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Phonon Interference in Crystalline and Amorphous 

Confined Nanoscopic Films  
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Using molecular dynamics phonon wave packet simulations, we study phonon transmission 

across hexagonal (h)-BN and amorphous silica (a-SiO2) nanoscopic thin films sandwiched by 

two crystalline leads. Due to the phonon interference effect, the frequency-dependent phonon 

transmission coefficient in the case of crystalline film (Si|h-BN|Al heterostructure) exhibits a 

strongly oscillatory behavior. In the case of amorphous film (Si|a-SiO2|Al and Si|a-SiO2|Si 

heterostructures), in spite of structural disorder, the phonon transmission coefficient also exhibits 

oscillatory behavior at low frequencies (up to ~ 1.2 THz), with a period of oscillation consistent 

with the prediction from the two-beam interference equation. Above 1.2 THz, however, the 

phonon interference effect is greatly weakened by the diffuse scattering of higher-frequency 

phonons within an a-SiO2 thin film and at the two interfaces confining the a-SiO2 thin film. 

 

 

______________________ 

* Electronic mail: zliang@csufresno.edu 
† Electronic mail: keblip@rpi.edu 

http://dx.doi.org/10.1063/1.4976563


 

2

I. INTRODUCTION 

Phonons are the primary thermal energy carriers in semiconductor devices. As the size of 

semiconductor components in microelectronics reduces to nanoscale, phonon scattering at 

material interfaces can strongly affect thermal transport in nanostructured components. It was 

found in numerous experiments and numerical simulations that the specular reflection and 

transmission of phonon waves at interfaces of nanostructured components may result in phonon 

interference effects which can be used for the modification of phonon dispersion and for 

controlling nanoscale heat transport [1-9].  

To achieve strong phonon interference effects, the thickness of confined thin films should be 

smaller than the phonon mean free path (MFP) such that the phonons can travel ballistically 

between two interfaces of the thin film. Phonon MFPs of typical crystalline semiconductors such 

as Si, GaN and graphite are on the order of tens of nanometers to micrometers [10-12]. 

Accordingly, evident phonon interference effects were observed by both experimental work and 

theoretical analysis on phonon transport across superlattices, i.e. alternative nanoscopic layers of 

epitaxially bonded semiconductors such as GaAs and AlAs [2, 13-15].  

For amorphous materials such as amorphous silica (a-SiO2), however, the traveling phonons 

can be diffusely scattered by the disordered structure, which significantly limits the phonon 

MFP. As phonons are diffusely scattered, the phases of phonons could be randomized such that 

the phonon interference effects become negligible. a-SiO2 is often used as a thin layer of 

insulating material separating single crystalline Si in the silicon on insulator (SOI) wafers, which 

are the starting point for a variety of advanced devices [16]. As a dielectric material, a-SiO2 thin 

films are also used as a planar capacitor in the traditional metal–oxide–semiconductor (MOS) 

structure [17]. Due to the importance of amorphous thin film in a variety of applications, several 

recent studies on thermal/phonon transport across crystalline|amorphous heterojunctions were 
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carried out [18-20]. Specifically, Deng et al. [19] studied phonon transport across an Si|a-SiO2|Si 

structure using a phonon wave packet (WP) method and found that the phonon transmission 

coefficient decreases almost monotonically with increasing phonon frequency. No evident 

phonon interference effects were observed in Deng et al.’s work [19], partially due to the fact 

that the frequency interval in their work is ~ 1 THz, which is comparable with the expected 

period of oscillation. 

Our recent study on phonon properties in bulk a-SiO2 shows that the sound attenuation 

coefficient, i.e. the inverse of MFP of acoustic phonons, roughly follows the Rayleigh-like fourth 

power frequency dependence [21]. As the MFP of phonons reduces rapidly with increasing 

phonon frequency, the MFP of phonons can be comparable to their wavelength. In this case, the 

Ioffe-Regel (IR) crossover, where the phonon mean free path is comparable to it wavelength, is 

reached [22, 23]. Our recent MD simulations show that the IR crossover frequency for both 

longitudinal and transverse phonons in a-SiO2 is ~ 1.4 THz [21]. Above the IR crossover 

frequency, the phonon might become nonpropagating and/or localized [24-26]. Therefore, it is 

reasonable to expect negligible phonon interference effects for phonon frequency much greater 

than 1.4 THz.  

