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ABSTRACT 
ACANTHAMOEBA CASTELLANII:  

INTRACELLULAR LOCATION OF METACASPASE 
Danielle Maria Desser 

 

Acanthamoeba castellanii, classified as a free living protist, are found in 

abundance in fresh water, filtered water, and soil, feeding upon bacteria in their 

environment. The pathogenic strain of this organism can cause either 

Acanathamoeba keratitis that targets eyes, or more rarely, granulomatous 

amoebic encephalitis, with immunocompromised individuals most at risk. 

Acanthamoeba castellanii are characterized by their two different stages: the 

trophozoite, which is the growing and dividing form, and the cyst form, which is 

the dormant stage. The cyst stage is highly resistant to harsh environmental 

conditions due to the double layer cell wall made largely of cellulose. It is not 

known exactly what controls encystment at the molecular level. Prior studies in 

this laboratory have shown that metacaspase may be involved in the process. 

The intracellular location of metacaspase in the cell will provide insight as to its 

function.  This study will be done through immunolocalization on fixed 

permeabilized Acanthamoeba cells using polyclonal antibodies specific for 

metacaspase. The specificity of the antibody for metacaspase will first be 

evaluated on western blots. Insights gained as to the function of metacaspase in 

Acanthamoeba will be widely applicable to related processes in other systems 

that also have metacaspases or related proteins.	
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CHAPTER 1: INTRODUCTION 

1.1 Acanthamoeba castellanii 

Acanthamoeba castellanii are eukaryotic single cell protists. Slime mold, 

Dictyostelium discoideum has many of the same characteristics (Figure 1) 

(Bouzat et al., 2000). Although D. discoideum has a multi cellular component; its 

life style is not shared with Acanthamoeba. Acanthamoeba are generally free 

living, but some strains are characterized as parasites (Derda et al, 2009). These 

amoebae are abundant in water and soil, including, bottled water, and can also 

be found in tap water, food, and on the human body. They are phagocytic cells, 

feeding on other microbes such as E. coli and yeast in their environment. There 

are two different stages in which Acanthamoeba can exist; as trophozoite and the 

cyst stage. The double-layered cell wall of the Acanthamoeba is mainly 

comprised of cellulose and is highly resistant to harsh environmental conditions 

and is difficult to penetrate (Trzyna et al., 2006). Morphologically, there are 10-

40um in size and posses acanthopodia, which are characteristic of 

Acanthamoeba castellanii’s genus and are comprised largely of actin (Gordon et 

al, 1976). 

Acanthamoeba are classified as eukaryotic cells and have various 

similarities in the cell structure as compared to a mammalian cell. These 

similarities allow Acanthamoeba to be a very useful model organism for studying 

how mammalian cells behave. Acanthamoeba has been a useful organism for 

studies based upon gene expression and on numerous components of the 

cytoskeleton involved in motility and other processes as well as mechanisms and 
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phylogeny of pathogenicity (Peng et al., 2005). In addition, Acanthamoeba 

exhibits unique stages of transitioning back and forth from trophozoite to cyst 

under favorable or unfavorable conditions, known as encystment. Encystment, a 

cellular differentiation process, is hypothesized to involve various genes and 

proteins regulating metacaspase that are believed to control this process. 

Metacaspse is closely related to caspases and paracspases, which are involved 

in programmed cell death. This relationship is an additional reason as to why 

Acanthamoeba is favored as a model organism for studying.  

 

 

Figure 2: Phylogenetic tree of Acanthamoeba (Khan, 2009). 
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1.2 Human pathology 

Some strains of Acanthamoeba castellanii are known to affect 

immunocompromised individuals and are able to cause Acanthamoeba keratitis 

or granulomatous amebic encephalitis (GAE) (CDC.gov). These infections are 

brought about most often in conditions in which individuals have misused contact 

lenses, only in Acanthamoeba keratitis cases, or are already in a state in which 

they have a decreased immune function in the case of granulomatous amebic 

encephalitis. Although infections are rare, if left misdiagnosed or untreated, 

individuals are more than likely to die with granulomatous amebic encephalitis. 

 Acanthamoeba keratitis affects the cornea of the eye and causes a 

cataract like formation over the eye inhibiting sight. This disease is a very serious 

condition and rarely infects healthy individuals. It is also the reason why 

optometrists explain to never use tap water to clean contacts (Trzyna et al., 

2010). According to Trzyna et al., Acanthamoeba trophozoites and cysts were 

able to withstand harsh levels of chlorine tolerance in higher doses than normal 

water treatment facilities use. This study concluded that it is possible to find 

Acanthamoeba in regular tap water. Soft contact wearers are the most at risk 

possibly due to the depleted aeration in the make up of the soft contact. If the 

individual already possesses a deep wound on the eye, the risk of infection is 

increased (Byers, 1979). Acanthamoeba infected tap water is then splashed into 

the eye and, according to the Center of Disease Control, the trophozoite will 

undergo encystment under these unfavorable conditions and cause 

Acanthamoeba keratitis.  
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 In May of 2007 The Wall Street Journal did a number of articles based 

upon an Acanthamoeba outbreak in contact solution by the Advanced Medical 

Optics with its Complete MoisturePlus contact solution. This soft contact solution 

that they supplied had affected 60% of their consumers with most patients 

complaining of eye pain or blindness. An additional study with in this article by 

Dr. Joslin and Tu showed that the Environmental Protection Agency happened to 

decrease the amount of chlorine in the water of Chicago at the time. This study 

led them to believe that maybe increased incidence of disease was the cause of 

the outbreak if soft contact wearers wore their contacts in the shower, washed 

their face with tap water, or went swimming.  

The same article stated that researchers from Ohio State tested three 

different contact solutions affected with Acathanthamoeba, and, after 6 hours in 

contact solution, Acanthamoeba still continued to multiply. The researchers 

concluded that contact solution alone cannot ward of Acathanthamoeba in tap 

water. Winstein and Rundle reported The Environmental Protection Agency 

concluded that the Food and Drug Administration did not require chlorine levels 

high enough in Chicago at the time to kill amoeba in contact solution. The 

Environmental Protection Agency believes that water filters should have take 

care of amoeba and individuals should still practice proper techniques when 

handling soft contacts; although it is well documented by the Center for Disease 

Control that amoeba are small enough pass through water treatment filters.  As a 

result of this outbreak, disposable daily soft contact sales have increased 35% in 

2007 in order to reduce the risk of infection (Winstein and Rundle, 2007). 
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In order for a physician to detect Acanthamoeba keratitis is occurring, Lee 

et al., 2006 describe that a sheep blood agar plate is streaked from a swab of the 

patient’s eye and is induced with E. coli as a food source to conclude if any 

colonies would grow, thus signaling Acanthamoeba castellanii was present and 

the individual is infected. The patient then would undergo a rigorous and long 

process of treatment because the double cell wall of the cyst is very resistant to 

antibiotics and could take up to a few years to treat (Lee et al., 2006). 

 A study done by Vural et al. in 2007 tested eighteen rats that were 

infected with Acanthamoeba keratitis and were treated with a chlorine based 

drug, propolis. It hypothesized that propolis was corrosive enough to penetrate 

the double cell wall of the cyst without harming the rat’s health. The drug was 

administered by the use of eye drops once an hour for a total of ten days. Every 

day, the rat’s cornea would be scraped and tested for the percent of corneal cells 

that were damaged due to Acanthamoeba keratitis. The results of this 

experiment proved that propolis did help degrade the cysts over the course of the 

ten-day trial. It also reinforced the idea that the cystic cellulose wall was too hard 

to penetrate and that the high doses would risk affecting the corneal epithelial 

cells at the price of being cured. In conclusion, many drugs are too harsh on 

corneas to treat Acanthamoeba keratitis, but if Acanthamoeba castellanii could 

somehow be coerced back into a trophozoite, the individual would be at much 

less a risk because trophozoites do not possess the double layered cell wall and 

could be lysed in a non-invasive fashion to the patient. (Vural et al., 2007). 
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Granulomatous amebic encephalitis is another disease that is caused by 

Acanthamoeba. It primarily affects patients who are already 

immunocompromised, such as patients after a surgery who are infected with 

MRSA. According to Acanthamoeba Infection webpage of the CDC, 

Acanthamoeba are first able to target the respiratory tract and then enter the 

central nervous system. Symptoms could include headaches and a stiff neck, 

which are often misdiagnosed at first as meningitis. Lesions will ultimately form 

on the individual’s appendages and could take months or years to cure. One of 

the only ways to positively identify this disease, other than by visually noticing 

skin lesions, is to perform a test using hematoxylin and eosin, although studies 

have shown that identification can also be performed through streaking E. coli on 

a blood agar plate to see if Acanthamoeba is still present (Szenasi et al., 1998). 

Ultimately, polymerase chain reaction nucleic acid testing is one option that can 

be done to identify the disease. Although it is very rare and often misdiagnosed 

at first, only around four hundred cases have been reported (Jones, 1975). In 

order to treat this disease, multiple drugs must be taken at once to penetrate the 

cyst cell wall such as ketoconazole and miconazole (Gregerson, 2007). 

 Due to these infections being serious if left misdiagnosed or unreported, 

Acanthamoeba is an important microbe requiring further studies to better 

understand the infectious process and how to intervene. If Acanthamoeba could 

be controlled by inducing the cell to excyst, Acanthamoeba keratitis and 

granulomatous amebic encephalitis could be treated more urgently and less 

evasively, and thus save more lives.  
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1.3 Trophozoite 

 The trophozoite life stage of Acanthamoeba is the active metabolic state. 

Trophozoites are present in favorable conditions in the surrounding environment 

such as rich media in a laboratory setting. Trophozoites can range from 20-40um 

in diameter and are not uniform in shape as shown in Figure 2. Under a 

compound light microscope, trophozoites are easily visible under 100X exposure. 

A trophozoite is easily identifiable by its acanthapodia, which are 1-2um in 

diameter and extend for a few microns (Bowers and Korn, 1968). The function of 

acanthapoida is unknown at this time, but it is believed to aid the trophozoite in 

movement (Bowers and Korn, 1968).  

 Trophozoites are not morphologically similar to other eukaryotic cells. It 

has been noted that, under a compound microscope, Acanthamoeba possess 

golgi bodies, smooth and rough endoplasmic reticulums, a contractile vacuole, a 

vacuole digestive system, multiple mitochondia, and a nucleus. (Bowers and 

Korn, 1968). Bowers and Korn also state that if the same strain of Acanthamoeba 

is subbed over numerous generations in a laboratory setting, multiple nuclei can 

form. It has also been observed by the author that very few trophozoites have 

been able to withstand encystment. This observation could be due to some sort 

of mutation involving trophozoites, which are not given the chance to encyst over 

time. Increasing osmolarity, the addition of salt to the media, and various 

monoclonal antibodies that bind to the surface of the amoebae can cause the 

trophozoite to encyst and become a cyst (Trzyna et al., 2006).  
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Figure 2: Acanthamoeba Trophozoite under 100X compound light 

microscope (D. Desser, 2009). 

