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ABSTRACT 

 

Thyroid cancer is the most prevailing malignancy of the endocrine system. Its incidence 

is rapidly rising at the second fastest rate of all malignancies in the United States, making 

it a significant health problem. 

Although the majority of thyroid cancer is slowly-growing and well-differentiated, 

available treatment options are very limited, and most of them require complete removal 

of the thyroid gland and surrounding tissues. Patients who have undergone thyroid 

removal have to take life-long hormone replacement therapy, which is very inconvenient 

and costly. Therefore, there is an urgent need to develop new treatments for this disease. 

As a prerequisite for designing a better therapy for thyroid cancer patients, we now must 

further our understanding on how thyroid cancer develops, especially its underlying 

molecular mechanisms.  

In this study, we have found that PITX2, a bicoid homeodomain transcription factor 

known to play a critical role in the left-right asymmetry formation as well as the 

development of multiple organs, is frequently expressed in human follicular cell-derived 

(papillary, follicular and anaplastic) thyroid cancer tissues but not in normal thyroids. 

This is the first finding that indicates over-activated PITX2 may contribute to the 

development of thyroid cancer. Following this exciting discovery, we performed cell-

based and biochemical studies to uncover the molecular mechanism of PITX2 action in 

thyroid tumorigenesis. 

Knockdown of PITX2 gene expression in human thyroid cancer cells significantly 

reduced cell proliferation and soft-agar colony formation. Biochemical analysis of cell 
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cycle regulators upon PITX2 knockdown revealed downregulation of Cyclin D1, Cyclin 

D2 and dephosphorylation of Rb. Chromatin immunoprecipitation and promoter reporter 

assay indicated that Cyclin D2 was a direct target gene of PITX2. Consistently, we 

observed that high expression levels of Cyclin D2 were frequently associated with PITX2 

expression in follicular cell-derived thyroid cancer tissues. To confirm these findings in 

vivo, we took advantage of a mouse model of thyroid cancer (TRbeta
PV/PV

 mouse). 

Consistently, the aberrant elevation of Pitx2 levels in the thyroid cancer of TRbeta
PV/PV

 

mice were accompanied by the upregulation of Cyclin D1, Cyclin D2 and increased 

phosphorylation of Rb. Taken together, these results provide the first evidence 

implicating an oncogenic role of PITX2 in human cancer. 

To better understand the role of PITX2 in the regulation of gene transcription, we aimed 

to decipher PITX2 regulating and interacting networks by genomic and proteomic 

approaches. As a result, we identified four novel PITX2-associated protein partners YB-1, 

hnRNP K, nucleolin and hnRNP U in mass spectrometry analysis. Overexpression of 

PITX2 resulted in upregulation of 868 genes (two-fold to twenty five-fold) and 

downregulation of 191 genes (two-fold to fifteen fold) in microarray analysis. Using 

semi-quantitative RT-PCR, we verified 16 potential PITX2 target genes. Interestingly, 

Cyclin A1, a male germ cell-specific gene essential for spermatogenesis, is among the 

most upregulated genes. 

We then investigated whether Cyclin A1 was a PITX2 target gene in the context of 

thyroid cancer cells. Remarkably, we found that Cyclin A1 indeed was expressed in 

papillary thyroid cancer but not in normal thyroids. Using promoter-driven reporter 

assays, an evolutionarily conserved DNA element responsible for PITX2-induced gene 
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transcription was identified in the Cyclin A1 promoter. Intriguingly, further biochemical 

evidence demonstrated that PITX2 activated Cyclin A1 through a histone H3K4 

methylation pathway.  

Collectively, our data reveal for the first time that PITX2 may play an oncogenic role in 

human thyroid tumorigenesis. Aberrant expression of PITX2 in thyroid cancer promotes 

cell proliferation by facilitating cell cycle progression. This oncogenic effect of PITX2 is 

at least in part mediated by its transcriptional target genes Cyclin D2 and Cyclin A1. This 

study furthers our understanding of the molecular mechanisms that govern thyroid 

carcinogenesis and provides a new perspective on the development of novel therapeutics 

for thyroid cancer patients. 

 

Keywords: Thyroid cancer, PITX2, Gene Transcription, Cyclin D2, Cyclin A1, Cell 

Cycle, Protein-Protein Interaction  
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PREFACE 

 

 

 

There are five chapters in this dissertation, three of which contain primary research data. 

Chapter I is a comprehensive literature review of thyroid cancer development. Chapter II 

mainly addresses the pathological role of PITX2 in thyroid cancer. Chapter III focuses on 

our efforts to decipher the regulatory and interacting networks of PITX2. Chapter IV 

explores the molecular mechanism of PITX2 action. The final chapter includes a general 

discussion, conclusions and future directions of my study.  
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CHAPTER I 

 

LITERATURE REVIEW 

 

Thyroid cancer development and progression 

 

Overview  

Thyroid cancer is the most common endocrine-related cancer in the US [1]. The case 

number of newly diagnosed thyroid cancer has been rapidly rising recently, with an 

average annual growth rate of approximately 10% in the past five years [1]. According to 

the American Cancer Society, the estimated new thyroid cancer cases were 44,670 in 

2010 in the US. The increasing incidence of thyroid cancer has been largely attributed to 

the advancement of diagnostic techniques, such as ultrasound and fine needle aspiration 

[3]. There are many risk factors associated with thyroid cancer, such as age, gender, 

exposure to radioactive substances and predisposed genetic aberrations. Interestingly, 

women are three times more likely than men to develop thyroid cancer. Although 

numerous studies have been conducted to unravel the etiology of thyroid cancer, our 

understanding of the development of thyroid cancer is still largely incomplete.  

The thyroid gland is the largest endocrine organ in human and consists of two lobes that 

attach to the larynx. It secretes various hormones to regulate the balance of metabolism. 

The functional unit of thyroid is called thyroid follicle, which is surrounded by thyroxine-

secreting follicular cells and calcitonin-secreting C cells. Thyroid cancer can be 

developed from both follicular cells and C cells (Figure 1).    
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Figure 1. A proposed model of thyroid cancer development. Both papillary and follicular 

thyroid cancers are originated from T3/T4 secreting thyroid follicular cells. Anaplastic 

thyroid cancer is developed from either papillary thyroid cancer or follicular thyroid 

cancer. Medullary thyroid cancer is originated from calcitonin secreting C-cells. 

 

There are four major types of thyroid cancer: papillary thyroid cancer (PTC), follicular 

thyroid cancer (FTC), anaplastic thyroid cancer (ATC) and medullary thyroid cancer 

(MTC). Both papillary and follicular thyroid cancers are mostly well-differentiated and 

slow growing. PTC and FTC account for ~95% of total thyroid cancer cases [4]. 

Metastasis to distant organs is rarely observed in PTC and FTC patients. The 5-year 

survival rate for well-differentiated thyroid cancer is more than 95% [3]. Anaplastic 
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thyroid cancer is very aggressive and poorly-differentiated. Although only representing 1% 

to 2% of total thyroid cancer incidences, ATC contributes to approximately 40% of total 

thyroid cancer deaths [5]. The mean survival time for ATC patients after diagnosis is 

merely 6 months [5]. Medullary thyroid cancer is generally more malignant than PTC and 

FTC, but it is less malignant than ATC. Approximately 3% of thyroid cancer incidences 

are classified as medullary thyroid cancer [4]. Local vascular and lymph node invasions 

are frequently observed in MTC patients. However, distal organ metastasis is unusual for 

MTC. Both PTC and FTC are developed from thyroxine-secreting follicular cells. 

Anaplastic thyroid cancer is considered to be arisen from well-differentiated thyroid 

cancers, such as PTC and FTC. Medullary thyroid cancer is originated from calcitonin-

secreting C cells (Figure 1).   

 

Diagnosis, prognosis and treatments 

The diagnostic techniques for thyroid cancer have been much advanced with the 

invention and utilization of new technologies, especially ultrasound and fine needle 

aspiration. In fact, the extensive application of new diagnostic techniques has been 

considered as the main reason for the rapidly growing rate of newly diagnosed thyroid 

cancer cases. Although most papillary and follicular thyroid cancer cases have 

distinguishable characteristics that can help clinicians render accurate diagnosis, there are 

about 15% of thyroid cancer cases that demonstrate characteristics of both papillary and 

follicular thyroid cancers [3]. Current diagnostic techniques are not sufficient to make a 

diagnosis without partial or total thyroidectomy. Similarly, 15-20% of the fine needle 

aspirations are inconclusive. This typically results in patients undergoing partial or total 
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removal of the thyroid gland [3]. Therefore, new diagnostic techniques, which can help 

clinicians to make a diagnosis without partial or total thyroidectomy, are urgently needed. 

Currently, several commonly-used prognostic scoring systems, like the tumor node 

metastasis classification, have been adopted for the prognosis of thyroid cancer patients. 

However, these prognostic systems are not suitable to predict the local or distant 

recurrence, which occurs in approximately 20% of thyroid cancer patients [6]. Anaplastic 

thyroid cancer is the most aggressive thyroid cancer and is considered to be a fatal 

disease. There is not a prognostic method available right now to predict whether a well-

differentiated thyroid cancer will ultimately develop into poorly-differentiated anaplastic 

thyroid cancer. About 500 to 600 million people around the world suffer from thyroid 

nodular goiter, and 5% of these thyroid abnormities will eventually develop into 

malignant thyroid tumors [3, 7]. There is a great need for an effective prognosis system to 

discriminate high-risk thyroid nodules from the vast amount of nodules that have been 

diagnosed.  

Thyroid cancer management has not been changed much in the past several decades. 

Partial or total thyroidectomy is still the most common treatment option for primary 

thyroid tumor. Radioiodine and suppressive treatment are the usual regimen for thyroid 

cancer patients after undergoing thyroidectomy. Patients who have undergone thyroid 

removal have to be placed on life-long thyroid hormone replacement to maintain their 

normal homeostasis rate. Like other types of cancer, the treatment options for 

metastasized thyroid cancer patients are very limited and mostly ineffective. Hence, there 

is a constant urgency for clinicians and scientists to develop new therapies for 

metastasized thyroid cancer. Our knowledge about thyroid cancer has greatly expanded in 
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the past decade, especially regarding the molecular and genetic aspects. In light of this, 

many novel therapies, such as those targeting deregulated or mutated molecules, have 

been designed and developed. A few of them have entered clinical trials. These new 

therapies will give patients more options and hopefully are more effective and less 

painful than traditional therapies.          

 

Papillary thyroid cancer 

Papillary thyroid cancer is the most frequent type of thyroid cancer. It alone makes up 

about 80% of thyroid cancer cases [4]. With the improvement of diagnostic methods, the 

incidence rate for papillary microcarcinoma has experienced a 2.4-fold increase over the 

past decade [8]. Most papillary thyroid cancer cases are well-differentiated and slow 

growing. Although metastasis to distant organs are uncommon for papillary thyroid 

cancer patients, local invasions to surrounding tissues, such as lymph nodes, are 

relatively frequent when compared to well-differentiated solid tumors originated from 

other organs. Papillary thyroid cancer is generally considered curable, with a 5-year 

survival rate about 97% [3].  

 

Papillary thyroid cancer is arisen from thyroxine-secreting thyroid follicular cells. Almost 

100% of radiation exposure-induced thyroid cancer is papillary thyroid cancer. With the 

swift advancement of cancer genetics, we are now able to understand more about the 

underlying molecular mechanisms of thyroid tumorigenesis. Genetic alterations have 

been found in the majority of papillary thyroid cancer patients. There are three types of 

genetic alterations that are frequently detected in papillary thyroid cancer: BRAF, 
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RET/PTC and RAS (Table 1). BRAF mutation in papillary thyroid cancer is a point 

mutation that results in a valine (V) substituted by a glutamic acid (E). BRAF mutation is 

the most common genetic alteration in papillary thyroid carcinoma and is found in 

approximately 45% of papillary thyroid cancer patients [4, 9-10]. BRAF V600E mutation 

is highly prevalent in conventional papillary thyroid cancer and tall-cell variant papillary 

thyroid cancer [9-10]. The point mutation in papillary thyroid cancer leads to constitutive  

Tumor type                                    Prevalence (%) 

Papillary carcinoma 

BRAF                                                                  45 

RET recombination                                          20 

RAS                                                                     15 

Follicular carcinoma 

RAS                                                                     45 

PAX8-PPARγ                                                       20 

PIK3CA                                                              <10 

PTEN                                                                 <10 

Anaplastic thyroid carcinoma 

TP53                                                                   70 

β-catenin                                                           65 

RAS                                                                     55 

BRAF                                                                   20 

PlK3CA                                                               20 

PTEN                                                                  10 

Medullary thyroid carcinoma 
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Inherited RET                                                   >95 

Sporadic RET                                                     40 

 

Table 1. Prevalent of common genetic alterations in thyroid cancer 

activation of BRAF kinase activity, which phosphorylates downstream effectors and 

ultimately activates the MAPK (mitogen-activated protein kinase) signaling pathway [11-

12]. MAPK signaling is a well-known oncogenic pathway that promotes cancer 

development and progression [3-4]. BRAF mutation has been associated with more 

aggressive papillary thyroid cancer with characteristics of extra-thyroidal extension, 

advanced tumor stage at presentation, tumor recurrence and lymph node or distant 

metastases [13-15]. In light of this, BRAF mutation has been used as a prognostic 

biomarker for tumor recurrence. BRAF is also an excellent target for therapeutic purpose 

since BRAF mutation is observed in a high frequency of papillary thyroid cancer patients 

and generally presents in more advanced papillary thyroid cancer. In addition, since 

BRAF is the downstream effector of RET and RAS signaling, inhibiting BRAF alone 

may have inhibitory effects on RET and RAS signaling as well. Currently, several small-

molecule kinase inhibitors have been specifically designed to inhibit the kinase activity of 

BRAF. One of the most promising inhibitors is BAY 43-9006, which has demonstrated 

potent effects on inhibiting thyroid tumor growth in both pre-clinical and early stages of 

clinical trials [16-17].  

 

The second most frequent genetic alteration in papillary thyroid cancer is the 

rearrangement of the RET gene, which occurs in about 20% of papillary thyroid cancer 
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patients [4]. The incidence of RET rearrangements for child and young-adult patients, 

who have been exposed to radiation, is 50%-80% and 40%-70%, respectively [4]. RET 

rearrangements are clearly linked to radiation exposure as evident in many studies, such 

as those following the well-known Chernobyl accident [18]. In 1986, a nuclear reactor 

explosion caused fallout of radiation to Belarus, Northern Ukraine and part of the Russian 

Federation. This accident dramatically increased the incidence of childhood thyroid 

cancer from 10-fold to 100-fold [18]. Later, histological and genetic analysis revealed 

that almost 100% of these radiation-induced thyroid cancers were papillary thyroid 

cancer and ~70% of them presented with RET rearrangements [18]. Although 12 different 

RET rearrangements have been identified, all these rearrangements produce a fusion 

protein, which consists of the C-terminal (kinase domain) of RET and the N-terminal part 

of the fusion partner [19-22]. The most frequent fusion partners of RET are histone H4 

and NCOA4, which account for almost 100% of RET rearrangement cases [19-22]. These 

fusion proteins have demonstrated constitutively activated RET kinase activity, which 

causes constant activation of downstream MAPK signaling [23]. Papillary carcinoma 

carrying recombinant RET is associated with a high rate of lymph node metastasis [9]. A 

number of small-molecule kinase inhibitors have been developed to inhibit RET kinase 

activity. SU12248 (sunitinib) has been shown to effectively inhibit signaling from the 

recombinant RET kinase in the experimental models and has been tested in Phase II 

clinical trials in radioiodine-refractory, unresectable differentiated thyroid cancer [24].   