Below 1.4 THz, however, the MFP of phonons in a-SiO2 increases very fast to values over 

10 nm as phonon frequency reduces [21]. This indicates that the low-frequency phonons have a 

high possibility of travelling ballistically between two interfaces of nanoscopic a-SiO2 layers. 

Furthermore, our previous WP simulations [21] show the phonon transmission coefficient at the 

Si|a-SiO2 planar interface is close to that predicted by the acoustic mismatch model [27] if the 

phonon frequency is lower than 1 THz. This indicates the reflection and transmission of low-

frequency phonon waves at the Si|a-SiO2 planar interface is essentially nondiffuse, which is 

necessary to phonon interference. In this work, therefore, we use molecular dynamics (MD) 
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phonon WP simulations to study phonon transport in heterostructures containing a-SiO2 thin 

films to investigate if evident phonon interference effects can be observed for low-frequency 

acoustic phonons. The modeling results will provide a reference for future experimental 

investigations of sound attenuation and phonon interference in a-SiO2 nanolayers which were 

often a part of SOI wafers and MOS structures. 

 

 II. Simulation Method 

A. The MD model. 

Figure 1 shows the three model heterostructures studied in this work. The Si|a-SiO2|Si and 

Si|a-SiO2|Al structures mimic the heterostructures in SOI wafers and traditional MOS structures, 

respectively. Both structures contain an amorphous SiO2 layer with a thickness of 4.6 nm which 

is close to that found in some experiments [28]. For comparison, we also model the Si|h-BN|Al 

structure, i.e., the crystalline nanoscopic layer, which contains 15 h-BN layers whose [1120] , 

[1100] , and  0001  directions are aligned, respectively, in the x, y and z directions. In all three 

structures, the [001] direction of the Si lead and the [111] direction of the Al lead are aligned in 

the z direction and the length of Si and Al leads in the z direction are 400 and 300 unit cells, 

respectively. The [110]  and 112    directions of Al are aligned in the x and y directions, 

respectively. Periodic boundary conditions (PBCs) are applied in the x and y directions. In the z 

direction, the simulation box is bordered by free boundaries. 

The interatomic interactions within Si, SiO2, and at the interface between the two materials 

are modeled by the Tersoff potential with the parameters developed by Munetoh et al. [29,30]. 

This potential has been used to study the phonon properties in a-SiO2 and thermal/phonon 

transport across the Si|a-SiO2 interface [20,21]. Using the Tersoff potential, our MD simulation 
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predicts a cubic lattice constant of 5.432 Å for Si. The Al-Al interactions are modeled by the 

embedded-atom-method (EAM) potential [31] which predicts a FCC lattice constant of 4.015 Å 

for Al. The Tersoff potential with the parameters developed by Verma et al. [32] and the 

Lennard-Jones (LJ) potential with parameters ε = 5.0 meV, σ = 3.35 Å [33] are used for 

intralayer and interlayer interactions in h-BN, respectively. With the Tersoff and LJ potentials, 

the MD simulation predicts a lattice constant of 2.522 Å (BN bond length of 1.456 Å) and an 

interlayer distance of 3.345 Å in h-BN, both of which agree well with the experimental data [34].  

The LJ potential for interlayer interactions in h-BN is also used for the interatomic 

interactions at the Si|BN interface. Allowing for the strong bonding at the Al|BN interface [35], 

the LJ potential with parameters ε = 110 meV, σ = 3.35 Å is employed for interatomic 

interactions at the Al|BN interface. The LJ potential is also used for interatomic interactions at 

the a-SiO2|Al interface. Based on Si-Al and Al-O bond lengths [36], we set σAl-Si = 2.25 Å and 

σAl-O = 1.70 Å. We further set εAl-Si = εAl-O = 100 meV such that the thermal conductance at the 

Si|Al and Si|a-SiO2|Al interfaces obtained from MD simulations is consistent with the 

experimental data [37]. The cutoff distance for all LJ interactions is 11 Å in the MD simulation. 

In the initial structure of Si|h-BN|Al, to make the Si, BN, and Al structures commensurate in 

the x and y directions, we strain the cross section of Si and Al and slightly stretch BN layers. The 

cross section of the structure is fixed at 43.74 Å × 48.39 Å in the simulation. In the initial 

structure of Si|a-SiO2|Al, the cross section of Al is slightly strained to fit the lattice constant of 

Si. In the initial structure of Si|a-SiO2|Si, there is no strain in the two Si leads. The cross section 

of the Si|a-SiO2|Al and Si|a-SiO2|Si structure is fixed at 48.88 Å × 59.75 Å and 43.46 Å × 43.46 

Å, respectively. 