 

 

1.4 Cyst 

 Little is known about the cyst life stage, but it does contain a double-

layered cell wall comprised of cellulose as well as an identifiable nucleus (Derda 

et al., 2009). The cyst life stage of Acanthamoeba is generally found when the 

trophozoite encounters low metabolic states or various environmental stresses 

such as increasing osmolarity (Trzyna et al., 2008) and undergoes encystment to 

become a cyst. The cyst is able to survive periods of “adverse” conditions that 

can include, but are not limited to, many environmental changes such as change 
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in pH, elevated temperature, and change in osmolarity (Cordingley et al., 1996). 

If monoclonal antibodies bind to the surface of the cyst, it has been shown that 

encystment can occur (Trzyna et al., 2006).   

 

 

Figure 3: Acanthamoeba Cyst under 100X compound light microscope 

(D. Desser, 2009). 

 

 

According to Kong 2009, they were able to classify the genus 

Acanthamoeba into three groups using visual and morphological features (Figure 

4). 

“Group 1 consists of Acanthamoeba spp. with relatively large cysts, 
distinctly stellate endocysts, and smooth spherical ectocysts. Group 2 and 
group 3 Acanthamoeba spp. have smaller cysts (less than 18 µm in 
diameter). Species in Group 2 have polygonal to satellite endocysts with 
irregular or wrinkled ectocysts, while the cysts of group 3 species have 
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rounded or slightly angular endocysts with smaller and smooth or slightly 
wrinkled ectocysts. The grouping has been widely used before species 
identification of the amoeba” (Kong, 2009). 
 

When conditions in the environment become favorable again, the cyst is able to 

excyst into a trophozoite. 

 

 

 

Figure 4: Cyst groups 1, 2, and 3 (Kong, 2009). 

  

  

 In the past, Acanthamoeba cysts have been observed by viewing them 

under transmission electron microscopy (TEM) but recently, in order to eliminate 

the artifacts that are generally found when fixing the cells and can lead to an 

unclear picture, ultrarapid freezing has been performed on cysts. This procedure 

involved using ultrarapid freezing, freeze-fracturing, and then deep-etching to 

provide a clear image. This procedure provided scientists with a 3D image of the 

endocyst and exocyst cell walls. The images were cleaner and clearer and 

proved to be a better way of studying the cellular structure. After observing the 

cell walls, they were able to observe many vesicles that ran through the exocyst 

cell wall and confirmed Pussard and Pons’ observation of the three different 

and regarded promising. In this paper, the potential of these
molecular methods for the phylogeny of Acanthamoeba, and the
molecular phylogeny of Acanthamoeba korean isolates, were brie-
fly reviewed.

ISOENZYME ANALYSIS AND MITOCHONDRIAL
DNA RFLP

Isoelectric focusing of isoenzymes had been applied for iden-
tification of Acanthamoeba spp. Studies of isoenzyme patterns
[9-12] suggested the other groupings of Acanthamoeba strains
that are not consistent with previous species assignment based
on the morphological criteria of Pussard and Pons [5]. De Jonck-
heerez [13] examined 30 strains of 15 Acanthamoeba species for
the isoenzyme patterns by agarose isoelectric focusing (IEF) in
the pH range 3-10. Comparing zymograms of 5 enzymes, he
reassigned the strains of amoebae to each species. Kong et al.
[14] observed the interstrain polymorphism of the isoenzyme
profiles among 7 strains of Acanthamoeba morphologically assi-
gned to Aanthamoeba polyphaga. Since considerable variation of
zymograms was noted within a species of Acanthamoeba, isoen-
zyme study alone is not regarded fully sufficient for species iden-
tification.

Mt DNA RFLP analysis has also been applied for taxonomy

of Acanthamoeba. Bogler et al. [15] prospected the availability
of Mt DNA RFLP for the identification of Acanthamoeba after
analysis of 13 strains. They observed that most of the Acantha-
moeba strains had distinct fragment patterns of Mt DNA. Yagita
and Endo [16] also analyzed 8 isolates which had been identi-
fied as Acanthamoeba castellaniii or A. polyphaga, and reported
variability of Mt DNA digestion phenotypes among different
strains of A. castellanii. Kong et al. [14] confirmed the variabili-
ty in digestion phenotype of A. polyphaga as well as that of A.
castellanii. As for the interstrain sequence diversity of Mt DNA
of Acanthamoeba, other investigators reported similar results [15,
17-19].

Considering profound interstrain diversity in a species of the
Mt DNA RFLP and alloenzyme profiles, Kong et al. [14] and
Chung et al. [20] suggested that both analyses should be used
for strain identification, differentiation, and characterization
rather than species identification.

SMALL SUBUNIT RIBOSOMAL RNA CODING
DNA RFLP (RIBOPRINTING)

PCR-based DNA restriction analyses of 18s rDNA (riboprint-
ing) of Acanthamoeba showed promising results for species dif-
ferentiation of Acanthamoeba [21]. The sequence of primers for
PCR was designed to hybridize at the highly conserved sequences
at the 5 and 3 termini of eukaryotic ssu rDNA [22]. They ana-
lyzed 23 reference strains of Acanthamoeba, including 18 (neo)
type strains for classification at the subgenus level by riboprint-
ing. The dendrogram based on the riboprinting coincided well
with the grouping of Pussard and Pons [5] based on the mor-
phological features of the cysts. Khan and Paget [23] applied
similar methods to identify clinical and environmental isolates
from UK. They amplified a part of 18S rDNA with genus-specif-
ic primers [23] and digested the products with restriction enzy-
mes. The riboprinting can be applied for rapid identification of
Acanthamoeba isolated from the clinical and environmental spec-
imens under limited condition to obtain the DNA sequence of
the samples. 

18S rDNA SEQUENCE ANALYSIS

The most recently proposed method for molecular taxono-
my of Acanthamoeba is 18s rDNA sequence analysis. Byers group
investigated the 18s rRNA gene phylogeny [24,25]. After the
examination of the 18s rDNA sequence variation in a group of

S22 Korean J Parasitol. Vol. 47, Supplement: S21-S28, October 2009

A

B

Fig. 1. Microphotographs of Acanthamoeba. (A) Trophozoite of A.
castellanii Castellani with many characteristic pin-like acanthopodia
and numerous vacuoles. Nucleus and a contractile vacuole are pro-
minent. (B) Various shaped cysts of Acanthamoeba with different
arm numbers.
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groups of cysts. They also observed that the endocyst cell wall was actually 

thinner than previously observed in other TEM studies although it was 

inconclusive as to where the acanthapodia lie connected to the cell. Further work 

must be completed, but this study showed more of an understanding of how 

structurally the cyst is comprised (Lemgruber et al., 2010).  

 As stated previously, Acanthamoeba cysts are highly resistant to low 

amount of chlorine treatments. They have also been known to be resistant to pH 

2.0, freezing, irradiation of 250 rads (Chatterjee, 1968), UV irradiation of 

800mJ/cm2 (Aksozek et al., 2002), storage at room temperature for 24 months 

(Brown et al., 1984), and 24 years at 4°C in water (Iwanicka et al., 1995). After 

twenty years, Acanthamoeba cysts have also been found to survive after drying 

them out on agar plates with E. coli and rehydrating them with amoeba saline 

(Siriam et al., 2008). 

 In a recent study performed by researchers at Steris Research and 

Development labs, cysts would remain resistant even after thirty minutes of 

treatments by glutaraldehyde and other biocides. Other biocides that were tested 

on cysts and proved to have an effect on them included “peracetic acid, 

hydrogen peroxide, or ortho-phthalaldehyde presented greater efficacy than 

glutaraldehyde, as did ethanol and sodium hypochlorite” (Coulon et al., 2010). 

Many different incubation times were noted and proved to inactivate the cyst. 

Even temperature change in the Acanthamoeba’s environment did have an effect 

on the cyst when temperatures reached 65ºC for an hour. This study was very 

useful for hospital settings to determine better means of eliminating cysts if 
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hospital workers know Acanthamoeba is present in the environment before more 

patients become infected or if some already are so they can perform more rapid 

ways of treatment (Coulon et al., 2010).    

 

1.5 Encystment 

 Encystment occurs for Acanthamoeba when a trophozoite’s environment 

becomes unfavorable and it morphologically converts to a cyst in order to survive 

in low metabolic states. Sadoff observed that Azotobactor underwent encystment 

when glucose in the environment was replaced with B-hydroxybutyrate, an 

example of an unfavorable condition and loss of food source( Sadoff et al., 

1970). When conditions become more favorable, as described in previous 

sections, cysts are able to excyst and return back to their metabolically active 

trophozoite form. Acanthamoeba are not the only protist that is able to encounter 

encystation. It is indicative of many protists, such as the non free living 

Entamoeba and free living parasites such as Dictyosteluium, as seen is Figure 1.  

In Giardia, and possibly Acanthamoeba, encystment is part of the life cycle. 

Encystment is hypothesized to be a part of the reproductive cycle of some 

protists by undergoing cellular division as soon as excystment occurs and new 

trophozoites are formed (Baron, 1996).  

According to Miickimion, the earliest description of encystment is 

described in Rhizomastix when the organism first began to lose its flagellum, the 

body becomes rounded and the cytoplasm developed multiple vacuoles 

(Miickimion, 1913). This observation is very closely related to a physical 
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description of encystment in Acanthamoeba. A more recent publication by 

Weisman describes encystment in Acnathamoeba as a three-step process which 

includes induction, in which the trophozoite becomes rounded. The second step, 

of wall synthesis in which the excoyst, or the fist wall, is formed and is comprised 

of acid-insoluble proteins. The final step is dormancy, in which the endocyst, the 

second cells wall, is formed and is highly comprised of cellulose (Weisman, 

1976).  

A more modern approach to understanding encystment would be to look 

at the molecular level rather than morphology. In Dictyostelium, there are many 

cell-to-cell signaling by cell surface receptors and transmembrane signal 

transduction such as camp receptors (Janssens and Haastert, 1987). 

Molecularly, cyst-specific protein 21 (Csp21) has been identified as 
a cyst wall protein found in group II Acanthamoebae and was 
reported to be synthesized approximately 12 h after induction. The 
expression of the respective gene is repressed under normal 
growth conditions via one or more repressor elements between the 
TATA box and nucleotide (nt) +63. Furthermore, encystment 
requires serine protease activity and autophagy proteins, all of 
which are suggested to be involved in autolytic processes, and 

glycogen phosphorylase, which is necessary for the breakdown of 
glycogen. The glucose-1-phosphate that is thereby liberated is 
subsequently used for the buildup of cellulose in the cyst wall 
(Leitsch et al., 2010). 
 

