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Abstract 

Conrad Waddington published an influential model for evolution in his 1942 

paper, Canalization of Development and Inheritance of Acquired Characters. In this 

classic, albeit controversial, paper, he proposed that an unknown mechanism exists that 

conceals phenotypic variation until the organism is stressed. Recent studies have 

proposed that the highly conserved chaperone Hsp90 could function as a “capacitor,” or 

an “adaptively inducible canalizer,” that masks silent phenotypic variation of either 

genetic or epigenetic origin. This review will discuss evidence for, and arguments 

against, the role of Hsp90 as a capacitor for morphological evolution, and as a key 

component of what we call “Waddington’s widget.” 

Keywords: Hsp90, Evolution, Morphological Development, Canalization 
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1. Introduction 

According to Webster’s Online Dictionary, a “widget” is “an unnamed article 

considered for purposes of a hypothetical example.” In 1942, Conrad Waddington 

(1905-1975) published his classic paper, Canalization and the Inheritance of Acquired 

Characters, in which he argued that an unnamed article regulates phenotypic 

expression of several, apparently acquired, developmental characters. Waddington 

cited several examples of apparently acquired characteristics that have useful purposes 

in adult organisms, but little or no function in fetuses, such as the callosities on the 

knees of fetal ostriches and the thickening soles of the feet of fetal humans [1]. In 

Waddington’s paper, he proposed the existence of “adaptively inducible canalizers” 

(Meikeljohn and Hartl’s term [2]), or “evolutionary capacitors” (Rutherford and 

Lindquist’s term [3]), that reveal phenotypic variation in times of stress. Waddington 

proposed that, when variation is selected in subsequent generations, “canalization” 

(stabilization) of the new phenotype occurs so that the phenotype can become 

expressed even in the absence of stress [1].  

In later studies, which Waddington interpreted as confirming his 1942 

hypothetical model explaining the apparent inheritance of acquired characters, he 

showed that an unnamed article concealed the crossveinless [4] and Ubx phenotypes 

[5] in Drosophila. When the unnamed article was removed by stress (heat shock or 

ether exposure), selection of the exposed phenotype occurred, and, after several 

generations of selection, the phenotype was “canalized,” i.e., expressed even in the 

absence of stress. Unfortunately, few scientists paid attention to Waddington at the time 

because his scientific program was suspect, presumably because it appeared 
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Lamarckian [6]. We will discuss this issue in more detail later, but it is fair to say that 

Waddington’s body of work has recently undergone a resurgence of interest.  

Because of the mysteriousness of the unnamed article that hides phenotypic 

variation, we call it “Waddington’s widget.” The molecular mechanism of Waddington’s 

widget remained a mystery until 1998, when Rutherford and Lindquist presented 

evidence that Hsp90 fulfills the requirements for being a likely component [3]. In this 

paper, and in a similar study using Arabidopsis [7], Lindquist and colleagues showed 

that genetic or pharmacological inactivation of Hsp90 exposed previously hidden 

phenotypic variation, and that this phenotypic variation can be selected and eventually 

canalized or fixed in the population [3].  

In apparent contrast to the papers from the Lindquist laboratory, work from our 

laboratory provided unique evidence for an epigenetic mechanism for the capacitor 

function of Hsp90 [8]. Recently, several reviews have described the possible genetic [9-

14] and epigenetic [15-17] roles of Hsp90 in morphological development and evolution. 

The latter three reviews argue that both genetic and epigenetic mechanisms likely 

explain the evolutionary capacitor function of Hsp90. In this review, we discuss the 

evidence in favor and the arguments against the proposed capacitor function of Hsp90, 

and other possible uses of Hsp90 in development and evolution. Foremost, after a short 

historical perspective on potential mechanisms of evolution, we address the question, 

“Is Hsp90 Waddington’s widget?” 
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2. Inheritance of acquired characters – an abridged historical perspective 

Jean Baptiste Pierre Antoine de Monet, Chevalier de Lamarck (1744-1829) was 

an influential French naturalist and evolutionary theorist. Lamarck proposed a theory of 

evolution in his book Zoological Philosophy (1809) that maintains that animals acquire 

useful characteristics during their lifetimes, and that they can pass on these acquired 

characteristics to their offspring [18]. In this controversial book, contentious even at the 

time it was first published, Lamarck stated, "continued use of any organ leads to its 

development, strengthens it and even enlarges it, while permanent disuse of any organ 

is injurious to its development, causes it to deteriorate, and ultimately disappear if the 

disuse continues for a long period through generations” [18]. Lamarckian theorists of the 

19th Century, known at the time as “naturalists,” famously maintained, for instance, that 

a giraffe first develops a long neck by stretching to reach tall trees, then passes this 

characteristic to its young [19].  