The a-SiO2 thin film in the MD model is first generated by melting β-Cristobalite SiO2 in a 

cubic supercell with PBCs and subsequently quenching the melt to a low temperature. The 
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simulation details are described in our previous work [21]. The bulk a-SiO2 is then cut to fit the 

cross section of Si|a-SiO2|Si and Si|a-SiO2|Al structures and sandwiched by the two crystalline 

leads in the structure. In order to form a well-equilibrated crystalline|amorphous interface, we fix 

the temperature in the two crystalline leads to a temperature of 200 K and equilibrate the a-SiO2 

to a temperature of 4000 K for 4 ns. Subsequently, the a-SiO2 thin film is quenched to 200 K 

with a speed of 1 K/ps. Finally, we conduct an energy minimization of the whole structure at a 

temperature of 0 K. The final equilibrated structure near the junction is shown in Fig. 1. 

 

B. The MD phonon wave-packed (WP) simulations. 

Prior to each MD phonon WP simulation run, we perform an energy minimization of the 

structure at 0 K to remove the artificial mechanical stresses present in an as-prepared 

heterogeneous system. In all simulations, a velocity Verlet algorithm with a time step size of 0.5 

fs is used for the integration of equations of motions [38]. 

Using the equilibrated structure, we first calculate the phonon dispersion relation, including 

eigenvalues and eigenvectors by diagonalizing the dynamical matrix of the Si, Al, and h-BN 

crystals. To determine the harmonic force constants in the dynamical matrix, we displace the 

atoms in the center of the Si and Al leads and the h-BN thin film by ±10-5 Å from the equilibrium 

position in three directions. The force constants are obtained from the second order derivatives 

of potential energy. The phonon dispersion relation in a-SiO2 is determined by calculating the 

longitudinal and transverse dynamical structure factors in a-SiO2 using equilibrium MD 

simulations. The details of calculations can be found in our previous work [21]. 

With the calculated eigenvalues and eigenvectors of Si crystal, we can launch a TA/LA 

phonon wave packet in the center of Si lead at any frequency below 1.5 THz. To generate a 

http://dx.doi.org/10.1063/1.4976563
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phonon wave packet centered at a wavevector k0 in λ branch, and localized in space around z0 

with a spatial extent of ~ 1/η, we displace the atoms according to [39,40]  

       22
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where ul
α(s) represents the α component of displacement of atom s in primitive cell l of Si 

crystal, Ms is the mass of atom s, Qλk0 is the amplitude of the wave, ελk0
α(s) is the α component of 

the eigenvector of atom s for λ branch at k0, and zl is the z coordinate of the primitive cell l. In 

the simulation, we set Qλk0 = 10-4 Å and 1/η = 65 unit cells. To form a wave packet that is 

localized in both real space and wavevector space as described in Eq. (1), the initial atomic 

displacements are expressed in terms of a linear combination of vibrational eigenstates [40,41] 
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where N is the number of primitive cells in the Si crystal. In Eq. (2), the amplitude of each 

vibrational normal mode, Qλk, is determined by the inverse Fourier transform of the function in 

Eq. (1). To determine initial atomic velocities, we add time dependence to the displacements in 

Eq. (2) and differentiate with respect to time. Hence, the initial velocities are given by [40] 
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where ωλk is the eigenvalue for λ branch at k. After the wave packet at a given mode and 

frequency is launched, we run MD simulation to study the propagation and scattering of the 

phonon wave packet in the heterostructure. Recent experimental work [37] on phonon transport  

across Si|a-SiO2|Al interfaces indicates that direct electron-phonon coupling has negligible 

effects on interfacial phonon transport. Hence, the direct electron-phonon coupling at the h-

BN|Al and a-SiO2|Al interfaces is neglected in WP simulations. 
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III. Simulation Results 

A. Phonon dispersion relations. 

The calculated phonon dispersion relations for Si and Al crystal are shown in Figs. 2(a) and 

2(b). The calculated results agree well with the experimental data [42,43]. The split of the two 

dispersion curves of the TA mode in Fig. 2(b) is due to the fact that the cross section of Al lead 

is strained by 1.2% in the x direction and -0.3% in the y direction in the Si|h-BN|Al structure. 