 

The third most common genetic alteration is RAS mutation. Point mutations in the N-RAS, 

H-RAS or K-RAS genes have been identified in about 15% of papillary thyroid cancer 
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patients [4]. Papillary thyroid cancer with RAS mutation presents histological 

characteristics of follicular thyroid cancer. Less frequent lymph node metastasis, more 

frequent distant metastasis and more frequent encapsulation are also the characteristics of 

RAS-mutated papillary thyroid cancer [9, 25-26]. Binding of GTP switches RAS from an 

inactive state to an active state, which allows RAS to activate downstream effectors and 

thus turn on the MAPK signaling pathway [4]. Point mutations of RAS either increase the 

affinity of RAS with GTP, or decrease the dissociation of GTP from RAS. Consequently, 

RAS mutations lead to constitutively activated MAPK signaling in papillary thyroid 

cancer [4].               

 

Follicular thyroid cancer 

Follicular thyroid cancer is the second most frequent thyroid cancer and represents about 

15% of total thyroid cancer cases [4]. Follicular thyroid cancer is also developed from 

thyroxine-secreting follicular cells. Most follicular thyroid cancer is well-differentiated 

and slow growing, with a 5-year survival rate of more than 90% [3-4]. Thyroid follicular 

carcinoma has been known to be developed from thyroid follicular adenoma, a 

precancerous stage not seen in papillary thyroid cancer. There are three types of genetic 

alterations that are frequently found in follicular thyroid cancer: RAS point mutation, 

PAX8-PPARγ rearrangement and alterations in the PI3K signaling pathway (Table 1).  

 

Point mutations of RAS are the most common genetic alteration in follicular thyroid 

cancer with a frequency ranging from 40% to 50% [4]. RAS mutations in follicular 

thyroid cancer, as in papillary thyroid cancer, lead to constitutive activation of the 
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oncogenic MAPK signaling pathway [3-4]. Follicular thyroid cancer with RAS mutation 

has been associated to more advanced and malignant characteristics, such as 

dedifferentiation and metastasis to distant organs [27-29]. Follicular thyroid cancer 

patients with mutated RAS are more likely to have a poor prognosis [27-29]. However, 

RAS mutations may not be useful as a diagnostic biomarker because RAS mutations are 

also present in follicular adenoma and papillary thyroid cancer. Nonetheless, RAS 

mutations may still be used in combination with other molecular markers to improve 

diagnostic and prognostic accuracy for follicular thyroid cancer patients. 

 

The second most frequent genetic alteration is PAX8-PPARγ fusion, which occurs in ~35% 

of follicular thyroid patients [4]. PAX8-PPARγ fusion is produced from chromosome 

rearrangement between t(2;3)(q13;p25) [30]. PAX8-PPARγ fusion is more common in 

younger-age thyroid follicular cancer patients and often associated with small tumor size 

[31-32]. The mechanism of PAX8-PPARγ rearrangement, as well as its contribution to 

thyroid tumorigenesis, is still elusive. However, PAX8-PPARγ rearrangement can be used 

as a diagnostic biomarker since this type of rearrangement is almost exclusively found in 

follicular thyroid cancer.  

 

There are other rarely-found genetic alterations in papillary thyroid cancer [3-4]. Most 

papillary thyroid cancer patients possess one genetic alteration resulting in the 

constitutively activated MAPK signaling pathway, indicating that oncogenic MAPK 

signaling is the major oncogenic event that drives the development of papillary thyroid 

cancer.      
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Anaplastic thyroid cancer 

Anaplastic thyroid cancer is a very aggressive and poorly-differentiated. It is considered 

to be a fatal disease. The mean survival time after diagnosis is merely 6 months [5]. 

Although anaplastic thyroid cancer only accounts for 1% to 2% of total thyroid cancer 

cases, it contributes to ~40% of thyroid cancer deaths [5]. Anaplastic thyroid cancer is 

arisen from follicular cell-derived, well-differentiated thyroid cancer, such as papillary 

and follicular thyroid cancer. Since many anaplastic thyroid cancer samples possess the 

characteristics of well-differentiated thyroid cancer both histologically and genetically, it 

has been proposed that anaplastic thyroid cancer represents a more advanced and 

malignant stage of thyroid cancer development. Many genetic alterations have been 

found in anaplastic thyroid cancer (Table 1). With no surprise, many tumor-initiating 

genetic alterations found in papillary and follicular thyroid cancer, such as RAS and 

BRAF mutations, are also frequently detected in anaplastic thyroid cancer patients. In 

addition, several genetic mutations occurring in late malignant events, such as vascular 

invasion and metastasis, are found in anaplastic thyroid cancer [4]. 

  

The most frequent genetic alteration in anaplastic thyroid cancer is p53 mutation, which 

is found in about 70% of anaplastic thyroid cancer samples [4]. Mutations in p53 inhibit 

the DNA binding ability of p53, and thus inactivate the tumor repressive effect of p53 [4]. 

Mutation of p53 is considered as a late event because it is not found in well-differentiated 

thyroid cancer. Inactivation of p53 has also been proposed to be a necessary event for 

thyroid cancer cell dedifferentiation, since restoration of p53 in thyroid cancer cell lines 
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leads to re-expression of terminally-differentiated molecular markers, including TPO and 

PAX8 [32-33]. Restoration of p53 also inhibits anaplastic thyroid cancer cell proliferation. 

Therefore, re-expressing p53 is an attractive therapeutic approach and is under evaluation 

for anaplastic thyroid cancer [34-35]. 

 

The second most common genetic alteration in anaplastic thyroid cancer is β-catenin 

mutation, which is found in approximately 65% of anaplastic thyroid cancer patients [36-

37]. Mutation in β-catenin is also considered as a late event since this mutation is not 

found in well-differentiated thyroid cancer. The pathological significance of β-catenin 

mutation has not been established. Although nuclear accumulation of β-catenin has been 

found in the majority of anaplastic thyroid cancer, there is no clear evidence to support 

that mutation of β-catenin causes its aberrant subcellular location [38-39].  

 

Other mutations, such as RAS, BRAF, PI3K and PTEN, have also been found in 

anaplastic thyroid cancer [4]. Because these mutations present in well-differentiated 

thyroid cancer, they are considered as tumor-initiating genetic mutations. Whether or not 

these tumor-initiating mutations are necessary for late tumor progression and metastasis 

are still unclear.   

 

Medullary thyroid cancer 

Medullary thyroid cancer makes up about 3% of thyroid cancer cases [4]. In contrast to 

other types of thyroid cancer that are arisen from thyroid follicular cells, medullary 
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thyroid cancer is originated from calcitonin-secreting thyroid C cells. Medullary thyroid 

cancer is generally more malignant than well-differentiated thyroid cancer, but it is still 

curable if the patient is diagnosed at an early stage and has thyroid removed.  

 

Almost 100% of medullary thyroid cancer is caused by germline-transmitted mutation on 

the RET gene (Table 2). Unlike RET rearrangements in papillary thyroid cancer, RET is 

point-mutated in medullary thyroid cancer. Nonetheless, the effects of RET genetic 

alterations are virtually same, with the constitutively activated kinase domain and 

downstream effectors including the oncogenic MAPK signaling pathway [40-41]. Since 

RET mutation is inherited, it is considered as a tumor-initiation event in medullary 

thyroid cancer. Several studies using transgenic mice have demonstrated that mice with 

RET knock-in mutation develop various degrees of medullary thyroid tumor that is 

histologically similar to human medullary thyroid tumor [40-41]. In fact, RET point 

mutation is one of very few mutations that are transmitted by germline. Since RET point 

mutation causes aberrantly activated RET kinase activity, a range of small-molecule 

kinase inhibitors are being tested for medullary thyroid cancer patients [40-41].        

 

Mouse models of thyroid cancer  

Genetically-engineered mice have provided a useful model for researchers to investigate 

a gene’s function in an in vivo setting close to human. To examine how genetic 

alterations contribute to thyroid tumorigenesis, researchers have established several 

genetically-modified mouse models that develop thyroid cancer spontaneously. RAS point 

mutations are frequently detected in papillary and follicular thyroid cancer. Interestingly, 
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mice with Nras E61K knock-in mutation develop thyroid cancer that is histologically 

similar to follicular thyroid cancer [42]. About 40% of Nras mutant mice develop 

invasive follicular thyroid cancer [42]. In contrast, mice with Kras G12D mutation do not 

show any abnormality, but develop aggressive follicular-like thyroid cancer when crossed 

with Pten knockout mice [43-44]. Deletion of mouse Pten alone causes the enlargement 

of thyroid follicules, but does not induce thyroid cancer [44]. Mice with either Ret 

rearrangement or Braf knock-in mutation develop slow-growing, well-differentiated 

thyroid cancer that hardly metastasizes to distant organs [45-48]. These studies 

demonstrate that Nras G61K, Ret rearrangement and Braf mutation are all capable of 

initiating thyroid cancer in mammalian animal models. Kras G12D mutation or loss of 

Pten are not sufficient to induce thyroid cancer alone, but when combined, they can 

initiate thyroid tumorigenesis, suggesting that initiation of some types of thyroid cancer 

may require normal thyroid cells to acquire multiple genetic alterations.        
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CHAPTER II 

PITX2 IS OVEREXPRESSED IN THYROID CANCER AND 

PROMOTES THRYOID CANCER CELL PROLIFERATION BY 

ACTIVATION OF CYCLIN D2 

 

Abstract 

 

Pituitary homeobox 2 (PITX2), a Paired-like homeodomain transcription factor and a 

downstream effector of β-catenin signaling, plays substantial roles in normal embryonic 

development but its possible involvement in tumorigenesis was unknown. In this study, 

we extend its function in human cancer. Remarkably, we found that PITX2 was 

frequently expressed in human follicular cell-derived (papillary, follicular, and anaplastic) 

thyroid cancer tissues but not in normal thyroids, indicating for the first time that 

overactivated PITX2 may contribute to thyroid cancer. Cell-based and biochemical 

studies were performed to uncover the molecular mechanism of PITX2 action in thyroid 

cancer. Knockdown of PITX2 gene expression in human thyroid cancer cells 

significantly reduced cell proliferation and soft-agar colony formation. Biochemical 

analysis of cell cycle regulators upon PITX2 knockdown revealed down-regulation of 

Cyclin D1, Cyclin D2, and dephosphorylation of Rb. Chromatin immunoprecipitation 

and promoter reporter assay indicated that Cyclin D2 was a direct target gene of PITX2. 

Consistently, we observed that high expression levels of Cyclin D2 were frequently 

associated with PITX2 expression in follicular cell-derived thyroid cancer tissues. To 

confirm our results in vivo, we took advantage of a mouse model of thyroid cancer 

(TRβ
PV/PV

 mouse). Consistently, the aberrant elevation of Pitx2 levels in the thyroid 

cancer of TRβ
PV/PV

 mice was accompanied by up-regulation of Cyclin D1, Cyclin D2, 
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and increased phosphorylation of Rb. Collectively, our findings demonstrate that the 

over-activated PITX2-Cyclin D2 pathway promotes thyroid tumorigenesis, and they 

provide the first evidence implicating an oncogenic role of PITX2 in human cancer. 

 

Key words: thyroid cancer, PITX2, homeodomain transcription factor, Cyclin D2, β-

catenin signaling 

 

Introduction 

Thyroid cancer is the most prevalent endocrine cancer and constitutes approximately 1% 

of all newly diagnosed cancer cases. Its incidence has increased significantly worldwide 

in the past years [1-2]. There are four major types of thyroid cancer, including papillary 

thyroid cancer (PTC), follicular thyroid cancer (FTC), medullary thyroid cancer (MTC) 

and anaplastic thyroid cancer (ATC). Of these, PTC and FTC account for approximately 

80% and 15%, respectively, of total thyroid cancer cases. MTC is relatively rare (~3%), 

but more malignant than PTC and FTC. ATC (~2%) is mostly undifferentiated and highly 

aggressive. The mean survival period for ATC is less than 8 months after diagnosis. Both 

PTC and FTC are originated from thyroxin-secreting follicular cells, whereas MTC is 

developed from calcitonin-secreting C-cells. ATC is believed to arise from PTC and FTC. 

Recent studies have considerably expanded our understanding of the aberrant genetic 

events underlying these thyroid carcinomas. Recombinant RET gene products (RET/PTC), 

as well as the mutation of BRAF(V600E) [3-4], are commonly found in PTC. In FTC 

patients, mutations in RAS genes and PAX8-PPARγ rearrangement are frequently 
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observed [3]. RET point mutations are common in MTC [5]. Despite these progresses, the 

molecular mechanisms involved in thyroid tumorigenesis are still elusive.  

Recently, aberrant stabilization and mislocalization of β-catenin has been shown to 

contribute to thyroid tumorigenesis in humans and in a mouse model of follicular thyroid 

cancer (thyroid hormone receptor beta PV mouse) [6-8]. β-catenin is an ubiquitously 

expressed multifunctional protein that has important roles in cell adhesion and signal 

transduction [6]. Upon activation, β-catenin is translocated from the plasma membrane to 

the nucleus, where it interacts with transcription factors, such as PITX2 (Pituitary 

homeobox 2), to activate expression of genes required for cell proliferation (e.g., c-Myc, 

Cyclin D1) [9-10].  

Given the important role of PITX2 in mediating beta-catenin signaling, it was tempting to 

speculate that aberration in PITX2 signaling could also contribute to thyroid cancer, but 

this question remained to be addressed. This transcription factor, which belongs to the 

Paired-like (bicoid) class of homeobox proteins, plays important roles during embryonic 

life for the determination of left-right asymmetry and development of multiple organs by 

serving as a critical downstream effector of Nodal, TGFβ and Wnt signaling [9. 11-15]. 

Pitx2 knockout mice die by embryonic day 15 due to severe developmental defects [9]. 

Mutations in the PITX2 gene have been linked to several human disorders, including 

Axenfeld-Rieger syndrome, iridogoniodysgenesis syndrome, and sporadic cases of Peters 

anomaly [16-17].  

Here, we report for the first time that PITX2 is overexpressed in human papillary, 

follicular and anaplastic thyroid cancers and in the follicular thyroid cancer of 

TRbeta
PV/PV 

mice. Importantly, our mechanistic studies indicate that Cyclin D2 is a 
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transcriptional target of PITX2 and may mediate PITX2’s stimulating role on thyroid 

cancer cell growth. In line with this, our data also reveal overexpression of Cyclin D2 in 

human papillary and follicular thyroid cancers. Altogether, our results demonstrate that 

aberrant PITX2-Cyclin D2 signaling leads to increased thyroid cancer cell proliferation 

and thereby promotes thyroid carcinogenesis. 