The Lamarckian theory of inheritance of acquired characteristics was replaced, at 

least for the majority of 20th Century evolutionary biologists and geneticists, by Charles 

Darwin's (1809-1882) theory of natural selection that he first published in On the Origin 

of Species by Means of Natural Selection, or the Preservation of Favoured Races in the 

Struggle for Life (1859) [20]. The main reason, of course, for the continued and further 

increasing popularity of Darwin’s theory of natural selection in the 20th Century was that 

a mechanism for selection of discrete units or genes was provided in the laws of 

genetics proposed by Gregor Mendel (1822-1884) in Experiments in Plant Hybridization 

(1865) [21].  
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Thomas Hunt Morgan (1866-1945), with his small group at Columbia University, 

including A. H. Sturtevant (1891-1970), C. B. Bridges (1889-1938), and H. J. Muller 

(1890-1957), further drove the nail in the coffin of Lamarckism with their pioneering 

genetics research with Drosophila, starting in 1908 [22]. In 1915, Morgan, Bridges, and 

Sturtevant published The Mechanism of Mendelian Heredity, a book that established 

Drosophila as an excellent model system in genetics [23]. In 1928, with the exception of 

Muller, Morgan moved his group to Caltech where they remained the remainder of their 

careers [22]. Ironically, before moving to Columbia University and beginning his 

research with Drosophila, Morgan was skeptical of Darwinism, which he perceived to be 

“too speculative and not grounded in observable phenomena” [22]. Also, at this time 

early in his career, as was the fashion among many well-respected developmental 

biologists, Morgan was critical of Mendelism and the chromosomal theory of heredity 

[22]. 

     Despite the disrepute the majority of 20th Century biologists held (and still 

hold) for the idea of Lamarckian evolution, T.D. Lysenko (1889-1976), who became an 

influential agronomist in the Soviet Union during the Stalin years, was a firm adherent 

[24]. Lysenko discovered that the germination characteristics of winter wheat could be 

made to mimic spring wheat by the Lamarckian-appearing practice of exposing seeds to 

moisture and cold. His simple process of "vernalizing" wheat held out the prospect, 

misplaced as it turned out, of improving wheat yields in the harsh weather of Siberia. 

Lysenko's experiments were poorly controlled and never subjected to peer review, but 

they were accepted nonetheless by a political establishment that viewed environmental 

malleability of biological attributes as consonant with Marxist ideology.  
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Large-scale application of Lysenko's practices, combined with the brutal 

collectivization of agriculture ordered by Stalin in the early 1930s, contributed to severe 

famines that killed an estimated 10 million Russians. Despite this abject failure, Lysenko 

was elevated in 1937 to membership in the Supreme Soviet and he became the head of 

the Institute of Genetics of the Soviet Academy of Sciences. In 1948 he delivered an 

impassioned address denouncing Mendelian thought as "reactionary and decadent" and 

declared such thinkers to be "enemies of the Soviet people" [24]. It was due to 

Lysenko's efforts that many scientists, those who were geneticists or who rejected 

Lamarckism in favor of natural selection, were imprisoned, executed or exiled [24]. With 

Stalin's death in 1953, Lysenko's influence began to fade, although a complete 

repudiation did not occur in the Soviet Union until well over another decade had passed. 

     The debacle that was Lysenkoism irreparably tarnished the image of 

Lamarckian evolution for a great majority of scientists. Yet vernalization is a real 

botanical phenomenon that, ironically, eventually proved tractable to Mendelian genetic 

experimentation. Studies in the last decade have identified the mechanisms by which 

photoperiod and exposure to cold regulate the timing of flowering in Arabidopsis, wheat, 

oats and barley, among other plant species. The processes governing cold -stress 

response and cold tolerance are much less well understood than those involved in 

oxidative stress or heat shock, but make use of signal transduction cascades involving 

gibberellins, MADS-family transcription factors, lectins, and epigenetic modification of 

the plant genome by DNA methylation (reviewed in ref. [25]). 
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3. Waddington and 20th Century Biology 

Early in the 20th Century, before the calamitous Lysenkoism events described 

above, Lamarckian evolution was still in vogue, at least by the “naturalists” who believed 

in the inheritance of acquired characters. The “naturalists” fought pitched battles with 

the “geneticists” who, using Darwinian principles, believed in the inheritance of genetic 

variants by means of natural selection. In 1942, Waddington tried to mediate the battle 

between the “naturalists,” who were beginning to wane in influence, and the 

“geneticists” [1]. In his classic paper, he proposed a genetic mechanism for the 

apparent, but some people argue not genuine (see below), inheritance of acquired 

characters. According to Waddington, “Once the developmental path has been 

canalized, it is to be expected that many different agents, including a number of 

mutations available in the germplasm of the species, will be able to switch development 

into it. By such a series of steps, then, it is possible that an adaptive response can be 

fixed without waiting for the occurrence of a mutation” [1]. According to Waddington, 

canalization is mediated by “Developmental reactions [that] are adjusted so as to bring 

about one definite end-result regardless of minor variations in conditions during the 

course of the reaction” [1].  