Compared to the dispersion curves from experiment [44], Fig. 2(c) gives poor descriptions of the 

acoustic phonon modes in h-BN. Specifically, Fig. 2(c) underestimates the maximum frequency 

of the transverse mode and overestimates the maximum frequency of the longitudinal mode. The 

poor agreement stems mainly from the fact that the LJ parameters for interlayer interactions in h-

BN were fitted to match the interlayer spacing and binding energy in h-BN [33]. To have a better 

description of the dispersion relation, a more complex interaction potential is needed. However, 

the purpose of this work is not to accurately predict the transmission coefficient across the Si|h-

BN|Al structure. We are merely using the Si|h-BN|Al structure as a reference to show the clear 

phonon interference effects in the case of a confined crystalline thin film. Figure 2(d) shows 

phonon dispersion curves of acoustic modes in a-SiO2. We have shown in our previous work 

[21] that the sound speeds obtained from the dispersion curve agree with the experimental data 

[45,46] very well. 

 

B. Phonon transport across the Si|h-BN|Al interface 

Figure 3(a) shows snapshots of spatial distribution of vz in the Si|h-BN|Al structure for an LA 

wave packet centered at 1.5 THz. It is seen that the wave packet travels in the z-direction and the 

phonon transmission and reflection at the Si|h-BN and h-BN|Al interfaces complete within 25 ps. 

The total energy in the Si, Al leads and h-BN thin film as a function of time is shown in Figs. 
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4(a) and 4(b). It is seen in Fig. 4(b) that no energy is trapped in the h-BN layer after phonon 

transmission and reflection complete. From Fig. 4(a), we calculate the phonon transmission 

coefficient by the fraction of phonon energy transmitted through the interface. In Fig. 5, we show 

the transmission coefficient for LA phonons as a function of phonon frequency. The 

transmission coefficient exhibits a strong oscillatory behavior as a function of frequency with a 

decaying envelope. The similar frequency dependency was also observed in phonon transport 

across confined few-layer graphene [9], where the oscillatory behavior of transmission 

coefficient was shown to be the result of phonon interference arising from multiple scattering at 

the two interfaces.  

To better understand the interference effect shown in Fig. 5(b), we evaluate the transmission 

coefficient as a function of frequency from an analytical one-dimensional model of masses 

connected by springs [47]. As shown in Fig. 5(a), the model consists of a center region 

(mimicking h-BN layers) sandwiched between two semi-infinite leads (mimicking Si and Al 

crystals). In the one-dimensional chain model, masses are connected by harmonic springs where 

m1, m2, m3 and k1, k2, k3 are masses and spring constants in the left, center, and right region, 

respectively. The masses and spring constants are parameterized to reproduce the speed of sound 

of Si, h-BN, and Al in the cross-plane direction. The two semi-infinite chains are coupled with 

the center part by spring constants k12, k23 which are parameterized to model the LJ potential 

bonding strength at the Si|h-BN and h-BN|Al interfaces. With these settings, the transmission 

coefficient in the one-dimensional model is then calculated by the scattering boundary method 

[47]. As shown in Fig. 3(b), the frequency of wave packets launched in the WP simulation has a 

narrow Gaussian distribution with standard deviation of ~ 0.051 THz. The transmission 

coefficient obtained from WP simulations represents an average transmission coefficient over the 

frequency range shown in Fig. 3(b). To directly compare the analytical results with the MD 

http://dx.doi.org/10.1063/1.4976563
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phonon WP simulations, therefore, we show the average transmission coefficient over phonons 

representing a wave packet used in the WP simulations. It is shown in Fig. 4(b) that the 

prediction from a one-dimensional chain model has a very good agreement with the MD phonon 

WP simulation results. Both the analytical and simulation results show strongly oscillatory 

dependence of transmission coefficient on phonon frequency. The maxima and minima of 

transmission coefficient are the result of constructive and destructive interferences, respectively 

[47].  