 “Proteinases play a role in various biologic actions in Acanthamoeba, 

including host tissue destruction, pathogenesis, and digestion of phagocytosed 

food” (Moon et al., 2008). Leitsch’s study also concluded that most of the 

changes in the protein profile of encysting Acanthamoeba occur early in the 

encystment process as well as the early phase of encystment can be completely 

inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride. Serine 
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proteases are indicative of caspases. He also concluded that the proteolytic 

processes observed during the early phase of encystment are mediated by 

proteases already present in the trophozoite and that the proteolytic activity 

localizes to the large organelle fraction and can be inhibited only by the cysteine 

protease inhibitor E64 (Leitsch et al., 2009). This study shows that serine 

protease inhibitors inhibit proteolytic activity in the cell in early encystment.  

 Protein expression in encystment has been growing in popularity in order 

to observe cell-to-cell signaling that is taking place. In France, researchers 

observed four specific proteins expressed in trophozoites and four specific 

proteins expressed in cysts, which included glycolytic pathway proteins involved 

in actin binding: enolase and fructose bisphosphate aldolase. Because they are 

associated with serine proteases and encystment, these proteins were modified 

during encystment and result in having links to actin morphology in encystment, 

glycolysis, and proteolysis (Bouyer et al., 2009). 

 Within the first sixteen hours of Acanthamoeba encystment, it has also 

been observed that:  

RNA polymerase II increases approximately 4-fold, whereas transcription 
by RNA polymerases I and III is decreased when examined by nuclear 
run-on and RNase protection assays. The levels of mRNAs encoding 
TPBF, TATA binding protein, cyclin-dependent kinase, protein disulfide 
isomerase, profilin, myosin II heavy chain, ubiquitin and extendin are 
stable during mature cyst formation, whereas mRNAs encoding actin, S-
adenosyl methionine synthase and tubulin are substantially decreased. 
Control of Acanthamoeba differentiation is likely to be mediated by 
positive regulation of genes necessary for cyst maturation (Orfeo, 1998). 
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This observation has been useful for the use of housekeeping proteins and to 

observe what proteins are turned on and off in the cell at different times of the 

encystment process.   

A number of specific conditions performed in a study found that triggering 

encystment in the Neff strain of Acanthamoeba, include starvation (Weisman 

1976, Byers et al. 1980), osmolarity (Cordingley et al. 1996), and, in some 

experimental situations, several surface binding monoclonal antibodies (Yang 

and Villemez 1994) and MgCl2 (Chagla and Griffiths 1974) have also been 

shown to induce encystment (Cordingly and Trzyna, 2008). Acanthamoeba 

trophozoites can either grow and divide producing more vegetative cells, or, 

alternatively they may cease dividing and encyst, forming a cellulose-containing 

cyst wall around a resting stage cell, until conditions allowing excystment and 

replication return (Cordingly and Trzyna, 2008). The study by Cordingly and 

Trzyna concluded that increasing osmolarity, presence of glucose, and 

temperature change all play a role in inducing encystment in Acanthamoeba. It 

has also been noticed that Acanthamoeba have been able to lose their ability to 

encyst when placed in axenic cultures for long periods of time and subbed only 

as trophozoites (Köhsler et al., 2008). Encystment, which is a complicated 

process, could be brought about by multiple proteins being triggered such as 

possibly metacaspase  (Trzyna et al., 2008), which is related to caspases in 

other eukaryotic cells based upon sequence data. 
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1.6 Caspase 

Caspases received their name from being identified functionally as 

cystienyl aspartate-sepcific proteases (Jiang et al., 2010). Programmed cell 

death, also known as apoptosis, normally occurs in Eukaryotic cells when the 

cells have reached their expectancy and become phagocytized by their 

environment. Caspases are cysteine-aspartic acid proteases that trigger cellular 

signaling to dismantle the cell completely (Boyce et al, 2004). Recently, many 

scientists have become very interested in caspases because if cell death does 

not occur tumors will develop and some could be cancerous. Studying tumors 

can expand life expectancy in humans and has been an increasing field in the 

last few decades. It has also been shown that a faulty gene, which controls the 

caspases’ ability to bring about apoptosis, usually affects individuals with 

autoimmune diseases (Cohen, 1997). 

Closely related to Acanthamoeba is Dictyostelium which possesses a 

paracaspase, which is homologous to a caspase when it was first identified in a 

PSI-BLAST search (Uren et al., 2000). The paracaspase can be activated by 

homologous recombination (Golstein et al., 1993). Paracaspases share the Cys-

His catalytic diad with caspases but the catalytic Cys resides within a context that 

is different from the QACXG prototypic caspase sequence, probably leading to a 

different specificity. An observation made by turning off the paracaspase in 

Dictyostelium showed that Dictyostelium did not require a paracaspase in order 

for cell death to occur (Golstein et al., 1993). These conclusions brought about 

the many unanswered questions involving the role of caspases involvement in 
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cell death, and are there other factors such as other regulations of other cystine 

proteases that are causing caspases to induce apoptosis.   

 This study started questions as to what exactly is the function of 

metacaspase and its overall purpose (Jiang et al., 2010). Because sequence 

information has brought about a profound similarity among, paracaspases, 

caspases and metacaspases, it triggers questions. Questions include what is 

controlling Acanthamoeba from triggering cell death and are the cells triggered 

by metacspase causing encysting or causing tumors? By intracellularlly locating 

the metacspase in the cell, insight to its overall function can be gained.  

 

1.7 Metacaspase 

During the process of encystment when the trophozoite morphologically 

changes to a cyst under unfavorable conditions, the cell possesses the ability to 

also return to the trophozoite stage under favorable conditions. Metacaspases 

are arginine and lysine specific and are found in plants, fungi, and protists 

(Belenghi et al, 2007). Bacterial metacaspases are cystine proteases, which are 

homologous to caspases. Based upon the sequence data of metacaspase, it is 

believed metacaspase is involved in programmed cell death. Programmed cell 

death has also been observed in six of the eight major groups of prokaryotes 

(Jiang et al., 2010). Metacaspases are not found in mammalian cells but do 

possess a caspase. 

Plants are known to also possess a metacaspse. Woltering provided 

evidence in plants that type II metacaspase is associated with cell viability in the 
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processes. This system has shown to require proteases to induce cell death and 

have also shown caspase-like substrates, which would link them to the 

involvement (Woltering, 2010). 

In some species of the human protozoan parasites Trypanosoma spp. and 

Leishmania spp., metacaspases have been involved in programmed cell death 

(Gonzalez, 2009). Leishmania is found to have two metacaspases known as 

Leishmania donovani metacaspase-1 (LdMC1) and LdMC2 (Lee et al., 2007). 

When hydrogen peroxide was added to Leishmania cells, LdMC levels increased 

to induce programmed cell death. Leishmania metacaspases show enzymatic 

characteristics of trypsin-like proteases and have been shown to be 

intracellularlly localized in unique acidocalcisome compartments, located in the 

cytoplasm, which could represent a form of sequestration of inactive enzymes in 

the cell (Lee et al., 2007). 

Upon starvation, Dictyostelium, another protozoa, is able to differentiate 

into multicellular fruiting bodies consisting of a spore mass supported by a stalk. 

During this process, stalk cells die in a caspase-independent autophagic cell 

death (Cornillon et al., 1994). Both differentiation and cell death were 

demonstrated to be independent of meta-/paracaspase action (Roisin-Bouffay et 

al., 2004).  

The opportunistic human pathogen, Aspergillus possesses a yeast 

metacaspase, Yca1p, in apoptotic-like programmed cell death (Richie, 2006). 

The slime mold Plasmodium undergoes similar cellular differentiation due to 

metacaspase 1 (PxMC1). The gene in plasmodium has been described 
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possessing histidine and cysteine residues that typically form the catalytic dyad 

in this family of proteases suggesting that this parasite species may possess a 

mechanism of programmed cell death (Le Chat et al., 2007). 

Saccharomyces cerevisiae has only one metacaspase gene, Yor197w, 

and does not possess caspases or paracaspases. Although over expression of 

Yor197w is triggered, cell death occurs but Yor197w will prevent cell death from 

happening. This study suggests that metacaspase could be involved (Golstein et 

al., 1993). In yeast, if metacaspase is knocked out, then without metacaspase, it 

resulted in the activation of cell death pathways being turned on providing more 

insight that metacaspase does play a positive roll in cell death (Guaragnella, 

2010). 

Metacaspases in Acanthamoeba have been divided into two groups, type 

1 and type 2. Type -1 metacaspases are comprised of proteins on the N-terminal 

region. Type-2 metacaspases are comprised of both N-terminal and C-terminal 

regions laying on the same length and sequence (Trzyna et al., 2006). In 

Saccharomyces cerevisiae, the metacaspase is present in this organism and has 

been reported that it is involved in apoptosis (Silver et al., 2005). Although the 

exact function of the metacaspase is unknown in Acanthamoeba, it is believed it 

plays a role in inducing the formation from trophozoite to cyst. Because type-1 

metacaspase in Acanthamoeba castellanii was able to undergo gene expression 

and simulated encytment by using a monoclonal antibody, it was concluded that 

the metacaspase is in the direct link of events leading to encystaion (Trzyna et 

al., 2006). This study proved that the caspases are homologous to 
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metacaspases due to its His/Cyst catalytic dyad. Instead of causing apoptosis to 

occur, encystation occurs instead.  

According to Trzyna, 2006, the metacaspase in Acanthamoeba castellanii 

is 478 AA long and 50,249 Da in size. Its molecular function is a cysteine-type, 

which is homologous of caspases. Acanthamoeba has been found to possess 

endopeptidase activity and is known as a protease. An upregulation of 

metacaspase messages when Acanthamoeba cells approach encystment has 

also been observed (Trzyna et al. 2006). There are many unanswered questions 

about Acanthamoeba metacaspase that include function, specific location, and 

does it turn on or off a cell metabolically.  

 

1.8 Project overview and aims 

In Acanthamoeba castellanii, identifying the intracellular location of the 

metacaspase will provide insight of its function in the cell. Previous data (Trzyna, 

2006) showed an up regulation of metacaspase mRNA during encystment. 

Studying this protein means metacaspase may be involved in the encystment 

process.  

The overall objective for this project is to determine the intracellular 

location of metacaspase in Acanathmoeba. Evaluating the metacaspase protein 

expression profile during growth and encystment and use a polyclonal antibody 

to metacaspase will be use for immunolocaliztion studies. Although the project 

still has many questions that need to be addressed, the study is interesting 

enough to continue further work. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Methods of Culturing and Growing Acanthamoeba in the Laboratory 

 In order to identify the intracellular location of metacaspase in 

Acanthamoeba castellanii, cells must first be cultured. The Acanthamoeba 

trophozoite was subcultured every few days so encystment could not take place. 

