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Abstract  

Walnuts contain components which may slow cancer growth including: omega 3 fatty 
acids, phytosterols, polyphenols, carotenoids and melatonin. A pilot study was performed to 
determine whether consumption of walnuts could affect growth of MDA-MB 231 human breast 
cancers implanted into nude mice. Tumor cells were injected into nude mice that were 
consuming an AIN-76A diet slightly modified to contain 10% corn oil. After the tumors reached 
3-5 mm diameter, the diet of one group of mice was changed to include ground walnuts, 
equivalent to 56 g (2 oz) per day in humans. The tumor growth rate from day 10, when tumor 
sizes began to diverge, until the end of the study of the group that consumed walnuts (2.9 ± 1.1 
mm3/day; mean ± SEM) was significantly less (p<0.05, T-test of the growth rates) than that of 
the group that did not consume walnuts (14.6 ± 1.3 mm3/day). The eicosapentaenoic and 
docosahexaenoic acid fractions of the livers of the group that consumed walnuts were 
significantly higher than that of the group that did not consume walnuts. Tumor cell proliferation 
was decreased but apoptosis was not altered due to walnut consumption. Further work is merited 
to investigate applications to cancer in humans. 
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Introduction: 
Consumption of long chain [20C eicosapentaenoic acid (EPA) and 22C docosahexanoic 

acid (DHA)] omega 3 fatty acids has consistently slowed the growth of cancer cells or tumors(1-
3). Slowed cancer growth was associated with a) incorporation of EPA and DHA in cell 
membranes(4), b) reduced inflammation or decreased expression of inflammatory cytokines(5,6), 
c) slower proliferation of cancer cells(7,8), and d) increased death of cancer cells(9,10). 

Walnuts contain 2.6 g of alpha linolenic acid (ALA) an 18 carbon, omega 3 fatty acid per 
1 ounce serving (11). Preclinical studies show that consumption of flaxseed oil ( about 50% 
ALA), canola oil (about 10% ALA) (12), or mistol seed oil (about 25% ALA)(13) slowed the 
growth of cancers in rodent models thus providing background for a hypothesis that increased 
walnut consumption might slow the growth of cancers.  

It is difficult to determine in vivo whether the ALA itself slows the growth of cancers or 
if the ALA must be converted to a longer chain fatty acid for effect. Both rodents and humans 
have the metabolizing enzymes required to elongate and desaturate 18C fatty acids to 20 or 22 C 
fatty acids. It is known that rodents readily convert ALA to EPA and DHA, however, in the past, 
there has been question as to how active these enzymes are in human metabolism. The results of 
recent studies using 13C labeled ALA have demonstrated that both men and women can convert 
ALA to EPA with variable conversion to DHA (14,15). In clinical diet supplementation trials, 1 
to 2 servings of walnuts per day plus flaxseed oil were associated with increased serum levels of 
EPA and docosapentaenoic acid (DPA, 22:5n3) and decreased serum levels of total n-6 fatty 
acids(16,17), further supporting the notion that human can effectively convert ALA to EPA. 
Since many of the hypothesized mechanisms for slowing the growth of cancers require EPA as 
substrate, these studies indicating that humans do effectively convert ALA to the longer chain 
omega 3 fatty acids, including EPA, suggest that an ALA containing food such as walnuts may 
contribute to slowing the growth of cancers. If a serving or two per day of walnuts provides 
enough ALA to increase serum levels of EPA and DPA, then consumption of walnuts may 
favorably alter parameters associated with slowing cancer growth. 

To our knowledge, the influence of walnut consumption on cancer growth has not been 
investigated, however the influence of some of the components of walnuts on cancer growth has 
been investigated. Walnut components that individually have been found to slow cancer growth 
and that might be expected to contribute to an anticancer potential of walnuts compounds 
include: phytosterols(18), melatonin(19), ellagic acid(20-23), gamma-tocopherol(24,25), 
carotenoids(26), and polyphenolic compounds(27).   