In evolutionary biology, the concept of canalization only became important after 

Waddington demonstrated genetic assimilation of environmentally induced phenotypes 

[4, 5]. For example, Waddington showed that a crossveinless phenotype is induced in a 

small percentage of offspring when parental Drosophila are heat shocked, and that 

selection of progeny with this environmentally induced phenotype for several 

generations leads to assimilation of this phenotype in nearly 100% of the progeny, even 
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in the absence of heat shock [4]. Waddington performed similar experiments with the 

Ultrabithorax (Ubx) phenotype induced by heat shock, a Ubx “phenocopy” in the jargon 

of the geneticists, and found that this phenotype can also be assimilated into nearly 

100% of the selected population [5]. Subsequently, assimilation experiments were also 

performed in several laboratories on the extra cross-veins phenotype, the dumpy larval 

phenotype, and the large anal papillae phenotype in wild-type strains of Drosophila  

(reviewed in [26]).  

Another approach that several laboratories have used in assimilation 

experiments is to select for extreme phenotypes in an already mutant background. For 

example, wing vein length was selected in ciD mutant flies, and vibrissae number was 

selected in Ta mutant mice. Again, fixation of an extreme phenotype of either mutation 

occurs after 10-20 generations of selection. Other examples include selection of facet 

numbers in Bar-mutant Drosophila, wing-vein interruptions in Hairless-mutant 

Drosophila, and bristle number in ocelli-less mutant Drosophila  (reviewed in [26]). 

 A. J. Bateman, a graduate student of Waddington, proposed three models to 

explain the increase in frequency of the dumpy phenotype: 1) a shift in the mean of the 

distribution; 2) a shift of the threshold; or 3) an increase of its variance [27].  She 

interpreted her data as supporting model 2, that selection of the dumpy phenotype shifts 

the threshold such that the new genetic makeup of the selected population favors this 

phenotype [27]. In a later section, we incorporate Bateman’s three models to explain 

epigenetic canalization (Fig. 1). 

According to Scott Gilbert in his popular textbook Developmental Biology, 

“Waddington’s work was misinterpreted as supporting the inheritance of acquired traits” 
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[6]. Gilbert’s view is surprising because Waddington himself used the phrase 

“inheritance of acquired characters” in the title of his classic paper described above [1]. 

Nevertheless, Gilbert espoused this argument because, “While Waddington’s results 

look like a case of ‘inheritance of acquired characteristics,’ there is no evidence for that 

view. Certainly, the crossveinless phenotype was not an adaptive response to heat. Nor 

did heat shock cause the mutations. Rather, the heat shock overcame the buffering 

systems, allowing preexisting mutations to result in mutant phenotypes rather than wild-

type phenotypes.” Gilbert was evidently striving to revitalize Waddington’s reputation by 

distancing Waddington’s own views from Lamarckian evolution. As discussed below, 

perhaps this was not necessary. 

 

4. Hsp90 as a capacitor for morphological evolution  

 Hsp90 is unique in its functions as a major heat shock protein. Unlike the other 

proteins in this class of stress-induced proteins, Hsp90 is not required for the maturation 

or maintenance of proteins in general. Rather, most of the identified cellular targets of 

Hsp90 are involved in signal transduction and chromatin organization (reviewed in [14, 

28]). Several cell cycle and developmental regulators have been shown to form non-

functional conformations in the absence of Hsp90, and Hsp90 activates these signaling 

pathways by stabilizing their alternate, functional, conformations [28]. It has been 

postulated that low-affinity interactions of Hsp90 and its targets keeps the signaling 

proteins poised for activation until they are activated by post-translational modifications 

from upstream signaling molecules [28]. For example, several members of steroid-

hormone receptors, cyclin-dependent kinases, and Src-family kinases have been shown 
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to be substrates for Hsp90 [28]. Recently, Hsp90 itself has been shown to be 

associated with the chromatin in complexes that destabilize the estrogen receptor 

transcriptional activation complex [29]. 

Rutherford and Lindquist showed that reduction of Hsp90 reveals previously 

concealed phenotypic variation in Drosophila [3]. They showed that when Hsp90 activity 

is reduced by mutation or pharmacological inhibitors, phenotypic variation of nearly 

every adult structure of the fly is induced. As Waddington had done with the 

crossveinless phenotype, Rutherford and Lindquist observed that selection for 10 or 

more generations of a particular adult structural abnormality leads to the fixation of the 

new phenotype in the population. Also as Waddington had seen with the crossveinless 

phenotype induced by heat shock [4], fixation of the phenotypes in the populations 

selected by Rutherford and Lindquist occurs after the restoration of normal levels of 

Hsp90.  

