mm �10�4 m 4

Fig. 27. Pictorial representation of the line tension length n [Eq. (2)] for the atomic natom, van der Waals nvdW, and gravitational ngrav contributions to the line
tension (solid arrows), far from a wetting transition. Near a wetting transition the ‘‘spreading coefficient” line tension length, defined in Eq. (6), must be
used and, under these circumstances for example, the van der Waals line tension length nvdW (S? 0) may become very large (dashed line).
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