This experiment was designed to determine if consumption by mice of a clinically 
relevant amount of walnuts, equivalent to about 2 servings per day in humans, could slow tumor 
growth and alter parameters associated with tumorigenesis. The MDA-MB 231 breast cancer cell 
line implanted in nude mice was chosen as a model because we have previous experience with 
this cancer model(2,4) and because breast cancer has been linked with diet, especially dietary 
fat(28-32). Slowing tumor growth by consumption of one or two servings of walnuts a day as 
part of a healthy diet could have benefit for prevention of primary cancer or slowing the 
recurrence of cancer.  
 
Materials and Methods: 

Mice: Forty, female athymic nude (nu/nu) mice, 6 weeks old were obtained from Charles 
River Laboratories (Wilmington, MA). Mice were quarantined for 2 weeks, then moved to a 
study room and allowed to acclimatize for one week before implantation of tumor cells. Mice 
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were individually numbered for unique identification, and weighed three times weekly during the 
entire experiment and terminally. Mice were housed, 4 per cage, in an isolation room 
(temperature controlled at 24°C, 12 h light/dark cycles) in the Marshall University Animal 
Research Facility. Fresh sterile cages, bedding and water were provided twice weekly. All 
animal use and handling was approved by the Marshall University Institutional Animal Care and 
Use Committee. 

Tumors: MDA-MB 231 human breast cancer cells were cultured using standard cell culture 
techniques. One million cells were injected s.c. between the scapulae of each mouse (20 
mice/final diet to allow for the expected fraction of tumor take of about 60% based on our past 
experience with this cell line). MDA-MB 231 are ER negative and do not require added estrogen 
for growth. The mice were fed an AIN-76 semipurified diet for two weeks, until the tumor was 3 
to 5 mm in diameter, to allow the tumor to become established prior to diet change. Palpable 
tumors were measured using digital calipers three times weekly during the entire experiment to 
develop tumor growth curves. Twenty two mice had growing tumors, at least 3 mm in diameter, 
at the time of division into diet groups. Mice were divided into the diet groups such that the 
mean tumor size and the numbers of larger or smaller tumors were equal in each group.  

Diets: Diets were prepared in the Marshall University animal diet prep room. Diet 
composition is shown in Table 1 and was formulated to be isocaloric, isonutrient and relevant to 
human consumption. Two servings (2 ounces) of walnuts per day in humans would provide 370 
calories. This is 18.5% of a 2000 calorie/day diet. Thus, the walnut diet for the mice was 
formulated to provide 18% of calories from walnuts. The AIN76 diet is adequate for the 
nutritional support of the mice(33). The dry ingredients of the diet were obtained in bulk from 
MP Biomedicals (Solon, Ohio), the corn oil was purchased locally (100% corn oil, no additives 
or preservatives). Walnuts kernels (a gift from California Walnut Commission) were received in 
a single batch and were stored in at -20º freezer until incorporated into the diet. Whole walnut 
kernels, including the brown husk but not the shell, were finely ground in a food processor and 
immediately mixed with the remainder of the dry ingredients of the diet to prepare the walnut 
containing diet. Batches of diet were prepared as needed, about each two weeks. The diet 
mixture was pressed into trays and cut into small squares. Individual cage sized portions (25-30 
grams) were stored in sealed containers at -20oC to prevent oxidation of the fat and bacterial 
growth in the food. Mice had free access to food and water and were fed fresh food 6 days per 
week. Food removed from the cages was discarded. Mice were fed the experimental diets from 
day 14 after tumor cell injection until the end of the study on day 49, thus mice consumed the 
experimental diet for 35 days. 

Sacrifice and tissue handling: The experiment was ended when the tumors of some mice in 
the corn oil fed group reached the maximum allowable size of 1500mm3. Mice were deeply 
anesthetized using isoflurane, cervically dislocated, then were exsanguinated by cardiac 
puncture. Blood was collected into an EDTA containing vacutainer, separated and the plasma 
was frozen for further analyses. 