 

C. Phonon transport across Si|a-SiO2|Al interface 

In amorphous materials such as a-SiO2, phonons can be diffusely scattered by the disordered 

structure in the material. As a result, the nature of phonon transmission through Si|a-SiO2|Al is 

quite different from that through Si|h-BN|Al. Figures. 4(c) and 4(d) show the total energy in the 

Si, Al leads, and the confined a-SiO2 layer as a function of time during the WP simulation of 

propagation of an LA mode wave packet centered at 1.5 THz in Si|a-SiO2|Al. Our previous work 

[21] shows that the MFP of longitudinal phonon at 1.5 THz in a-SiO2 is about 3 nm, which is 

shorter than the thickness of the a-SiO2 layer (4.6 nm) in the Si|a-SiO2|Al structure. As a result, 

the possibility of phonon diffuse scattering in the a-SiO2 layer is high. It is shown in Fig. 4(d) 

that a small portion of wave packet energy that is diffusely scattered is trapped in the a-SiO2 

layer after phonon transmission completes. To calculate the phonon transmission coefficient, the 

transmitted phonon energy is computed as an average of total energy in the Al lead between 34 

and 40 ps.  

Below 1.5 THz, the MFP of phonons in a-SiO2 is inversely proportional to ν3.6 [21], where ν 

is the phonon frequency. For longitudinal phonons below 1 THz, the MFP increases rapidly to a 

value above 20 nm in a-SiO2, which is considerably greater than the thickness of the a-SiO2 
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layer. Moreover, the scattering low-frequency phonons at the Si|a-SiO2 interface is essentially 

nondiffuse [21]. Hence, we calculate the phonon transmission coefficient as a function of 

frequency in the range of 0.3 THz to 1.5 THz to explore the phonon interference effects in the 

Si|a-SiO2|Al heterostructure. 

Despite the disorder in the a-SiO2 layer, it is shown in Fig. 6(a) that the transmission 

coefficient of the LA phonon exhibits an evident oscillatory behavior as a function of frequency. 

To verify if the oscillatory dependence of transmission coefficient on frequency is caused by 

phonon interference, we compare the WP simulation results with the theoretical prediction from 

the two beam interference equation [48]. 

 1 2 1 2 02 cos 2I I I I I kL       (4) 

where I is the intensity of the interference signal, i.e. the transmitted wave packet energy in our 

simulations; I1 and I2 are reflections at the two interfaces, respectively; φ0 is the initial phase of 

the interference; L is the thickness of confined thin film, and k is the wavevector of phonon 

waves in the thin film. Accordingly, the two adjacent interference maxima in the interference 

spectrum have a phase difference of 2π. Therefore, 

, 1 ,p n p nk k
L


    (5) 

where kp,n+1 and kp,n are the center wavevectors of two adjacent peaks in the interference 

spectrum. 

From the WP simulation results shown in Fig. 6(a), we find that the center frequencies of the 

first two adjacent peaks are 0.45 and 1.00 THz, respectively. Using the phonon dispersion 

relation shown in Fig. 2(d), we obtain the corresponding wavevectors in a-SiO2 are 0.047 and 

0.112 Å-1, respectively. According to Eq. (5), the difference between the above two wavevectors 
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corresponds to a thickness, L, of 4.8 nm, which is consistent with the thickness (4.6 nm) of the a-

SiO2 layer in the model structure. 

Similarly, we run WP simulations to investigate the transmission coefficient of TA mode 

phonons across the Si|a-SiO2|Al structure. The MFP of TA phonons in a-SiO2 is about half of 

that of LA phonons at the same frequency [21], indicating a higher possibility of diffuse 

scattering of TA phonons in the a-SiO2 layer. As a result, the interference effects are 

significantly weaker. It is shown in Fig. 6(b) that the oscillatory dependence of the TA mode 

transmission coefficient on phonon frequency is not so evident as that of the LA phonons. In 

Tab. 1, we summarize the phonon frequencies at the first three peaks shown in Figs. 6(a) and 

6(b). With these peak phonon frequencies, it is shown in Tab. 1 that the thicknesses of a-SiO2 

layer calculated by Eq. (5) are all around 4.6 nm. This indicates that the oscillatory dependence 

on phonon frequency is caused by phonon interference effects. 