 

Materials and Methods 

Cell culture 

Human papillary thyroid cancer cell line (TPC-1), human follicular thyroid cancer cell 

line (WRO), human anaplastic thyroid cancer cell line (FRO) and human medullary 

thyroid cancer cell line (TT) were kindly provided by Dr. James Fagin (Memorial Sloan-

Kettering Cancer Center, NY). TPC-1 cells were cultured in Dulbecco’s modified Eagle’s 

medium with 4.5 g/l glucose, 10% fetal bovine serum, and penicillin-streptomycin (100 

IU/ml). WRO and FRO cells were cultured in RPMI 1640 medium with 10% fetal bovine 

serum and penicillin-streptomycin (100 IU/ml). TT cells were cultured in F-12K medium 

with 10% fetal bovine serum and penicillin-streptomycin (100 IU/ml). Cell culture media 

and supplements were purchased from ATCC. Cells were incubated at 37⁰C in a 

humidified atmosphere with 5% CO2. 

 

RT-PCR analysis 

Total RNA was extracted from cultured cells and thyroid glands of wild-type or thyroid 

hormone receptor beta (TRbeta
PV/PV

) mutant mice using TRI Reagent (Ambion, TX) as 
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previously described [30]. RT-PCR was performed to examine the expression of PITX2. 

The primers used in this study are listed in Table 2. PCR parameters: 94⁰C for 2 min, 1 

cycle; 94⁰C for 20 sec, 56⁰C for 20 sec, 72⁰C for 2 min, 32 cycles; followed by a 6 min 

extension at 72⁰C. 

 

Immunohistochemistry 

Tissue microarray slides, which included normal and malignant human thyroid tissues, 

were purchased from US Biomax (Ijamsville, MD). Formalin-fixed, paraffin-embedded 

tissue sections (5 µm thickness) were de-paraffinized by xylene and ethanol. Antigen 

retrieval was performed by heating tissues samples in a microwave. Anti-PITX2 (Abcam, 

MA) or anti-Cyclin D2 (Santa Cruz Biotechnology, CA) was incubated with tissue 

sections overnight at 4⁰C. Immunostaining was done by the IHC Select 

Immunophophatase Secondary Detection System (Chemicon, CA) according to 

manufacturer’s instruction. Tissue microarray slides and their staining intensity were 

evaluated and classified by two individuals independently. A tissue sample with a 

minimum of 20% cells showed staining was counted as a positive case for consistent 

expression of PITX2 or Cyclin D2.  

 

RNA interference 

The lentiviral pGIPZ non-silencing control plasmid (pGIPZ-shRNA-NS) and the 

plasmids targeting PITX2 (pGIPZ-shRNA-PITX2) were purchased from Open 

Biosystems (Huntsville, AL). The shRNA sequence targeting PITX2 was 
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AGCCGACTCCTCCGTATGTTTAtagtgaagccacagatgtaTAAACATACGGAGGAGTCG

GCG (uppercase indicates sense and antisense sequences and lowercase indicates loop 

sequence). Second generation of lentiviral packaging system (Addgene, MA) was used to 

produce lentivirus particles. To generate stable cell lines, 1μg/ml puromycin (Sigma, MO) 

was added to TPC-1 cells 48 hours after transfection. All stable cell lines were 

maintained in the medium containing 0.1μg/ml puromycin.  

 

Cell proliferation assay by MTT 

Cell proliferation activity was examined by the MTT assay. 1x10
4
 TPC-1 parental cells 

and TPC-1 cells stably transfected pGIPZ-shRNA-NS or pGIPZ-shRNA-PITX2 were 

seeded in 24-well plates in quadruplicate, respectively. Each subsequent day, MTT was 

added into each well to a final concentration of 0.5mg/ml and incubated with cells for 3 

hours at 37⁰C. A microplate spectrophotometer (Bio-Rad, CA) was used to measure the 

MTT absorbance at 570 nm. The experiment was repeated three times independently.     

 

Soft agar colony formation assay 

5x10
3
 TPC-1 cells stably expressing pGIPZ-shRNA-NS or pGIPZ-shRNA-PITX2 were 

mixed with 0.7% agar in DMEM. The cell/agar mixtures were placed in 24-well plates 

coated with 0.3% agar in quadruplicate. The cells were incubated at 37⁰C for 10 days. 

Colonies with a diameter greater than 100μm were counted. The experiment was repeated 

three times independently.           
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Reporter assay 

The Cyclin D2 luciferase reporter construct contains 798 bps (-1 to -798) of the cyclin D2 

promoter. Cyclin D2 promoter was cloned (the primers are listed in Table 1) from human 

blood cell genomic DNA and inserted into KpnI/NheI sites of pGL4.24 luciferase vector 

(Promega, MI). The pEGFP-NFLAG-PITX2c plasmid (expressing N-terminal FLAG 

tagged PITX2C) has been previously described [26]. The pEGFP-NFLAG-PITX2C-ΔHD 

plasmid, which expressed N-terminal FLAG tagged, homeodomain (HD)-deleted 

PITX2C (amino acid 1-131), was inserted into HindIII/KpnI sites of pEGFP vector. 

For reporter assay, 2x10
3
 TPC-1 cells were seeded in 96 wells. A total of 100ng of 

various plasmid mixes were transfected into TPC-1 cells by Fugene HD transfection 

reagent (Roche, IN). Renilla vector was included in all transfections and served as 

internal control. Luciferase and renilla levels were measured by the Dual-Luciferase 

Reporter Assay System 48 hours after transfection according to manufacturer’s 

instruction (Promega, WI). Each experiment were performed in triplicate and repeated 

twice.          

 

Immunoblotting 

Total cell lysates from cultured cells were extracted in the cell lysis buffer (50 mM Tris–

HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100). Immediately before use, 

the lysis buffer was supplemented with a protease inhibitor cocktail tablet (Roche, IN). 

Preparation of whole cell lysates from thyroid glands has been described previously [23, 

31].  Immunoblotting was performed as reported previously [30]. The following primary 
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Table 1 

 

Table 1.The sequences of the primers used in this study. 

 

antibodies were used (1:1000 dilution): PITX2 (3D2, GeneTex, TX); Cyclin D2 (Santa 

Cruz Biotechnology, CA); Cyclin D1, Rb, phospho-Rb
780

, phospho-Rb
807/811

 (Cell 

Signaling, MA);
 
GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), actin (Ambion, 

TX). The loading controls were obtained from the same blot after being stripped and 

reprobed with rabbit polyclonal antibodies to GAPDH or actin. ImageJ was used for 

densitometry analysis. 

 

Chromatin immunoprecipitation (ChIP) assay 

TPC-1 cells were transiently transfected with pEGFP-NFLAG-PITX2C or pEGFP-

NFLAG-PITX2C-ΔHD by FugeneHD transfection reagent. After 48 hours of initial 

transfection, cells were cross-linked by 1% formaldehyde for 15 minutes. Cell genomic 
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DNA was then sheared into fragments by sonication. Cell lysates were pre-cleared by 

protein G beads (Pierce, IL) for 2 h at 4⁰C. Anti-FLAG M2 conjugated agarose beads 

(Sigma, MO) were then incubated with pre-cleared cell lysates at 4⁰C overnight. Beads 

were washed by the high salt and LiCl washing solution for eight times as previously 

described [32]. Samples were reverse cross-linked in the high salt solution at 65⁰C 

overnight. DNA was purified by phenol-chloroform extraction and precipitated by 

isopropanol. PCR was then used to analyze precipitated DNA samples. ChIP primers 

(listed in Table 2) covering the conservative bicoid homeodomain binding site in the 

promoter of Cyclin D2 (-516 to -715) was used in PCR analysis. PCR parameters: 94⁰C 

for 2 min, 1 cycle; 94⁰C for 20 sec, 56⁰C for 20 sec, 72⁰C for 50 sec, 32 cycles; followed 

by a 6 min extension at 72⁰C.  

 

Statistical analysis 

Data were presented as mean ±S.D. and analyzed by Student’s t test. Chi-square test was 

used to analyze immunohistochemistry studies. Statistical significant differences were 

defined as p<0.05. 
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Results 

Expression of PITX2 in human follicular cell-derived thyroid cancers 

Previously, PITX2 has been proposed to act downstream of β-catenin signaling to 

promote cell proliferation during development [9]. However, whether PITX2 contributes 

to cancer progression remained to be determined. To address this question, we carried out 

immunohistochemistry studies on four major types of thyroid cancers (papillary, 

follicular, anaplastic and medullary thyroid cancer), and compared PITX2 staining in 

these tissues to those in normal thyroids. As shown in Fig. 1 and Table 2, a consistent 

expression of PITX2 was frequently observed in the cancer samples of papillary and 

follicular types (PITX2 positive cells are exemplified by arrows), while it was absent in 

normal thyroid tissues and in medullary thyroid cancer. Expression of PITX2 was also 

noticed in anaplastic thyroid cancer, although the frequency was significantly lower than 

that in papillary and follicular cancers (Fig. 1 and Table 2).    
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Figure 1 

 

Figure 1. Overexpression of PITX2 in human thyroid cancer tissues. Tissue microarrays 

containing various thyroid cancer tissues and normal thyroid tissues were subjected to the 

immunohistochemistry assay by using a rabbit polyclonal anti-PITX2 as the primary 

antibody. One representative image (I-IV) of each type of human thyroid cancer and 

normal thyroid tissue was shown (original magnification 100X). Arrows exemplify the 

PITX2 staining cells. Scale bar indicates 20µm length. 
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Table 2 

 

Table 2. The symbol “-”, and “+” represents no expression and consistent expression of 

PITX2, respectively (see Materials and Methods for categorization). The number 

indicates the sample size of each category, and incidence is defined as the percentage of 

consistent PITX2 expression of total tissue samples examined. As compared to normal 

thyroids, the incidence of PITX2 expression is significantly higher in papillary, follicular 

and anaplastic thyroid cancers (Chi-square test, p< 0.05), but not in medullary thyroid 

cancer (Chi-square test, p = 1). Moreover, the frequency of PITX2 expression in papillary 

and follicular thyroid cancers is significantly higher than that in anaplastic thyroid 

cancer (Chi-square test, p < 0.05). 
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Knockdown of PITX2 gene expression inhibited cell growth and soft-agar colony 

formation 

The finding that PITX2 is frequently expressed in follicular cell-derived thyroid cancers 

(Fig. 1 and Table 2) suggests that it may contribute to the tumorigenesis of the thyroid. In 

order to test this hypothesis, we used a cell culture system to knock-down PITX2 gene 

expression in the papillary thyroid cancer cell line TPC-1. Indeed, as shown in Fig. 2A, 

PITX2 was expressed in this cell line as well as in human follicular thyroid cancer cell 

line (WRO), human anaplastic thyroid cancer cell line (FRO) and human medullary 

thyroid cancer cell line (TT).  

The knock-down of PITX2 gene expression by short hairpin RNA (shRNA) yielded a 45% 

reduction of PITX2 protein expression as compared to non-silencing control shRNA (Fig. 

2B). Then, we determined any changes in the tumorigenic ability, i.e., cell proliferation 

and soft-agar colony formation, of PITX2-knockdown cells. Interestingly, as compared to 

non-silencing control cells, cell growth of PITX2-knockdown cells was significantly 

reduced by 40% on day 4 (p<0.005) (Fig. 2C). Moreover, we observed that, upon PITX2 

knockdown, the cell soft-agar colony formation ability was strikingly impaired. The 

number of colonies derived from PITX2-knockdown cells was significantly decreased to 

38% of that from non-silencing cells (p<0.01) (Fig. 2D), and the colony size was 

noticeably reduced. These results suggest that PITX2 may promote the tumorigenic 

ability of thyroid cancer cells.  
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Figure 2 
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Figure 2. Knockdown of PITX2 in TPC-1 cells inhibits cell proliferation and soft agar 

colony formation. (A) RT-PCR and Western blot were used to analyze the expression of 

PITX2 in four human thyroid cancer cell lines: TPC-1 (papillary thyroid cancer), WRO 

(follicular thyroid cancer), FRO (anaplastic thyroid cancer) and TT (medullary thyroid 

cancer). Actin was used as an internal control in RT-PCR. No PCR products were 

obtained without RT. GAPDH was used as an internal control in Western blot. (B) The 

expression of PITX2 in TPC-1 cells was knocked down by PITX2-shRNAs, as assessed 

by RT-PCR and Western blot. Actin was used as an internal control. The Western blot 

result demonstrates that expression of PITX2 in TPC-1 cells was reduced to ~45% by 

shRNAs. (C) Proliferation activity of parental TPC-1 cells and TPC-1 cells stably 

expressing non-silencing (N.S.) control or shRNA-PITX2 constructs was measured in 24-

well plates in quadruplicate. MTT absorption was used to measure cell’s viability. Data 

were presented as mean ±S.D. *, P<0.05; **, P<0.005.   (D) 5X10
3
 N.S. control and 

shRNA-PITX2 TPC-1 cells were seeded in 24-well plates in quadruplicate. Colony 

number was counted after 10 days of incubation. *, P<0.05. One representative image 

from N.S. control and shRNA-PITX2 soft agar plates was shown at right.  
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PITX2 knockdown results in down-regulation of Cyclin Ds and dephosphorylation of 

Rb                            

Based on the above evidence linking PITX2 to thyroid cancer, we next investigated 

whether PITX2 might regulate the protein levels and/or activity of cell cycle regulators. 

As shown in Fig. 3A, knockdown of PITX2 gene expression in TPC-1 cells resulted in 

clear down-regulation of Cyclin D1 and Cyclin D2. The D-type Cyclins complex with 

cyclin-dependent kinases (CDK) to phosphorylate the retinoblastoma gene product (pRb) 

in proliferating cells. Consistent with these results, the levels of phosphorylated Rb 

(serine residues 780, and 807/811) were considerably reduced after PITX2 knockdown 

(Fig. 3B). Since it is known that decreased levels of Cyclin Ds and phosphorylated Rb 

could result in slowed cell cycle progression and thus reduced cell proliferation activity, 

these data (Fig. 3) may mechanistically explain the abovementioned phenotypic effects of 

decreased cell proliferation upon PITX2 knockdown (Fig. 2). Taken together, our results 

suggest that PITX2, directly or indirectly, regulates several cell cycle modulators to 

promote thyroid cancer cell growth. 
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Figure 3 

 

 

Figure 3. Effects of PITX2 knockdown on cell cycle regulators.  Protein samples were 

prepared from parental TPC-1 cells, non-silencing control cells and two stable clones of 

PITX2-knockdown cells, and then subjected to Western blot analysis. Panel A indicates 

downregulation of Cyclin D1 and D2. Panel B reveals explicit dephosphorylation of Rb 

protein. GAPDH was used as an internal control. 
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PITX2 activates the expression of Cyclin D2 in human papillary and follicular thyroid 

cancers 

Previous studies have shown that PITX2 can transcriptionally regulate Cyclin D2 in a cell 

type-specific manner [9]. As Cyclin D2 is down-regulated in TPC-1 cells upon PITX2 

knockdown (Fig. 3A), we wanted to evaluate whether that regulation occurs at the 

transcriptional level in this cell line. Indeed, by chromatin immunoprecipitation analysis 

with primers that span the conserved PITX2 binding sites, we detected the binding of 

PITX2 on the promoter of Cyclin D2 in TPC-1 cells (Fig. 4A). Furthermore, we found 

that PITX2 significantly stimulated the activity of the Cyclin D2 promoter-driven 

reporter in TPC-1 cells by 11.3 fold (p<0.05), as compared to control (Fig. 4B). 

Therefore, in thyroid cancer cells, PITX2 transcriptionally regulate Cyclin D2, and this 

direct regulation may mediate the stimulatory role of PITX2 in promoting thyroid cancer 

cell proliferation. 