The tumor, inguinal fat and liver were removed. If the tumor was large enough, it was 
bisected, a cross-section from the center was removed for fixation in 10% neutral buffered 
formalin followed by paraffin embedding. The embedded tumor was cut 4μm thick, cut sections 
were placed on microscope slides for histological and immunohistochemical analyses. Many of 
the tumors of the walnut fed group were so small they could not be divided, limiting further 
analyses of that tumor.  
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Portions of the tumor (if available), fat and liver were flash frozen in liquid nitrogen, placed 
in individual, labeled microtubes and stored at -80oC until further processing could be 
performed. 

Frozen tissues were thawed and homogenized individually in ice cold 0.9% saline with 0.1% 
BHT to prevent lipid peroxidation (10% homogenate). The homogenate was allocated for use in 
TBARS, gas chromatography and total protein assays. 
 Body weight and tumor growth: Body weight (an indicator of overall animal health) and 
tumor size was measured three times weekly. An electronic scale was used to weigh mice, 
electronic digital calipers were used to measure the tumor size. Tumor volume was calculated 
using the formula: volume = (length X width X depth)/2. Body weight curves and tumor growth 
curves were calculated for each diet group. Curves were analyzed using Prism© (Graphpad, Inc) 
software. 
 Determination of fatty acids in tissues. Dietary fatty acids are incorporated into the tissues as 
consumed in the diet or may be elongated and desaturated prior to incorporation. The fatty acid 
composition of tumor, liver and fat from mice of each dietary group was assayed using gas 
chromatography to determine changes in the lipid composition of these tissues due to the diet. 
Tissue was homogenized in 0.1% BHT in distilled water to prevent any fatty acid oxidation. 
Lipids were extracted with chloroform/methanol, the fatty acids were methylated followed by 
separation and identification using gas chromatography, as previously described(4,12,34). Gas 
chromatography was done using a Perkin-Elmer Clarus 500 Gas Chromatograph (Shelton, CT) 
with a PerkinElmer Elite-5 (5% Diphenyl) Dimethylpolysiloxane Series Capillary Column 
(Length: 30m, Inner Diameter: 0.25mm), under the following conditions: initial temperation of 
150 oC, ramp 1 at 175o C for 15min, ramp 2 at 225o C for 50min, ramp 3 at 250o C for 10min, 
helium carrier gas flow rate of 1.60mL/min. Fatty acid methyl ester standards (Nu-Chek-Prep, 
Elysian, MN) was used for peak identification. To better identify peaks we use two standards: 
GLC #464 which contains 52 fatty acids and a custom preparation, GLC 704, which contains 10 
fatty acids, methyl esters of stearate, oleate, linoleate, alpha linolenate, gamma linolenate, 
homogamma linolenate, arachidonate, eicosapentaenoate, docosapentaenoate, and 
docosahexaenoate. The fatty acid methyl esters were reported as the percent of the total 
methylated fatty acids (area under the curve). A T-test was used to determine statistical 
differences.  

