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2.1 Rössler Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Phase plot: the Rabinovich-Fabrikant equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Phase plot: the Rabinovich-Fabrikant equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Phase plot: the Rabinovich-Fabrikant equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Phase plot: the Rabinovich-Fabrikant equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Chua’s Circuit attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Divergence of orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Illustration: change in a sphere of initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Stability region for RK4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Convergence plots of Euler’s method and RK4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Illustration: Orbit separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



LIST OF TABLES

TABLE PAGE

3.1 Computed Lyapunov exponents from other sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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ABSTRACT

Numerical calculation of Lyapunov exponents for three-dimensional systems of ordinary

differential equations

Clyde-Emmanuel Estorninho Meador

We consider two algorithms for the computation of Lyapunov exponents for systems of

ordinary differential equations: orbit separation and continuous Gram-Schmidt orthonormal-

ization. We also consider two Runge-Kutta methods for the solution of ordinary differential

equations. These algorithms and methods are applied to four three-dimensional systems of

ordinary differential equations, and the results are discussed.

viii



1. CHAOS

Chaos as a branch of mathematics is widely recognized today, thanks to the difficulties

of weather prediction and to the popularization of the concept in films such as The Butterfly

Effect [2] and books such as Chaos [9]. One characteristic of chaotic equations is sensitive

dependence on initial conditions.

Definition 1.1. Sensitive dependence on initial conditions : tiny differences in the initial

conditions of the system will lead to large differences in the solutions.

This concept means that initially tiny errors will grow over time and eventually make

numerical solutions worthless. Inevitable errors in the floating point representation of num-

bers will grow over time and the simulation will become inaccurate.

There is no universally accepted definition for chaos although most definitions include

sensitive dependence on initial conditions. Some authors [1] only require sensitive dependence

on initial conditions, whereas others [8], [23] require several additional characteristics. This

thesis studies the Lyapunov exponents of a system, which measure the separation of solutions

based on tiny differences in initial conditions. Lyapunov exponents are a way to numerically

study whether a system has sensitive dependence on initial conditions. Computing Lyapunov

exponents allows us to determine whether a system is chaotic using the definition of Alligood

et al. [1], which is presented in this section as definition 1.4.

Before we discuss Lyapunov exponents and different methods for their computation,

there are some basic definitions to be familiar with. A dynamical system is a system of

equations which changes over time. It may consist of either discrete difference equations

or continuous differential equations. Dynamical systems model real-world phenomena such

as disease spread and weather patterns. Interested readers can go to [19], [24]. Difference

equations are called maps, and differential equations are called flows. Trajectory and orbit

1



describe the evolution of these dynamical systems. The trajectory of a flow is the path the

flow takes as time progresses. An orbit is a set of points that a map moves through under

iteration. Based on a vector of initial conditions v0 and a dynamical system F with numerical

solution ft(vi) at time ti, t0 ≤ ti ≤ tFinal, the orbit OF is a set given by

OF = {ft(v0) : t ∈ [t0, tFinal]} (1.1)

Trajectories work just as well with this notation.

The dynamical systems we will be studying are all nonlinear ; they contain variables to

higher powers than one or a product of variables (examples: x2, xy).

As time progresses, orbits and trajectories may approach a single point, remain in a

specific bounded region, or approach infinity. For example, the difference equation

xn+1 = x2n (1.2)

grows without bound for x0 = 2; but with initial condition x0 = 0.5 it approaches 0,

remaining between 0 and 0.5 at all times. A fixed point is a point xi that maps to itself

under a particular function f . In notation, this may be succinctly stated as f(xi) = xi. The

point x = 0 is an example of a fixed point for equation 1.2. Periodic cycles are a similar

concept. Rather than a single point, a periodic cycle is a set of points that repeat themselves.

In notation, x0, x1, ... ,xn is a periodic cycle for F if F (x0) = x1, F (x1) = x2, ..., F (xn) = x0.

Strogatz [23] loosely defines an attractor as a set to which all neighboring trajectories

(or orbits) converge, an intuitively appealing definition. The point x = 0 is an attractor

for equation 1.2. A strange attractor is a set that differs from the simpler fixed points or

periodic cycles. Strange attractors often show as visually compelling sets when trajectories

or orbits are plotted. The Lorenz attractor, seen in figure 1.1, is the classic example of

a strange attractor. The Lorenz attractor demonstrates long-term aperiodic behavior: the

2
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Figure 1.1. The Lorenz attractor with system parameters σ = 10, β = 8
3
, ρ = 28, initial

conditions [0.9, 0.9, 0]. This system is chaotic.

orbit is bounded and does not settle down to a fixed point or periodic cycle. We present

further details in section 2.1.

Strogatz [23] provides a more rigorous definition with three parts. A strange attractor

is invariant, attracts an open set of initial conditions, and is minimal. An invariant set A

is one in which any trajectory or orbit that begins in the set stays in the set. In notation,

f(A) ⊂ A. By attracting an open set, we mean that there is an open set B containing the

attractor A such that if an orbit or trajectory OF begins in B, the distance from successive

points in OF to the set A approaches zero as time progresses. A minimal set is the largest

set that satisfies the other conditions.

The concept of chaos itself receives varying definitions on a continuum of rigor. Stro-

gatz’s [23] definition of chaos for a system requires no additional terminology:

Definition 1.2. A dynamical system is chaotic if it displays long-term aperiodicity and

sensitive dependence on initial conditions.

3



A system with a strange attractor and sensitive dependence on initial conditions is

chaotic by Strogatz’s definition.

Devaney’s [8] definition of chaos for mappings is more rigorous, but requires a few more

definitions. The closure of a set A is the union of A and the set of limit points of A. A subset

B of set C is dense in C if C is the closure of B. A function g is topologically transitive if any

pair of open sets A and B have a nonempty intersection after a finite number of iterations.

This idea is written in notation as gk(A) ∩ B for some k ∈ N. Sensitive dependence on

initial conditions for a mapping is defined by Devaney as the existence of a positive number

δ so that for any point in the domain and any neighborhood about that point, there exists

a point in that neighborhood so that after a finite number of iterations, the points will be

separated by more than δ. This idea is seen again in figure 3.1 and is the basis for “orbit

separation,” the subject of section 6.1. Devaney’s definition of chaos follows.

Definition 1.3. A mapping f on a set A is chaotic if it is topologically transitive, displays

sensitive dependence on initial conditions, and periodic points of f are dense in A.

These rigorous definitions have the advantage of certainty (in knowing if the conditions

are verified); but they are of limited use in potential applications where it is often not possible

to analytically verify properties such as long-term aperiodicity.

For this thesis, we shall use the definition of Alligood et al. [1]:

Definition 1.4. A dynamical system is chaotic if it has a positive Lyapunov exponent.

Lyapunov exponents will be defined and discussed in section 3.

4



2. SYSTEMS OF DIFFERENTIAL EQUATIONS

Here we introduce the systems of equations studied in this thesis. Historical background

is provided where available. Equations were chosen based on historical significance and

availability, or dearth, of research in the literature. Some are relatively famous, such as the

Lorenz and Rössler systems of equations. Chua’s circuit is an application from physics, and

the Rabinovich-Fabrikant system is a relatively obscure problem that is the subject of only

a handful of papers.