Based on the above results showing the expression of PITX2 in follicular cell-derived 

thyroid cancer tissues and the transcriptional regulation of Cyclin D2 by PITX2, we 

predicted that Cyclin D2 was expressed in follicular cell-derived thyroid cancer tissues as 

well. Indeed, the immunohistochemistry assay revealed that Cyclin D2 was significantly 

overexpressed in papillary and follicular thyroid cancers, as compared to normal thyroids 

(Fig. 4C and Table 3). In contrast, no overexpression of Cyclin D2 was observed in 

medullary thyroid cancer (Fig. 4C and Table 3). Moreover, the expression pattern of 

PITX2 and Cyclin D2 was well correlated in papillary and follicular thyroid cancers, i.e., 

92% of PITX2-positive tissues also expressed Cyclin D2 (Table 4). Hence, our data 

support the existence of a PITX2-Cyclin D2 pathway in papillary and follicular thyroid 
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cancers. We also noticed that 43% of PITX2-negative thyroid cancer tissues expressed 

Cyclin D2, indicating that PITX2 is not the sole upstream regulator for Cyclin D2 

expression in thyroid cancer.  

Figure 4 
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Figure 4. Cyclin D2 is a transcriptional target of PITX2 in thyroid cancer. (A) ChIP 

analysis was performed using anti-FLAG M2 on TPC-1 cells transiently expressing 

FLAG-tagged PITX2 (PITX2) or FLAG-tagged homeodomain-deleted PITX2 (PITX2-

∆HD). No Ab and IgG indicate no primary antibody and mouse IgG control, respectively. 

The upper scheme indicates the conserved PITX2 binding site on the Cyclin D2 promoter 

(-1 to -798) and the location of the primers used in ChIP. The primers of an unrelated 

gene were included as control. (B) A luciferase reporter vector containing the Cyclin D2 

promoter, which included the conserved bicoid-homeodomain binding site, was 

transiently transfected into TPC-1 cells along with the PITX2 expression vector or empty 

vector. A renilla vector was included in each transfection to normalize transfection 

efficiency in all experiments.  Data were presented as mean ±S.D. *, P<0.05. (C) Cyclin 

D2 is overexpressed in thyroid cancer tissues. Thyroid cancer tissue microarrays were 

examined by immunohistochemistry with a polyclonal anti-Cyclin D2. One 

representative image (I-IV) of each type of human thyroid cancer and normal thyroid 

tissue was shown (original magnification 40X). Scale bar indicates 20µm length. 
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Table 3 

 

Table 3. Immunohistochemistry assay of Cyclin D2 in human thyroid cancer tissues. The 

symbol “-”, and “+” represents no expression and consistent expression of Cyclin D2, 

respectively (see Materials and Methods for categorization). The number indicates the 

sample size of each category, and incidence is defined as the percentage of consistent 

Cyclin D2 expression of total tissue samples examined. Cyclin D2 is significantly 

overexpressed in papillary and follicular thyroid cancers (Chi-square test, p<0.05).   
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Table 4 

 

Table 4. Each of two consecutive tissue sections was used to examine expression of 

PITX2 and Cyclin D2, respectively, in the immunohistochemistry assay. Consistent 

expression “+” or no expression “-” was scored for each tissue sample and the percentage 

was calculated. 
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Overexpression of PITX2 and Cyclin D2 in a mouse model of thyroid cancer 

To further confirm the existence of a PITX2-Cyclin D2 pathway in vivo, we took 

advantage of a mouse model of thyroid cancer that was created by a targeted mutation of 

the thyroid hormone β receptor (TRβPV) [18]. As TRβ
PV/PV

 mice age, they spontaneously 

develop follicular thyroid carcinoma similar to human thyroid cancer with pathological 

progression from hyperplasia to vascular invasion, capsular invasion, anaplasia, and 

eventually metastasis [18-19].  

We observed an evident increase in Pitx2 mRNA levels in the thyroid cancer of TRβ
PV/PV

 

mice as compared with wild-type mice (Fig. 5A). Consistently, the protein abundance of 

Cyclin D2, along that of Cyclin D1, was also greatly increased in the thyroid of TRβ
PV/PV

 

mice (Fig. 5B). In line with these data, the phosphorylation levels of Rb (Ser807/811 and 

Ser 780) were considerably increased in TRβ
PV/PV

 mice (Fig. 5C).  

These mouse model data are consistent with the abovementioned results and, together, 

they strongly demonstrate that in papillary and follicular thyroid cancer cells there exists 

a PITX2-Cyclin D2 pathway, in which PITX2 directly regulates Cyclin D2 expression to 

promote thyroid carcinogenesis.          
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Figure 5 
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Figure 5. Overexpression of PITX2 and Cyclin D2 in a mouse model of thyroid cancer. 

Total RNA and protein extracts were prepared from normal thyroid glands of wild-type 

mice (WT) and from thyroid tumors of TRβ
PV/PV

 mice aged 8 months, as described in 

Materials and Methods. The littermates with different genotypes were used in the 

analysis. Representative results from 2 (panel A) or 3 (panel B-D) mice are shown and 

the genotypes marked.  (A) The RT-PCR result indicates the upregulation of Pitx2 in 

thyroid tumors. (B) Protein abundance of Cyclin D1, Cyclin D2 and the loading control 

GAPDH. (C) Protein levels of Rb, phosphorylated either on serine 807 and 811 (p-

Rb
Ser807/811

) or on serine 780 (p-Rb
Ser780

), total levels of Rb, and GAPDH.  

 

 

Discussion 

Previous studies have clearly demonstrated the importance of PITX2 in embryonic 

development, e.g., organogenesis of the heart, eye, pituitary and tooth [9, 12-15]; 

however, whether it plays a significant role in human cancer, a disrupted tissue 

homeostasis after birth, was unknown. 

Here, we demonstrate for the first time that the expression of PITX2 was significantly 

upregulated in human thyroid cancer. Interestingly, we found that frequent expression of 

PITX2 was solely observed in follicular cell-derived thyroid cancers (papillary, follicular 

and anaplastic types), but not in C-cell-derived medullary thyroid cancer. This finding 

indicates that PITX2 is upregulated in thyroid cancer in a cell type-specific manner. 

Furthermore, we observed that the frequency of PITX2 expression in well differentiated 
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papillary and follicular thyroid cancers was significantly higher than that in poorly 

differentiated anaplastic thyroid cancer. Since anaplastic thyroid cancer is a highly 

invasive cancer developed from papillary and follicular thyroid cancers, it is tempting to 

speculate that PITX2 might function to promote primary tumor growth during the early 

stage of thyroid tumorigenesis, but is down-regulated in the late stage of cancer 

development. To validate this speculation,  PITX2 expression should be analyzed in a 

large scale of thyroid tumor tissues, especially those arising from thyroid follicular cells, 

ranging from early stage microtumors to more advanced locally invasive tumors and late 

stage metastasized cases.     

Since PITX2 has been shown to promote cell proliferation in a cell type-specific manner 

during embryonic development [9], our observation prompted us to hypothesize that 

upregulated PITX2 may play a similar proliferative role to stimulate thyroid cell growth 

and, consequently, promotes thyroid tumorigenesis. This hypothesis was robustly 

supported by our findings. Our cell-based studies showed that PITX2 knockdown 

remarkably reduced cell growth and soft-agar colony formation. Our biochemical studies 

led to the finding that knockdown of PITX2 caused apparent changes in the expression or 

activity of key cell cycle regulators, such as Cyclin Ds and pRb. Notably, our in vivo 

studies using a unique mouse model of thyroid cancer showed that overexpression of 

PITX2 in the thyroid was associated with the upregulated Cyclin Ds and with the 

increased activity of pRb. Thus, our results strongly suggest that PITX2 promotes thyroid 

cancer cell growth by modulating the expression or the activity of cell cycle controlling 

genes.  
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 Notably, our data of chromatin immunoprecipitation and reporter assays clearly showed 

that PITX2 regulates Cyclin D2 expression at the transcriptional level in thyroid cancer 

cells, by binding to the Cyclin D2 promoter. This transcriptional regulation of Cyclin D2 

by PITX2 has also been previously demonstrated in murine C2C12 myoblast cells [9-10]. 

Thus, it appears that PITX2-Cyclin D2 might well represent a broad-spectrum cell cycle 

regulation pathway. However, whether the PITX2-Cyclin D2 pathway functions as a 

general mechanism in other cancers remains to be determined. 

At present, we cannot conclude that Cyclin D2 is the only mediator of overactivated 

PITX2 in follicular cell-derived thyroid cancers. In fact, other cell cycle regulators, 

including c-Myc and Cyclin D1, have also been previously reported as PITX2 

transcriptional targets [10]. On the other hand, we cannot rule out the existence of other 

upstream regulators besides PITX2 for regulating Cyclin D2 expression in thyroid cancer, 

since the expression of Cyclin D2 was observed in the PITX2-negative cancer tissues. 

Indeed, previous studies have shown that Cyclin D2 can be regulated by multiple 

mitogenic signals in a number of human cancers, such as leukemia, testicular cancer and 

ovarian cancer [20-22]. Furthermore, whether PITX2 cooperates with other oncogenic 

signals to upregulate Cyclin D2 in thyroid tumorigenesis remains unclear and warrants 

further study. 

 Dysregulated (stabilization and translocation of) β-catenin plays a critical role in 

oncogenesis [6-7]. In papillary thyroid cancer, β-catenin is frequently mislocated to the 

cytoplasm and the nucleus [3, 6-7]. Recent studies have shown that the aberrant 

localization or over-expression of β-catenin can result from genetic mutations, such as 

RET mutations and TRβPV mutation, both of which are capable of driving thyrocyte 
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neoplastic transformation [6, 8, 23]. Since PITX2 has been shown as a target and an 

effector of β-catenin signaling in development [9, 24, 25], it is tempting to speculate that 

the β-catenin-PITX2 pathway might be functional in thyroid tumorigenesis as well and 

the aforementioned PITX2-Cyclin D2 pathway might be expanded into the β-catenin-

PITX2-Cyclin D2 pathway. This speculation apparently deserves further investigation 

since it would offer a mechanistic explanation for those thyroid tumors derived from 

dysregulated β-catenin, which itself could arise from genetic alterations in RET, RAS, 

RAF, PPARγ and PIK3CA. With this regard, it will be interesting to finely map upstream 

activators and downstream effectors of the PITX2-Cyclin D2 pathway.  

Recently, we reported a study on PITX2-interacting and regulating networks [26]. Y-box 

binding protein-1 (YB-1) was identified as a novel PITX2-associated partner. YB-1 

belongs to a family of evolutionarily conserved, multifunctional Y-box proteins that 

function as regulators of cell proliferation, drug resistance, DNA damage repair and RNA 

stability [27-28]. Interestingly, overexpression of YB-1 in thyroid cancer has also been 

reported [29]. Thus, whether PITX2 and YB-1 has a functional linkage in thyroid cancer 

would deserve additional studies.  

In summary, our data have shown that PITX2 is frequently expressed in follicular cell-

derived thyroid cancers and functions to promote thyroid tumorigenesis by regulating 

critical cell cycle regulators, and in particular Cyclin D2 by acting at the transcriptional 

level. To our knowledge, this is the first evidence to demonstrate an oncogenic role of 

PITX2 in thyroid cancer. Since PITX2 may function to promote cancer cell growth, 

therapeutic approaches targeting PITX2 could have clinical benefits for some thyroid 

cancer patients. 
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CHAPTER III 

 

PROTEOMIC AND GENOMIC ANALYSIS OF PITX2 

INTERACTING AND REGULATING NETWORKS 

 

Abstract 

 

PITX2 is a homeodomain transcription factor that has a substantial role in cell 

proliferation and differentiation in various tissues. In this report, we have conducted a 

systematic study, using proteomic and genomic approaches, to characterize PITX2-

interacting proteins and PITX2-regulating genes. We identified four novel PITX2-

associated protein partners YB-1, hnRNP K, nucleolin and hnRNP U in mass 

spectrometry analysis. We also found that overexpression of PITX2 upregulated 868 

genes (two-fold to twenty five-fold) and downregulated 191 genes (two-fold to fifteen 

fold) in DNA microarray analysis. These data provide an insightful perspective for 

further studying PITX2 function and mechanism of action. 

 

Introduction 

Transcription factor PITX2 is a member of the homeobox gene family. A number of 

studies have demonstrated that PITX2 has a diverse role in cell proliferation, 

differentiation, hematopoiesis and organogenesis [1-4]. During early embryogenesis, 

PITX2 is a key regulator in the establishment of embryo left-right asymmetry[5]. In 

response to Wnt and other growth factors, PITX2 regulates cell-type specific cell 
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proliferation during the development of cardiac outflow tract[3]. Mutations of PITX2 

have been identified in several human disorders, such as Axenfeld-Rieger syndrome, 

iridogoniodysgenesis syndrome and sporadic Peter syndrome[6,7]. Pitx2-deficient mice 

are embryonic lethal and show severe defects in heart, eye, pituitary gland and tooth 

organogenesis[3]. Previous studies have shown that PITX2 cooperates with β-catenin and 

LEF/TCF and thus regulates cell proliferation by directly activating transcription of 

cyclin Ds and c-myc[3,8,9]. Besides β-catenin and LEF/TCF, other functional binding 

partners of PITX2, such as NF-1, HMG-17, MEF2A, Pit-1 and GcMa, have also been 

reported [1,10-13].  

 

In this study, we analyzed the co-immunoprecipitated protein complex of PITX2 by mass 

spectrometry and successfully identified four proteins, YB-1, nucleolin, hnRNP K and 

hnRNP U, as novel PITX2-interacting partners. We also investigated the immediate 

regulatory effects of PITX2 by examining gene expression profile of HEK293 cells with 

transient overexpression of PITX2. Our result indicated that 868 genes and 191 genes 

were upregulated and downregulated more than two-fold, respectively. Many of these 

regulated genes have previously been linked to cell proliferation, cell differentiation, and 

organogenesis of muscle and eye. Taken together, our findings provide an insightful 

perspective on PITX2 function and related molecular mechanism. 
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Materials and Methods 

Cell culture 

HEK293 cells were obtained from American Type Culture Collection (ATCC, Rockville, 

MD) and cultured in Dulbecco’s modified Eagle’s medium with 4.5 g/l glucose, 10% 

fetal bovine serum, and penicillin-streptomycin (100 IU/ml) at 37⁰C in a humidified 

atmosphere with 5% CO2.  

 

Immunoprecipitation and immunoblotting 

The open reading frame of human PITX2c, along with a FLAG epitope inserted between 

Met1 and Asn2, was amplified by PCR with the following primers: forward primer (5′-

ACTGaagcttgccaccATGGATTACAAGGATGACGACGATAAGAACTGCATGAAAG

GCCCGCTTCAC -3′, HindIII and Kozak site in lowercase) and reverse primer (5′-

AGCTggtacctcaCACGGGCCGGTCCACTG-3′, KpnI site and stop codon in lowercase). 