Antioxidant capacity of plasma: The total antioxidant capacity in the plasma of six mice from 
each dietary group was assayed using the Antioxidant Assay Kit (Cayman Chemical, Ann Arbor, 
Michigan). This assay compares the antioxidant capacity of the plasma to the capacity of a 
synthetic antioxidant, Trolox. Plasma was separated from anticoagulated (EDTA treated) whole 
blood by centrifugation and stored at -80oC. Trolox standards of different concentrations were 
prepared from reconstituted Trolox and assay buffer to generate a standard curve. The assay was 
set up and performed according to manufacture’s direction followed by absorbance reading at 
750nm. The antioxidant capacity of each plasma sample was calculated from the Trolox standard 
curve. A Kruskal-Wallis test was used to determine statistical differences. 
 Determination of tumor oxidative damage: Oxidative damage in five tumors from each group 
was determined by assay of thiobarbituric acid reactive substances (TBARS). Hydroperoxides 
are formed following oxidation of polyunsaturated lipids. Malondialdehyde (MDA) is the major 
degradation product of lipid hydroperoxides and can be quantitated spectrophotometrically at 
535 nm after reaction with thiobarbituric acid(2,35). The accuracy of the spectrophotometric 
assay for quantification of MDA has been confirmed by HPLC(35,36). A malondialdehyde 
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standard curve was prepared to quantify MDA in the samples. The protein content of the 
homogenate was determined using a BioRad protein assay for normalization of TBARS results. 
TBARS are reported as nmoles TBARS/mg protein. A T-test was used to determine statistical 
differences. 

Tumor cell proliferation and apoptosis: Proliferation of cancer cells was determined by 
proliferating cell nuclear antigen (PCNA) immunohistochemistry. PCNA antibody detects a 
protein component of DNA polymerase delta and stains cells that are actively synthesizing DNA 
in preparation for mitosis. Standard immunohistochemical technique was used with anti-PCNA 
(Biogenex, San Ramon, CA) as the primary antibody. Image analysis was used to determine the 
fraction of viable area that was positive for PCNA in each tumor. Digital images were taken 
using a Leica microscope equipped with a 40X lens and a Leica DFC 480 digital camera. Using 
Photoshop, the number of pixels in each of five 40X fields were determined for each of 5 tumors 
per diet group. Areas in each field that were not viable tumor or that were not cellular were 
subtracted. The number of pixels in PCNA positive nuclei was determined. The PCNA positive 
fraction was defined as the number of PCNA positive pixels divided by the total of pixels in the 
field. A T-test was used to determine statistical differences between groups. WEH was blinded to 
the group of origin at the time of image analyses of PCNA slides. 

Death (apoptosis) of cancer cells was assayed by morphological identification of apoptotic 
cells. The numbers of cells undergoing apoptosis according to morphological indicators: nuclear 
and cellular condensation (dark condensed nuclei with a clear space around the cell), 
fragmentation of nuclei (nuclear fragments, sometimes engulfed by surrounding cells) and/or 
membrane blebbing (blebs surrounding cytoplasm fragments) and fragmentation of the cell into 
apoptotic bodies in five 40X fields in viable areas of 5 tumors per diet group were counted to 
estimate an apoptotic index. Observing viable area of tumor assures that there are approximately 
the same number of cells per field thus the apoptotic index represents the number of apoptotic 
cells per X number of cells. Morphological identification of apoptosis has been previously used 
and validated to quantify apoptosis(37,38). Three individuals were blinded to the group of origin 
at the time of independent counting of apoptotic figures. 

A T-test was used to determine statistical differences in the number of apoptotic cells. 
 
Results:  

Body weight: Figure 1 shows the mean body weight of each group of mice during the 
experiment. Consumption of the walnut diet did not significantly change the body weight of the 
mice compared to the control group. 

Determination of tissue lipid composition: The results of analyses of lipid composition of the 
liver, inguinal fat and tumor by gas chromatography is shown in Figure 2. The diet of the mice 
did not contain either EPA or DHA. These results indicate that there was significantly less 
linoleic acid (18C, n-6) and significantly more eicosapentaenoic acid (20C, n-3) and 
docosahexaenoic acid (22C, n-3) in the lipids of the livers of mice that consumed the walnut 
containing diet. Overall, the omega 3 content of the liver was significantly increased in mice that 
consumed walnuts in the diet.  