Evidence that this is primarily a genetic rather than an epigenetic phenomenon is 

that adult structures are differentially altered in strain-dependent manners in laboratory 

strains and wild populations. Also, in what Lindquist and colleagues later called a “litmus 

test for the genetic basis of traits” [17], they show that outcrossing the selected flies with 

high trait penetrance to unselected lines heterozygous for the Hsp90 mutation results in 

only the Hsp90-mutant progeny having the selected phenotype [17]. Their interpretation 

is that, “Should the trait have been epigenetically inherited, it would not have 

disappeared in outcrossed progeny with wild-type Hsp90 levels” [17].  

Our experiments did not pass the “litmus test” for genetic traits, that is we still 

saw the enhanced KrIf-1 phenotype when we outcrossed selected flies to unselected 
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flies with the same iso-KrIf-1 background ([8] and data not shown). However, we can 

imagine situations where an epigenetically inherited trait disappears in outcrossed 

progeny. For example, the outcross strain might have a higher than usual concentration 

of chromatin inhibiting proteins, such as the histone H3 lysine 9 methyltransferase, 

Su(var)3-9, that plays a central role in heterochromatic gene silencing [30]. Also, strictly 

speaking, these authors could not exclude an additional contribution due to heritable 

epigenetic, or chromatin-conformational, variation. 

 

5. Hsp90 is a capacitor for cryptic morphological variation in plants  

 Levels and patterns of genetic variation differ greatly between outbreeding 

species such as Drosophila and self-fertilizing species such as the plant Arabidopsis 

thaliana. One might speculate that inbreeding species, because of their nearly isogenic 

genomes, would have much less phenotypic variation, at least within an isolate, than 

outbreeding species. However, Queitsch et al. show in their recent paper that 

Arabidopsis thaliana isolates can have dramatic phenotypic variation when Hsp90 

activity is pharmacologically reduced [7]. As Rutherford and Lindquist showed in 

Drosophila [3], Queitsch et al. showed that reducing Hsp90 function produces an array 

of morphological phenotypes in Arabidopsis accessions and recombinant inbred lines 

[7]. Interestingly, the induced phenotypic variations are dependent on underlying genetic 

variation, despite the fact that very little phenotypic variation was present prior to 

abrogating Hsp90 function and subsequent selection.  

Since different Arabidopsis isolates develop different phenotypic alterations, in a 

strain-specific manner, Queitsch et al. argued that the effects of reducing Hsp90 are 
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genetic rather than epigenetic in nature [7]. However, as with their Drosophila 

experiments, they did not specifically rule out an additional epigenetic contribution to the 

effects that they observed [7]. 

 

 

6. Evidence that Hsp90 functions as a capacitor for morphological evolution in an 

epigenetic manner 

 We reported evidence that Hsp90 affects development by altering the chromatin 

[8]. Our intent was to determine whether Hsp90 could function as a capacitor for 

morphological development by an epigenetic mechanism in a sensitized system. In 

1957, Bateman attempted to perform a canalization experiment with the crossveinless 

phenotype in an isogenized strain [31]. However, this experiment failed, possibly 

because she did not use, as we did, a sensitized strain [31]. The reason we wanted to 

test this “chromatin hypothesis” is because we had isolated mutations in both Hsp90 

and several Trithorax Group (TrxG) genes as maternal enhancers of the KrIf-1 

“developmentally sensitized” eye phenotype [8]. The most efficient of the maternal 

enhancers of the KrIf-1 phenotype was a mutation in the TrxG gene verthandi (vtd), 

which showed over 90% expression of an eye-bristle phenotype in the male progeny, 

and an overall 50% expression of the phenotype [8]. The other enhancers only had 5-

15% expression of the enhanced phenotype in both male and female progeny.  

Surprisingly, we found that the enhanced KrIf-1 phenotype was transmitted in 

several subsequent generations, even in the absence of the initiator vtd3 mutation [8]. 

Also, the penetrance of the phenotype increased in a selection experiment in the 
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absence of the vtd3 mutation [8]. While we acknowledged that a genetic mechanism 

could explain this result, the fact that TrxG proteins affect chromatin structure, generally 

in manners that promote transcription, suggested the likelihood of an epigenetic 

mechanism [8].  

The way that we sought to test the epigenetic capacitor hypothesis was by 

removing, as much as possible, all sources of genetic variation in a sensitized 

Drosophila strain, iso-KrIf-1 [8, 32]. We enhanced the iso-KrIf-1 phenotype by feeding 

these flies the potent and specific Hsp90 inhibitor geldanamycin [8]. The heart of 

Waddington’s canalization hypothesis is that genetic variation must be present for 

selection of a novel phenotype after an environmental stress. Nevertheless, we still 

observed an enhanced KrIf-1 phenotype, whose penetrance increased in a 13-generation 

selection experiment [8]. Further evidence that what we were observing was an 

epigenetic phenomenon was that the enhanced KrIf-1 phenotype was unstable, even 

after 13 generations of selection, and that the penetrance was never greater than 70% 

[8]. The instability of the enhanced KrIf-1 phenotype is further illustrated by the fact that 

only two generations of selection against the phenotype were sufficient to restore it to 

background levels [8].  