The PCR product was cloned into the HindIII/KpnI sites of the vector pEGFP-N1 

(Clontech). The resulting construct pEGFP-NFLAG-PITX2c, along with the control 

vector pEGFP-N1, was transfected into HEK293 cells using FugeneHD transfection 

reagent (Roche). The cells were observed 24 and 48 hours post-transfection, and no 

significant difference of cell growth and cell viability was noticed between the test and 

control groups. Cells were then lysed in immunoprecipitation buffer (50 mM Tris–HCl 

pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100) after 48 hours of initial 

transfection. For nuclear protein extraction, cells were incubated in hypotonic buffer (10 

mM HEPES, 10 mM KCl, 1.5mM MgCl2, 0.5 mM DTT) for 10 minutes before adding of 

0.5% CA-630. Cell nuclei were then isolated by centrifugation. Nuclear proteins were 
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extracted by the immunoprecipitation buffer. Cell lysates were pre-cleared by protein G 

beads (Pierce) for 2 h at 4⁰C, and then incubated with anti-FLAG M2 conjugated-agarose 

beads (Sigma) or rabbit anti-YB-1 (Epitomics) for 2 h or overnight at 4⁰C. The beads 

were washed five times using the immunoprecipitation buffer. To eliminate indirect 

protein-protein interactions, protein complexes were washed by consecutive addition of 2% 

and 4% Triton X-100 solutions. Washed beads were boiled in reducing SDS loading 

buffer for 10 min to elute proteins, which were then subjected to mass spectrometry and 

immunoblotting. Immunoblotting was performed as described previously [16]. Primary 

antibodies were mouse anti-PITX2 (Abnova), rabbit anti-β catenin and anti-YB-1 (Cell 

Signaling), rabbit anti-hnRNP K (Epitomics), rabbit anti-nucleolin and anti-hnRNP U 

(Abcam). 

 

Peptide mass fingerprinting and LC-MALDI mass spectrometry  

Proteins in the PITX2-immunoprecipitated complex were separated by SDS-PAGE and 

silver stained. Protein bands with high abundance were excised and analyzed by LC-

MALDI (ABI Tempo LC MALDI) and MALDI MS/MS (ABI 4800 MALDI TOF/TOF) 

mass spectrometry analysis by Protea Bioscience (WV, USA). Peptides were identified 

by performing Mascot MS/MS Ion search (maximum missed cleavages: 2; peptide mass 

tolerance: ± 1-2 Da; fragment mass tolerance: ± 0.8-1 Da) on the non-redundant fasta 

database obtained from the National Center for Biotechnology Information (NCBI) and 

Swissprot database. The peptides and proteins with significant Mowse score (p<0.05), 

except trypsins, were reported. 
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RNA preparation 

HEK293 cells were transiently transfected with pEGFP-NFLAG-PITX2c or pEGFP-N1. 

Forty eight hours after transfection, cells were harvested for total RNA extraction by 

using TRI Reagent (Ambion). RNA quality was assessed by electrophoretic analysis on 

an Agilent Model 2100 Bioanalyzer. All RNA samples used in this study had RNA 

Integrity Numbers greater than 8.0.  

 

Microarray analysis 

We employed a balanced block design with dye swap using four biological replicates 

from HEK293 cells transfected with either pEGFP-N1 or pEGFP-NFLAG-PITX2c. For 

microarray probes, total RNA (250 ng) was used as the template for synthesis of 

internally labeled cRNAs using Agilent QuickAmp Labeling kit and cyanine 3-CTP and 

cyanine 5-CTP (Perkin Elmer, Waltham, MA) and a modified QuickAmp protocol [14].  

A total of 825 ng of cyanine 3- and cyanine5-labeled cRNAs was combined and 

hybridized onto Agilent Whole Human Genome 4 x 44 K microarrays at 65
o
C for 17 

hours and then washed according to the manufacturer’s protocol. Slides were scanned on 

Agilent DNA Microarray Scanner. 

 

Statistical analysis of microarray data  

Data were lowess-normalized and extracted from arrays using Agilent Feature Extraction 

v9.5. Features for which both channels had low signal were excluded. Log2 expression 

ratios of PITX2-overexpressed to control samples were imported to the Multiple 

Experiment Viewer (MeV) v4.0 to perform statistical analysis[15]. Values were 
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compared for significant deviation from zero using one-class Significance Analysis of 

Microarrays (SAM)[16]. Only probes for which at least three replicates passed the low 

signal filter were included. SAM was performed with the maximum number of unique 

permutation, and delta was chosen to give 0% reported 90
th

 percentile False Discovery 

Rate (FDR). Raw data from the microarray experiment are available at the NCBI Gene 

Expression Omnibus with accession number GSE13216. 

 

Semi-quantitative RT-PCR analysis 

To validate microarray data, we performed semi-quantitative RT-PCR. The cDNAs were 

reverse transcribed from total RNA in the presence of random primers (Clontech), and 

used as templates in the PCR under the following parameters: 94⁰C for 2 min, 1cycle; 

94⁰C for 20 sec, 56⁰C for 20 sec (58⁰C for FOXJ1 and H19), 72⁰C for 2 min, 32 cycles; 

followed by a 6-min extension at 72⁰C. The primers used for this study are listed in Table 

1. 
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Table 1 

Gene  Forward primer  Reverse primer  Product 

size (bp)  

DHRS2  AGTGAGCAGATCTGGGACAA  GAGAATGCCGAAGCGTTTTT  621  

RSPO3 GCCCCACTTCGCTTGCCATCA  ACCCGTGTTTCAGTCCCTCTT  695  

CCNA1  GTCCCGATGCTTGTCAGATA  CCAACCTCCACCAGCCAGTC  579  

BAIAP3  ACGGCTTAAGTGACCCCTTT  TTCACAGCACACACCAGACA  621  

RET  GTGTGAGTGGAGGCAAGGAG  AGGCGTTCTCTTTCAGCATC  673  

FOXJ1  GCTTCCCCAGGTCTCTATCC  CACCAAACCCAAACTTCCAG  335  

H19  AAAGACACCATCGGAACAGC  GCTCACACTCACGCACACTC  349  

PDE6B  CACCGACACCTACGACAAGA  GGGTTCTGGGACTTCATCTG  551  

BRIP3  ACACGCACACACAAGCAGAT  GAGCATTTCATTTCCACTCCA  675  

OLFM1  GGACGGCTATCACAACAACC  GGCAGCAGTTTCACAGGAG  729  

CDH15  AGAGCCTCTGCCTGTCTTTG  ACTGTGCGGATCTCTCCTGT  600  

DGKG  GGAGGGAGACAAGGAGAAAGA  TGCTGGGAATGTTGAGAAT  657  

β-actin  GGGTCAGAAGGATTCCTATG  ATGAGGTAGTCAGTCAGGTC  428  

 

Table 1. List of primers used in RT-PCR. 
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Results 

Identification of novel PITX2-associated proteins  

Despite the substantial role of PITX2 in cell proliferation and differentiation, the 

molecular mechanism underlying PITX2 action is still limited. Identifying novel PITX2-

interacting protein partners would further our understanding of how PITX2 works. To do 

so, we first transiently overexpressed PITX2 in HEK293 cells (Figure 1A) and then co-

immunoprecipitated PITX2 and its associated protein complex from the cell lysates. After 

the protein complex was separated by SDS-PAGE, five protein bands with high 

abundance, which did not appear in the pEGFP-N1 control sample (data not shown), 

were excised and subjected to mass spectrometry analysis. In addition to PITX2, four 

novel PITX2-associated proteins, YB-1, hnRNP K, nucleolin and hnRNP U, were 

identified from each protein band, respectively (Table 2). These four proteins achieved 

the highest significant scores among other candidates and their molecular weights 

matched the PAGE-determined molecular weights. To further confirm the association of 

these four proteins with PITX2, we performed immunoblotting on PITX2-

immunoprecipitated proteins. As shown in Figure 1B, we indeed detected YB-1, hnRNP 

K, nucleolin and hnRNP U in the PITX2-immunoprecipitated protein complex.  As a 

positive control for the PITX2 complex, we also demonstrated the presence of β-catenin, 

a previously reported binding partner of PITX2 (Figure 1B). Using an YB-1 antibody, we 

also detected the interaction of PITX2 and YB-1 at endogenous levels (Figure 1C). We 

were not able to test for interactions between PITX2 and other novel binding partners 

since immunoprecipitation-suitable antibodies for these proteins are not currently 

available. 
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Figure 1 

 

Figure 1. Verification of PITX2 association partners. (A) PITX2 was transiently 

overexpressed in HEK293 cells. The cell lysates from pEGFP-N1 and pEGFP-NFLAG-

PITX2c were analyzed by immunoblotting. (B) YB-1, hnRNP K, nucleolin, hnRNP U 

and β-catenin are PITX2-interacting proteins. The PITX2-immunoprecipitated complex, 

along with the protein samples equivalent to 10% input, was probed with respective 

antibodies. (C) The endogenous protein complex of YB-1 and PITX2 was 

immunoprecipitated from HEK293 nuclear lysates by an YB-1 antibody and then 

detected by a PITX2 antibody. 
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Table 2 

 

Table 2. List of proteins identified from the PITX2-immunoprecipitated complex, as 

described in Materials and methods. Proteins with ions scores > 32 indicate identity or 

extensive homology (p<0.05). 

 

 

 

 

Protein  Peptides (ions score) RefSeq No.  Gel region  

Heterogeneous nuclear 

ribonucleoprotein U 

(hnRNP U)  

(R) NFILDQTNVSAAAQR (123) 

(R) GYFEYIEENKYSR (16) 

(K) SSGPTSLFAVTVAPPGAR 

(50) 

NP_114032.

2  
100-120 kDa  

Nucleolin 

(K) EVFEDAAEIR (27) 

(K) GFGFVDFNSEEDAK (16) 

(K) GLSEDTTEETLKESFDGS 

(17) 

NP_005372.

2  
80-100 kDa  

Heterogeneous nuclear 

ribonucleoprotein K 

(hnRNP K)  

(R) NLPLPPPPPPR (43) 
NP_002131.

2  
60-70 kDa  

Y box binding protein-1 

(YB-1)  

(R) NEGSESAPEGQAQQR (49) 

(R) NGYGFINR (59) 

NP_004550.

2  
40-50 kDa  

Pituitary homeobox 2 

(PITX2)  

(R) EEIAVWTNLTEAR (58) 

(R) THFTSQQLQELEATFQR (53) 

NP_700476.

1  
30-40 kDa  
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Identification of PITX2-regulated genes  

Since PITX2 has been shown to participate in a number of physiological processes, we 

hypothesized that PITX2 may have numerous target genes. To explore this idea, we 

performed DNA microarray to examine the gene expression profile of HEK293 cells 

transiently overexpressing PITX2 compared to cells with normal PITX2 levels. 

Remarkably, we found that 868 genes and 191 genes were upregulated and 

downregulated, respectively, by more than two-fold. Many of these regulated genes can 

be clustered into different biological processes, such as cell proliferation, cell 

differentiation, and organogenesis of muscle and eye, as exemplified in Table 3. A more 

comprehensive Gene Ontology (GO) analysis is provided in Table 4. To verify 

microarray data, we used semi-quantitative RT-PCR to measure relative changes in the 

mRNA abundance of twelve genes. The RT-PCR results were very consistent with the 

microarray results (Figure 2). 
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Table 3 

Accession No.  Gene name  Fold  Description  

Proliferation  

NR_002196  H19  12.0  imprinted maternally expressed untranslated mRNA 

(H19) on chromosome 11  
NM_003914  CCNA1  11.6  cyclin A1, cell cycle regulator  

NM_003933  BAIAP3  7.7  BAI1-associated protein 3  

NM_001007139  IGF2  5.5  insulin-like growth factor 2 (somatomedin A)  

NM_020975  RET  5.4  ret proto-oncogene  

NM_032043  BRIP1  0.17  BRCA1 interacting protein C-terminal helicase 1  

NM_004407  DMP1  0.16  dentin matrix acidic phosphoprotein  

Muscle  

NM_004933  CDH15  9.5  cadherin 15, M-cadherin (myotubule)  

NM_000257  MYH7  6.0  myosin, heavy chain 7, cardiac muscle, beta  

AB002384  C6orf32  4.6  mRNA for KIAA0386 gene  

Eye  
   

NM_014279  OLFM  9.1  olfactomedin 1  

NM_000283  PDE6B  8.9  

phosphodiesterase 6B, cGMP-specific, rod, beta 

(congenital stationary night blindness 3, autosomal 

dominant  

NM_014421  DKK2  6.1  dickkopf homolog 2  

NM_000327  ROM1  3.9  retinal outer segment membrane protein 1  

Development/differ

entiation  
   

NM_032784  RSPO3  20.5  R-spondin 3 homolog  

NM_000582  SPP1  9.5  secreted phosphoprotein 1 (osteopontin, bone sialoprotein 

I, early T-lymphocyte activation 1)  

NM_001454  FOXJ1  7.5  forkhead box J1  

NM_030761  WNT4  6.8  wingless-type MMTV integration site family, member 4  

Others  
   

NM_001346  DGKG  9.0  diacylglycerol kinase, gamma 90kDa  

NM_182908  DHRS2  25.2  dehydrogenase/reductase (SDR family) member 2  

Table 3. Exemplified genes regulated by PITX2. 
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Table 4 

Biological Process GO 
ID# 

# of 
Entities 

Overlap Holm-Bonferroni 
adjusted p-value 

     

multicellular organismal development 61990 1100 78 1.44404E-10 

potassium ion transport 62621 190 25 2.23621E-07 

cell-cell signaling 59266 334 32 2.71767E-06 

cell differentiation 60383 691 47 4.37307E-05 

Wnt receptor signaling pathway 59323 127 16 0.000710167 

ion transport 62490 619 40 0.001614313 

muscle contraction 63107 107 14 0.002207541 

cell adhesion 56848 741 43 0.010103486 

peripheral nervous system 
development 

62382 32 7 0.027104815 

transport 62462 1962 87 0.027471747 

blood circulation 63101 57 9 0.031548558 

 

Table 4. Biological processes enriched for PITX2-regulated genes.                                                                                                                                                                                  

In order to discover biological processes that were enriched for PITX2-regulated genes, we 

entered expression data from the 1059 member gene set into Ariadne Pathway Studio 

software (Rockville, MD) and used Fisher’s Exact Test as implemented by Pathway Studio 

to determine the p-value associated with the biological processes, and subsequently adjusted 

for multiple hypothesis testing using the Holm-Bonferroni method with an overall type-1 

error rate of 0.05. Since 1015 biological processes were represented by the list of genes, 

Holm-Bonferroni was used to adjust for 1015 different hypotheses.“Entities” refers to the 

total number of genes within a given process while “Overlap” refers to the number of 

PITX2-regulated genes within a given process. Only processes which met the criterion for 

statistical significance (p < 0.05) are listed. 
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Figure 2 

 

 

Figure 2. Semi-quantitative RT-PCR analysis of PITX2-regulating genes. Actin was used 

as an internal control. Vector=pEGFP-N1; PITX2=pEGFP-NFLAG-PITX2c. 
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Discussion 

In this study, we have identified YB-1, nucleolin, hnRNP K and hnRNP U as the novel 

PITX2-interacting partners. The four proteins show consistency in terms of their 

functions in that all of them play roles in regulating cell proliferation and RNA 

processing [17-20]. YB-1 is a multifunctional protein that functions in the regulation of 

cell proliferation and drug resistance[21]. Nuclear YB-1 acts as a transcription factor 

which controls transcription of genes involved in cell proliferation, such as cyclin A 