The lipids of the inguinal fat of the walnut fed mice contained significantly more linoleic 
acid and significantly less arachidonic acid than did the inguinal fat of the corn oil fed mice. The 
total omega 3 content of the inguinal fat was slightly but not significantly more in the mice fed 
the walnut diet. 
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Our custom standard demonstrated that oleic acid (18:1) and α-linolenic acid (ALA) were 
not adequately separated to accurately quantify ALA. Since the ALA was clearly being 
converted to EPA and DHA it would be difficult to make meaningful conclusions from ALA 
content of these tissues had we been able to quantify ALA.  
 Plasma antioxidant capacity: The Trolox assay compares the antioxidant capacity of an 
aliquot of plasma to the antioxidant capacity of a standard preparation of Trolox. Figure 3 shows 
that there was slightly but not significantly higher antioxidant capacity in the plasma of the mice 
that consumed walnut than in the plasma of mice that did not consume walnut. The lowest value 
for blood total antioxidant capacity of the walnut fed group was higher than the median blood 
antioxidant capacity of the corm oil fed mice.  
 Tumor growth rate: Figure 4 illustrates the growth rate of the implanted MDA-MB 231 
tumors in control or walnut fed mice. The data indicate that the tumor sizes began to diverge 
about 10 days after the diet change. Non-linear regression analyses, using an exponential growth 
fit, of mean tumor sizes of each group with time, showed that the mean doubling time tumors of 
the corn oil fed, control group was 11.1 days (95% confidence interval 9.5 to 13.2 days, mean 
volume 438 mm3 at 34 days after diet change) whereas the mean doubling time of the tumors of 
the walnut fed group was significantly longer at 23.3 days (95% confidence interval 16.4 to 40.6 
days, mean volume 185 mm3 at 34 days after diet change).  
 Figures 5 and 6 show the results of assays to obtain information about potential 
mechanisms for slowing of tumor growth by consumption of walnut. In past studies, omega 3 
fatty acids have been shown to slow proliferation, to increase apoptosis and to increase lipid 
peroxidation in tumors(1,39). The PCNA positive fraction (Figure 5) of the tumor was 
significantly less in the mice that consumed walnuts (T-test, p<0.05). There were no significant 
differences in number of apoptotic figures/field in the tumors (Figure 5) due to the diet. Lipid 
peroxidation has been proposed as a cause of increased tumor cell death by omega 3 fatty acids 
in past studies(39). In keeping with the lack of apoptosis induction, there were no significant 
differences in the amounts of thiobarbituric acid reactive substance, a measure of lipid 
peroxidation, (TBARS, Figure 6) in the tumors due to the diet of the mice. The specimen sizes 
were inadequate for complete analyses on every animal in the study, yet since there is overlap in 
the results of specimens that were available, it is unlikely that an increase in the n from 5 or 6 to 
10 or 11 would have resulted in significant differences in antioxidant capacity, apoptosis or 
TBARS.   
 
Discussion: 

The notion that foods may have components that could influence the risk for cancer was 
noted as early as the Song dynasty (960-1279 AD) by Yong-He Yan[(40) p.13]. This idea has 
been repeated by physicians through the centuries, often based on clinical observations(40). 
More recently, epidemiology studies have provided evidence that diet patterns or specific diet 
components can alter cancer risk. Using in vivo and in vitro models we are beginning to link 
dietary components and cancer risk and to uncover some of the mechanisms of action of these 
components to increase or decrease cancer risk. 

Walnuts (California walnuts, English walnuts, Juglans regia) have a unique composition 
(Table 2) of components that could be beneficial for prevention or slowing the growth of cancer. 
Walnuts have a much higher amount of omega 3 fatty acid per serving than other common nuts: 
(g of 18:3 per 1 ounce: almonds – 0.00; brazil nuts – 0.017; cashew – 0.046; European chestnuts 
– 0.015; filberts 0 0.025; macadamia – 0.058; peanuts – 0.001; pecans 0.28; pistachio – 0.072; 
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English walnuts - 2.57(11)) and contain significant amounts of antioxidants, phytosterols, 
polyphenols, selenium and vitamins. Many of these components have been shown, individually 
to slow cancer growth.  