2.1. THE LORENZ EQUATIONS

Edward Lorenz was a meteorologist who made several contributions to chaos theory.

While manually entering data values to rerun a weather simulation, Lorenz rounded to three

decimal places (rather than six) and observed sensitive dependence on initial conditions [22],

[15]. He later simplified his model to the system of ordinary differential equations

ẋ = σ(y − x)

ẏ = x(ρ− z)− y σ, ρ, β ∈ R (2.1)

ż = xy − βz

with constant parameters σ, ρ, and β. A commonly used set of parameters is σ = 10, ρ =

28, β = 8
3
, because these parameters present the famous “Lorenz attractor.” (See figure 1.1).

These equations have been presumed chaotic for decades. In 1999, Tucker [25] proved

the existence of a strange attractor for the system, indicating that the system is aperiodic.

His results demonstrated that the famous phase plots of the system did reveal an attractor

rather than an artifact. Along with sensitive dependence on initial conditions, the aperiodic

5
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Figure 2.1. The Rössler attractor, for constant parameters a = 0.2, b = 0.2, c = 5.7, and
initial conditions [0.1,−0.1, 0.1]. The system is chaotic.

nature of the Lorenz equations satisfies definition 1.2 of chaos. More details about the Lorenz

equations are available in [23].

2.2. THE RÖSSLER EQUATIONS

Medical doctor Otto Rössler designed the following system in the 1970s.

ẋ = −y − z

ẏ = x+ ay a, b, c ∈ R (2.2)

ż = b+ z(x− c)

The Rössler equations are simpler than the Lorenz equations. Though both are three-

dimensional and share the same number of monomials in total, the Rössler equations have

only one nonlinear term: the zx term in the ż portion of equation 2.2. A set of parameters

which presents chaos (in the sense of definition 1.4) is a = 0.2, b = 0.2, c = 5.7 . Figure 2.1

shows the attractor based on these values.

6



2.3. THE RABINOVICH-FABRIKANT EQUATIONS

The Rabinovich-Fabrikant equations are

ẋ = y(z − 1 + x2) + bx

ẏ = x(3z + 1− x2) + by a, b ∈ R (2.3)

ż = −2z(a+ xy)

These equations were used by Rabinovich and Fabrikant to model waves in nonequilib-

rium substances. The equations are less well known than the Rössler and Lorenz equations,

but they are an area of active research [16], [7], [6]. Mathematicians have used them to

test numerical methods for ordinary differential equations [6], and different parameter values

lead to very different phase portraits. These resemble strange attractors although not all are

chaotic by definition 1.4. The differences in Lyapunov exponents for some of these sets of

parameter values (and the attendant chaotic/nonchaotic nature of the system) are discussed

in section 7.3.

We have included phase plots corresponding to various values of a and b; these can be

found in figures 2.2, 2.3, 2.4, and 2.5. Figure 2.2 shows a phase plot for a = 0.1, b = 0.98. For

these values, the system has a positive Lyapunov exponent and the attractor is saddle-shaped.

With a = 0.1, b = 0.2715, the system is not chaotic. The phase plot in figure 2.3 shows

a set that appears to be an attractor. Because the largest Lyapunov exponent is negative,

this plot is more probably an artifact, a phantom caused by numerical errors. Another

nonchaotic version of the system is presented by a = 0.1, b = 0.5, and figure 2.4 shows

what appears to be an attracting fixed point at approximately (x, y, z) = (1.07,−0.4, 0.07).

Finally, a = −1, b = −0.1 also leads to chaos in the system. Figure 2.5 shows the attractor

resulting from these settings.
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Figure 2.2. Phase plot of the Rabinovich-Fabrikant equations with a = 0.1, b = 0.98 and
initial values [0.1, 0.1, 0.1]. The system is chaotic
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Figure 2.3. Phase plot of the Rabinovich-Fabrikant equations with a = 0.1, b = 0.2715 and
initial values [0.1, 0.1, 0.1]. The system is not chaotic.

2.4. CHUA’S CIRCUIT
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Figure 2.4. Phase plot of the Rabinovich-Fabrikant equations with a = 0.1, b = 0.5 and
initial values [0.1, 0.1, 0.1]. The system is not chaotic.

Chua’s circuit is given by the following equations.

ẋ = α(y − x− f(x))

ẏ = x− y + z α, β ∈ R (2.4)

ż = −βy

The function f(x) is defined by:

f(x) =


bx+ a− b for x ≥ 1

ax for −1 ≤ x ≤ 1 a, b ∈ R

bx− a+ b for x ≤ −1

(2.5)

This is a system of three ordinary differential equations that models an electrical circuit.

Equation 2.5 is piecewise linear and continuous. For constant parameters α = 9, β = 100
7

,
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Figure 2.5. Phase plot of the Rabinovich-Fabrikant equations with a = −1, b = −0.1 and
initial values [0.1, 0.1, 0.1]. The system is chaotic.
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Figure 2.6. Chua’s circuit attractor with constant parameters α = 9,β = 100
7

,a = −8
7

,b = −5
7

,
and initial values [0.1,0.1,0.1]. The system is chaotic.

a = −8
7
, b = −5

7
there is an attractor that Matsumoto et al. refer to as a “double scroll” [17].

Figure 2.6 is a phase plot of the attractor. More details can be found in [17] and [22].
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3. LYAPUNOV EXPONENTS

Lyapunov exponents of a system quantify the common component of all definitions of

chaos mentioned here, sensitive dependence on initial conditions. They provide a measure

of how two orbits that start from close initial conditions differ as time progresses. Two

initially close orbits in a system with positive Lyapunov exponent will separate very quickly.

After separation, the two numerical solutions grow more dissimilar until they are completely

different. Figure 3.1 provides a visual example of divergent orbits. An orbit y is perturbed

by ε. After one iteration, y1 and the perturbed y∗1 are d1 apart. A positive Lyapunov

exponent will cause this separation to increase over further iterations. A system with all

negative Lyapunov exponents will have an attracting fixed point or periodic cycle and will

not present chaotic behavior. The phase plot in figure 2.4 appears to contain an attracting

fixed point, and thus the corresponding system has only negative Lyapunov exponents.

A function that is infinitely differentiable is called smooth. (All of the differential

equations in section 2 are smooth). Alligood et al. [1] present Lyapunov exponents of a

smooth map f on Rm with the following definition:

Definition 3.1. For k = 1, ...,m, rnk is the length of the kth longest orthogonal axis of JnU ,

where Jn is the Jacobian evaluated at the nth iteration of f and U is an orthogonal basis

for Rm.

The various rnk measure the change in a sphere of initial conditions near an orbit with

specified initial condition vector x0. The derivatives in the Jacobian measure infinitesimal

change (separation), and this sphere is the Rm analog to the vertical distance example in

figure 3.1. An example of the change in a sphere of initial conditions is given in figure 3.2.
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Figure 3.1. An illustration of the divergence of orbits. Although the orbits are initially
separated by ε, as time progresses their separation grows. After two iterations, the orbits
are d1 apart. With additional iterations, the two orbits will diverge further.