[17,22]. In this regard, our two observations, upregulation of cyclin A upon 

overexpression of PITX2 and the association of YB-1 and PITX2, may well echo each 

other. YB-1 also can bind to mRNA and become part of messenger ribonucleoprotein 

particels (mRNPs), thus controls gene translation[21]. Nucleolin is a ubiquitously 

expressed protein and a major component of the nucleolus[18]. Nucleolin functions 

include chromatin-remodeling, regulation of mRNA processing, ribosome assembly and 

nucleo-cytoplasmic transport[18]. Nucleolin, hnRNP K and YB-1 have been previously 

reported to be assembled into a macromolecular complex regulating mRNA 

stability[23,24]. In this respect, it is tempting to postulate that PITX2, through association 

with YB-1, may regulate mRNA stability as well. Indeed, such function has been 

previously assigned to PITX2 [25] . The identification of novel PITX2-interacting 

partners provides a new look at the mechanistic aspect of PITX2 function. It also 

suggests that PITX2 may regulate its downstream targets at both transcription and 

translation levels. Hence, the functional implication of this novel PITX2-interacting 

network will be a valuable topic in future studies.            
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Previously, only a few PITX2 transcription targets have been identified, such as cyclin 

Ds, LEF and PLOD[3,9,26,27]. However, these target genes may not be capable of 

mediating all functions of PITX2. In this study, we have found a remarkable set of 

potential target genes of PITX2. Of these candidates, FOXJ1 and DKK2 have been 

reported as direct targets of PITX2 transcriptional regulation in two recently published 

studies[28,29], consistent with our findings. To this end, we cannot rule out the 

possibility that some of the genes detected in our expression profile study are not directly 

regulated by PITX2. Nonetheless, our map of the PITX2-regulated gene network opens 

new avenues for studying biological processes involving PITX2. 
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CHAPTER IV 

PITX2 ACTIVATES CYCLIN A1 THROUGH MLL4-MEDIATED 

H3K4 METHYLATION IN THYROID CANCER CELLS 

 

Abstract 

Pituitary transcription factor 2 (PITX2) is a homeodomain transcription factor that 

regulates cell proliferation and differentiation in a variety of organs such as eye, tooth, 

heart, pituitary and smooth muscle. Although the importance of PITX2 in many 

biological events has been well-known, the transcriptional targets and underlying 

regulatory mechanism of PITX2 action are still elusive. Here we show that Cyclin A1, a 

testis-specific member of Cyclin As, is a novel PITX2 transcriptional target. 

Overexpression of PITX2 increased Cyclin A1 expression, whereas knockdown of 

PITX2 reduced Cyclin A1 expression at the mRNA and protein levels in human papillary 

thyroid cancer cells. Using promoter-driven reporter assays, we identified in the Cyclin 

A1 promoter an evolutionarily conserved PITX2 response element (PRE) that was critical 

for PITX2-induced Cyclin A1 gene transcription. Chromatin immunoprecipitation 

indicated that ectopically expressed PITX2 bound to the wild-type but not the PRE-

mutated Cyclin A1 promoter. Interestingly, our data further revealed that PITX2 

associated with MLL4 histone H3K4 methyltransferase complex and facilitated 

recruitment of the latter to the Cyclin A1 promoter. Consistently, we observed increased 

H3K4 methylation and dissociation of HDAC1 in the Cyclin A1 promoter. Moreover, we 

found that Cyclin A1 was expressed in 40% of human papillary thyroid cancer tissues but 

not in normal thyroids, a result similar to our previous report on PITX2 expression in 
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thyroid cancer. Taken together, our data suggest that PITX2 transcriptionally activates 

Cyclin A1 through a H3K4 methylation pathway. 

 

Keywords: PITX2, Cyclin A1, histone methylation, H3K4, PTIP, MLL4, thyroid cancer 

 

 

Introduction 

Pituitary transcription factor 2 (PITX2) is a member of the bicoid homeodomain 

transcription factor family. Previous studies have reported that PITX2 is critical for 

organogenesis of eye, tooth, heart, pituitary and smooth muscle, by regulating cell 

proliferation and differentiation in a tissue-specific manner [1-4]. In addition, PITX2 has 

a pivotal role in controlling left-right asymmetry during early embryogenesis [5]. Pitx2 

knockout mice are embryonic lethal and exhibit failures in the development and 

positioning of multiple organs [1]. Mutations in human PITX2 have been linked to 

several diseases such as Axenfeld-Rieger syndrome, iridogoniodysgenesis syndrome, and 

sporadic cases of Peter’s anomaly [6, 7]. At the molecular level, PITX2 has been shown 

to function as a downstream effector of Nodal, TGFβ, retinoic acid and Wnt signaling 

during embryonic development [1,4,5,8]. When binding to β-catenin, PITX2 

transcriptionally activates Cyclin D1, Cyclin D2 and c-Myc to regulate cell proliferation 

[1, 9]. However, the precise role of PITX2 during various biological events is still largely 

unclear. 
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To map out the regulatory and interacting networks of PITX2, we previously have used 

microarray and mass spectrometry to search for novel PITX2 transcriptional targets and 

binding partners [10]. Cyclin A1 is one of the most up-regulated genes induced by 

ectopically expressed PITX2 in HEK293 cells. The Cyclin A gene family consists of two 

members, Cyclin A1 and Cyclin A2. Cyclin A2 is ubiquitously expressed and critical for 

cell cycle progression in both S-phase and G2/M phase [11]. Cyclin A2 knockout mice 

are embryonic lethal [11]. Unlike Cyclin A2, Cyclin A1 displays a tissue-specific 

expression pattern with high levels of expression restricted in testis, more specifically in 

the meiosis I stage of spermatocytes [12]. Cyclin A1 knockout mice are developmentally 

normal except that male mutants are infertile [12]. Cyclin A1-deleted spermatocytes are 

arrested at the end of meiotic prophase I because of reduced Cdc2 kinase activity [12]. In 

addition to its function in spermatogenesis, an oncogenic role of Cyclin A1 has been 

proposed in acute myeloid leukemia, prostate cancer and breast cancer [13-15]. When 

mouse Cyclin A1 is overexpressed in the myeloid lineage of transgenic mice, a small 

percentage of mice spontaneously develop acute myeloid leukemia [13]. In prostate 

cancer, elevated level of Cyclin A1 has been associated with advanced, invasive prostate 

cancer [14]. Overexpression of Cyclin A1 in a prostate cancer cell line enhances cell 

invasion and metastasis [14]. Moreover, Six1, a homeobox gene, reactivates Cyclin A1 in 

breast cancer cells and thus promotes breast cancer cell proliferation [15]. However, 

whether Cyclin A1 is expressed in thyroid cancer tissues has not yet been studied.  

In this study, we investigate the role of PITX2 in regulating Cyclin A1 gene expression. 

We report here that Cyclin A1 is a novel PITX2 transcriptional target. We have also 

identified the promoter element responsible for PITX2-induced Cyclin A1 transcription. 
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In addition, we show that PITX2 activates Cyclin A1 transcription through a histone 

H3K4 methylation pathway. Our data provide an insightful perspective on the regulatory 

network of PITX2. Significantly, the finding that PITX2 associates with the H3K4 

methyltransferase complex to remodel target genes’ chromatin structure extends the role 

of PITX2 in gene regulation and highlights the versatility of PITX2 as a transcription 

factor. 

 

Materials and methods 

Cell culture 

Human papillary thyroid cancer cell line (TPC-1) was kindly provided by Dr. James 

Fagin (Memorial Sloan-Kettering Cancer Center, NY). HEK293 cell line was purchased 

from ATCC (Manassas, VA). Both of TPC-1 and HEK293 cells were cultured in 

Dulbecco’s modified Eagle’s medium with 4.5 g/l glucose, 10% fetal bovine serum, and 

penicillin-streptomycin (100 IU/ml). Cell culture media and supplements were purchased 

from ATCC. Cells were incubated at 37⁰C in a humidified atmosphere with 5% CO2. 

 

RT-PCR analysis 

Total RNA was extracted from cultured cells using TRI Reagent (Ambion, TX) as 

described previously. PITX2-knockdown TPC-1 cells have been described previously. 

RT-PCR was performed to examine Cyclin A1 expression. The primers used in this study 

are listed in Table 1. PCR parameters: 94⁰C for 2 min, 1 cycle; 94⁰C for 20 sec, 56⁰C for 

20 sec, 72⁰C for 2 min, 32 cycles; followed by a 6 min extension at 72⁰C. 
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Table 1 

CCNA1-5’: GTCCCGATGCTTGTCAGATA 

CCNA1-3’: CCAACCTCCACCAGCCAGTC 

CCNA1-2027-BglII-5’:  AGTCAGACTCGTGCTGGGACTACAGGCGTA 

CCNA1-2027-HindIII-3’:   AGTCAAGCTTGGCGGGAAGGACCAAGTGTC 

CCNA1-765-KpnI-5’:   AGTCGGTACCCTCGAGCACGACGTGCGACCCT 

CCNA1-658-XhoI-5’: ACTGCTCGAGATGGAGACGCAACACTGCCG 

CCNA1-201-XhoI-5’: ACTGCTCGAGAGCGAGTCAGGTGAGCAGGT 

CCNA1-102-XhoI-5’: ACTGCTCGAGGCTGATTGGCCGATTCAACA 

CCNA1-96-XhoI-5’:   ACTGCTCGAGTGGCCGATTCAACAGACG 

PITX2C-FLAG-HindIII-5’: 

ACTGAAGCTTGCCACCATGGATTACAAGGATGACGACGATAAGAACTGCATG

AAAGGCCCGCTTCAC 

PITX2C-324-KpnI-3’: AGCTGGTACCTCACACGGGCCGGTCCACTG 

PITX2C-180-KpnI-3’: AGCTGGTACCTTAGCCTGGGTACATGTCGTCGT   

PITX2C-161-KpnI-3’:     AGCTGGTACCTTAATTCTTGCATAGCTCGGCCT                                          

PITX2C-HDdel-KpnI-3’:  AGCTGGTACCTTAGTTGGTCCACACAGCGATTT   

PITX2C-FLAG-91-XhoI-5’: ACTGCTCGAGCGGCAAAGGCGGCAGCGGACT 

PITX2C-152-NheI-5’: 

ACTGGCTAGCGCCACCATGGATTACAAGGATGACGACGATAAGCGCAACCA

GCAGGCCGAGCTAT 

CCNA1-CHIP-5’: ATGGAAACGCTCCCGCTAGGT              

CCNA1-CHIP-3’: AGGACCAAGTGTCGAGGGATT 

CCNA-CHIP1-5’: CTGGAATCCCTCGACACTT 

CCNA-CHIP-3’:   TATTCAGCCCATAGCGCTT 

Table 1. List of primers used in this study 
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Immunoblotting and Co-immunoprecipitation assay 

Total cell lysates from cultured cells were extracted in the cell lysis buffer (50 mM Tris–

HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100). Immediately before use, 

the lysis buffer was supplemented with a protease inhibitor cocktail tablet (Roche, IN). 

Immunoblotting was performed as reported previously [16]. The following primary 

antibodies were used: Cyclin A1 (BD Bioscience, CA); FLAG M2 (Sigma, MO); PITX2 

(Abnova), GAPDH (Ambion); PTIP, RBBP5 and ASH2L (Bethyl laboratory), hnRNP U 

(Abcam). The same blot was stripped and reprobed with a GAPDH antibody to obtain 

loading control.  

 

For co-immunoprecipitation assay, full length FLAG-tagged PITX2 was transfected into 

HEK293 cells that had been cultured overnight in 6-well plates by Fugene HD 

transfection reagent (Roche, IN). Transfection efficiency was monitored by green 

fluorescence 48 hours later to ensure the consistency of experiments. Transfected cells 

were then lysed by the cell lysis buffer and incubated with primary antibodies at 4⁰C 

overnight before being precipitated by protein A beads (Pierce). Antibodies used for 

immunoprecipitation are: PTIP, RBBP5 and ASH2L (Bethyl laboratory); MLL4 (a gift 

from Dr. Ge Kai, NIH). Immunoprecipitated samples were boiled in the SDS loading 

buffer and subjected to immunoblotting analysis as described above.   

 

Plasmids and Reporter assay 
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All the primers used in this study are listed in Table 1. The CyclinA1 luciferase reporter 

constructs contained various lengths of the human Cyclin A1 promoter ranging from -1 to 

-2027 bps. The Cyclin A1 promoter fragments were cloned from human blood cell 

genomic DNA and inserted into BglII/HindIII sites of pGL4.24 luciferase vector 

(Promega, MI) for CCNA2027, KpnI/HindIII sites for CCNA765 and XhoI/HindIII for 

the others. The pEGFP-NFLAG-PITX2c plasmid (expressing N-terminal FLAG tagged 

PITX2C) has been previously described [10]. The pEGFP-NFLAG-PITX2C-ΔHD 

plasmid, which expressed N-terminal FLAG tagged, homeodomain (HD, amino acid 1-

131)-deleted PITX2C, was inserted into HindIII/KpnI sites of pEGFP vector. The various 

truncated human PITX2C genes containing N-terminal FLAG tag were cloned from 

pEGFP-NFLAG-PITX2C plasmid and inserted into NheI/KpnI sites of pEGFP vector for 

PITX2C 152-324 and HindIII/KpnI for the others. The EGFP in the parental vector was 

not incorporated in the same open reading frame with the insert DNA fragments and was 

solely served as a marker for monitoring transfection efficiency. The pGL4-

CCNA658mut plasmid, generated by site-directed mutagenesis (Stratagene), contained 

the mutated PITX2 response element (-96 to -101 bps) in the Cyclin A1 promoter.   

For reporter assay, 2x10
3
 TPC-1 cells were seeded in 96 wells. A total of 100ng of 

various plasmid mixes were transfected into TPC-1 cells by Fugene HD transfection 

reagent. Renilla vector was included in all transfections and served as an internal control. 

Forty-eight hours after transfection, luciferase and renilla signals were measured by the 

Dual-Luciferase Reporter Assay System according to the manufacturer’s instruction 

(Promega, WI). Each experiment was performed in triplicate and repeated twice.   
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Chromatin immunoprecipitation (ChIP) assay 

HEK293 cells were transiently transfected with pEGFP-NFLAG-PITX2C or pEGFP-

NFLAG-PITX2C-ΔHD by Fugene HD transfection reagent. After 48 hours of initial 

transfection, cells were cross-linked by 1% formaldehyde for 15 minutes. Cell genomic 

DNA was then sheared into fragments by sonication. Cell lysates were pre-cleared by 

protein A beads (Pierce, IL) for 2 h at 4⁰C. Anti-FLAG M2 conjugated agarose beads 

(Sigma), anti-PTIP (Bethyl laboratory), anti-H3K4me2, anti-HDAC1 (Cell signaling) or 

IgG antibody was then incubated with pre-cleared cell lysates at 4⁰C overnight. Beads 

were washed by the high salt and LiCl washing solution for eight times as previously 

described. Samples were reverse cross-linked in the high salt solution at 65⁰C overnight. 