Acanthamoeba castellanii, Neff strain, cells were grown axenically using 

standard Acanthamoeba media in 30ml cultures at 30ºC in a shaking incubator at 

200rpm.  

Standard Acanthamoeba media was made by starting with 400ml of MiliQ 

water and adding 7.4g proteose peptone (Fisher cat. LP0085B), 7.5g yeast 

extract (Fisher cat. 50843369), 0.1mM ferric citrate, 1mM MgSO4, and 2mM 

KH2PO4. After mixing thoroughly, the volume was brought up to approximately 

700ml and pH 7 using 10X NaOH then bringing the final volume up to 900ml. The 

final volume was split into 450ml aliquots, weighed and autoclaved. After 

sterilizing, sterile water was used to replace the lost volume of water and 50ml of 

15% Glucose/0.5mM CaCl2 was added for a final concentration of 1.5% glucose, 

0.05mM CaCl2.   

Acanthamoeba cells were then counted using a hemocytometer with a 

1:10 dilution if the cell density was more than 1X106 cells/ml. In order to 

determine the number of cyst to trophozoite ratio, 2% SDS (sodium dodecyl 

sulfate) was used in a 1:1 dilution of cells to SDS and counted. If cells were at a 

density of 5X105 cells/ml, they were considered to be in low log growth phase, 
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middle log phase was around cell density of 3X106 cells/ml, and late log phase 

approaching stationary the cells were counted at a cell density of 6X106 cells/ml. 

 

2.2 Acanthamoeba Purification 

 2.2.1 DNA Miniprep of Acanthamoeba 

To obtain purified DNA from E. Coli strains on a 1% agarose DNA gel, a 

Qiagen QIprep Spin Miniprep Kit (50) (cat. 27104) was used. Cultures were first 

single colony picked from an LB ampicillin plate. Cultures were then grown in 5ml 

of LB plus ampicillin and were placed over night in 37ºC at 200 rpm. Following 

the kit’s instructions, a single colony sample of Acanthamoeba was also grown 

on LB ampicillin plates to retain for use later if the colony was successful. This 

procedure was performed for E. coli plasmid samples full-Length metacaspase 

colony 1 in PGEX, c-term metacaspase colony 3 A, and full-length metacaspase 

GFP. These samples were selected and sent off to be sequenced at 200-400 

ug/ul. These strains were selected because they possessed the c-terminus full-

length sequences of the metacaspase done in previous work. 

2.2.2 Endo-Free Plasmid Purification of Acanthamoeba 

Quiagen Endo-Free Plasmid Giga Kit (5) (cat. 12391) was used on E. coli 

plasmids FLM-GFP and FLM colony 11 in LB ampicillin medium in a 10ml starter 

culture. The protocol supplied was followed and test samples were taken at the 

appropriate steps. The final pellet was let to air dry for 20minutes in an air hood 
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and re-dissolved in 1.2ml of endotoxin-free Buffer TE supplied.  A 1% agarose 

DNA gel was run to test each sample recovered from the appropriate steps.  

 

2.3 Restriction Digest and Gel Electrophoresis 

To prepare a 1% agarose gel, 490ml miliQ water and 10ml of 50X TAE, a 

1X TAE solution was constructed. Then 50ml of the 500ml 1X TAE solution was 

added to 0.5g of agarose. The original weight was recorded, the flask was 

covered with plastic wrap and microwaved for a 45 seconds, stirred, and placed 

back into the microwave for an additional 15 seconds. The final weight was 

recorded and MiliQ water was added to replace the volume of water lost. The 

melted agarose was then placed into a gel box and the combs were placed. 

Once the gel set, the combs were removed and the samples were added to 

wells.  

 For a digested sample of DNA, 3ul of DNA were placed in a separate 

centrifuge tube, 1ul 10X restriction enzyme buffer, 1ul 10X BSA, 4.5 ul of miliQ 

water, and 0.5ul enzyme were then added. For a double digest, 0.5ul of each 

enzyme were added and 4ul of miliQ water were adjusted. The samples were 

then placed on a heat block at 37ºC for 1 hour to 1.5 hours, spun briefly for 30 

seconds at 2,000rpm, and 3ul of 6X loading dye was added to the sample 

bringing the total volume to 13ul, and then loaded.  

 The undigested samples of DNA consisted of 3ul undigested DNA sample, 

7ul miliQ water, and 3ul 6x loading dye making 13ul total. The loading dye 

consisted of 3ul marker, 7ul miliQ water, and 3ul 6x loading dye. Gels were then 
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run at 100v for 60 minuets. The gel was then processed with a 1:100 dilution of 

10ug/ml ethidium bromide (Bio-Rad cat. 161-0433) added to 1X TAE buffer and 

placed on a rocker overnight and then viewed. 

 FLM in PEGEX and C-term colony 3A showed the correct insert and were 

then single colony streaked onto LB ampicillin plates in order to save. C-term 

colony 3A and was digested using ECOR I (New England Bio Labs cat. B0101S). 

FLM colony 11 was ran using NDELI (Fermentas cat. ER0585) restriction 

enzyme and FLM-GFP was ran using Sca I (New England Biolabs cat. R0122S). 

  

2.3.1  Nanodrop 

 A Nanodrop was performed on all DNA samples after purification. A 0.2ul 

of DNA sample from a 1:200 dilution was tested each time. 

  

2.4 Transfection of Acanthamoeba 

2.4.1 Transfection of Acanthamoeba by Electroporation 

Acanthamoeba cells were cultivated at early log phase of approximately 

cell density of 1X106 cells/ml in a 30ml shaking culture. After cells were 

harvested at 5,927 rfc for 10 minutes, the supernatant was then carefully poured 

off and the pelleted cells were resuspended in 30ml of PBSU (phosphate 

buffered sucrose, 272mM sucrose, 7mM NaP04 PH=7, and 1mM MgCl2) and 

spun again for 10 minuets at 5,927 rfc and the supernatant was then carefully 

poured off again. The cell pellet was then resuspended to have a final cell 
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density of 2.5X106 cells/ml (The cell density was divided by 2.5X106 cells) by 

adding the appropriate amount of PBSU. The concentration of plasmid DNA from 

an earlier nanodrop was performed; the appropriate ug/ml of DNA was added to 

each samples and a 2-minute timer was set as soon as the DNA was added. 

Cells were then subject to electroporation after 2 minutes at 4,000v, 2,000v, 

1,500v, 1,000v, 500v and 0 volts and the time constant was recorded each time. 

3ml of AC media was placed into each well of a 6 well dish and 1ml of 

electroporated cells were placed into each appropriately labeled dish following 

incubation on ice for 10 minutes for a total of 4ml in each well. The 6-well dish 

was then incubated at 26ºC without shaking. Cells were then viewed 2 days later 

by fluorescent microscopy. 

 2.4.2 Transfection of Acanthamoeba using Superfect 

 Acanthamoeba cells were cultivated at approximately 1X106 cell/ml and 

the cell density was calculated. The 30ml of cells were then spun at 5,927 rfc for 

10 minutes and then resuspended in AC media. After, 5ml from the resuspended 

cells in AC media were placed into 25ml of fresh AC media in a 50ml tube. Then 

0.5ml of 1X106 cell/ml cells and 2.5ml of AC media were placed into a 6-well dish 

with a total volume of 3ml per well and placed into a stationary incubator over 

night at 25ºC. The next day, three 1.7ml centrifuge tubes were used. The first 

was for the control of no DNA, which consisted of 100ul AC media and 20ul 

Superfect transfection reagent 3mg/ml (Quiagen cat 301305), the second was for 

20ug/ml FLM-GFP with 100ul AC media and 200ul superfect, the last was for 

20ug/ml FLM with 100ul AC media and 20ul superfect. The tubes then were let to 
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incubate in the air hood for 10 minutes at room temperature. Meanwhile, the AC 

media was washed away from the 6-well dish, rinsed with 2ml 1X PBS, and then 

washed away again. 600ul of AC media was then added to the centrifuges tubes 

after the 10-minute wait and the cells were then placed into a 25ºC stationary 

incubator for 24-48 hours. Before microscopy was performed, the AC media as 

washed away and replaced with 3ml of fresh media in each well.  

 2.4.3 Transfected cells with antibiotics (G418) 

 After viewing cells under the fluorescent microscope, the AC media was 

removed from each of the 6- wells. Fresh 3ml of AC media was replaced back 

into each well and, using a cells scrapper, the cells were then placed into a 25ml 

flask. The volume was brought up to 10ml with fresh AC media and 10ul (1:1000 

dilution) of G418 was added to each of the culture flasks. They were then placed 

into a shaking incubator at 37ºC and able to divide over a week and then looked 

at again under fluorescent microscopy. 

 

2.5 Microscopy 

 Acanthamoeba cells were viewed under fluorescent microcopy and 

confocal microscopy after cells were transfected. Under fluorescent microscopy, 

cells were observed directly using the 6-well dish, and, while under confocal 

microscopy, cells were observed by placing a drop onto a lens cover. Using 

software Image J, pictures of the cells were obtained and observed.  

 



	
   27	
  

2.6 Recombinant E. Coli protein isolation 

 In order to obtain recombinant protein to use as controls on protein gels, 

BL21 (E.coli control), PGEX colony 1 (vector control), and C-term colony 3A 

(metacaspase control) were used. From -80ºC frozen stocks, single colony 

streaking was done on LB ampicillin plates and placed in a 37ºC incubator over 

night. A single colony was then picked, placed on an LB ampicillin plate, and then 

inoculated in 5ml of LB ampicillan broth at 37ºC over night in a shaking incubator 

at 200rpm. The 5ml of inoculated culture was then placed into a 45ml LB 

ampicillin culture, for a 1:20 dilution, and let to shake for 2 hours. After 2 hours, 

an OD reading was taken at 600nm and, if the sample was between 0.08 and 

0.1nm, then 50ul of IPTG (Invitrogen cat. 15529-019) was added. Every hour a 

1ml sample was taken out and placed into an 8ºC refrigerator and an OD reading 

was taken and recorded. After six hours, the culture was spun at 7,000rpm for 10 

minutes, the supernatant was discarded, and the cell pellet was placed into the 

freezer.  

 As the cell pellet was thawing on ice for 30 minuets as directed from the 

kit: Qproteome Bacterial Protein Prep Kit (Quiagen cat. 37900), 40ul of 5X 

protease inhibitor cocktail for use with bacterial cell extract (Invitrogen cat. 

P8465-5ML) was added. The instructions provided by the Isolation of Protein kit 

was followed but 1/5 of the volume was used for the 50ml culture. 

FLM in PGEX, another vector insert, was used to extract protein. The 

same procedure was performed as stated above with addition to a few steps. 