We believe that such a negative selection experiment can be a useful litmus test 

for epigenetic phenomena because of the unstable nature of epigenetic alterations in 

phenotypes compared with genetically assimilated phenotypes. The stability of 

genetically assimilated phenotypes is demonstrated in Hirsch’s selection of the geotaxis 

phenotype in Drosophila published in 1959 [33]. The high and the low geotaxis strains 

were selected for over 20 generations, and then propagated for over 40 years without 
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further selection for these phenotypes. Remarkably, the phenotypes were as stable as 

they were 40 years earlier [34], thus supporting a genetic assimilation mechanism, 

rather than a transient epigenetic assimilation mechanism. 

In studies to date with iso- KrIf-1, we did not rule out the existence or importance 

of cryptic genes, but instead we showed that the existence of cryptic genes is probably 

not necessary to explain at least some of our observations. We believe that the 

existence of cryptic genes is also probably not necessary to explain some of the results 

of Waddington [4, 5], Rutherford and Lindquist [3] and Queitsch et al. [7]. For example, 

Queitsch et al. showed that some of the Hsp90-inhibitor induced phenotypes in 

Arabidopsis were due to genetic variation, but others could not be propagated in 

isogenic lines [7]. Because of their instability, it is possible that epigenetic effects 

caused some of the non-propagatable phenotypes.  

While it is true that other laboratories have shown that epigenetic states can be 

inherited, that the frequency of an epigenetic state within a population can be selected 

to increase by breeding individuals with these states, and that the propensity for 

individuals to adopt certain epigenetic states is influenced by that organism’s genotype 

and environment [15], we believe that our contribution to evolutionary theory is that 

Hsp90 can function as a capacitor for morphological development in an epigenetic 

manner. Rutherford and Lindquist [3] and Queitsch et al. [7] did not address the 

possibility that Hsp90 might function in an epigenetic manner. According to Massimo 

Pigliucci, a prominent evolutionary theorist, “This [Sollars et al.] is one of the most 

convincing pieces of evidence that epigenetic variation is far from being a curious 

nuisance to evolutionary biologists, but may play a fundamental role in adaptation to 
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rapidly changing environmental conditions, side by side with standard genetic variation” 

[15]. 

 

7. Models for the epigenetic function of Hsp90 

Sangster et al. recently proposed a speculative model for how vtd3 enhances the 

KrIf-1 phenotype [17]. These authors propose, since vtd maps to a region near the 

centromere of chromosome 3, a region with few unique DNA sequences, that vtd is not 

a gene that encodes a protein, but rather a chromatin regulatory locus [17]. One of the 

few protein-encoding genes in the region containing vtd is the alpha-catenin gene, a key 

component of the Wingless-signaling pathway [17]. They hypothesize that the vtd3 

mutation causes a “spread in the nearby heterochromatin” to the alpha-catenin gene, 

and that this inactivation is heritable, “if one invokes that heterochromatic spread due to 

loss of one vtd  element may be transmitted to an intact homolog by a trans-silencing 

mechanism” [17]. This model is consistent with our observation that ectopic Wg 

signaling was one of the epigenetic causes of the enhanced KrIf-1 phenotype ([8], and 

additional data not shown).  

However, we feel that the model of Sangster et al. [17] is highly speculative. For 

instance, attempts to identify the vtd gene in the sequenced Drosophila genome might 

have failed because vtd could have small exons interspersed over a large region of 

heterochromatin. There are examples of genes on the Y-chromosome that resist 

annotation attempts because they are very large, and have small exons interspersed in 

the heterochromatic regions [35]. Also, while reduction of alpha-catenin expression via a 

heterochromatic mechanism would be expected to increase the efficacy of Wg 
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signaling, it would probably not increase the amount of Wg protein itself. However, we 

observe that maternal reduction of vtd3 increases Wg expression because a wg-lacZ 

reporter is expressed in the peripodial membrane of the wing imaginal disc coincidently 

with the enhanced KrIf-1 phenotype [8].  Furthermore, Wg expression is not in a positive-

feedback loop in any of the known Wg signaling pathways [36].  

We prefer a model in which Wg chromatin itself, or the chromatin of a gene that 

encodes an activator of Wg expression, such as Hedgehog (Hh), is activated by the vtd3 

mutation. Of possible relevance is the finding from Schubiger’s laboratory that stress, 

caused by cutting off pieces of wing imaginal discs, activates Hh expression in the 

peripodial membrane of 2nd instar larval discs [37, 38]. Ectopic Hh expression could be 

causing the ectopic Wg expression that we observe in the peripodial membranes of 

vtd3-mutant 3rd instar larval eye discs [8]. It is possible that the different maternal 

enhancers of KrIf, such as vtd and Hsp90 mutations, could be functioning through 

independent chromatin-regulatory mechanisms. 