We define the kth Lyapunov number of f to be

Lk = lim
n→∞

(rnk )
1
n (3.1)

The kth Lyapunov exponent of f is

λk = lnLk (3.2)

The Lyapunov numbers measure the average stretching or compressing per iteration

along the axes. If a Lyapunov number for a system is greater than 1, then on that axis

orbits separate from one another, and the system displays sensitive dependence on initial

conditions. If a Lyapunov number is greater than 1, the corresponding Lyapunov exponent is

positive.This leads us back to definition 1.4; a system is chaotic if it has a positive Lyapunov

exponent.

To numerically compute Lyapunov exponents for a continuous dynamical system, first

a numerical solution is calculated from an initial time to an final time using a fixed timestep.
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Figure 3.2. This figure illustrates change in a sphere of initial conditions under a map.
Orthogonal axes corresponding to the rk are shown.

Ideally a small timestep is used - the smaller the timestep, the greater the (theoretical)

accuracy. (See section 4.3). The discretized numerical solution is the orbit of a map that

displays the same behavior as the flow, so by computing its Lyapunov exponents, we may

approximate the Lyapunov exponents of the flow by a variety of algorithms.

Numerical methods with changing timesteps exist, but we did not consider them suit-

able for several reasons. The algorithms used to compute Lyapunov exponents require values

uniformly separated in time. Although it is possible to cherry-pick uniformly separated solu-

tion values from a changing timestep method, this process adds computational complexity.

The change in timestep over time will vary from problem to problem, so it would be necessary

to either filter the data for uniformly separated values or force the method to solve at particu-

lar time-values. The second and more pressing reason we avoided adaptive timestep methods

is that it has been demonstrated that the Rabinovich-Fabrikant equations can present qual-

itatively different phase plots for adaptive timestep methods [18], even with identical initial

values and constant parameters. Time-step independent solutions (at least, independent to
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a finite precision) can be computed; but they require extended precision arithmetic [21],

which is undesirable for this project due to the large increase in computing time. For these

reasons, we have restricted ourselves to fixed timestep methods.

Algorithm System Lyapunov Exponents Source
OS Lorenz 0.9056 Sprott [22]

0
-14.5723

OS Rössler 0.0714 Sprott [22]
0

-5.3943
OS Chua 0.3271 Sprott [22]

0
-2.5197

Other Chua 0.23 Matsumoto
0 et al. [17]

-1.78

Table 3.1. Computed Lyapunov exponents for the Lorenz, Rössler, and Chua equations.
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4. NUMERICAL METHODS

The numerical calculation of Lyapunov exponents requires the numerical solution of

systems of ordinary differential equations (abbreviated as ODEs). This topic is an interesting

and complicated subject in its own right, so we present in this section a discussion of some of

the properties of these methods. The properties we will discuss affect the accuracy, reliability,

and efficiency of implementation of numerical methods for the solution of ODEs; so they are

used to distinguish between methods.

Many systems of ordinary differential equations do not have a closed-form solution. So,

researchers use numerical methods for the solution of ODEs to find very accurate approximate

solutions. There are many different methods that can provide a numerical solution for a

system of ODEs, starting from a set of initial conditions. These methods vary in accuracy

(represented by order), stability (resistance to explosive error propagation), and simplicity

(ease and efficiency of implementation). The selection of a method is made by balancing

desirable method properties with the computing resources at hand. Effective methods may be

implemented on personal computers, although they sometimes require significant computing

time.

For a discussion of the reliability of a numerical method (stability) and the difficulty of

a problem (stiffness) we follow the presentation in Iserles [13] and recommend it for further

details and references.

4.1. STABILITY

The stability of a numerical method is essentially its resistance to explosive error propa-

gation. When a method becomes unstable, tiny computational errors compound and the nu-

merical solution quickly approaches infinity. The stability properties of a numerical method
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depend on the method rather than the particular ODE being studied; so they are always

measured in the same way. The stability of a numerical method is described by a region in

the complex plane called the stability region. The stability region of a numerical method is

determined by the initial value problem

ẋ = zx z ∈ C, t ≥ 0, x0 = 1 (4.1)

that has the analytical solution

x(z, t) = ezt (4.2)

Definition 4.1. The stability region is the set of z-values for which bounded end-behavior

in the actual solution is also present in the numerical solution. This set causes the numerical

solution x̂n(z, t) of equation 4.1 to satisfy

lim
n→∞

x̂n(z, t) = 0 (4.3)

For z ∈ C with negative real part, the limit of equation 4.2 is zero as t → ∞. For z

with positive real part, the limit is infinity. Complex numbers z with negative real part that

preserve this bounded behavior lie in the stability region.

A desirable property for a numerical method is to contain the entire left half of the

complex plane in its stability region because the limit of the analytical solution x(z, t) of

equation 4.1 is zero exactly when the real part of z is negative [13]. This property is called

absolute stability, and only occurs with implicit methods, a type of numerical method that

is discussed in section 5.

Definition 4.2. Let λi be the eigenvalues of the Jacobian matrix for a system of ODEs.

The numerical solution is stable if λih lie in the stability region of the numerical method

where h is the step size.
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Figure 4.1. Stability region for RK4. For initial values in this region, bounded behavior is
preserved in the numerical solution of equation 4.1.

The stability of a numerical solution depends on both the numerical method and on

the system of ODEs because the stability region depends on the numerical method and

the eigenvalues of the Jacobian depend on the system of ODEs. In practice, the solution

is considered stable as long as the solution remains bounded as instability manifests as an

unbounded solution.

It is important to note that this idea of stability is based on a linear ODE, and the

translation from a linear problem with an exact solution to a nonlinear problem without an

exact solution is not perfect [13]. Despite this fact, linear stability is the criterion generally

used to describe the reliability of a given numerical method. Figure 4.1 presents the sta-

bility region for the fourth-order Runge-Kutta method used in this thesis. (This method is

abbreviated throughout as “RK4”). Note that RK4 does not have absolute stability.

4.2. STIFFNESS
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System Parameters t0 h tEnd Trials Stiffness Ratio
Lorenz σ = 10, 0 0.01 1000 1000 837530

β = 8
3
,

ρ = 28
Rössler a = 0.1 0 0.01 1000 1000 2094804

b = 0.2,
c = 5.7

RF a = 0.1 0 0.01 1000 1000 220912
b = 0.5

Chua α = 9 2.4861
β = 100

7

a = −8
7

b = −5
7

Table 4.1. Average stiffness ratios for the Lorenz, Rössler, and Rabinovich-Fabrikant equa-
tions based on 1000 sets of random initial conditions and for the Chua equations based on
its constant Jacobian matrix.

Stiffness is a characteristic of systems of equations rather than of numerical methods.

However, because it has a powerful effect on numerical results it is taken into consideration

when selecting numerical methods for a particular problem. Stiffness is a property that de-

scribes the difficulty of numerically solving that system. A commonly used informal definiton

is that, when using a numerical method, a stable numerical solution of a stiff system requires

a smaller step-size h. By a stable solution, we mean one that has remained bounded.

Stiffness is often measured by the stiffness ratio, a fraction composed of the largest and

smallest eigenvalues of the Jacobian matrix. Computations involving both very large and

very small numbers are more error-prone in floating point arithmetic.