 

D. Phonon transport across Si|a-SiO2|Si interface 

As shown in Fig. 7, the oscillatory behavior of the transmission coefficient is also found in 

the WP simulation of phonon transport across the Si|a-SiO2|Si structure. Using a method similar 

to that described in the last section, we first find the frequencies at peaks of transmission 

coefficient in Figs. 7(a) and 7(b) and then calculate the corresponding thickness of the a-SiO2 

layer by Eq. (5). It is shown in Tab. 1 that the calculated thickness agrees well with that of the a-

SiO2 layer in the Si|a-SiO2|Si structure. According to Eq. (5), the interval between wavevectors 

or frequencies of two adjacent peaks will decrease as the thickness of a-SiO2 layer increases. To 

see this effect, we double the thickness of the a-SiO2 layer in the Si|a-SiO2|Si structure and use 

WP simulation to calculate the dependence of transmission coefficient on frequency. Figs. 7(c) 

and 7(d) show that the frequency intervals almost reduce by half as the thickness doubles. As 
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shown in Tab. 1, the corresponding thickness of the a-SiO2 layer calculated by Eq. (5) is 

consistent with the thicker a-SiO2 layer in the model structure. These results further verify that 

the oscillatory dependence of the transmission coefficient on phonon frequency is due to phonon 

interference effects. 

It is also seen in Fig. 7 that the phonon transmission coefficient decreases almost 

monotonically with increasing frequency if the phonon frequency is above 1.2 THz. Above 1.2 

THz, the MFP of phonons in a-SiO2 is comparable to or even smaller than the thickness of a-

SiO2 layer. Furthermore, the phonon scattering at Si|a-SiO2 interfaces becomes diffuse as the 

phonon frequency is above 1.2 THz [21]. The diffuse scattering of phonons in the thin film and 

at the two interfaces makes phonon interference effects negligible. This is consistent with the 

results found in Deng et al.’s work [19]. 

 

III. SUMMARY 

We carry out MD phonon WP simulations to investigate phonon transport across crystalline 

and amorphous nanolayers sandwiched by two crystalline leads. For phonon transport across the 

Si|h-BN|Al structure, both WP simulations and the one-dimensional chain model show a strongly 

oscillatory dependence of transmission coefficient on phonon frequency indicative of significant 

phonon interference effects. For phonon transport across the Si|a-SiO2|Al and Si|a-SiO2|Si 

structures, despite the disorder in a-SiO2, one can still see the oscillatory behavior of the 

transmission coefficient in the range of low frequencies (< 1.2 THz). The consistency between 

the WP simulation results and the prediction from the two-beam interference equation verifies 

that the oscillatory dependence on frequency is due to the phonon interference effect. The 

interference effect is shown to result from that fact that the MFP of low-frequency phonons in a-

SiO2 is much longer than the thickness of a-SiO2 in the model structure and the phonon 
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reflection and transmission at the crystalline|amporhous planar interfaces are essentially 

nondiffuse in the range of low frequencies. In the range of high frequencies, however, the MFP 

of phonons in a-SiO2 reduces to a few nanometers and the interfacial scattering becomes diffuse. 

In this case, the diffuse phonon scattering randomizes the phases of phonons which makes the 

phonon interference effects negligible.  

The WP simulations in this work are all carried out at zero temperature. The frequency of 

phonons studied in this work is near and below the IR crossover frequency of a-SiO2 [21]. In this 

case, the attenuation of phonons in a-SiO2 is mainly induced by structural disorder, which is a 

temperature independent process [22]. Therefore, the MFP of these phonons is essentially 

independent of temperature. In the case of finite temperature, however, the phonon scattering at 

the two interfaces confining the thin film might be more inelastic due to increasing 

anharmonicity of the atomic interactions. This could weaken the phonon interference effects. 
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FIGURE CAPTIONS 

FIG. 1. Schematic diagrams of (a) the Si|h-BN|Al structure, (b) the Si|a-SiO2|Al structure, and 

(c) the Si|a-SiO2|Si structure used in MD simulations. The central part of each figure shows the 

snapshot of atoms near the confined thin film. 

FIG. 2. The phonon dispersion curve (a) along [001] direction of Si, (b) along [0001] direction 

of h-BN (high frequency optical modes are not shown), (c) along [111] direction of Al, and (d) 

for longitudinal and transverse phonons in a-SiO2. 

FIG. 3. (a) Snapshots of the spatial distribution of vz in the Si|BN|Al structure for an LA mode 

phonon WP centered at 1.5 THz. (b) The amplitude of vibrational normal modes as a function of 

phonon frequency for phonon WP launched in (a). 

FIG. 4. The total energy as a function of time in (a) the Si and Al leads, (b) the confined BN thin 

film in the Si|BN|Al structure, (c) the Si and Al leads, and (d) the confined a-SiO2 thin film in 

the Si|a-SiO2|Al structure during the WP simulations with a LA wave packet centered at 1.5 

THz. 