 In Figure 1, we present three, non-mutually exclusive, models for the epigenetic 

function of Hsp90. These models are similar to those proposed by Bateman to explain 

the assimilation of genetically canalized phenotypes – (1) a shift in the mean, (2) a shift 

in the threshold, and (3) an increase in the variance of the phenotype [27]. In a Nature 

News and Views  article discussing our paper, Rutherford and Henikoff support Model 1, 

in which the mean for the enhanced KrIf-1 phenotype is shifted by a reduction in Hsp90 

[16]. Bateman preferred Model 2, a shift in the threshold, for her genetic assimilation 

experiments [27]. We are leaning towards Model 3, an increase in the variance of the 

phenotype, because recent results with lead-acetate fed flies from our laboratory [39], 
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and our collaborators’ laboratories [40, 41], support this view. These results are 

discussed in more detail in a later section. 

8. Lamarckian evolution revisited 

Whereas the papers on Hsp90 by Rutherford and Lindquist [3] and Queitsch et 

al. [7] reaffirm Gilbert’s contention, quoted above, that there is no evidence to support 

the idea that they were observing “inheritance of acquired characterstics” [3], we believe 

that our paper does support aspects of Lamarckian evolution [8]. Whereas neither the 

crossveinless phenotype observed by Waddington [1], nor the ectopic eye bristles that 

we observe in KrIf-1 flies are adaptive responses to stress, we believe it is likely that 

some Hsp90-induced chromatin alterations are an adaptive response to stress. For 

example, chromatin alterations of the heat shock genes could, at least partly, explain 

the acute tolerance to stress observed during repeated heat shocks [42, 43].  

While stress probably does not cause mutations in our epigenetic system, it 

evidently causes heritable chromatin alterations [8]. We cannot rule out the possibility 

that geldanamycin-induced stress is causing new mutations in our iso- KrIf-1 strain, as 

stress reportedly causes “adaptive increases in mutation rates” in mutator strains of 

bacteria [44]. Below, we present a hypothetical Lamarckian-type example for our 

epigenetic model for evolution. However, without further evidence for the generality of 

epigenetic effects on evolution, one may take such models, as suggested by Pigliucci, 

with “a grain of salt” [15].  

A giraffe that cannot reach the upper leaves of a tree would undergo starvation 

stress, and this type of stress would cause a decrease in Hsp90, and all other proteins 
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for that matter, because of a limited amino acid pool [45]. A reduction in Hsp90 levels 

would likely lead to low-Hsp90-induced chromatin changes, as we observe in 

Drosophila [8]. The chromatin changes could potentially cause a range of morphological 

phenotypes in the progeny giraffe, some with long necks, and some with short necks, 

and some with any number of other morphological alterations. The long-necked progeny 

would be the ones who survive to reproductive age, since they could presumably reach 

the tops of the trees, and a combination of epigenetic [8] and genetic [3] selection could 

occur to canalize the new phenotype in subsequent generations. While we do not agree 

with many of the concepts of Lamarckian evolution, we argue that many of them should 

be revisited. Kenneth Weiss more elegantly stated this is his paper discussing the pros 

and cons of Mendelian genetics [46]. In this paper, he said, “Like the famous princess, 

we seem to think that we can always detect a Mendelian pea no matter how many 

layers of environmental and other influences may lie over it” [46]. 

 

 

9. Other roles for Hsp90 in an organism – sleep deprivation and survival  

 Sleep is controlled both by a circadian pacemaker system and by a “homeostatic 

drive” that increases in strength when an organism is awake [47-49]. While an organism 

sleeps, the homeostatic drive dissipates until it weakens sufficiently and the organism 

awakes. Since this is a relatively new area of research, little is known about the 

identities of the unnamed components of the homeostatic drive, i.e., its widgets. The 

supreme importance of sleep is demonstrated by the fact that a few days of 

sleeplessness invariably causes death in all animals tested (reviewed in [50]). In 
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Drosophila, mutations in circadian oscillator genes, such as period (per), timeless (tim), 

clock (clk), and cycle (cyc), cause death after only 10 hours of sleep deprivation [48]. 

Unlike the other circadian mutations, mutations in cyc showed a reduction in expression 

of stress-response genes, such as Hsp90. However, activating heat shock genes before 

sleep deprivation rescued the cyc-mutation lethality induced by sleep deprivation [48]. 

 Interestingly, mutations in Hsp90 also cause an exaggerated homeostatic 

response to sleep deprivation.  Like flies with circadian mutations, flies with Hsp90 

mutations died after only 10 hours of sleep deprivation [48]. Evidently, as with the 

“evolutionary capacitor” [3], Hsp90 is also a widget for the “homeostatic drive” for sleep. 

While the mechanism of Hsp90 protection against sleep deprivation has not yet been 

determined, it would be worthwhile determining if this is influenced by both genetic and 

epigenetic mechanisms.  