Table 4.1 provides calculated stiffness ratios for the systems of equations studied in

this thesis. For the Lorenz, Rössler, and Rabinovich-Fabrikant systems, we used the 4th-

order Runge-Kutta method from section 5.1 with uniform stepsize h = 0.01, a final time

value tEnd = 1000, and averaged the results from 1000 random sets of initial conditions. Of

particular interest in this table is the high stiffness ratio of the Rössler system of equations,

which is a simpler system than the Lorenz equations (as described in section 2). Despite
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this, its stiffness ratio is a full order of magnitude higher than that of the Lorenz equations.

Chua’s circuit has two possible Jacobian matrices that are both constant, leading to the

result of 2.4861 for its stiffness ratio.

Stiffness is a useful concept, but currently it is only a qualititative one. Formalizations

such as stiffness ratios are an attempt to quantify the relative difficulty of computing a

numerical solution for a given system of equations. The easiest way to tell if you are working

with a stiff system is just to carry out the numerical computations; if your numerical solution

becomes unstable, the ordinary differential equations you are working with are probably stiff.

4.3. ACCURACY

The accuracy of a numerical method is described by its order. A numerical ODE solver

is of order ρ if the error of its numerical solution x̂ is proportional to (h)ρ. In other words,

the difference x(tn+1)− x̂(x(tn)) satisfies

x(tn+1)− x̂(x(tn)) = O(hρ) (4.4)

where O(hρ) indicates that the difference is proportional to (hρ). What this means is that

the error of a method of order ρ is proportional to the stepsize to the power ρ, which will be

a very small number if h < 1.

The order of a method is generally derived alongside the method itself. The difference

in accuracy between a 4th-order method like RK4 (section 5.1) and a 1st-order method like

Euler’s method makes the higher-order method very desirable. For example, with a stepsize

of h = 10−2, the error in a solution found with Euler’s method is proportional to 10−2 whereas

the error in a solution found with a 4th-order Runge-Kutta method is proportional to 10−8.

The same comparison can be made between the 4th-order method (RK4) in section 5.1 and

the 8th order method (IRK8) in section 5.3 used in this thesis.
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However, the computational cost of numerical methods is another important consid-

eration. While the 8th order method will give a more accurate result than the 4th order

method, it is also more difficult to code and requires significantly more computational time.

When implementing the two algorithms for Lyapunov exponent computation (section 6),

we selected our methods based on computational cost. We used both methods with the

faster algorithm in section 6.1, but when implementing the more computationally intensive

algorithm in section 6.2, we restricted ourselves to the faster 4th-order method.

A convergence plot is a figure that can be used to provide experimental verification of

order. This plots the difference between the numerical solution of ẋ = −x and the actual

solution e−t as a function of the stepsize d.

x(tn+1)− x̂(x(tn)) ≈ Chρ. (4.5)

If we take the logarithm of both sides, we get

log (x(tn+1)− x̂(x(tn))) ≈ ρ log h+ logC (4.6)

On a plot with both axes on a logarithmic scale, this is a straight line. An example

is presented in figure 4.2, using the following method. Beginning with an exponential set

of inputs, n =10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, place n evenly spaced points

between 0 and 1. Then define the timestep h as 1
n−1 . Calculate the difference between the

numerical and analytic solutions at t = 1 for each n, and plot the difference versus the

timesteps on logarithmic axes. The slope of the line connecting the points on graph will be

the order of the method. In figure 4.2, the slopes of the 1st-order and 4th-order lines are

shown as expected.

A final concern is that numerical solutions of chaotic ODEs become less accurate as

time progresses due to sensitive dependence on initial conditions. Floating-point numbers

are stored in binary, and small rounding errors at the limits of machine precision will occur.
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Once a rounding error has been made, sensitive dependence on initial conditions guarantees

that the difference between the solution based on the rounding and the solution with no

rounding will grow.

The reason to accept numerical solutions for the approximation of properties like Lya-

punov exponents comes from developments in shadowing. A shadow is an exact trajectory

for an ODE that remains very close to a numerical solution for a long time. Previous

work [11], [12], guarantees that numerical solutions have shadows, so the mapping that a

numerical method gives us is assumed to be a close-enough approximation of the true (but

impossible to calculate) solution, especially with regard to the shape and behavior of the

attractor. The Lyapunov exponent for the numerical solution is then considered a close

approximate value to that of the true solution.

21



10
−4

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

E
rr

or

Step−size

 

 

Euler
Runge−Kutta

Figure 4.2. Convergence plots of Euler’s method and RK4.
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5. RUNGE-KUTTA METHODS

Runge-Kutta methods for the solution of ODEs are generalizations of Euler’s method

yn+1 = yn + hf(yn, tn).

They give more accurate results by taking more function evaluations within one timestep, al-

though this does require more computational time to complete a computation. The timestep

is split into v stages and the ODE is evaluated at each one. The stages are weighted and

added to the previous value to get the numerical solution at the end of a timestep. A general

statement of Runge-Kutta methods is given in [3], and may be summarized as follows.

An approximate solution at time n+ 1 given by a v-stage method is

ŷn+1 = yn + h
v∑
i=1

biki (5.1)

where yn is the numerical solution at the previous timestep, the bi are constant coefficients,

and the ki are the “stages” where

ki = f

(
yn + h

v∑
j=1

aijki

)
. (5.2)

The aij are coefficients that place the subfunction evaluations throughout the timestep, and

i, j = 1, 2, ...v. The bi are weight coefficients on the stages ki.

If a method’s stage values k are given by explicit equations, it is an explicit method.

If the stage values are given by implicit equations, it is an implicit method. For explicit

methods, the stages ki given by equation 5.2 can be computed immediately, and equation 5.1
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c1 a11 · · · a1v
c2 a21 · · · a2v
...

...
. . .

...
cv av1 · · · avv

b1 · · · bv

Table 5.1. A general example of a Butcher table.

0 0
1

Table 5.2. The Butcher table for Euler’s method

can be solved with no further work. Implicit methods require the use of Newton’s method,

yn+1 = yn −
f(yn)

f ′(yn)
,

to solve the nonlinear systems of equations for the stages ki (a simple example of this is

presented in section 5.2).

The customary way to list the coefficients of a Runge-Kutta method is via a Butcher

table [4]. The general form of a Butcher table is given by table 5.1. Presenting the coefficients

in this manner is both efficient and readable, so all numerical methods in this thesis will be

presented this way. The ci weight the time t within the stages k. As all of the ODEs in

this thesis are autonomous, the ci are not used here. Note that for any explicit method, the

entries on and above the main diagonal of the aij are zero.

The simplest Runge-Kutta method, Euler’s method has the Butcher table given in

table 5.2.
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0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

Table 5.3. The Butcher table for RK4

5.1. 4TH-ORDER EXPLICIT RUNGE-KUTTA METHOD

The popular 4th-order explict Runge-Kutta method (RK4) is

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (5.3)

k1 = f(yn)

k2 = f

(
yn +

1

2
hk1

)
k3 = f

(
yn +

1

2
hk2

)
k4 = f(yn + hk3)

The Butcher table for this method is presented as table 5.3. RK4’s popularity stems from

the fact that it gives 4th-order accuracy in 4 stages while remaining easy to describe and

implement. As stated in [4], explicit Runge-Kutta methods of order o > 4 cannot be per-

formed in o stages. The derivation of this fact requires the use of rooted trees, and so it is

omitted here.