DNA was purified by phenol-chloroform extraction and precipitated by isopropanol. PCR 

was then used to analyze precipitated DNA samples. One pair of ChIP primers CCNA-

CHIP (listed in Table 1), covering the evolutionarily conserved PITX2 response element 

(PRE) in the CyclinA1 promoter (-7 to -133), was used to detect the endogenous Cyclin 

A1 promoter in PCR analysis. Another pair of primers CCNA-CHIP1, which covered 

both the PRE and part of the pGL4.24 vector, was used to detect the Cyclin A1 promoter 

inserted into the pGL4.24 vector. PCR parameters: 94⁰C for 2 min, 1cycle; 94⁰C for 20 

sec, 58⁰C for 20 sec, 72⁰C for 50 sec, 36 cycles; followed by a 6 min extension at 72⁰C.  

 

Immunohistochemistry 

Tissue microarray slides, which included both normal and malignant human thyroid 

tissues, were purchased from US Biomax (Ijamsville, MD). Formalin-fixed, paraffin-

embedded tissue sections were de-paraffinized by xylene and ethanol. Antigen retrieval 
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was performed by heating tissue samples in a microwave. Anti-Cyclin A1 (BD 

Bioscience) was incubated with tissue sections at 4⁰C overnight. Immunostaining was 

done by the IHC Select Immunophophatase Secondary Detection System (Chemicon, CA) 

according to the manufacturer’s instruction. Tissue microarray slides and their staining 

intensity were evaluated and classified by two individuals independently. A tissue sample 

with a minimum of 20% cells showing staining was counted as a positive case for 

consistent expression of Cyclin A1.  

Statistical analysis 

Data were presented as mean ±S.D. and analyzed by Student’s t test. Chi-square test was 

used to analyze immunohistochemistry studies. Statistical significant differences were 

defined as p<0.05. 

 

Results 

PITX2 regulates Cyclin A1 expression in thyroid cancer cells 

To decipher the regulatory and interacting networks of PITX2, we previously used 

microarray and mass spectrometry to search for novel PITX2 transcriptional targets and 

binding protein partners [10]. As a result, Cyclin A1 was identified as one of the most up-

regulated genes induced by PITX2 overexpression. Since we have reported that PITX2 

regulates thyroid cancer cell proliferation [17], we speculate that Cyclin A1 is a PITX2 

transcriptional target in thyroid cancer cells. To examine this hypothesis, we first 

knocked down PITX2 by shRNA in a papillary thyroid cancer cell line TPC-1. Both 

Cyclin A1 mRNA and protein levels were down-regulated upon PITX2 knockdown 
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(Figure 1A and 1B). Consistently, the Cyclin A1 protein level was up-regulated when 

PITX2 was overexpressed in TPC-1 cells (Figure 1C). These data suggest that the 

expression of Cyclin A1 in thyroid cancer cells is regulated by PITX2. 

 

Figures 1 

 

Figure 1. PITX2 regulates Cyclin A1 expression in TPC-1 cells. Cyclin A1 mRNA (A) 

and protein (B) levels were examined by RT-PCR and WB, respectively. Actin was used 

as RT-PCR internal control. GAPDH was used as WB internal control. (C) FLAG-PITX2 

was transiently expressed in TPC-1 cells. Cells were immunostained by anti-Cyclin A1 

and anti-FLAG. Scale bar indicates 50µm. 
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An evolutionarily conserved element is critical for PITX2-induced Cyclin A1 

transcription 

 

To investigate how PITX2 regulates Cyclin A1 gene expression, we constructed a series 

of reporter plasmids that covered various lengths of the Cyclin A1 promoter (upstream of 

the transcription initiation site). Two conserved bicoid homeodomain binding sites were 

found at -738 and -1924 bps of the Cyclin A1 promoter. Surprisingly, PITX2-induced 

Cyclin A1 transcription was not compromised in reporter assays when the Cyclin A1 

promoter was gradually chopped from -2027 bps to -102 bps (Figure 2A). However, 

reporter signal was dramatically reduced when the Cyclin A1 promoter was further 

chopped from -102 bps to -96 bps (Figure 2A), indicating that there exists a PITX2 

response element (named as PRE herein) from -102 bps to -96 bps. Further DNA 

sequence alignment suggests that an evolutionarily conserved PRE is located between -93 

bps and -101 bps of the Cyclin A1 promoter (Figure 2B and 2C). To test whether PITX2 

binds with the PRE, chromatin immunoprecipitation (ChIP) was performed in FLAG-

PITX2 transfected HEK293 cells. Cells expressing the homeodomain-deleted FLAG-

PITX2 were used as negative control. Using the primers flanking the PRE, we indeed 

detected the binding of PITX2 on the Cyclin A1 promoter (Figure 4A). To examine 

whether or not the binding of PITX2 to the Cyclin A1 promoter is PRE-dependent, we 

performed ChIP using HEK293 cells co-transfected with FLAG-PITX2 and the plasmid 

containing either the wild-type or mutated PRE. As shown in Figure 4B, the binding of 

PITX2 on the Cyclin A1 promoter is abolished when the PRE is mutated. Taken together, 

these data clearly demonstrate that the evolutionarily conserved PRE is responsible for 

PITX2-induced Cyclin A1 gene transcription. 



85 
 

Figure 2 
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Figure 2. An evolutionarily conserved PITX2 response element (PRE) is critical for 

PITX2-induced Cyclin A1 transcription. (A) Two conventional bicoid homeodomain 

binding sites are located at -738bp and -1924bp of the Cyclin A1 promoter. Full-length 

FLAG-PITX2 was co-transfected into TPC-1 cells with the reporter constructs containing 

various lengths of the Cyclin A1 promoter. Reporter signals were measured 48 hours 

after initial transfection. The renilla construct was included in every transfection for 

internal quality control. The relative fold increase was calculated by first comparing the 

reporter signal of cells transfected with FLAG-PITX2 and the Cyclin A1 reporter 

construct to that of cells transfected with the empty vector and the same Cyclin A1 

reporter construct and then normalized by renilla signals. (B) The first 200-bps DNA 

sequence of the Cyclin A1 promoter is shown. The 6-bps DNA between two dash lines 

was deleted in pGL4-CCNA101. (C) The Cyclin A1 promoter sequences of different 

species were aligned. The red-colored nucleotides are conserved among species.   
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PITX2 associates with the MLL4 histone H3K4 methyltransferase complex 

Since Cyclin A1 normally displays a testis-specific expression pattern, we speculate that 

PITX2-induced Cyclin A1 expression in thyroid cancer cells and HEK293 cells might 

require intense chromatin remodeling in the Cyclin A1 promoter. To test this hypothesis, 

we examined the PITX2-associated protein complex for known chromatin remodeling 

factors. Reciprocal co-immunoprecipitation revealed that PITX2 associated with the 

MLL4 histone H3K4 methyltransferase (HMT) complex (Figure 3). The anti-FLAG 

antibody readily precipitated ectopically-expressed PITX2 along with the endogenous 

MLL4 HMT subunits, including PTIP, RBBP5 and ASH2L (Figure 3A). Conversely, 

FLAG-PITX2 was detected in the respective protein complex of endogenous MLL4, 

PTIP, RBBP5 and ASH2L. Notably, hnRNP U, a PITX2-associated protein identified in 

our previous study, did not interact with the MLL4 HMT complex (Figure 3A), 

indicating that PITX2-MLL4/HMT interaction may be functionally distinct from other 

PITX2-interacting protein complexes. To inspect the PITX2 protein region mediating the 

interaction with the MLL4 HMT complex in vivo, we expressed the truncated forms of 

FLAG-PITX2 protein in HEK293 cells and then test these proteins’ ability to interact 

with the MLL4 HMT complex. In this experiment, RBBP5 was chosen as the interaction 

indicator since it is one of the HMT core subunits. Interestingly, deletion of the 

homeodomain (HD) and the C-terminal region adjacent to the HD abolished the 

interaction between PITX2 and the MLL4 HMT complex (Figure 3B), suggesting that the 

PITX2 HD region mediates PITX2-MLL4/HMT interaction.   
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Figure 3 

 

Figure 3. PITX2 associates with the MLL4 HMT complex. (A) Antibodies for FLAG-

PITX2, PTIP, MLL4, ASH2L and RBBP5 were used to precipitate respective antigens 

and their associated proteins from HEK293 cells expressing FLAG-PITX2. WB was used 

to examine the components of respective protein complex. (B) Plasmids containing 

various truncated forms of FLAG-PITX2 were transiently expressed in HEK293 cells. 

Anti-FLAG was used to co-immunoprecipitate PITX2-associated protein complex. 
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RBBP5 was used as an indicator of the histone H3K4 methyltransferase complex binding 

with PITX2.    

  

Overexpression of PITX2 promotes H3K4 methylation in the Cyclin A1 promoter 

To investigate the functional significance of PITX2-MLL4/HMT interaction on Cyclin 

A1 gene transcription, we determined H3K4 methylation status in the Cyclin A1 

promoter in HEK293 cells expressing either full-length FLAG-PITX2 or homeodomain-

deleted FLAG-PITX2. As expected, the anti-H3K4me2 (H3K4 dimethylation) ChIP 

assay detected the Cyclin A1 promoter in the cells transfected with full-length FLAG-

PITX2 but not with homeodomain-deleted FLAG-PITX2 (Figure 4C). This ChIP result 

was also observed by an anti-PTIP (which is the specific subunit of the MLL4 HMT) 

antibody, indicating that PITX2 facilitates recruitment of the MLL4 HMT complex to the 

Cyclin A1 promoter (Figure 4C). On the other hand, HDAC1, a histone deacetylase 

known for gene repression, dissociated from the Cyclin A1 promoter upon PITX2 

overexpression (Figure 4C). Collectively, these results support that PITX2 epigenetically 

regulate Cyclin A1 gene transcription through MLL4-mediated chromatin remodeling in 

the Cyclin A1 promoter. 
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Figure 4 

 

Figure 4. PITX2 recruits the MLL4 HMT to the Cyclin A1 promoter. Input: cell genomic 

DNA was used as template in PCR; H2O: no DNA template was used for PCR; IgG: 

mouse IgG was used in ChIP. PITX2: FLAG-PITX2; PITX2-∆HD: homeodomain-

deleted FLAG-PITX2. (A) ChIP analysis was performed using anti-FLAG on HEK293 

cells transiently expressing FLAG-PITX2 or homeodomain-deleted FLAG-PITX2. The 

PCR of an unrelated gene (Un-1) was included as control. (B) FLAG-PITX2 or 

homeodomain-deleted FLAG-PITX2 was co-transfected to HEK293 cells with pGL4-

CCNA658 or pGL4-CCNA658mut (PITX2-response element was mutated). ChIP assays 

were performed using anti-FLAG. In this experiment, the primers that cover both the 

Cyclin A1 promoter and the pGL4 vector were used to distinguish the exogenous Cyclin 

A1 promoter from the endogenous Cyclin A1 promoter. (C) Antibodies for FLAG-PITX2, 

PTIP, H3K4me2 and HDAC1were used for ChIP. Signals from cells expressing FLAG-
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PITX2 were compared with those from cells expressing homeodomain-deleted FLAG-

PITX2. 

  

Cyclin A1 is overexpressed in human papillary thyroid cancer 

We have previously reported that PITX2 is overexpressed in follicular cell-derived 

thyroid cancer and promotes thyroid cancer cell proliferation [17]. Since our 

aforementioned findings reveal that PITX2 can regulate Cyclin A1 expression in thyroid 

cancer cells, it is tempting to speculate that Cyclin A1 is also up-regulated in thyroid 

cancer. To address this, we immunostained Cyclin A1 in cancer tissues from three major 

types of human thyroid cancer (papillary, follicular and medullary thyroid cancer) as well 

as in normal thyroids. We detected Cyclin A1 in 40% and 14% of papillary and follicular 

thyroid cancer tissues respectively, but not in medullary thyroid cancer and normal 

thyroid tissues (Figure 5, Table 2).  
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Figure 5 

 

Figure 5. Cyclin A1 is overexpressed in thyroid cancer tissues. Thyroid cancer tissue 

microarrays were examined by immunohistochemistry with an anti-Cyclin A1. One 

representative image (I-IV) of each type of human thyroid cancer and normal thyroid 

tissue was shown (original magnification 40X). Scale bar indicates 20 μm. 
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Table 2 

 

Table 2. Immunohistochemistry assay of Cyclin A1 in human thyroid cancer tissues. The 

symbol “-”, and “+” represents no expression and consistent expression of Cyclin A1, 

respectively (see Materials and Methods for categorization). The number indicates the 

sample size of each category, and incidence is defined as the percentage of consistent 

Cyclin A1 expression of total tissue samples examined.  
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Discussion 

Transcription factors exhibit their biological influence mainly by controlling the 

expression of their target genes. Identification of transcriptional targets, therefore, is a 

fundamental step for us to understand the function of a transcription factor. In this study, 

we aim to discover novel target genes for a homeodomain transcription factor PITX2 and 

to decipher the regulatory mechanism of PITX2 action. In this report, we demonstrate 

that Cyclin A1, a spermatogenesis-essential gene, is a novel PITX2 transcriptional target. 

In an ardent effort to understand how PITX2 regulates Cyclin A1 expression, we 

fruitfully discover that the MLL4 histone H3K4 methyltransferase complex interacts with 

PITX2 and mediates PITX2-induced Cyclin A1 gene transcription. 

Cell cycle contains distinct phases that are precisely regulated by the protein complexes 

formed between respective pairs of Cyclins and Cyclin-Dependent Kinases (CDKs) [18]. 

Therefore, many genes regulate cell proliferation by controlling the expression of Cyclins. 

Consistent with PITX2’s ability to regulate cell proliferation, several PITX2 

transcriptional targets, such as Cyclin D1, Cyclin D2 and c-Myc, are directly involved in 

the regulation of cell cycle progression, [1, 9]. Since the D-type Cyclins are the key 

regulators for G1/S phase transition, PITX2 is thought to regulate cell cycle progression 

by facilitating cells to progress through G1 phase. The discovery of Cyclin A1 as a 

transcriptional target of PITX2 in this study appreciably expands the realm of PITX2 on 

cell cycle, since the Cyclin A1-CDK2 complex functions during S phase and M phase 

[11]. Both Cyclin D1 and D2 are widely expressed in a variety of tissues. However, 

Cyclin A1 is only expressed in male germ cells and essential for spermatogenesis [12]. 

Hence, Cyclin Ds may be more general targets for PITX2 to control cell cycle 
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progression, while Cyclin A1 may be a tissue-specific target of PITX2 in 

spermatogenesis. If PITX2 indeed is a major regulator of Cyclin A1 expression in 

spermatocytes, it will then be very interesting to know whether PITX2 has an essential 

role in controlling spermatogenesis. 

Although PITX2 may not control both Cyclin Ds and Cyclin A1 at the same time in 

normal physiological settings, PITX2 may demonstrate its power of cell cycle regulation 

in pathological settings, such as cancer development. The oncogenic role of D-type 

Cyclins has been well-known in a number of cancers [18]. Meanwhile, the contribution 

of Cyclin A1 in cancer development and progression has also been evidenced in several 

types of cancer, including acute myeloid leukemia, testicular cancer, prostate cancer and 

breast cancer [13-15]. However, our understanding of Cyclin A1 in tumorigenesis is still 

limited. In a previous study, we have discovered that PITX2 is overexpressed in follicular 

cell-derived thyroid cancer and promotes thyroid cancer cell proliferation by activating 

Cyclin D2 [17]. In this study, we show that PITX2 regulates Cyclin A1 transcription in a 

papillary thyroid cancer cell line. Consistently, we have found that Cyclin A1 is 

expressed in 40% of papillary thyroid cancer tissues but not in normal thyroids. 