After six hours of IPTG induction, the 50ml culture was spun at 10,000rpm for 8 
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minutes, the supernatant was discarded, and the cell pellet was then 

resuspended in 1.250ml of 1X PBS, and the mixture was transferred to a 50ml 

tube. Then 25ul of a 10mg/ml lysozyme (Boehringer Manneim cat. 84093121) 

mixture was added and let to sit at room temperature for 15-20 minutes and then 

vortexed. The samples were then divided in two; one-half received 1.3ml 1X 

PBS, 17ul 20%SDS, and 125ul beta-mercaptoethanol  (Bio-Rad cat. 161-0710) 

for a total of 2.5ml total. The other half received 1.3ml of SDS-PAGE buffer, 

175ul 20%SDS, 125ul beta-mercaptoethanol for a total of 2.5ml. The samples 

were then vortexed and placed in 2ml tubes then boiled at 100ºC for 10 minutes. 

After, the samples were spun for 5 minutes at 13,000pm and then froze at -20ºC.  

 

2.7 Bradford Assay 

 To confirm equal loading in each lane on the protein gel that was being 

loaded, a Bradford Assay was performed. Four different standards, 5ug/ml, 

10ug/ml, 15ug/ml, and 20ug/ml, were used to conduct the Bradford Assay. In a 

2ml centrifuge tube, the appropriate volumes of 0.5ug/ml BSA (Ameresco cat. 

E531-1.5ML), 0.15N NaCl and then 1.5ml of Bradford (Ameresco cat. E530-

1.0ML) were added. The tubes were vortexed and then sat for 2 minutes before 

being run at 595nm, and the readings were recorded. A blank was constructed 

using 150ul of 0.15N NaCl and 1.4ml Bradford. These readings were then plotted 

on an Excel graph of absorbency/concentration. 
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2.8 Acanthamoeba protein standardization 

 2.8.1 Acanthamoeba protein standardization using SDS or Salt to 

Lyse cells 

 Cells were taken at both early and late log phases around 8X105 cell/ml 

and 5X106 cell/ml grown in 60ml cultures in AC media in a shaking incubator at 

30ºC at 200rpm. The 60ml cell culture was then split into two-30ml cell culture in 

which one was inoculated with 125mM NaCl and harvested identically to that of 

culture that did not obtain salt16-18 hours later. The culture that was not 

inoculated with 125mM NaCl was then harvested. A cell count was performed 

and recorded along with a 2% SDS cyst count. Then 1ml of cells were placed in 

a 1.7ml centrifuge tube and spun for 3 minutes at 13,000rpm and the supernatant 

was drained. The cells were then resuspended in 1ml of 50mM EDTA and spun 

for 3 minutes at 13,000 rpm. The supernatant was then drained and the cells 

received an additional 1.5-minute spin at 13,000rpm to remove any additional 

50mM EDTA. The cell pellet was then resuspended to have a final cell 

concentration of 2.5X 105 or 1.0X 106 cell/lane. In a fresh centrifuge tube, 9ul of 

cells were placed along with 9ul SDS PAGE buffer, 1ul 20%SDS, and 1ul of Beta 

mercaptoethanol. The tubes were then heated at 100ºC in water for 10 minutes 

and stored at -20ºC. 

2.8.2 Acanthamoeba protein standardization using Urea to Lyse cells 

 A more effective way to lyse trophozoite Acanthamoeba cells is by using 

an urea-based detergent. Comprised of 2% SDS, 6M Urea, 62.5mM Tris (1M Tris 

solution pH 6.8) and 160mM DTE. Acanthamoeba were then counted at cell 
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densities of 5X105 cells/ml, 1X106 cells/ml, 2.4X106 cells/ml, and then 4.5X106 

cells/ml up to 12 hours of stationary phase. The last sample that was taken was 

100% cysts. Every count was checked with a 2% SDS count to make sure the 

samples remained trophozoite. After the cell count of cell density, Acanthamoeba 

were then harvested to be at 5X106 cells/lane. Cells were spun down for 3-

minutes at 13,000rpm, decanted, washed with 1ml of 50mM ETDA, spun again 

for 3-minuites at 13,000rpm, and decanted. A final spin at 1 additional minute at 

13,000rpm was performed and final volume of cells was resuspended using 

100ul of the urea mixture and stored at -20ºC.  

 

2.9 Western Blot Analysis of Metacaspase Antibodies 

 After the cells were harvested, a standard 12% separating protein mini-gel 

was assembled by adding 4.5ml of 40% acrylamide (Bio-rad cat. 161-0148), 

6.45ml miliQ water, 3.75ml 1.5M tris-HCl pH=8.8, 150ul 10% SDS, 150ul APS, 

and 6ul TEMED. The 4% stacking gel was assembled by adding 0.625ml of 40% 

acrylamide, 0.625ml 1M tris-HCl pH=6.8, 50ul 10% SDS, 50ul, APS, and 5ul 

TEMED. The 40% acrylamide was always added last to prevent premature 

solidification of the gel. Approximately 150ul of 75% ethanol was placed over the 

separating gel while it set and then blotted off with a wipe before the stacking gel 

was placed. Each part of the gel was let to sit for 20-30 minutes. The samples 

were then loaded and run in 1X running buffer, which was comprised of 90ml of 

miliQ water and 10ml of 10X running buffer. The 10X running buffer was made 

from 29.0g tris base, 144.0g glycene, 10.0g SDS, and the volume was brought 
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up to 1 liter. The gel box was assembled with the wells facing in, and the running 

buffer completely filled the inside chamber and about 200ml of the outside 

chamber. The samples were then run for 1 hour at 200v. The gel was then 

placed in a container and 50ml of coomassie blue was used to stain the gel over 

night. The next day, the coomassie blue was drained off and the gel was then 

destained for 1-3 hours with protein destain made up of 800ml miliQ water, 

100ml acetic acid, and 100ml methanol.  

 While the gel was being prepared, the Acanthamoeba samples were taken 

from the -20ºC and thawed. Then 3ul of 20% SDS was added to each sample, if 

it was an SDS protein standardized sample, and placed in a hot water bath at 

100ºC for 10 minutes. The samples were then taken out and spun at 2,000rpm 

for 2 min. Before loading the wells the samples were pipetted up and down to 

make sure there was consistency and there was no pellet.  

When transferring the gel to a membrane, in a container, 4 filters, 5 pads, 

and 2 membranes were soaked for approximately 30 minutes in 700ml of tris-

glycine SDS transfer buffer. The tris-glycine SDS Transfer Buffer was made from 

3.0g tris base, 14.40g glycine, 200ml methanol, and the volume was brought up 

to 1 liter with miliQ water. The nitrocellulose membrane, filter paper sandwhich 

0.45ul pore size, 20/pk, (Invitrogen cat. 625411) was dated with a pen before 

being soaked. The assembly of transfer was done by starting with the negative 

side, adding 2 blotting pads, 1 filter paper, first gel, 1 transfer membrane, 1 filter 

aper, 1 blotting paper, 1 filter paper, second gel, 1 transfer membrane, 1 filter 

paper, and 2 blotting pads. This gel was then run for 1 hour at 30v. 
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Many different western blot kits were used such as Ameresco Western kit 

(cat. K205-KIT) horseradish peroxide based and The Sigma Western Breeze kit 

(cat. WB7105) to identify if the metacaspace was present in the Acanthamoeba 

samples that were standardized as described previously. The chromogenic 

substrate in the Western Breeze kit was left on for 1-2 hours in order to see the 

developing bands rather than 0-60 minutes as instructed. The SDI western 

protocol provided by SDI who processed and developed the antibody Rabbit 1 

and Rabbit 2 was followed and was also horseradish peroxide based. Dilutions 

were made from 1:50 up to 1:500. The secondary antibody used in all the kits for 

metacaspase was an antirabbit from Sigma (cat. no A6154-1ML). The 

developmental stage of the western was changed by using one DAB tablet 

(Ameresco cat. E733) provided from the Ameresco western kit along with one 

drop of H2O2 provided from the Ameresco western kit (cat. E882) and 10ml of 

miliQ water.   

The above protocol was revised using PVDF membrane and 

chemiluminecence in order to confirm if the metacaspase was present in the 

cells. When using PVDF membrane (Milipore cat. IPVH00010), the membrane 

was soaked in methanol on a rocker for 5 minutes then followed by 30 minutes of 

miliQ water wash also on a rocker prior to being transferred. After the transfer 

step had occurred, a 7% milk/TBS/T mixture was used to block the membrane on 

a rocker for 2 hours and then the appropriate antibody was diluted and placed on 

the rocker overnight. Around 14-16 hours later, the membrane was then washed 

with 1X TBS/T with 6-10, 10-minute washes. The secondary antibody was then 
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applied to the membrane for 2 hours. Another wash with 1X TBS/T with 6-10, 10-

minute washes was performed. Finally, the membrane was taken to a dark room. 

An equal 1:1 mixture of 1.5ml of ECL1 and ECL 2 (Fisher cat. RPN2106V1) was 

added for1 min and rocked to obtain uniformity over the membrane. The 

membrane was then blotted in between 2 layers of blotting paper and then 

placed onto plastic wrap in a film cassette. Film was then layered directly on top 

of the membrane and exposure time was between 12-15 minutes.  

 

2.10 Cell fixing and Immunocytochemistry 

2.10.1 Cell Fixing-pre permiablizing Acanthamoeba 

In order to view where the metacaspase protein is located in 

Acanthamoeba, cells first have to be fixed so they do not digest the antibody. 

Acanthamoeba cells were harvested at 2X105 cells/ml and 1ml was placed in 10 

centrifuge tubes. The cells were then spun down at 13,000rpm for 5 minutes and 

then washed. The first wash consisted of 1ml of 1XPBS, and the second wash 

consisted of 500ul of 1XPBS. The cells were then resuspended with the slurry 

left over after draining off the supernatant. Next, using 20ml PBS added to 0.8g 

of paraformaldehyde, it was then placed on a hot plate and stirred in a fume hood 

until the mixture was clear made 4% paraformaldehyde and stored at 4ºC. Using 

the 4% paraformaldehyde was then added to the tubes in increasing increments 

beginning with 10ul to 500ul. Then 7ul of the mixture was placed on a slide and 

7ul of 50% glycerol was added on top of the samples. After allowing the samples 

to dry for 30 minutes, the samples were then viewed under a microscope. 
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2.10.2 Cell Fixing- post-permiablizing Acanthamoeba 

Acanthamoeba were harvested at a cell density of 1.1X106 cell/ml at early 

and late log phases. One ml of cells were placed into a single well of a 24 well 

dish due to the cell’s ability to adhere to the well. The cells were placed in a 

stationary incubator at 30ºC for 24 hours and allowed to grow and divide to reach 

mid log phase density of 3X106 cells/ml. Cells were then carefully asperated from 

the wells.  The cells were then fixed with a mixture of 500ul of 3% formaldehyde 

and 0.25% glutaraldehyde in PBS for 45 minutes at room temperature. Cells 

were then washed in 1ml of PBS, pH 7.4 for 5 min. The cells were then 

permiablized with 500ul of 0.2% saponin in PBS for 15 min. Cells were again 

washed with 1ml of PBS, pH 7.4 for 5 min. After, the cells were treated with 

1mg/ml of sodium borohydride in PBS for 10 min to reduce the free aldehydes. 