5.2. EXAMPLE OF A 2-STAGE IMPLICIT RUNGE-KUTTA METHOD

If the coefficients aij for a Runge-Kutta method are not uniformly zero for i ≤ j, the

stages ki will be implicit equations. If this is the case, the Runge-Kutta method is an implicit
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method. Implementation of implicit methods is more difficult than that of explicit methods

because the solution of the stages ki requires the solution of a nonlinear system of implicit

equations. This nonlinear system will be v× d-dimensional, where v is the number of stages

and d is the dimension of the system of differential equations. Implicit Runge-Kutta methods

of order o > 4 do not necessarily suffer from the same stage limitation as explicit methods

and may achieve order greater than the number of stages. Many examples of v − stage

implicit Runge-Kutta methods with order greater than v are given in [4].

We will demonstrate how to set up Newton’s method for use with an implicit Runge-

Kutta method with two stages. We apply a 2-stage implicit Runge-Kutta method

c1 a11 a12

c2 a21 a22

b1 b2

to the ODE  ẋ

ẏ

 =

 x− 1
3
xy

1
2
x+ 2

3
xy

 . (5.4)

Because the method has 2 stages, to evaluate from tn to tn+1, the stage evaluations

ki =

 k
(1)
i

k
(2)
i

 (5.5)

needed to go from (x̂n, ŷn) to (x̂n+1, ŷn+1) are given by the equation



k
(1)
1

k
(2)
1

k
(1)
2

k
(2)
2


=



x̂n + ha11(k
(1)
1 − 1

3
k
(1)
1 k

(2)
1 ) + ha12(k

(1)
2 − 1

3
k
(1)
2 k

(2)
2 )

ŷn + ha11(
1
2
k
(2)
1 + 2

3
k
(1)
1 k

(2)
1 ) + ha12(

1
2
k
(2)
2 + 2

3
k
(1)
2 k

(2)
2 )

x̂n + ha21(k
(1)
1 − 1

3
k
(1)
1 k

(2)
1 ) + ha22(k

(1)
2 − 1

3
k
(1)
2 k

(2)
2 )

ŷn + ha21(
1
2
k
(2)
1 + 2

3
k
(1)
1 k

(2)
1 ) + ha22(

1
2
k
(2)
2 + 2

3
k
(1)
2 k

(2)
2 )


.
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The notation k
(j)
i indicates the jth element of ki. We subtract the right side to have an

equation equal to zero and use Newton’s method to find the k values. To do this, we

must find the first derivative matrix M of the resulting equation. Because equation 5.4 has

Jacobian matrix

J =

 1− 1
3
y −1

3
x

1
2

+ 2
3
y 2

3
x

 , (5.6)

M is 

1− ha11J11(k1) −ha11J12(k1) −ha12J11(k2) −ha12J12(k2)

−ha11J22(k1) 1− ha11J21(k1) −ha12J22(k2) −ha12J21(k2)

−ha21J11(k1) −ha21J12(k1) 1− ha22J11(k2) −ha22J12(k2)

−ha21J22(k1) −ha21J21(k1) −ha22J22(k2) 1− ha22J21(k2)


.

The notation Jrc(ki) indicates the entry in row r, column c of the Jacobian matrix evaluated

at ki.

The use of Newton’s method to find the stage values is an iterative process. We begin

with an initial guess k0 for the stage values, and then Newton’s method refines these values.

We used k0 = 0 in line with Hairer and Wanner [10]. Implemented versions of Newton’s

method stop when one of two things happens: Either a specified maximum number of

iterations is reached or two successive values for k are sufficently close to one another.

Proceeding from ki to ki+1 is a two-step process. First, solve the linear system

M(∆ki) = −f(ki) (5.7)

for ∆ki. Then

ki+1 = ki + ∆ki. (5.8)
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1
2
− ω2 ω1 ω′1 − ω3 + ω′4 ω′1 − ω3 − ω′4 ω1 − ω5

1
2
− ω′2 ω1 − ω′3 + ω4 ω′1 ω′1 − ω′5 ω1 − ω′3 − ω4

1
2

+ ω′2 ω1 + ω′3 + ω4 ω′1 + ω′5 ω′1 ω1 + ω′3 − ω4
1
2
− ω2 ω1 + ω5 ω′1 + ω3 + ω′4 ω′1 + ω3 − ω′4 ω1

2ω1 2ω′1 2ω′1 2ω1

Table 5.4. The Butcher table for IRK8. The ω coefficients are given in table 5.5. Consult [3]
for more information.

ω1 = 1
8
−
√
30

144
ω2 = 1

2

√
15+2

√
30

35
ω3 = ω2

(
1
6

+
√
30
24

)
ω4 = ω2

(
1
21

+ 5
√
30

168

)
ω5 = ω2 − 2ω3

ω′1 = 1
8

+
√
30

144
ω′2 = 1

2

√
15−2

√
30

35
ω′3 = ω′2

(
1
6
−
√
30
24

)
ω′4 = ω′2

(
1
21
− 5

√
30

168

)
ω′2 − 2ω′3

Table 5.5. The coefficients ω used in table 5.4

5.3. 8TH-ORDER IMPLICIT RUNGE-KUTTA METHOD

The implicit method used in this thesis is a 4-stage method with order 8, abbreviated

IRK8 . Table 5.4 is the Butcher table for this method. The coefficients ω are given in

table 5.5.

IRK8 was originally developed by Butcher [3], and was implemented in a script using a

modified Newton’s method by Sarra [20]. IRK8 is a member of a particular class of methods

called “Gauss” methods. Gauss methods are v stage implicit Runge-Kutta methods that

achieve order 2v [4].

The use of Newton’s method rather than fixed-point iteration (another technique for

solving implicit nonlinear equations) to solve the implicit stage evaluations maintains sta-

bility of the method. Liniger and Willoughby [14] note that fixed-point iteration transforms
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an implicit method into an explicit one, ruining the stability properties that make implicit

methods desirable. The use of Newton’s method avoids this problem.

The modifications to Newton’s method save computational cost. The Jacobian is cal-

culated once per timestep rather than being recalculated per iteration in Newton’s method.

There is also a change of variables that allows the use of vectorized operations and tensor

products. These modifications are discussed in [10], but the key results follow. With A (the

matrix of aij previously defined for Runge-Kutta methods) and b (a row vector containing

the bi coefficients) for an v-stage method, we define

(d1, ..., dv) = (b1, ..., bv)A
−1. (5.9)

The invertibility of A may be well-established because A is a constant matrix.

In order to go from xn to xn+1 our Runge-Kutta process becomes

xn+1 = xn +
v∑
i=1

dizi (5.10)

where the zi are defined by the implicit equation



z1

z2
...

zv


= A



hf(xn + z1)

hf(xn + z2)

...

hf(xn + zv)


(5.11)

The application of Newton’s method to solve equation 5.11 is done in the same manner

as in section 5.2. With the Jacobian approximation J and an appropriately-sized identity

matrix I, the modified Newton’s method for finding zk+1 from zk is

(I − hA⊗ J)M = −zk + h(A⊗ I)f(zk) (5.12)

zk+1 = zk +M
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For a discussion of this modified Newton’s method, consult [14].
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6. ALGORITHMS FOR THE CALCULATION OF LYAPUNOV EXPONENTS

In this thesis, we use two different algorithms for the calculation of Lyapunov exponents.