Collectively, our findings strongly imply that PITX2 might activate Cyclin A1 and thus 

promotes papillary thyroid tumorigenesis. Hence, further functional analysis of Cyclin 

A1 in papillary thyroid cancer is necessary for us to understand the pathological role of 

PITX2-Cyclin A1 signaling. Because Cyclin A1 has a very restricted expression pattern 

in male germ cells, it may be an excellent therapeutic target for designing new thyroid 

cancer treatment.   



96 
 

In the last several years, many studies have attempted to elucidate the upstream regulators 

that govern Cyclin A1 expression. Although several transcriptional factors, such as Sp1 

and Six1, have been proposed to regulate Cyclin A1 gene transcription [15,19], the 

conclusive evidence is still lacking. Deletion of four GC boxes, where Sp1 family 

members often bind to, abolished the transcriptional activity of the Cyclin A1 promoter 

[19]. However, there is very little evidence to support that Sp1 family members are 

indeed responsible for the regulation of Cyclin A1 expression, since the GC box is the 

relatively short and unspecific DNA sequence where many other transcription factors 

may bind to. Furthermore, there is no evidence to show that Sp1 family proteins are able 

to activate the Cyclin A1 promoter. Six1, a homeodomain transcription factor, has been 

shown to regulate Cyclin A1 expression in breast cancer cells [15]. Reporter assay and 

ChIP suggest that Six1 binds to the Cyclin A1 promoter and activates Cyclin A1 

transcription [15]. However, the promoter region responsible for Six1-induced Cyclin A1 

transcription contains no Six1 binding sites. Therefore, how Six1 activates Cyclin A1 

transcription is still unknown. Similarly, PITX2-induced Cyclin A1 transcription is also 

independent of a conventional homeodomain binding site, even though our ChIP data 

show that PITX2 physically binds to the Cyclin A1 promoter. Interestingly, all the 

transcription factors, including PITX2 in this report, that are shown to be capable of 

activating the human Cyclin A1 promoter, have their response elements located in a 

narrow region ranging from -100 bps to 100 bps of the Cyclin A1 promoter. Hence, the 

promoter region flanking the transcription initiation site may be the key regulatory 

element for transcription factors to control Cyclin A1 gene expression. Since 200 bps is a 
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relatively short DNA fragment, it is possible that PITX2 and other factors activate Cyclin 

A1 transcription in a cooperative manner. 

Several proteins have been previously shown to interact with PITX2, such as β-catenin, 

LEF-1, HMG-17, WT-1 and MEF2A [1, 20-22]. In addition, we recently have identified 

four novel PITX2 interacting partners: YB-1, hnRNP K, hnRNP U and nucleolin through 

mass spectrometry analysis [10]. Some of these binding partners have been shown to 

modulate the transcriptional activity of PITX2 by interacting with the PITX2 

homeodomain. Intriguingly, our data demonstrate that PITX2 associates with the MLL4 

histone H3K4 methyltransferase complex and this association also depends on the PITX2 

homeodomain. Moreover, PITX2 facilitates the recruitment of the MLL4 HMT complex 

to the Cyclin A1 promoter, leading to methylation of H3K4 and dissociation of HDAC1 

in the Cyclin A1 promoter. These data suggest that PITX2 is able to remodel chromatin 

architecture in the target promoter and, thus, activate gene transcription. By interacting 

with histone methylation proteins, PITX2 is equipped with new tools to turn on silenced 

genes.  This mechanism renders PITX2 the ability to reactivate oncogenic genes in cancer 

cells, such as Cyclin A1 in thyroid cancer cells. However, whether this novel mechanism 

of PITX2 action is also applied for other PITX2 transcriptional targets deserves further 

investigation.  

PITX2 is a versatile transcription factor that has a critical role in many physiological and 

pathological events. In this study, we extend our understanding on PITX2 by identifying 

a new transcriptional target and proposing a novel mechanism of action. More 

importantly, overexpression of testis-specific Cyclin A1 in papillary thyroid cancer 

provides a potential therapeutic target for designing new thyroid cancer treatment.  
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

Thyroid cancer is the most frequent cancer originated from the endocrine system. The 

majority of thyroid cancer is well-differentiated and slow growing. Overall, the 5-year 

survival rate of thyroid cancer is over 90%.  However, there are many challenges in 

diagnosis, prognosis and treatment. To solve these problems, we need to better 

understand the etiology of this disease. In this study, we find that PITX2, a homeodomain 

transcription factor essential in embryonic development, has an oncogenic role in thyroid 

cancer development.  

Immunohistochemistry analysis reveals that PITX2 is frequently expressed in follicular 

cell-derived, well-differentiated thyroid cancer, such as papillary and follicular thyroid 

cancer, but is less frequently expressed in poorly-differentiated anaplastic thyroid cancer 

In contrast, PITX2 is not detected in normal thyroid tissues and C-cell originated 

medullary thyroid cancer. To examine the pathological meaning of aberrant expression of 

PITX2, we knocked down PITX2 by shRNA in a papillary thyroid cancer cell line. Both 

cell proliferation and anchorage-independent cell growth are significantly reduced in 

PITX2-knockdown cells. By analyzing cell cycle regulatory genes, we find that D-type 

Cyclins are downregulated and Rb is dephosphorylated. Chromatin immunoprecipitation 

and reporter assay further demonstrate that Cyclin D2 is a direct transcriptional target of 

PITX2 in thyroid cancer cells. Consistently, we observe that Cyclin D2 is also 
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overexpressed in follicular cell-derived thyroid cancer, but not in normal thyroids and 

other types of thyroid cancer. 

Since transcription factors commonly exhibit their influence by regulating the expression 

of their target genes, it is very important for us to know which genes are regulated by 

PITX2 and how PITX2 regulates these target genes. As an attempt to gain a full picture 

of PITX2’s interacting and regulating networks, we use mass spectrometry analysis to 

discover four novel PITX2-associated protein partners YB-1, hnRNP K, nucleolin and 

hnRNP U. By microarray analysis, we identify 868 upregulated genes and 191 

downregulated genes as candidates of PITX2 targets. 

One of the most upregulated genes induced by PITX2 is Cyclin A1, which is a testis-

specific gene and essential for meiosis of spermatocytes. Through many biochemical 

approaches, including reporter assay and chromatin immunoprecipitation, we determine 

that Cyclin A1 indeed is a novel PITX2 transcriptional target in thyroid cancer cells. Our 

data further demonstrate that an evolutionarily conserved PITX2 response element in the 

Cyclin A1 promoter is responsible for PITX2-induced Cyclin A1 expression. Intriguingly, 

we find that PITX2 associates with the MLL4 histone H3K4 methylation complex and 

this association facilitates the recruitment of the MLL4 HMT complex to the Cyclin A1 

promoter. Hence, through the chromatin remodeling ability of the MLL4 HMT complex, 

PITX2 turns on gene transcription of the originally-silenced Cyclin A1 gene. 

In conclusion, our results support that PITX2 is upregulated in follicular cell-derived 

thyroid cancer and promotes thyroid cancer proliferation by transcriptionally regulating 

the genes involved in cell cycle progression. Consistently, we discover and confirm that 

Cyclin D2 and Cyclin A1 are direct transcriptional targets of PITX2 in thyroid cancer 
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cells. Furthermore, the expression levels of Cyclin D2 and Cyclin A1 are also 

upregulated in follicular cell-derived thyroid cancer. These findings provide insightful 

perspectives on the etiology of thyroid cancer and offer candidate targets for future 

development of novel therapies.  

 

Limitations 

There are several limitations in this study. Firstly, the microarray analysis of PITX2 

transcriptional targets was conducted in the HEK293 cell line, which is an embryonic 

kidney cell line. Therefore, the microarray results may not reflect PITX2’s regulation 

network in thyroid cancer cells. In addition, the microarray results did not address the 

issue of tissue-specific regulation of PITX2. In fact, Cyclin D2 was not identified in our 

microarray analysis, suggesting that Cyclin D2 is a tissue-specific target gene of PITX2. 

Secondly, the precise role of PITX2 in thyroid tumorigenesis is still elusive. Further 

study is necessary to elucidate whether PITX2 has a role in the initiation of thyroid 

cancer. Lastly, although Cyclin A1 has the potential to become an excellent therapeutic 

target for papillary thyroid cancer patients, more evidence is needed to support a positive 

role of Cyclin A1 in thyroid tumor initiation and progression.       

 

Future directions 

Although our data support an oncogenic role of PITX2 in follicular cell-derived thyroid 

cancer, many questions still remain unanswered. One of the most important questions 

regarding PITX2 in thyroid cancer is: Can PITX2 initiate thyroid cancer? Or, PITX2 
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solely promotes thyroid cancer proliferation. To answer this question, we can express 

ectopic PITX2 in primary mouse thyroid follicular cells and then examine if PITX2 is 

able to transform normal thyroid follicular cells to thyroid cancer cells both in vitro and 

in vivo. For in vitro examination, we can test the ability of PITX2-overexpressing thyroid 

cells to grow anchorage-independently in soft agar. For in vivo examination, PITX2-

overexpressing thyroid cells can be subcutaneously injected into immune system-

compromised nude mice and then monitor the growth of thyroid cells in nude mice. 

There are several obstacles for performing this experiment. First, thyroid follicular cells 

need to be isolated from mouse thyroid freshly since there is no protocol available to 

keep primary thyroid cells dividing in the cell culture system. Secondly, isolation of pure 

thyroid follicular cells is virtually impossible because there are many other types of cells 

in the thyroid gland, such as thyroid C cells, parathyroid cells, endothelial cells and 

others. Thirdly, the transfection efficiency for primary thyroid cells is extremely low. 

Therefore, it is critical to develop a protocol that can improve the transfection efficiency 

to an acceptable level. Virus-mediated transfection may worth a try in this case. Lastly, 

transiently-overexpressed PITX2 may not be sufficient to transform normal thyroid cells. 

If so, it is necessary to establish cell lines that can stably express ectopic PITX2. 

Since the in vitro cell culture system is different from in vivo mammalian animal models 

in many aspects, in vitro transformation experiments may not be satisfactory to make a 

conclusion regarding the ability of PITX2 in transforming cells. Therefore, it is worthy to 

generate a transgenic mouse model with thyroid follicular cell-specific overexpression of 

Pitx2. If these transgenic mice develop thyroid cancer, it is likely that PITX2 is involved 

in the early events that lead to the transformation of normal thyroid cells to thyroid 
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cancer cells. If transgenic mice do not develop thyroid cancer, there are two possibilities. 

One is that PITX2 does not have a significant role in transforming normal thyroid cells; 

the other is that a single genetic aberration is not sufficient to transform normal thyroid 

cells. Therefore, other genetically-altered mice can be crossed with Pitx2 transgenic mice 

to generate a unique “double-hits” mouse model, which may have a bigger chance for 

thyroid cancer development.     

As detailed in Chapter I literature overview, there are many challenges regarding thyroid 

cancer diagnosis and prognosis due to the inaccuracy of histological evaluations. 

Therefore, identifying novel molecular markers and developing unique diagnostic and 

prognostic protocols are necessary to improve the accuracy of diagnosis and prognosis 

for thyroid cancer patients. Since PITX2 is only aberrantly expressed in follicular cell-

derived thyroid cancer, it will be interesting to see if PITX2 can be used as a diagnostic 

and prognostic marker for thyroid cancer patients. To assess the validity and accuracy of 

PITX2 as a diagnostic and prognostic marker, large-scale screening of patient samples 

and vigilant protocols are required.       

Another unanswered question regarding the role of PITX2 in thyroid cancer is how 

PITX2 is upregulated. Many genetic alterations, including mutations and chromosome 

rearrangements detailed in Chapter I, have been identified and associated to the 

development of thyroid cancer. Since transcription factors like PITX2 are usually tightly-

regulated by upstream regulators, it is very likely that the upregulation of PITX2 is not an 

isolated event during thyroid tumorigenesis. Hence, it is important to find out if any 

previously-known genetically-altered genes function as the upstream regulators of PITX2 

overexpression. Those genes that have been proven to be able to transform normal 
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thyroid cells to thyroid cancer cells deserve immediate attention. One approach to answer 

this question is to identify the promoter regions that are responsible for PITX2 gene 

transcription. We have successfully cloned a 3000-bps PITX2c promoter (upstream of the 

transcription initiation site) into a reporter plasmid. This reporter construct showed 

extremely high transcriptional activity when transfected into thyroid cancer cells (data 

not shown). In future study, we aim to identify the DNA elements that control PITX2 

gene transcription. Another approach to answer the abovementioned question is to 

knockout PITX2 in genetically-engineered mice that develop thyroid cancer. There are 

several genetically-engineered thyroid cancer mouse models available now, such as 

Braf
V600E

 knock-in mice, Kras
G12D

/Pten double-mutant mice and TRβ
PV/PV

 knock-in mice 

[1-3]. If knockout of PITX2 in those mutant mice inhibits tumor development, it would 

indicate that PITX2 may be a downstream effector of those genetically-altered genes.     

PITX2 has been identified as a key downstream effector of β-catenin signaling to regulate 

cell proliferation in previous studies. Nuclear β-catenin is also able to modulate the 

transcriptional activity of PITX2 in target gene promoters [4-5]. Since β-catenin is 

frequently accumulated in the nucleus of thyroid cancer cells [6-7], it is possible that β-

catenin promotes thyroid cancer development through regulating PITX2. To test this 

hypothesis, we may generate a mouse model with thyroid follicular cell-specific β-

catenin gain-of-function.      

In this study, we have identified that Cyclin A1 is a direct transcriptional target of PITX2 

in thyroid cancer cells. Since Cyclin A1 expression is highly restricted in testes under 

physiological condition, it is interesting to notice that Cyclin A1 is frequently expressed 

in papillary thyroid cancer. The future study should aim to find out the pathological 
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significance of Cyclin A1 in papillary thyroid cancer, including determining the role of 

Cyclin A1 in thyroid tumorigenesis. Functional studies of Cyclin A1 can be conducted by 

using shRNA and microRNA to knock down Cyclin A1 in thyroid cancer cells. This 

research would give us a hint on whether Cyclin A1 contributes to PITX2-induced 

thyroid cancer proliferation.  

Because Cyclin A1 displays a testis-specific expression pattern, epigenetic regulation, 

such as DNA methylation, is proposed to play a critical role in inactivating Cyclin A1 

gene expression in tissues other than testis. Interestingly, our data demonstrate that 

PITX2 is able to epigenetically reactivate Cyclin A1 expression in thyroid cancer cells, 

presumably through interacting with the MLL4 histone methylation complex. In the 

future, it would be interesting to explore if PITX2 synergistically works with the DNA 

methylation pathway to promote the expression of the originally-silenced Cyclin A1 gene 

in cancer cells.   

The management of thyroid cancer has not been changed much in the past several 

decades. Currently, available treatment options are very limited and mostly require a 

partial or total thyroidectomy, which is both inconvenient and expensive to patients. 

Target therapy has demonstrated its unique advantages and could be used along with 

conventional treatments to provide a better outcome to thyroid cancer patients. Since 

PITX2 and Cyclin A1 may be critical for thyroid cancer proliferation, it will be beneficial 

to design therapeutics targeting PITX2 or Cyclin A1, such as microRNA and small 

chemical compounds.    
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