 

 

 

10. Evolutionary implications of the capacitor function of Hsp90 

One criticism of Hsp90 as an “evolutionary capacitor” is that all of the phenotypes 

are severely deleterious, and it is hard to imagine how individuals that have had these 

genetic or epigenetic variants revealed would have any advantage over buffered 

individuals [3, 7, 8]. For example, Meiklejohn and Hartl state in their review of 

canalization, “Over evolutionary time, the frequency with which a phenotypically 

revealed allele provides a selective advantage greater than the negative consequences 

of removing environmental canalization is likely to be extremely small” [2]. Waddington 
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made a persuasive  response to this criticism in his 1953 paper on the assimilation of the 

crossveinless phenotype [4]. Waddington said, “There is, of course, no reason to 

believe that the phenocopy (the crossveinless phenotype) would in nature have any 

adaptive value, but the point at issue is whether it would be eventually genetically 

assimilated if it were favored by selection, as it can be under experimental conditions” 

[4]. Similarly, there is little reason to believe that the ectopic outgrowths in the eyes of 

KrIf-1 flies that we observe would in nature have any adaptive value, but the point of the 

experiments was to determine, as a proof of concept, whether they could be 

epigenetically assimilated if it were favored by selection. Another argument in favor of 

evolutionary capacitors was made by Gilbert, who said, “The developmental genetics 

approach to evolution concerns more the arrival of the fittest than the survival of the 

fittest” [6]. 

One could imagine a situation where the ectopic outgrowths have an adaptive 

value, as is apparently the case with stalk-eyed female flies preferring males having 

long eye stalks as a form of mate selection [51], or with other Drosophilidae with 

unusually shaped head capsules and eyes [52]. However, Darwin himself treats sexual 

selection as a special case, and oftentimes an exception to his “survival of the fittest” 

model [20]. 

Rutherford and Lindquist proposed that the capacitor function of Hsp90 has been 

selected during evolution [3]. However, it would seem impossible for a group-level trait 

such as a morphological capacitor to be selected since it would only benefit distant 

generations and not the immediate generation. Again, to quote Meikeljohn and Hartl, 

“However, if it is beneficial to constrain the phenotype against mild environmental 
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perturbations, it must be still more beneficial to buffer against more extreme 

environmental perturbations” [2].  

Indeed, the capacitor activity of Hsp90 is likely a perfect example of a “spandrel,” 

a term that Stephen J. Gould (1941-2002) borrowed from architecture to designate “the 

class of forms and spaces that arise as necessary byproducts of another decision in 

design, and not as adaptations for direct utility in themselves” [53]. The capacitor 

function of Hsp90, such as it is, is likely a spandrel of its everyday function as a 

chaperone for developmentally important signaling molecules.  

However, calling the capacitor function of Hsp90 a “spandrel” should not diminish 

the importance of this activity, as the Meiklejohn and Hartl imply [2]. Gould points out 

the evolutionary importance of spandrels by saying, “These sequelae – spandrels in the 

terminology of this paper – arise nonadaptively as architectural byproducts but may 

regulate, and even dominate, the later history of a lineage as a result of their capacity 

for co-optation to subsequent (and evolutionary crucial) utility” [54] [emphasis added]. 

What better gene to be co-opted for an evolutionary crucial utility than a chaperone for 

numerous signaling pathways, such as Hsp90? Co-optation of a regulator of regulators 

such as Hsp90 allows the generation novel structures, such as eye appendages, in a 

single generation – a feat that cannot be accomplished by the co-optation of any 

individual signaling molecule. 

 

 

11. Is the intron in the Hsp90 gene a governor for its activity? 
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Why isn’t it the activity of Hsp90 more inducible than it is? Perhaps the “purpose” 

of the evolutionary conserved intron in Hsp90 is to act as a governor so that its activity 

does not get too high during stress.  Indeed, saying that a gene’s buffering properties 

are reduced during times of environmental stress seems to make little sense for a gene 

whose expression is upregulated under stressful conditions, such as Hsp90. Similarly, 

Meiklejohn and Hartl’s view on this issue is, “The inability of Hsp90 to buffer against a 

wider range of environmental conditions than it does is therefore more likely to be a 

coincidental feature of its mechanism of action than an adaptive trait” [2].  

The presence of an intron in the 5’ untranslated region of almost all Hsp90 genes 

from Drosophila to humans (with an interesting exception, see below) suggests that the 

introns are there for a reason – their presence would likely reduce the maximal 

expression of Hsp90 during stress than if there were no intron. Lindquist’s laboratory 

had shown over a decade ago that mRNA splicing is disrupted during heat shock [55, 

56]. Recent studies have shown that heat shock induces partial disassembly of certain 

snRNPs that participate in pre-mRNA splicing [57, 58], and Hsp-mediated reassembly 

[57, 58], restores normal pre-mRNA splicing [55-59].  

We speculate that organisms that lose the intron in Hsp90 might benefit in the 

short term by having increased Hsp90 function, but in the long term they have a 

reduced ability to undergo further morphological evolution because the capacitor 

function of Hsp90 is likely eliminated by the removal of the intron “governor.” To our 

knowledge, and after an extensive GenBank search, the only organisms so far identified 

that apparently have lost the intron in Hsp90 are the Lepidoptera (butterflies) [60]. 