Orbit separation calculates the largest Lyapunov exponent only, whereas continuous Gram-

Schmidt orthnormalization calculates all n Lyapunov exponents for an n-dimensional system

of ordinary differential equations. MATLAB scripts used to implement these algorithms are

included in the appendices.

6.1. ORBIT SEPARATION

Orbit separation (OS) is a method for computing the largest Lyapunov exponent for

a system of ordinary differential equations. More details are presented by Sprott [22]. Two

numerical orbits y and y∗ are initialized so that y0 = y∗0. Then, y∗0 is perturbed by a small

constant ε. This process is illustrated in figure 3.1. At this point, a numerical method with

fixed step-size begins to compute a numerical solution. The distance separating the two

numerical solutions y and y∗ is calculated for some timestep and stored. Then y∗ is changed

so that it is again only ε from y but in a manner that preserves direction. At every timestep,

the orbits are ε apart, so that we measure the effect of perturbing by epsilon throughout the

orbit. If ck = yk − y∗k and dk = |ck| for {k ∈ Z : k ≥ 1}, then the equation

y∗k = yk +
ε

dk
ck (6.1)

describes the normalization procedure that takes place every timestep. This process measures

the average separation of orbits that are perturbed by a uniform ε. An illustration is provided

in figure 6.1. The computation is based on a discrete numerical solution, so it is based on a

mapping rather than a flow.
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Figure 6.1. A visual example of orbit separation. Two orbits are uniformly perturbed and
the changes in separation measured and stored.

As this process of numerical solution and normalization takes place, other calculations

are made in order to compute the Lyapunov exponent. The first few points of the numerical

orbits are not used in order to eliminate data that are not sufficiently close to the attractor.

We wish to to analyze the separation of orbits after they begin exhibiting the aperiodic

behavior. Orbits display this behavior after they reach the attractor, so data before an orbit

reaches an attractor are not relevant. How many to discard is a judgment call: we discarded

the first 2000 points from a set of 100000 total. Then, after every timestep the natural

logarithm of the relative separation is computed as follows:

Lf = log

(∣∣∣∣d1ε
∣∣∣∣)
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The sum of the Lf over time (denoted Ls) is initialized as zero and maintained every

timestep as Ls = Ls + Lf . After n iterations at timestep h, the largest Lyapunov exponent

for the orbit is:

λ1 =
Ls/n

h

In order to have a more representative number, this process is performed for a large

number of random initial conditions (in this thesis, 1000), and the λ1 are averaged to yield

the calculated largest Lyapunov exponent for the system. Taking an average in this way

gives us a result that should be close to most values.

Here is a summary of orbit separation:

• Initialize two orbits with identical initial conditions

• Perturb the second orbit by ε

• Apply a numerical method

• Every timestep, readjust the second orbit as in equation 6.1

• Every timestep, compute the natural logarithm of the relative separation

• Sum the logarithms and divide by the number of iterations

• Divide by the timestep to get the largest Lyapunov exponent

6.2. CONTINUOUS GRAM-SCHMIDT ORTHONORMALIZATION

Continuous Gram-Schmidt orthonormalization (CGSO) as developed by Christiansen

and Rugh [5] is a method for computing all of the Lyapunov exponents of systems of equa-

tions. A new system of differential equations is developed in the following manner: Given a

k-dimensional system ẋ = f(x), the first k rows are the original system. Following these are
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a set of k2 rows that represent the change to an orthonormal basis of Rk. The last k rows

are the k computed Lyapunov exponents at the corresponding time. A numerical method

then solves the system for a final time value.

Christiansen and Rugh’s CGSO method depends on the use of orthonormal frames.

An orthonormal k-frame is a set of of orthonormal vectors e1(t), e2(t), ..., ek(t) that form a

basis for Rk and depend on time t. From here, two matrix definitions are required before

we can present the augmented system of equations. The elements of the Jacobian matrix J

may be represented in notation as an inner product

Jik = 〈ei, J(ek)〉 (6.2)

The elements of the stabilized matrix L are defined as

Lii = Jii + β(〈ei, ei〉 − 1) (6.3)

for the diagonal elements and as

Lik = Jik + Jki + 2β〈ei, ek〉 (6.4)

for the other elements.

At this point we may use equations 6.2, 6.3, 6.4, and ẋ = f(x), a system of ordinary

differential equations, to define the augmented system of differential equations

ẋ = f(x)

ėi = J(ei)−
∑
h≤i

ehLhi {i ∈ Z+|1 ≤ i ≤ k} (6.5)

Λ̇i = Jii
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For the 3-dimensional ordinary differential equations in this thesis, we used an or-

thonormal 3-frame given by the traditional unit vectors


1

0

0

 ,


0

1

0

 ,


0

0

1

 .

This 3-frame satisfies the initial condition for the ei. Consequently, each vector in the

frame is a 3 × 1 column vector, and the augmented system (6.5) is 15 rows. Numerical

solution of this system gives approximate values for all three Lyapunov exponents for the

systems of ordinary differential equations studied in this thesis.

In summary, orbit separation calculates sensitive dependence on initial conditions by

perturbing an orbit y by ε and measuring the resulting separation at every timestep. The

logarithms of the relative separations are averaged and then divided by the timestep to

get the largest Lyapunov exponent. Continuous Gram-Schmidt orthonormalization uses

orthonormal frames ei and the stabilized matrix L to set up a system of ODEs that contain

Λ̇i, the change in the ith-largest Lyapunov exponents. Computing a numerical solution of

this system to time t will give all of the Lyapunov exponents at time t.

Here is a summary of continuous Gram-Schmidt orthonormalization

• Create a new system of ordinary differential equations

• Part of this system continuously re-orthonormalizes a basis

• This part tracks the change in a sphere of initial conditions continuously

• The last rows of the new system measure the change in exponential separation of orbits

• To get the Lyapunov exponents, take the last rows at the final time value and divide

by time
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7. NUMERICAL RESULTS

In this section we present the results of our numerical experiments. Table 7.1 collects

our computed Lyapunov exponents for the Lorenz equations organized by algorithm. It

includes the values used for tEnd, t1, and the number of initial values. Table 7.2 lists the

computed Lyapunov exponents for the Rössler equations and also includes the particular

values used for tEnd, t1, and the number of initial values. Table 7.3 includes the computed

results for the Rabinovich-Fabrikant equations along with the corresponding constant pa-

rameters a, b, the number of initial values, and the constants t1 and tEnd. Finally, table 7.4

presents a computed largest Lyapunov exponent for Chua’s circuit as well as the associated

number of initial values, t1, and tEnd. Computed Lyapunov exponents from the literature

are included in table 3.1 in section 3. MATLAB scripts used to find this data are included in

the appendices. It is worth mentioning again that both RK4 and IRK8 were used in tandem

with OS, but with CGSO we used only RK4 to avoid prohibitively long computing time.

7.1. THE LORENZ EQUATIONS

Our study of the Lorenz equations had several purposes. We wanted to make sure

that our newly implemented algorithms were properly written, delivering comparable results

both to each other and to published results such as Sprott’s [22]. Our orbit separation

implementation returned a very close value to Sprott’s published λ1 = .9056, which is not

surprising as Sprott is our source for the orbit separation algorithm.