FIG. 5. (a) The schematic of the one-dimensional chain model. (b) The transmission coefficient 

of LA phonons in Si|BN|Al structure as a function of frequency from WP simulations and 

predictions from one-dimensional chain model. 

FIG. 6. The transmission coefficient for (a) LA and (b) TA phonons in a Si|a-SiO2|Al structure 

as a function of frequency from WP simulations. The dashed lines indicate the peaks of the 

oscillatory transmission coefficients. 

FIG. 7. The transmission coefficient for (a) LA and (b) TA phonons in a Si|a-SiO2|Si structure 

(LSiO2 = 4.6 nm), and (c) LA and (d) TA phonons in Si|a-SiO2|Si structure (LSiO2 = 9.2 nm) as a 
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function of frequency from WP simulations. The dashed lines indicate the peaks of the 

oscillatory transmission coefficients. 
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FIG. 1. Schematic diagrams of (a) the Si|h-BN|Al structure, (b) the Si|a-SiO2|Al structure, and 

(c) the Si|a-SiO2|Si structure used in MD simulations. The central part of each figure shows the 

snapshot of atoms near the confined thin film. 
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FIG. 2. The phonon dispersion curve (a) along [001] direction of Si, (b) along [0001] direction 

of h-BN (high frequency optical modes are not shown), (c) along [111] direction of Al, and (d) 

for longitudinal and transverse phonons in a-SiO2. 
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FIG. 3. (a) Snapshots of the spatial distribution of vz in the Si|BN|Al structure for a LA mode 

phonon WP centered at 1.5 THz. (b) The amplitude of vibrational normal modes as a function of 

phonon frequency for phonon WP launched in (a). 
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FIG. 4. The total energy as a function of time in (a) the Si and Al leads, (b) the confined BN thin 

film in the Si|BN|Al structure, (c) the Si and Al leads, and (d) the confined a-SiO2 thin film in 

the Si|a-SiO2|Al structure during the WP simulations with a LA wave packet centered at 1.5 

THz. 
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FIG. 5. (a) The schematic of the one-dimensional chain model. (b) The transmission coefficient 

of LA phonons in Si|BN|Al structure as a function of frequency from WP simulations and 

predictions from one-dimensional linear chain model. 
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FIG. 6. The transmission coefficient for (a) LA and (b) TA phonons in a Si|a-SiO2|Al structure 

as a function of frequency from WP simulations. The dashed lines indicate the peaks of the 

oscillatory transmission coefficients. 
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FIG. 7. The transmission coefficient for (a) LA and (b) TA phonons in a Si|a-SiO2|Si structure 

(LSiO2 = 4.6 nm), and (c) LA and (d) TA phonons in Si|a-SiO2|Si structure (LSiO2 = 9.2 nm) as a 

function of frequency from WP simulations. The dashed lines indicate the peaks of the 

oscillatory transmission coefficients. 
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Table. 1. Center frequencies, fp,n and center wavevectors, kp,n in Figs. 6 and 7. kp,n+1 - kp,n is the 

difference between center wavevectors of two adjacent peaks. Lth is thickness of a-SiO2 layer 

calculated using Eq. (5). 

Model 
Structure 

Phonon mode fp,n (THz) kp,n (Å
-1) kp,n+1 - kp,n  

(Å-1) 
Lth (nm) 

 
 

Si|a-SiO2|Al 
LSiO2=4.6 nm 

 
LA 

0.45 0.047 0.065 4.8 
1.00 0.112 0.066 4.8 
1.48 0.178 - - 

 
TA 

0.55 0.111 0.061 5.2 
0.82 0.172 0.074 4.2 
1.13 0.246 - - 

 

Si|a-SiO2|Si 
LSiO2=4.6 nm 

TA 
0.42 0.074 0.072 4.4 
0.71 0.146 0.067 4.7 
1.00 0.213 - - 

LA 0.68 0.074 0.063 5.0 
1.19 0.137 - - 

 
 

Si|a-SiO2|Si 
LSiO2=9.2 nm 

 
TA 

0.40 0.080 0.035 9.0 
0.57 0.115 0.040 7.9 
0.75 0.155 - - 

 
LA 

0.40 0.041 0.030 10.5 
0.66 0.071 0.030 10.5 
0.91 0.101 - - 
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