In this study, consumption of 18% of the dietary calories from walnuts significantly 
decreased the growth rate of the implanted MDA-MB 231 human breast cancer tumors in mice. 
A likely mechanism for the lower growth is the suppression of proliferation in the tumor by 
omega 3 fatty acids. Many of the mechanisms proposed for suppression of cancer growth by 
omega 3 fatty acids require the presence of long chain (20 or 22C) omega 3 fatty acids (5,41-43). 
In this study, there was essentially no EPA and DHA in the diet, however, there were 
significantly higher levels of EPA and DHA in the liver of the mice that consumed walnuts than 
in the controls. Since the only source of the omega 3 bond was the α-linolenic acid of the 
walnuts, the increased EPA and DHA indicates that the α-linolenic acid of the walnut was being 
effectively elongated and desaturated to EPA and DHA in the liver.  

Inflammation is increasingly recognized as promotional to cancer(44-47). Zhao, et al. 
reported that dietary ALA decreased systemic inflammatory cytokines in hypercholesterolemic 
subjects (48) raising the possibility that inflammatory cytokines could have been decreased in the 
walnut fed mice. This is an area for further investigation. Even though we could not statistically 
analyze EPA and AA in the tumors of walnut fed mice due to the small amount of remaining 
specimen, it is likely that AA was significantly decreased, reducing the amount of substrate 
available for synthesis of inflammatory prostaglandin E2 (PGE2) in the tumor. PGE2 has been 
found to be promotional to tumor cell proliferation(49,50). 

Walnuts contain a number of substances that may contribute to their overall antioxidant 
capacity, including melatonin, gamma-tocopherol, carotenoids, phytosterols, and polyphenolic 
compounds. Reiter, et al (51) reported that melatonin from walnuts was absorbed into the blood 
and the antioxidant capacity of blood was significantly higher in rats that were fed walnuts after 
a 24 hour fast compared to the rats that were fed chow. Mice in the current study were fed much 
less walnut (18% of calories vs 100% of calories) than in the study of Reiter, et al. Even though 
the antioxidant capacity of the blood was not statistically significantly increased, it is notable that 
the antioxidant capacity of all of the mice of the walnut fed group was above the median of the 
control group. As such, walnuts would be a beneficial addition to a diet already incorporating 
good levels of antioxidant containing fruits and vegetables and would be expected to add to the 
antioxidant capacity of the blood.  

Phytosterols are another food component that have potential as anticancer 
compounds(18). Walnuts contain about 20 mg/serving of phytosterols, predominately β-
sitosterol (18.14 mg β-sitosterol/ 28 g serving). Phytosterols, at a level of 16 μM in cell culture, 
have been shown to induce apoptosis in MDA-MB-231 cells(52) and phytosterols may slow 
cancer cell proliferation(53). Humans that consumed about 200 mg phytosterol/day from dietary 
supplements showed serum phytosterol levels of about 0.1 to 0.4 μM(54). Thus consumption of 
1 to 2 servings/day of walnuts, containing 20 to 40 mg of phytosterols, might result in a serum 
level of about 0.01 to 0.04μM of phytosterol. That level of phytosterol is far below the amount 
that was required to induce cancer cell apoptosis in cell culture, making it unlikely that the 
phytosterol content of 1 to 2 servings per day of walnuts could induce cancer cell apoptosis.  

Ellagic acid is a polyphenol released by the hydrolizable tannins found in walnuts(21). It 
has been found to be a potent antioxidant with apoptosis inducing properties(20) and to induce 
cell cycle arrest(23). Even though the amount of individual components is small, this does not 
rule out the possibility that β-sitosterol, ellagic acid and omega 3 fatty acid could act 
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synergistically for induction of cancer cell apoptosis or slowing proliferation in the MDA-MB 
231 tumors. 