We also used the Lorenz equations as a benchmark to experiment with settings such

as tEnd and we used a large number of orbits, from random initial conditions, to average the

results. We concluded from these tests that 1000 random initial values are sufficient, as are

t1 = 20 and tEnd = 1000. Table 7.1 collects the results of these experiments.
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Algorithm Numerical t1 tEnd Number of Lyapunov
Method initial values exponents

OS RK4 20 1000 1000 0.905744684705866
OS RK4 20 1000 2000 0.905761423985076
OS IRK8 20 1000 1000 0.905758237263004

CGSO RK4 1000 1000 0.895462506170606
0.002098916817564

-14.564258489126374
CGSO RK4 500 1000 0.885311976076725

0.004195827397323
-14.556179060698607

CGSO RK4 1000 500 0.885137292321675
.004284019108387

-14.556134884379532

Table 7.1. Computed Lyapunov exponents for the Lorenz equations with system parameter
values σ = 10, β = 8

3
, ρ = 28 and method parameters t0 = 0, h = 0.01

When using orbit separation (OS), doubling the number of orbits to 2000 had little

effect. Computing Lyapunov exponents is a computationally expensive process. In practice,

doubling the number of orbits doubles the time to complete the computation, so the close

agreement between results for 1000 or 2000 initial values indicates that 1000 are sufficient.

IRK8 and RK4 delivered comparable results to each other; so when studying other systems

we either used both or chose one based on time constraints.

Our implementation of continuous Gram-Schmidt orthonormalization (CGSO) yielded

results for λ1 and λ2 that did not correspond closely with our orbit separation results.

However, our computed λ3 was very close to the published value λ3 ≈ −14.5723 [22]. We

also experimented with halving the number of orbits to average and lowering tEnd to 500.

This affected both λ1 and λ2: λ1 was further removed from our orbit separation (and Sprott’s)

result while λ2 doubled, growing farther from 0. We maintained at least 1000 orbits and

tEnd = 1000 for future trials based on these results.
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Algorithm Numerical t1 tEnd Number of Lyapunov
Method initial values exponents

OS RK4 20 1000 1000 0.071015024065389
OS IRK8 20 1000 1000 0.071005884751426

CGSO RK4 1000 1000 0.071265371260077
0.004274602121437
-5.398739627693884

Table 7.2. Computed Lyapunov exponents for the Rössler equations with system parameter
values a = 0.2, b = 0.2, c = 5.7 and stepsize h = 0.01.

7.2. THE RÖSSLER EQUATIONS

Sprott [22] states that a three-dimensional system of ODEs that has λ1 > 0 must have

λ2 = 0 in order to remain bounded. Keeping in mind that Sprott derives λ2 to be 0 rather

than calculating it, it is not surprising that our computed value for λ2 was nonzero. Despite

the difference in λ2, the calculated λ1 from both algorithms was very close to Sprott’s value

of 0.0714. This result is a little surprising given the pronounced difference in computed

values of λ1 for the Lorenz equations. The continuous Gram-Schmidt orthonormalization

result for λ3 was also very close to Sprott’s (derived) result of −5.3943. Sprott derives λ3 by

noting that

λ1 + λ2 + λ3 = trace(J).

After setting λ2 = 0 and computing λ1, λ3 may be calculated.

38



Parameters t1 tEnd Number of Lyapunov
a, b initial values Exponents

0.1, 0.98 20 1000 1000 0.023375301581978
0.1, 0.5 20 1000 1000 -0.081743950195497

0.1, 0.2715 20 1000 1000 -0.035868531917007
−1,−0.1 20 1000 1000 0.071203019400215

Table 7.3. Computed Lyapunov exponents for the Rabinovich-Fabrikant equations using OS
and IRK8 with stepsize h = 0.01

7.3. THE RABINOVICH-FABRIKANT EQUATIONS

The Rabinovich-Fabrikant equations can display very different phenomena in their

phase plots depending on the constant system parameters a, b used. Refer to figures 2.2, 2.3,

2.4, and 2.5. Luo et al. [16] have generated phase plots for many sets of parameters.

Figure 2.3 appears to have an attractor, but, for those parameter values, the system is

not chaotic. Figure 2.4, a plot with what appears to be an attracting fixed point, corresponds

to a negative computed λ1. Figures 2.2 and 2.5 are chaotic, and their attractors are shown.

The chaotic nature of the Rabinovich-Fabrikant equations for a = −1, b = −0.1 is somewhat

surprising as Luo et al. [16] refer to these settings as a mathematical curiosity only.

7.4. CHUA’S CIRCUIT

The final system of ODEs studied in this thesis is Chua’s circuit with constant param-

eters α = 9, β = 100
7

, a = −8
7
, b = −5

7
. For these values, the largest Lyapunov exponent is

positive and therefore the system is chaotic. Figure 2.6 is a phase plot of Chua’s circuit for

these parameters.
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Algorithm Numerical t1 tEnd Number of Lyapunov
Method initial values exponents

OS IRK8 20 1000 1000 0.326602252020003
OS RK4 20 1000 1000 0.326746202448946

Table 7.4. Computed largest Lyapunov exponent for Chua’s circuit using OS and IRK8 for
the constant parameter values α = 9, β = 100

7
, a = −8

7
, b = −5

7
with stepsize h = 0.01.

40



APPENDIX A

STIFFNESS RATIO

The MATLAB script stiffnessCalculator calculates the stiffness ratios of the Lorenz,

Rössler, and Rabinovich-Fabrikant equations.

f unc t i on s t i f f n e s s C a l c u l a t o r ( )

c l e a r a l l

format long

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%RF system parameters

%{

a = 0 . 1 ;

b = 0 . 5 ;

%}

%Lorenz system parameters ( a l l > 0)

%

sigma = 10 ;

beta = 8/3 ;

rho = 28 ;

%}

%{

%Ross l e r system constant parameters

a = 0 . 2 ;

b = 0 . 2 ;

c = 5 . 7 ;

%}
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t0 = 0 ; %i n i t i a l time

dt = . 0 1 ; %t imestep

tEnd = 1000 ; %end time

T = t0 : dt : tEnd ;

%i n i t i a l c o n d i t i o n s

x0 = rand ;

y0 = rand ;

z0 = rand ;

v = ze ro s (3 , l ength (T));% s e t up new matrix f o r s o l u t i o n

v ( : , 1 ) = [ x0 ; y0 ; z0 ] ; %i n i t i a l i z e new vecto r

k = 1 ; %k counts t imes teps

t=t0 ; %i n i t i a l i z e time

maxEval = 0 ; %s e t up maxEval

minEval = 1000 ; %s e t up minEval

whi l e t<tEnd

v ( : , k+1) = rk4 ( v ( : , k ) , t , dt ,@F) ; %i t e r a t e s o l u t i o n

%e igenva lue c a l c u l a t i o n

jCal = jacob ianCal ( v ( : , k ) ) ; %jacob ian matrix

e v a l s = abs ( e i g ( jCal ) ) ; %c a l c u l a t e e v a l s

mxE=max( e v a l s ) ; %f i n d max eva l at t h i s s tep

mnE=min( e v a l s ) ; %f i n d min eva l at t h i s s tep

vMax=[maxEval ; mxE ] ; %s e t up max e v a l s vec to r

vMin=[minEval ; mnE ] ; %s e t up min e v a l s vec to r

maxEval=max(vMax ) ; %keep max
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minEval=min (vMin ) ; %keep min