Perhaps the capacitor activity of Hsp90 has also been lost in butterflies – Hsp90 activity 
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is probably not reduced by stress because splicing does not occur on Lepidoptera 

Hsp90 pre-mRNA. Since morphological signaling pathways have been co-opted to 

make spots in butterfly wings [61], one might predict that loss of Hsp90 activity during 

stress could lead to unwanted outgrowths where the ectopic expression of the 

developmental genes occur, as we observe with KrIf-1 flies with reduced Hsp90 function. 

Another possibility for why Hsp90 needs a governor is that the presence of 

excess Hsp90 might be what is deleterious to some aspects of morphological 

development. Several lines of evidence suggest that this may be generally true. First, 

cells rapidly clear the excess heat-induced hsp’s following cessation of heat shock [45]. 

Second, hsp induction is suppressed during developmental stages where protein 

synthesis is already rate limiting and intensive [45]. Third, evolutionary tradeoffs 

between thermotolerance and fitness have been noted [45, 62, 63]. 

 

 

12. Other fields that might benefit by invoking the capacitor function of Hsp90 

Ecologists study how environmental factors, such as pollutants, affect the 

development of organisms in the wild. Bateman’s Model 3, discussed above, whereby 

an environmental insult increases the variance of the expression of a phenotype, is 

supported by many ecological studies. For example, John Graham refers to the amount 

of variance in a phenotype as a measure of "developmental stability" [64, 65]. 

Developmental stability, like canalization, refers to the ability of an organism to produce 

a consistent phenotype in a given environment [64, 65]. Conversely, developmental 

instability is measured by ecologists as within-individual variance or by deviation from 
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perfect bilateral symmetry [64, 65]. Another ecology term, “fluctuating asymmetry,” 

refers to the random variation between right and left parts of a bilaterally symmetrical 

structure, and is widely used as a measure of developmental stability [64, 65]. It would 

be interesting to determine whether Hsp90 and other components of “Waddington’s 

widget” regulate these effects. 

Environmental health scientists could also benefit by incorporating models of 

Hsp90 function in toxicological studies. Recent data from the Lnenicka laboratory, which 

collaborates with our laboratory and the Hirsch laboratory on the effects of the heavy 

metal neurotoxin lead acetate on Drosophila, suggests that Bateman’s Model 3, an 

increase in the variance of a phenotype (Fig. 1c), might be correct for some gene-

environment interactions [41]. Lnenicka’s laboratory shows that there is usually a 

significant correlation between the number of synapses on a larval muscle fiber and the 

size of the fiber [41]. However, when flies are reared in the presence of as little as 2 

ppm lead acetate in their food, this correlation is no longer significant [41]. The CDC 

cutoff point for high blood lead level is 0.1 ppm (15 mg/dl) [41]. Interesting ly, in lead-

acetate fed Drosophila larvae, the mean number of synapses on a particular muscle 

fiber does not change, but the variance greatly increases. In other words, this data 

supports Model 3 because, while lead-treated larvae generally have the same number 

of synapses as unleaded larvae, there are a greater number of abnormal muscle fibers 

with either fewer or more synapses, in approximately equal numbers [41].  

Lead does not always affect a fly’s physiology in the same manner because our 

laboratory, and our collaborator’s laboratories, have shown that an equivalent amount of 

lead acetate (2 ppm) in the food of adult females is an aphrodisiac because it decreases 
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the mean time it takes females to mate with males [39].  We interpret our results as 

supporting Model 1 (Fig. 1a) because there was a shift in the mean in distribution of 

times that it took females to respond to males, but no significant increase in the 

variance [39]. We are currently attempting to determine whether both genetic and 

epigenetic mechanisms function in the response of Drosophila to lead acetate, and 

whether the effects of lead acetate are mediated through Hsp90, as we suspect. 

 

 

13. Future Prospects 

In a speculative methods paper, we have recently described epigenetic mapping 

experiments that we are pursuing to follow up our published epigenetics research [8, 

32]. We also have recently described how modern multi-generational epigenetic-

mapping techniques can be used in the fields of cancer and obesity research [66]. The 

excitement of the resurgence of the field of epigenetics is summarized by Pigliucci, who 

said, “Nonetheless, it seems that genetic assimilation and epigenetics, after decades of 

neglect, are finally back on the center stage of evolutionary research. Perhaps they will 

remain in the spotlight long enough to be incorporated in mainstream evolutionary 

theory” [15]. 
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Figure 1. Three models for the epigenetic function of Hsp90. Model 1 is that selection of 

the epigenetically-induced phenotype shifts the mean of the distribution towards 

the threshold. Model 2 is that the threshold is shifted towards the original mean. 

Model 3 is that the variance of the distribution of the phenotype is increased (see 

text). 
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