To block nonspecific binding of antibodies, cells were incubated in 1% BSA and 

50mM L-lysine in PBS, pH 7.4 for 2 hours in room temperature. Cells were then 

incubated with a 1:200 primary metacaspase antibody in BSA/lysine/PBS buffer 

overnight at room temperature. The next day, five washes with PBS were 

performed 5 min apiece. The secondary florescent antibody was then incubated 

with a 1:20 dilution for 2 hours in BSA/lysine/PBS buffer in the dark room. An 

additional five washes with PBS for 5 min apiece were performed and then the 

cells were viewed under fluorescent microscopy either immediately or the 

following day (Bowers and Korn, 1990).  
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CHAPTER 3: RESULTS 

3.1 DNA Restriction Digests 

 Several plasmids were used throughout these studies for transfecting 

Acanthamoeba cells and for expressing recombinant proteins in E. coli. Initially, it 

was necessary to be certain each of the constructs contained the metacaspase 

insert of the correct size. For this purpose, a series of plasmid preps and DNA 

restriction digests were carried out. Prior to analysis, DNA was first purified 

utilizing a Qiagen Mini Prep Kit. Purified DNA was then restriction digested and 

analyzed on 1% agarose gels. Plasmids used in these studies are listed in Table 

1 below and include full-length metacaspse-p-110EGFP (FLM-p-110EGFP), the 

vector with full-length metacaspse insert, p-110EGFP without the metacaspase 

insert to be used as a transfection control,and  c-terminus-p-110EGFP, vector 

with c-terminus metacaspase insert. Other plasmids that were used for preparing 

recombinant proteins were pGEX (no insert control), c-terminus (of 

metacaspase) in pGEX, and FLM (full-length metacaspase) in pGEX (figure 5 

and 6).  The full-length metacaspase insert is shown at 1700bp (Fig. 5, lane 3).  

Restriction digests with EcoR1 and Xho1 to release the insert were 

analyzed on a 1% agarose gel to confirm the presence and size of insert. The 

Qiagen Plasmid Giga Kit (for endotoxin free DNA) was used to purify with p-

110EGFP, FLM-0-110EGFP, and c-terminus-p-110EGFP. These purified DNA 

samples were restriction digested with NdeI (to release the insert) followed by 

electrophoresis on a 1% agarose gel to confirm the size and presence of the 

inserts (figure 6). Figure 6 shows a 1% Agarose gel stained of restriction 
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digested plasmids with NdeI with plasmids p-110EGFP and FLM-p-110EGFP, 

which confirmed the metacaspase insert at ~1700bp. Purified DNA was later 

used for transfection of Acanthamoeba via electroporation.  

 

 

 

 

Plasmid  Description Purpose 

p-110EGFP Vector only, no insert Transfection control 

FLM-p-110EGFP Vector with full-length 

metacaspase insert 

 

Transfection of 

Acanthamoeba 

C-terminus-p-

110EGFP 

Vector with c-terminus 

metacaspase insert 

 

Transfection of 

Acanthamoeba 

FLM-pGEX pGEX Vector with full-

length metacaspase  insert 

 

Expression of recombinant 

protein 

 

Table 1: Represents the different plasmids used in this study.  
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Figure 5: 1% Agarose gel of restriction digested plasmids. Lanes are as follows: 
lane 1) Molecular Weight Marker, lane 2) undigested FLM in PGEX, lane 3) FLM 
in PGEX digested with double digest ECoR1 and Xho1. FLM in PGEX is at full-
length metacaspase at 5,000bp and FLM in PGEX is digested at 1,700bp. 
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Figure 6: 1% Agarose gel stained of restriction digested plasmids with NdeI. 
Lanes are as follows: lane 1) Molecular Weight Marker, lane 2) p-110EGFP 
undigested, lane 3) p-110EGFP digested (~5-6kbp) lane 4) FLM-p-110EGFP 
undigested, and lane 5) FLM-p-110EGFP digested (~1700bp).  
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3.2 Transfection of Ancanthamoeba 

 After the plasmids were purified and the correct metacapase inserts were  

confirmed by using restriction digests, the plasmids were ready to be tranfected 

into Acanthamoeba. The previously purified DNA from the Qiagen Plasmid Giga 

Kit, p-110EGFP and FLM-p-110EGFP samples were then transfected using 

various voltages by utilizing both electroporation and chemical transfection 

methods in order to determine the optimal conditions. The results from the 

electroporation of cells were too damaging, and many cells were either lysed or 

killed. In order to enhance cell viability, transfection via superfect was then 

performed.  

The cells transfected via superfect were then harvested into shaking 

Acanthamoeba media and treated with antibiotic G418. After incubation of 

Acanthamoeba over several days only those cells carrying the plasmid and those 

developing resistance to G418 were selected and were observed again under 

GFP flourescence and found to still have a very weak fluorescent signal. 

Acanthamoeba trophozoite cells under bright field 40X transfected with p-

110EGFP (figure 7) show a lot of cellular debris in the background and the cells 

do not look very intact. The same cells under GFP flourecence (figure 8) were 

imaged. As predicted the cells did not show fluorescence due to the fact that 

there was not a metacaspase insert present. The cells also confirmed that the 

cells themselves did not self fluoresce. Acanthamoeba cells under bright field 

40X transfected with the FLM–p-110EGFP (figure 9) showed the same amount of 

cellular debris in the background, meaning the total number of cells had been 
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diminished. The Acanthamoeba cells still did not look like “healthy” trophozoites 

when transfected with FLM–p-110EGFP. The same cells transfected with FLM–

p-110EGFP and under GFP frequency (figure 10) were also imaged and showed 

a very inconclusive result by having a relatively faint fluorescent glow. Because 

the cells were not fixed, many times the GFP was easy to locate but would fade 

very quickly. Figure 11 is a breakdown of Acanthamoeba cells transfected with p-

110EGFP and FLM-p-110EGFP. Panels “b” and “e” show the faint merged 

epifluorescence and white light images of Acanthamoeba trophozoite cells. Panel 

“b” shows p-110EGFP where there is no fluorescence except in vacuoles. Panel 

“e” shows FLM-p-110EGFP and how there is minimal fluorescence in what 

appear to be vacuoles.  Panel h shows an Acanthamoeba cyst with the same 

minimal fluorescence when transfected with FLM-p-110EGFP. Exposure time 

was between 200 and 400ms with GFP Ex 470nm/Em 525nm filter set at 20X or 

40X LD plan-Neofluor objective for all pictures. Overall, these images showed 

only a very weak fluorescent in any case. 
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Figure 7: Acanthamoeba cells under brightfield 40X transfected with p-
110EGFP. 
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Figure 8: Acanthamoeba cells under GFP filter 40X transfected with p-110EGFP 
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Figure 9: Acanthamoeba cells transfected with Full Length Metacaspase-p-
110EGFP plasmid inserted cells under brightfield 40X  
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Figure 10: Acanthamoeba cells transfected with Full Length Metacaspase-p-
110EGFP plasmid inserted cells under GFP 40X  
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Figure 11: Acanthamoeba cells transfected with p-110EGFP (a-c) and FLM-p-
110EGFP (d-i). Acanthamoeba cells were taken with Epifluorescence (a,d,g), 
merged (b,d,h), and brightfield (c,f,i). Exposure time was between 200 and 
400ms with GFP Ex 470nm/Em 525nm filter set at 20X or 40X LD plan-Neofluar 
objective for all pictures. 
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3.3 Recombinant Protein Isolation 

  

Following the transfection study (which gave inconclusive results), the 

next step was to harvest recombinant metacaspase protein and later confirm the 

presence of metacaspase with a protein gel.  Recombinant protein plasmid was 

first harvested from E. coli BL21 expressing the c-terminal portion of 

metacaspase (c-terminus colony in pGEX, colony 3A), and full-length 

metacaspase in pGEX (colony 11). E. coli BL21 was harvested as a control 

(figure 12) and shows BL21 induced with IPTG over 6 hours. As expected, there 

is no effect on the cells when IPTG is added. C-terminus colony 3A in pGEX and 

FLM in pGEX was harvested as a positive control plasmid for metacaspase in 

figure 13. This gel resulted in a very strong band at ~43kDa (the expected size of 

the C-teminal fragment of metacaspase and the GST fusion partner). Also in 

figure 13, FLM in pGEX showed an expressed band after addition of IPTG.  The 

purpose of adding IPTG was to induce the expression of proteins over a 6-hour 

period of time. Afterwards, a Bradford assay was completed to confirm the total 

amount of protein in each sample. Recombinant proteins could be used on gels 

as controls in western blots. 
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Figure 12: : Coomassie Blue Stained SDS-PAGE Gel of total E. coli Protein. 
Total protein from Acanthamoeba cells were extracted using SDS. Lanes are as 
follows: lane 2) E.coli BL 21 control uninduced with IPTG. Lane 3) BL21 induced 
with IPTG after 6 hours in lane no. 3. Lane 1) is a Molecular Weight marker 1KDa 
Protein Plus. 
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Figure 13: Coomassie Blue Stained SDS-PAGE Gel of total E coli Protein. Total 
protein from Acanthamoeba cells were extracted using SDS. Lanes are as 
follows: lane 2) C-terminus colony 3A in PGEX induded with IPTG after 6 hours 
(band “a”), lane 3) C-terminus colony 3A in PGEX uninduded, lane 4) FLM in 
PGEX unindiced with IPTG, and lane 5) FLM in PGEX induced with IPTG after 6 
hours (band “b”). Lane no 1 is a Molecular Weight marker 1KDa Protein Plus 
Marker. 



	
   49	
  

3.4 Acanthamoeba Protein Standardization  

3.4 .1 Acanthamoeba Protein Standardization Using SDS to Extract 

Total Protein 

Western blots were needed in order to determine the specificity of the 

metacaspase specific polyclonal antibodies. For this purpose, total 

Acanthamoeba proteins would be extracted from cells and run on SDS-PAGE 

gels. Acanthamoeba cells were subcultured and then harvested at early (5x105 

cells/ml), middle (3x106 cells/ml), and late log phases (6x106 cells/ml), over a 

course of 16-18 hours. The cell densities are used to define the point at which 

cells are in the growth and differentiation stages of Acanthamoeba (Trzyna et al. 