There might be concern that the caloric content of the walnuts would increase body 
weight, in itself a significant risk for developing cancer(55). In one study, the diet of diabetic 
subjects was supplemented with one ounce of walnuts per day for 6 months, there was no 
significant difference in energy intake between groups that did or did not consume walnuts(56). 
In a review, Sabaté noted that nut consumption was not associated with weight gain in either 
epidemiology studies or clinical trials(57). There is also evidence from human studies that 
consumption of omega 3 fatty acids, as reflected by higher serum EPA and DHA, may help 
protect against obesity(58,59). Thus the addition of walnuts to the diet did not cause weight gain 
in the mice and would not be expected to result in weight gain in humans. 
  
Conclusion: 
 The results of this pilot study demonstrate that the addition of walnuts slowed the growth 
of cancers in a mouse model possibly by slowing proliferation of tumor cells. Suppression of 
proliferation of cells that might transform to cancer cells or suppression of the growth of 
metastatic sites could reduce cancer incidence and mortality. Additional work should be done to 
determine whether the addition of walnuts to a healthy diet could be beneficial to preventing or 
slowing the growth of cancer. 
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Table legends 
 
Table 1 
Composition of the diets: The AIN-76-A was modified to 10% w/dry w corn oil or 2.63% corn 
oil and 18% of calories from walnut. The control (corn oil) and walnut diets were balanced for 
nutrients, protein, fat, carbohydrate and calories. 
 
 
Table 2 
Walnut nutrient composition: The nutrient composition of walnuts as given in the USDA 
Nutrient Database for Standard Reference, release 19, 2006. (http://riley.nal.usda.gov/NDL/cgi-
bin/list_nut_edit.pl) 
 

  

http://riley.nal.usda.gov/NDL/cgi-bin/list_nut_edit.pl
http://riley.nal.usda.gov/NDL/cgi-bin/list_nut_edit.pl
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Figure Legends 
 
Figure 1 
Body weights of the groups of tumor bearing mice (mean + SEM),  
Mice were weighed three times per week, mean + SEM of body weights of each group, n=11 
mice/group, at each time point are shown. The initial mean body weight is the day of injection of 
tumor cells. The diets of the mice were changed to the experimental diets 14 days after injection 
of MDA-MB 231 cells, study was ended 49 days after injection of the tumor cells. There were no 
significant differences between the body weights of the mice due to the diet. 
 
Figure 2 
Lipid composition of liver, inguinal fat pad and tumor.  
The fraction of the total lipids of major omega 6 and omega 3 fatty acids of the liver 
(n=5/group), inguinal fat pad (n=5/group) and tumor (n=2/group) are shown. Total lipid was 
analyzed by gas chromatography. The results illustrate significant differences in the lipid content 
of liver or inguinal fat due to the diet. No T-test was performed for tumor lipids since the n was 
only 2. A split scale is used to better illustrate the changes in the omega 3 fatty acid fractions.  
 
Figure 3 
Antioxidative capacity of the plasma. 
The antioxidative capacity of the blood, expressed as Trolox equivalents, of mice that consumed 
either corn oil or walnut containing diets is shown, n=6/group. The median antioxidant capacity 
of walnut consuming mice is slightly but not significantly higher than the antioxidant capacity of 
mice that did not consume walnuts.  
 
Figure 4 
Mean tumor size of groups of mice. 
Tumors were measured three times weekly, volumes were calculated as volume = (length X 
width X depth)/2, the mean tumor volumes of mice each group (n=11/group) of mice at each 
time point is shown. The mean tumor sizes of the groups of mice begins to diverge about 10 to 
14 days after initiation of the experimental diet. The dashed line indicates the non-linear 
regression using an exponential growth fit. 
 
