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Present Errors
• The artificial finite outer boundary present in 

Cauchy codes introduce two sources of error:
• The outer boundary condition, 
• Waveform extraction at an inner worldtube.
• The problem of proper boundary condition for 

a radiating system can be solved only by 
extension to Ι+ (conformal compactification).

• Cauchy Characteristic Extraction (CCE) offers 
a means to avoid these errors.



Potential Advantages
• The potential advantages of characteristic over 

traditional boundary conditions are:
– accurate waveform and polarization state at infinity,
– computational efficiency for radiation problems in 

terms of both the grid domain and the computational 
algorithm,

– elimination of an artificial outer boundary condition 
on the Cauchy problem, which eliminates 
contamination from back-reflection and clarifies the 
global initial value problem, 

– a global picture of the space-time exterior to the 
horizon.



The Characteristic Method
• Extends the solution to infinity using Cauchy-

Characteristic Extraction (CCE):
– Change the coordinates between the Cauchy and 

characteristic metric at the Cauchy-characteristic 
boundary,

– Extract the characteristic data at the inner worldtube, 
and transforms it into boundary data for the metric 
describing the light cones,

– Propagate the field and the coordinates to infinity by 
evolving along the outgoing light cones,

– Cauchy evolve to the next level,
• Finally, extracts the gravitational wave at infinity, on 

an asymptotically inertial frame.



Characteristic Evolution
• The fundamental ingredient is a foliation by null

hypersurfaces u = const. generated by a two-
dimensional set of null rays, labeled xA, with a
coordinate λ varying along the rays.

• In (u, λ, xA) null coordinates, the main set of Einstein
equations, written in the Bondi formalism, decompose
into a set of hierarchical hypersurface equations,
which can be integrated in terms of the characteristic
data for the evolution variables and prior members of
the hierarchy.

• In addition, there are 4 Einstein equations, which 
have the physical interpretation of conservation laws.

  



Computational Advantages
• The initial data is free - no elliptic constraints on the

initial data.
• The coordinates are very rigid - very little remaining

gauge freedom.
• The constraints satisfy ordinary differential equations

along the characteristics - any constraint violation falls
off asymptotically as 1/r2.

• The main Einstein equations form a system of coupled
ordinary differential equations along the characteristics
- march along the characteristics.

• The grid domain is exactly the region in which waves
propagate - the radiation is calculated immediately (in
retarded time).



The PITT Null Code 
• Implements the characteristic method of

computing gravitational waves at infinity, in terms
of “compactified” light cones.

• Interior
– The “Cauchy surface”

– Near the source BBH
• Exterior

– The “Characteristic”

– Far from source BBH
• Match the two at the boundary



Characteristic Formulation
• Based on a family of outgoing null hypersurfaces,

from the worldtube to infinity, in Bondi-Sachs metric:

• The Einstein equations Gµν=0 decompose into
hypersurface, evolution and conservation equations.
The evolution equation takes the form:

• The code implements this as a second order finite
difference scheme, all angular derivatives first order.



Implementation
• Uses a standard Bondi–Sachs null coordinate

system. The hypersurface equations derive from
the Gμ

ν∇ν u components of the Einstein tensor.
• Given the null data on an outgoing null

hypersurface, this hierarchy of equations can be
integrated radially in order to determine  the
Bondi metric variables on the hypersurface in
terms of integration constants on an inner
boundary.

• The evolution equations for the u-derivative of the
null data derive from the trace-free part of the
angular components of the Einstein tensor.



Code Agorithm
• Explicit second order finite difference evolution 

algorithm based upon retarded time steps on a 
uniform three-dimensional null coordinate grid,

• Handles tensor fields and their derivatives on the 
sphere, by incorporating a computational version 
of the Newman–Penrose eth-formalism. 

• Data is posed on an initial null hypersurface and 
on a worldtube boundary, and evolve the exterior 
spacetime out to a compactified version of null 
infinity, where the waveform is computed.