2008). Once the cells were harvested, samples were prepared to contain 1X106 

cells that were loaded in each lane onto a 12% protein gel (figure 14). It was 

determined, as in figure 14, that total protein from 1X106 cells was suitable for a 

single lane on a gel and that Acanathamoeba cells were able to be lysed with 

SDS but a relatively high concentration was needed.   

In order to see if metacaspase protein was detectable in cysts, 125mM 

NaCl was added to early log phase and late log phase cells. 125mM NaCl 

simulates cells to undergo encystment. These cells were then harvested 16-18 

hours later, and samples were prepared for SDS-PAGE gel that each one 

contained the protein equivalent of 1X106 cells. 1x106 cells were loaded per lane 

when loaded onto a 12% protein gel (figure 15). Figure 15 resulted in a visual 

difference between the Acanthamoeba cells that were not induced with 125mM 

NaCl and those that were. The gels also concluded that the lanes were still able 
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to be equally loaded when encystment was induced. These gels were later used 

for western blots. The results, as shown in figures 14 and 15, were not optimal, 

and an alternative method for protein extraction and solubilization was used.  

 

 

 

 

    1     2        3       4        5        6       7 

  
 
Figure 14: 12% protein gel stained with coomassie blue. Total proteins from 
Acanthamoeba cells were extracted using SDS. The samples in each lane 
contained total protein extracted from 1x106 cells. Lanes are as followed: lanes 
1-3 represents early log phase cells, lanes 4-5 represent mid log phase, and 
lanes 6-7 represent late log phase cells. Lane 1) is a Molecular Weight marker 
1KDa Protein Plus. 
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Figure 15: Coomassie Blue Stained SDS-PAGE Gel of total Acanthamoeba 
Protein using SDS extraction protocol. Certain cells were treated with 125mM 
NaCl at early and late log phases over 16-18 hours prior to harvesting. Lanes are 
as follows: Lane 1) represents total protein extracted from Acanthamoeba cells at 
1X106; cells were harvested at early log phase. Lane 2) represents total protein 
extracted from Acanthamoeba cells at 1X106; cells were harvested at early log 
phase and induced with 125mM NaCl. Lane 3) represents total protein extracted 
from Acanthamoeba cells at 1X106; cells were harvested at late log phase. Lane 
4) represents total protein extracted from Acanthamoeba cells at 1X106; cells 
were harvested at late log phase with 125mM NaCl. Lane 1) is a Molecular 
Weight marker 1KDa Protein Plus. 
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3.4 Presence of Acanthamoeba Metacaspase on Western Blot: 

 When western blots of SDS-PAGE gels of total Acanthamoeba protein 

were prepared, using SDS, they were unsatisfactory. The bands corresponding 

to metacaspase were not detectable even though there were sufficient amount of 

protein that were visible on the protein gels. Acanthamoeba cells were then lysed 

with urea as an alternative way of solubilizing and denaturing total proteins. Cells 

were harvested again at early, middle, and late log phases (as described earlier), 

and samples were prepared containing the total protein equivalent of 1X106 cells 

for each lane. Protein was loaded onto the 12% protein gel (figure 16). A western 

blot was then performed. In order to see if metacaspase protein was present in 

cysts, 125mM NaCl was added to early log phase and late log phase cells. 

These cells were then harvested 16-18 hours later, and each lane represents the 

total protein extract from 1x106 cells, loaded onto a 12% protein gel (figure 16). 

These gels proved to be more satisfactory than the earlier gels in which the 

protein was extracted using SDS.  

After the SDS-PAGE gel (12% protein gel) was run to confirm all the lanes 

were loaded equally at 1X106 cells/lane, a western blot was performed to 

evaluate the specificity of the metacaspase antibody. The antibody being used 

was previously raised to a synthetic peptide based on the 19 C-terminal amino 

acids of metacaspase. For the western blot, the primary antibody was diluted to 

1:50 and the secondary antibody used was used at a 1:5000 dilution. After 

probing, the blot was visualized using chemiluminescence after 15 minutes of 

incubation. Placing the PVDF membrane under the microfilm and noting the 
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position of the pre-stained molecular weights on the film confirmed the protein 

ladder. The antibody bound to around 53 kDa, which is the expected size of 

metacaspase (figure 18). This result showed that metacaspase was positively 

being expressed in Acanthamoeba cells over a period of 16 hours. To evaluate 

the western blots for equal loading of Acanthamoeba protein, an antibody to actin 

was used as a control and diluted 1:5000 as seen in figure 20. The western blot 

confirmed the presence of actin protein, the banding patterns in each lane were 

different. There are considered to be as many as eight different actins present in 

Acanthamoeba over the life cycle of the cell (Bateman, 1998). This feature and 

the presence of multiple bands that change from sample to sample, provide 

evidence that actin will not be a useful “reference gene” for these studies. The 

pre-immune serum was also used as a control to the metacaspase antibody 

(figure 19). On the blot, the pre-immune sera did not detect a band at 53kDa in 

samples from cells at early, middle, and late log phases resulting in a positive 

outcome.  

 In order to observe if metacaspase protein was present in cysts (i.e. a 

culture that had completely encysted), a western blot was performed and probed 

with the metacaspase antibody. For this blot, cells were first induced with 125mM 

NaCl over 16-18 hours to stimulate encystment prior to harvesting. Total protein 

extracts were then prepared as described previously and loaded on the protein 

gel. Figure 17 shows the total amount of Acanthamoeba protein loaded on the 

gel with equal loading. Figure 21 points out the presence of metacaspase can be 



	
   54	
  

detected in trophozoites and in encysting cells in early and late log phases with a 

band being detected at ~53kDa.  

 

 

  1   2            3           4             5             6            7         8 

  
 
Figure 16: Coomassie Blue Stained SDS-PAGE Gel of total Acanthamoeba 
Protein. Cells were harvested with urea to lyse Acanthamoeba cells. Cells were 
harvested for total protein extracted from Acanthamoeba cells at 1X106 . Lanes 
are as followed: Lane no. 1-3 represents early log phase cells, lane no. 4-5 
represent mid log phase, and lane no. 6-7 represent late log phase cells. Marker 
is: 1KDa Protein Plus Marker. 
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Figure 17: Coomassie Blue Stained SDS-PAGE Gel of total Acanthamoeba 
Protein using Urea. Cells were treated with 125mM NaCl at early and late log 
phases over 16-18 hours prior to harvesting. All lanes were equally at 1X106 
cells/lane. Lanes are as follows: Lane 2) represents Acanthamoeba cells at 
5.5x105 cells/ml with out salt induced. Lane 3) represents Acanthamoeba cells at 
5.5x105 cells/ml with 125mM salt induced. Lane 4) represents Acanthamoeba 
cells at 6x106 cells/ml with out salt induced. Lane 5) represents Acanthamoeba 
cells at 6.5x106 cells/ml with 125mM salt induced. Lane 1) is 1KDa Protein Plus 
Marker.  
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Figure 18: Western blot of total Acanthamoeba protein probed with the synthetic 
metacaspase peptide. Lanes are as follows: lanes 1-3 represents cells in early 
log phase, lanes 4-5 represent cells in mid log phase, and cells in lanes 6-7 
represent cells in late log phase. All lanes were loaded equally (1X106 cells/lane). 
Metacaspase is noted at ~53kDa (arrow). 
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Figure 19: Western blot of total Acanthamoeba protein probed with pre-immune 
sera of the synthetic metacaspase peptide. Lanes are as follows: lanes 1-3 
represents cells in early log phase, lanes 4-5 represent cells in mid log phase, 
and cells in lanes 6-8 represent cells in late log phase. All lanes were loaded 
equally (1X106 cells/lane).   
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Figure 20: Western blot of total Acanthamoeba protein probed with C4 actin. 
Lanes are as follows: lane 1-3 represents cells in early log phase, lanes 4-5 
represent cells in mid log phase, and cells in lanes 6-7 represent cells in late log 
phase. All lanes were loaded equally (1X106 cells/lane). 
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Figure 21: Western Blot of total Acanthamoeba protein induced with 125mM 
NaCl. Lanes are as follows: lane 1) represents early log phase cells with out salt. 
Lane 2) represents cells harvested 16-18 hours after NaCl induced. Lane 3) 
represents cells in late log phase with out the induction of salt. Lane 4) 
represents cells harvested 16-18 hours after the induction of NaCl. All lanes were 
loaded equally (1X106 cells/lane). Refer to figure 17 for corresponding stained 
12% protein gel.  
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3.5 Acanthamoeba Immunocytochemisty: 

In the previous standardized Acanthamoeba protein gels and western 

blots, the antibody to metacaspase was present at approximately 53 KDa. 

Because the antibody appears to be recognizing a single protein of the expected 

size of metacaspase, it will be used for immunolocalization studies to identify the 

intracellular location of metacaspase in Acanthamoeba cells. Acanthamoeba 

cells were harvested at mid log phase (3x106 cell density) and placed into a 12-

well dish with some of the wells untreated (no NaCl) and some wells induced with 

125mM NaCl to induce encystment. These cells were then fixed, blocked, and 

probed with primary antibody (i.e. metacaspase specific polyclonal antibodies) 

and secondary antibody (Alexa 568 fluorescent tagged) and observed from 0-24 

hours later. Cells were also nuclear stained with DAPI prior to observation. In all 

conditions (panel “c”) the cells appeared intact. 

In figure 22 and when the cells were in mid log phase and viewed under 

fluorescence, the cells did not self fluoresce and when stained with DAPI, the 

nuclei were visible. The same results were positive when the cells were induced 

with 125mM NaCl for 16-18hours and encystment was induced as seen in figure 

23.  

Cells were also probed with “pre-immune” sera (figure 24), with both 

uninduced and induced with 125mM NaCL to stimulate encystment (figure 25) 

and then observed. Figure 24 had faint fluorescence (panel “a”) in what looks to 

be a contractile vacuole as well as some “background debris”. In panel “b” the 

nuclei did not fluoresce meaning there was not any metacaspase protein present 
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in the nuclei. Figure 25 showed similar results in cells for which encystment was 

induced (with 125 mM NaCl). Cells appeared cyst-like and metacaspase was not 

detectable under the conditions used here (panel “a”). DAPI stained cells are 

shown in panel “b”. 