Figure 5 
Proliferating cell nuclear antigen and apoptotic fractions of the tumor. 
Analyses of the proliferating cell nuclear antigen (PCNA) fraction of the tumors  
(n = 5 tumors/group, 5 fields/tumor) demonstrated that proliferation was significantly lower in 
the tumors of mice that consumed the walnut diet than in mice that consumed the corn oil diet. 
There were no differences in the number of apoptotic figures per field due to the diet,  
n=5 tumors/group, 5 fields/tumor. 
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Figure 6 
Lipid peroxidation in the tumor. 
Analyses of lipid peroxidation (n=5 tumors per group) as indicated by generation of 
thiobarbituric acid reactive substances (TBARS) showed that consumption of the walnut 
containing diet did not alter lipid peroxidation in the tumor. 
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Table 1 
 

 
 
 Control diet 

(Corn oil diet) 
Walnut diet (18% of calories 
from walnut) 

Ingredient % of wt Amou
nt 
/100g 

Amount 
/100g 

Additional  
nutrient contained 
in 11.3 g 
walnut/100 g diet 

Calories/ 
100g 

Casein (protein) 20% 20 g  18.3g Protein -1.72g 80 
Sucrose 45% 45 g 45g  180 
Corn starch 
(carbohydrate) 

15% 15 g 13.5g Carbohydrate - 
1.55g 

60 

Alphacel (fiber) 5%  5 g 4.8g Fiber - 0.2g 0 
Choline bitartrate 0.2% 0.2 g 0.2g  0 
DL-methionine 0.3% 0.3 g 0.3g  0 
Mineral mix 3.5% 3.5 g 3.5g  0 
Vitamin mix 1.0% 1.0 g 1.0g  0 
Ground walnut  0 11.1g  0 
      
Corn oil (fat) 10% 10 g 2.63g Fat - 7.37g 90 
Total  100% 100 g 100.3 (0.46g water in 

walnut) 
410 

n3/n6  0% n3, 50% fat is 
n6 

(1.02g n3)/(1.3g+4.3g n6) = 0.18  

Total fat  10g 10.0g 90 
Total protein 20g  20.0g 80 
Total carbohydrate 60g 60.0g 240 
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Table 2 
 

Walnut Nutrient Profile 
NUTRIENTS IN 1 OUNCE (28.3 g) OF WALNUTS (14 unsalted & unroasted halves)
 

Nutrients  Units  Walnuts 
Calories  kcal  185 
Protein  g  4.3 
Total Fat  g  18.5 
Saturated Fat  g  1.7 
Monounsaturated 
Fat 

 g  2.5 

Polyunsaturated Fat  g  13.3 
Linoleic acid (18:2)  g  10.8 
Linolenic acid 
(18:3) 

 g  2.6 

Cholesterol  mg  0 
Carbohydrate  g  3.9 
Fiber  g  1.9 
Calcium  mg  28 
Iron  mg  0.8 
Magnesium  mg  45 
Phosphorus  mg  98 
Potassium  Mg              125 
Sodium  mg  1 
Zinc  mg  0.9 
Copper  mg  0.45 
Manganese  mg  0.97 

 Nutrients  Units Walnuts 
Selenium  mcg 1.4 
Vitamin C  %DV 0 
Thiamin  %DV 6 
Riboflavin  %DV 2 
Niacin  %DV 2 
Pantothenic acid  %DV 2 
Vitamin B6  %DV 8 
Folate  %DV 6 
Vitamin B12  %DV 0 
Vitamin A  %DV 0 
Vitamin E  %DV 4 
mg ATE**** 0.83 
Tocopherol, alpha  mg 0.20 
Tocopherol, beta  mg 0.04 
Tocopherol, gamma  mg 5.91 
Tocopherol, delta  mg 0.54 
Total Phytosterols  mg 20 
Stigmasterol  mg 0.0 
Campesterol  mg 2.0 
Beta-sitosterol  mg 18. 
    
 

 

g = gram; mg = milligram; mcg= microgram, %DV = percent Daily Recommended Value;  
 
 
 
 

  



 - 20 - 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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