Angular dissipation
• Numerical dissipation is necessary to:

– stabilize the intergrid interpolation error,
– suppress the circular boundary high frequency error

• The evolution equation takes the form:

• We introduce angular dissipation in the retarded time u
and radial r evolutions:

• We dissipate also the hypersurface equations.



Waveforms at null infinity
• Conformal Penrose compactification of Bondi metric:

• Future null infinity I+ is at l=0. The Bondi mass (total 
energy), news N and Ψ4

0 (radiation power), are 
constructing from expansion of metric in powers of l.

• H, HAB, cAB and LA are expansion coefficients.
• the waveform characteristic extraction is done in null 

coordinates. 



Calculation of the News
• In an inertial conformal Bondi frame the News are :

• where:

• An explicit calculation leads to:

• In inertial Bondi coordinates:
• The general form is used, which is challenging 

because of second order angular derivatives of ω.



Calculation of Weyl tensor
• Weyl tensor vanishes at I+ (asymptotic flatness)

• The inertial radiation field in terms of code variables:

• involves lengthy algebra. In inertial Bondi coordinates

• However, general form is used, which is challenging 
because of third order angular derivatives of ω.



Linearized Expressions
• One can require the Bondi coordinate to be inertial 

(Minkowsky) at I+ but it is not assumed.
• The general nonlinear representation of Ψ in terms of 

the computational variables reduces to a simpler form 
in first order perturbations off Minkowski background.

� ω propagates across patches



Circular patches
• Complex stereographic coordinates cover the sphere

• Unit sphere metric in each patch:

• All boundary points of one patch are interior points of 
another patch. The overlapping of the patches is key 
to the stability of method. The discretization is:

• The active finite difference grid:
• Stability requires that the interpolation stencil for one 

patch ghosts points lies below equator in other patch.



Sources of Error
• Perturbative regime tests compares favorably 

CCE with Zerilli extraction, and show CCE 
advantage at small radii.

• Nonlinear tests show CCE stable, but plagued 
by numerical error in the numerical 
postprocesing at null infinity.

• New work towards the numeric and geometric 
improvement of the accuracy of the waveform.



Ways to improve accuracy
• Geometrical: computation of the asymptotic  

of part of Ψ4 and comparison with the news 
N.

• Numerical: improvement of intergrid 
interpolations between the patches smoothly 
covering the sphere. Comparison between:

• The circular stereographic patching, 
• The cubed-sphere patching.
• Alternatives: higher order finite difference 

approximations, adaptive mesh refinement.



New Tests Conclusions
• All errors are second order convergent: higher 

order finite difference approximations might 
supply the accuracy needed for realistic 
astrophysical applications. 

• Intrinsic difficulty in extracting waveforms due 
to the delicate cancellation of leading order 
terms in the metric and connections.

• The excellent accuracy for the metric suggests 
that perturbative waveform extraction must 
suffer the same difficulty: waveforms are not 
easy to extract accurately.



Possible Applications
• Whether the advantages of CCE prove to be 

significant will depend upon the results of future 
application in the nonlinear regime.

• Clarify the difference between EOB and NR -
is it a ystematic error in the numerical 
amplitude due to the extraction radius, or 
higher order PN corrections are necessary?

• Clarify the deviation observed for the l≠m 
modes in the waveforms from the analytic fit 
model- might be caused by extracting the 
waveform too cose to the source, not yet in 
the wave zone.



Future Steps
• Revive the full extraction module, testing it 

against previous results with Abigel harmonic 
Cauchy code and the Teukolsky wave.

• Match the CCE code with the Hahndol BSSN 
code under Cactus (preferably implementing 
the Teukolsky wave?) - make it work

• Move forward, to matching CCE with a fully 
nonlinear BBH evolution with Hahndol.

• Work on enabling CCE to start extract at 
specified time, and accept mesh refinement.
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