When metacaspase antibody was used to probe the cells, the result was a 

“fluorescent perimeter” (figure 26, panel “a”). As a result, endogenous 

metacaspase protein was positively identified by being expressed in trophozoites 

in early, middle, and late log phases. When Acanthamoeba cells were induced 

with 125mM NaCl (figure 27) in early and late log phases (stimulating 

encystment) the results were similar and visual confirmation of metacaspase 

protein was apparent around the perimeter of the cells. In conclusion, the 

endogenous metacaspase protein appeared to be localized to the perimeter of 

the cells.   
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Figure 22: Negative control Acanthamoeba cells taken in mid log phase (3X106 
cells/ml). Panel “a” represents fluorescence Alexa 558. Panel “b” represents 
DAPI nuclear staining. Panel “c” represents white light. Panel “d” represents a 
merged image of panels “a”, “b”, and “c”. Exposure time was between 200 and 
400ms with Ex 470nm/Em 525nm filter set at 40X LD plan-Neofluar objective for 
all pictures. 
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Figure 23: Negative control Acanthamoeba cells taken in mid log phase (3X106 
cells/ml) and induced 16-18 hours with 125mM NaCl. Panel “a” represents 
florescence Alexa 558. Panel “b” represents DAPI nuclear staining. Panel “c” 
represents white light. Panel “d” represents a merged image of panels “a”, “b”, 
and “c”. Exposure time was between 200 and 400ms with Ex 470nm/Em 525nm 
filter set at 40X LD plan-Neofluar objective for all pictures. 
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Figure 24: Acanthamoeba cells probed with pre-immune metacaspase antibody 
and secondary fluorescence. Cells were taken in mid log phase (3X106 cells/ml). 
Panel “a” represents florescence Alexa 558. Panel “b” represents DAPI nuclear 
staining. Panel “c” represents white light. Panel “d” represents a merged image of 
panels “a”, “b”, and “c”. Exposure time was between 200 and 400ms with Ex 
470nm/Em 525nm filter set at 40X LD plan-Neofluar objective for all pictures. 
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Figure 25: Acanthamoeba cells probed with pre-immune metacaspase antibody 
and secondary fluorescence. Cells were taken in mid log phase (3X106 cells/ml) 
and induced 16-18 hours with 125mM NaCl. Panel “a” represents florescence 
Alexa 558. Panel “b” represents DAPI nuclear staining. Panel “c” represents 
white light. Panel “d” represents a merged image of panels “a”, ”b”, and “c”. 
Exposure time was between 200 and 400ms with Ex 470nm/Em 525nm filter set 
at 40X LD plan-Neofluar objective for all pictures. 
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Figure 26: Acanthamoeba cells probed with metacaspase antibody and 
secondary fluorescence. Cells were taken in mid log phase (3X106 cells/ml). 
Panel “a” represents florescence Alexa 558. Panel “b” represents DAPI nuclear 
staining. Panel “c” represents white light. Panel “d” represents a merged image of 
panels “a”, “b”, and “c”. Exposure time was between 200 and 400ms with Ex 
470nm/Em 525nm filter set at 40X LD plan-Neofluar objective for all pictures. 
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Figure 27: Acanthamoeba cells probed with metacaspase antibody and 
secondary fluorescence. Cells were taken in mid log phase (3X106 cells/ml) and 
induced 16-18 hours with 125mM NaCl. Panel “a” represents florescence Alexa 
558. Panel “b” represents DAPI nuclear staining. Panel “c” represents white light. 
Panel “d” represents a merged image of panels “a”, “b”, and “c”. Exposure time 
was between 200 and 400ms with Ex 470nm/Em 525nm filter set at 40X LD plan-
Neofluar objective for all pictures. 
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CHAPTER 4: DISCUSSION 

 As a model organism for study, Acanthamoeba has importance as both a 

single-cell model for cellular differentiation and as an important human pathogen. 

Some strains could potentially endanger immunocompromised individuals, such 

as hospital patients, as well as otherwise healthy individuals such as soft contact 

wearers. A single-celled eukaryotic microbe may offer insight in understanding 

programmed cell death. Acanthamoeba most likely does not undergo true 

apoptosis, but rather does encyst in response to stress. Metacaspases may be 

involved in this process. As previously discussed in the Introduction, 

metacaspases are closely related to caspases, which are present in the apoptotic 

pathway of higher eukaryotes. Studying the expression of metacaspase and 

where it is located in the cell can give us an understanding of its overall function 

and possibly even provide us with more understanding about the apoptosis 

pathway. 

Some of the findings of this study were conclusive. Initial experiments 

involved standardizing quantities of Acanthamoeba protein for SDS-PAGE gels 

to be used for western blots. Two different protein extraction procedures were 

used: one using high concentrations of SDS and another using Urea. The 

extraction protocol utilizing Urea was determined to be more effective at 

solubilizing Acanthamoeba proteins. western blots of SDS-PAGE gels of total 

Acanthamoeba protein extracts prepared in this way were probed with polyclonal 

antibodies specific for metacaspase. A band of the expected size of 

metacaspase, 53 kDA, was identified.  Pre-immune sera, used as a control, did 
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not bind to any bands on the blot. The metacaspase specific polyclonal 

antibodies were then to be used for immunolocalization studies to locate 

endogenous metacaspase in Acanthamoeba. The western blotting results also 

showed that metacaspase was being expressed in Acanthamoeba in the 

trophozoite stage in early, middle, and late log phases (i.e., while cells were 

actively growing and dividing and prior to encystment). Cells were also harvested 

in stationary phase (just prior to encystment) and also stimulated to encyst by the 

addition of 125mM NaCl, (a known trigger that initiates encystment (Cordingley et 

al. 1996)) and proteins were analyzed for the expression of metacaspase by 

western blotting. Metacaspase was detectable in samples from all timepoints 

although the levels of protein present were not rigorously quantitated.    

 When this study was taken one step further and cells were visualized to 

locate where in the cell the metacaspase was being expressed, results showed 

most of the fluorescence to be concentrated around the perimeter of the cells. 

Cells were also stained with DAPI, a nuclear stain, to confirm that metacaspase 

was not localized to the nucleus. The immunolocalization results also confirmed 

that, based upon the apparent location of the fluorescent signal in the cell, 

metacaspase appears to be localized to the membrane.  

Certain trends were noticed in this study. When total proteins were equally 

loaded on gels with samples extracted from different time points collected from 

throughout growth and differentiation (encystment) of Acanthamoeba and then 

used for western blots, some metacaspase was detected in all samples.  Initially, 

these experiments were done in order to determine the time during 
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Acanthamoeba’s growth and encystment in which metacaspase was being 

expressed. This study was necessary so that cells that would be selected and 

used for immunolocalization studies would be expected to have detectable levels 

of metacaspase. It was confirmed visually by the immunocytochemistry photos 

where the metacaspase protein was positively identified. Although western blots 

presented in this study showed expression of metacaspase, these results were 

not quantitative. For quantitation, further studies could include densitometric 

analysis of the gels to determine expression levels. For those studies, it will be 

necessary to identify a constitutively expressed protein that could be used as a 

reference gene. As this has yet to be done, a number of questions are still 

unanswered from this study. Additional western blots of total proteins extracted 

from time points throughout growth and encystment and standardized against a 

constitutively expressed protein are still needed. These additional studies would 

allow levels of metacaspase to be measured in the cell over different life cycle 

stages. 

 Future studies that could come about from this project would include 

immunolocalizations viewed over time every few hours, for example. These 

studies would show the location of metacaspase in the cell during active growth 

and division, and as cells were undergoing encystment. Metacaspase, or 

portions thereof, may re-localize as cells undergo encystment. It may be possible 

to visually track these changes.  Another study could include taking pictures of 

immunolocalized cells in a z-stack to locate more precisely where the 

metacaspase was expressed in the cell.  
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 Another study could include revisiting the transfection experiments. As the 

initial transfections were inconclusive, due in part to only a very weak 

fluorescence signal being detectable, an alternative would be to use a different 

vector, with a more robust promoter driving GFP expression. Additional 

expression vectors suitable for Acanthamoeba are now available (Bateman 

2010). New constructs containing full-length metacaspase can be prepared in 

these vectors and used for transfection. It might also be possible to fix the cells 

following transfection and prior to viewing, which might allow for the fluorescent 

signal to be more readily and consistently located in the cell.  Also different 

secondary antibodies could be evaluated (e.g. horse serum or goat serum) to 

determine if background fluorescence for the immunocytochemistry could be 

reduced or eliminated, and a clearer result obtained.   

 The studies carried out here are very preliminary and were designed to 

first evaluate the specificity of metacaspase specific antibodies that were then to 

be used for expression studies and immunolocalization studies. The polyclonal 

specific antibodies were determined to be specific for a 53 kDA protein (as 

determined on a western blot), which corresponds to the predicted size of 

metacaspase. To more rigorously confirm the specificity of the antibody, it would 

be necessary to perform blocking experiments using the same antigen to which 

the antibody was initially raised. The antibody used here was raised to a 19 

amino acid peptide. For the blocking experiment, this peptide would be pre-

incubated with the anti-sera, which would then used to probe a western blot of 

total Acanthamoeba proteins. Absence of a signal (at 53 kDa) on the western blot 
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would confirm the specificity of the polyclonal antibody. This same “blocking 

strategy” could be used prior to immunolocalization experiments. Loss of a signal 

when pre-blocked sera was used to probe the cells would then confirm that 

endogenous metacaspase was being identified in the fixed cells.  

 The expression and localization of metacaspase in the cells is an initial 

step in evaluating the overall function of metacaspase in the Acanthamoeba. 

Further experiments might include blocking the expression of metacaspase. If 

metacaspase expression were turned off, the question could be asked: What 

would happen to the cell’s life cycle and would encystment even begin to occur? 

In the absence of metacaspase, would 125mM NaCl (a stimulus which triggers 

encystment in the Neff strain) even induce the encystment process?  

Other studies that have looked at metacaspase’s involvement in 

programmed cell death include Bettiga et al., (2004), which studied metacaspase 

in yeast. They have found that metacaspase plays a vital role when other genes 

are turned off that are involved in the apoptotic pathway involving metacaspase. 

Another study by Gonzalez et al., (2007) involving the human parasite, 

Leishmania major, suggests that becasue metacaspase is arginine-specific, it 

expresses some peptidase activity. In that study they have replaced Leishmania 

major metacaspase with yeast metacaspase, and similar apoptotic pathways 

resulted when cell death was triggered. As stated previously in the introduction, it 

has been determined that plants also possess an identified metacaspase protein 

that has been shown to be involved in apoptosis. Hoeberichts et al., (2003) 

describes how metacaspase is linked to the programmed cell death pathway in 
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the tomato plant. These studies demonstrate an involvement of metacaspase in 

the apoptotic pathway in those systems. In this study, determining the 

intracellular location of the metacaspase provided more insight into its function in 

the cell during related processes.  

The experiments described in this study are the first to show the 

intracellular location of metacaspase in Acanthamoeba. As a result of this study, 

metacaspase was positively identified in the perimeter of the cell and is assumed 

to be associated with the membrane. Further studies will be needed to confirm 

and expand upon this finding for a more comprehensive analysis of the functional 

role of metacaspase in encystment in Acanthamoeba. 
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