%end e i g enva lue c a l c u l a t i o n

t = t+dt ; %i t e r a t e time

k = k+1; %i t e r a t e index

end

i f ( minEval ˜= 0) %i f statement avo ids d i v i s i o n by zero

s t i f f n e s s R a t i o= maxEval/minEval ;

e l s e s t i f f n e s s R a t i o =’ undef ined ’ ;

end ;

d i sp l ay ( s t i f f n e s s R a t i o ) ; %pr in t s t i f f n e s s r a t i o

d i sp l ay ( maxEval ) ; %d i sp l ay max&min va lue s

d i sp l ay ( minEval ) ;

%The nested funct i ons−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%RF system

%{

f unc t i on f = F(x , t )

f = [ x (2 )∗ ( x (3 ) − 1 + x (1)ˆ2 ) + a∗x ( 1 ) ;

x (1 )∗ ( 3∗x (3 ) + 1 − x (1)ˆ2 ) + a∗x ( 2 ) ;

−2∗x (3 )∗ ( b + x (1)∗ x (2 ) ) ] ;

end

func t i on j = jacob ianCal ( x )

j =[2∗x (1)∗ x(2)+a x(1)ˆ2+x(3)−1 x ( 2 ) ;

−3∗x(1)ˆ2+3∗x(3)+1 a 3∗x ( 1 ) ;

−2∗x (2)∗ x (3 ) −2∗x (1)∗ x (3 ) −2∗(x (1)∗ x(2)+b ) ] ;
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end

%}

%Lorenz system

%

func t i on f = F(x , t )

f = [ sigma ∗(x (2 ) − x ( 1 ) ) ;

x (1 )∗ ( rho − x ( 3 ) ) − x ( 2 ) ;

x (1)∗ x (2 ) − beta∗x ( 3 ) ] ;

end

func t i on j = jacob ianCal ( x )

j = [−sigma , sigma , 0 ;

rho−x ( 3 ) , −1, −x ( 1 ) ;

x ( 2 ) , x ( 1 ) , −beta ] ;

end

%}

%Ross l e r system

%{

f unc t i on f = F(x , t )

f = [−x (2 ) − x ( 3 ) ;

x (1 ) + a∗x ( 2 ) ;

b + x (3 )∗ ( x(1)−c ) ] ;

end

func t i on j = jacob ianCal ( x )

j = [ 0 −1 −1;

1 a 0 ;
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x (3 ) 0 x(1)−c ] ;

end

%}

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Written 2010 by Clyde Meador

end %end func t i on
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APPENDIX B

ORBIT SEPARATION This appendix contains three MATLAB scripts. The first two,

OS rk4 driver.m and OS g8i driver.m, implement IRK8 and RK4 respectively to calculate

the largest Lyapunov exponent for the Lorenz, Rössler, or Rabinovich Fabrikant equations.

The third script, OS g8i driver Chua.m, calculates the largest Lyapunov exponent for Chua’s

circuit using IRK8. Chua’s circuit is analyzed separately because it requires some conditional

logic to discard orbits that do not approach the attractor.

B.1. EXPLICIT 4TH-ORDER RUNGE-KUTTA METHOD

f unc t i on OS rk4 dr iver ( )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%func t i on name : OS rk4 dr iver ( )

%Inputs : none

%Outputs : none

%Notes on use : This s c r i p t r e q u i r e s uncommenting in

%tandem of the system o f ODEs ( in the ‘ ‘ nested

%funct i ons ’ ’ s e c t i o n at the end and a l s o o f the

%a s s o c i a t e d system parameters ( at the beg inning ) .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l e a r a l l %c l e a r workspace

format long %d i sp l ay dec imals to d e f a u l t p r e c i s i o n

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%The systems

%RF system parameters

%{

a = 0 . 1 ;

46



b = 0 . 0 5 ;

%}

%Lorenz system parameters

%

sigma = 10 ;

beta = 8/3 ;

rho = 28 ;

%}

%Ross l e r system parameters

%{

a = 0 . 2 ;

b = 0 . 2 ;

c = 5 . 7 ;

%}

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t0 = 0 ; %i n i t i a l time

dt = . 0 0 1 ; %t imestep

tEnd = 100 ; %end time

t1 = 10 ; %time be f o r e which to d i s ca rd va lue s

T = t0 : dt : tEnd ; % time range

num It = 1 ; % number o f i t e r a t i o n s

LLE vector = ze ro s (1 , num It ) ; %vec to r ho lds exponents

f o r co1 =1:num It

x0 = rand ; %i n i t i a l c o n d i t i o n s

y0 = rand ;
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z0 = rand ;

d0 = 10ˆ(−9); %sepa ra t i on constant d0

%s e t up new matr i ce s to handle s epara t e s o l u t i o n s

v = ze ro s (3 , l ength (T) ) ;

w = ze ro s (3 , l ength (T) ) ;

%i n i t i a l i z e new vec to r s

v ( : , 1 ) = [ x0 ; y0 ; z0 ] ;

w( : , 1 ) = [ x0 ; y0 ; z0 ] ;

w(1 , 1 ) = w(1 , 1 ) + d0 ; %separa te by d0

k = 1 ; %count f o r number o f t imes teps

n =0; %count f o r number o f l o g s taken

L2 = 0 ; %sum of lyapunov exponents

t=t0 ; %i n i t i a l i z e time

whi le t<tEnd

%i t e r a t e s o l u t i o n 1 step

v ( : , k+1) = rk4 ( v ( : , k ) , t , dt ,@F) ;

w( : , k+1) = rk4 (w( : , k ) , t , dt ,@F) ;

%c a l c u l a t e d i s t ance between v and w

d11 = ( v (1 , k+1)−w(1 , k +1))ˆ2;

d12 = ( v (2 , k+1)−w(2 , k +1))ˆ2;

d13 = ( v (3 , k+1)−w(3 , k +1))ˆ2;

d1 =s q r t ( d11+d12+d13 ) ;

i f t>t1 %only perform a f t e r t1

L1 = log ( abs ( d1/d0 ) ) ; %eva luate l og

L2 = L1 + L2 ; %sum l o g s

n = n+1; %i t e r a t e l og count
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end

%change w vec to r so i t i s e p s i l o n ( d0 ) away from v

d i f f = [w( : , k+1)−v ( : , k +1) ] ;

w( : , k+1) = v ( : , k+1) + ( d0/d1 )∗ d i f f ;

t = t+dt ; %i t e r a t e time

k = k+1; %i t e r a t e index

end

L3 = (L2/n)/ dt ; %Largest Lyapunov exponent

LLE vector ( co1 ) = L3 ; %s t o r e L3 in vec to r

end

L4 = (sum( LLE vector ) )/ num It ; %average a l l L3

d i sp l ay (L4 ) ; %pr in t average

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%The nested f u n c t i o n s

%RF system

%{

f unc t i on f = F(x , t )

f = [ x (2 )∗ ( x (3 ) − 1 + x (1)ˆ2 ) + a∗x ( 1 ) ;

x (1 )∗ ( 3∗x (3 ) + 1 − x (1)ˆ2 ) + a∗x ( 2 ) ;

−2∗x (3 )∗ ( b + x (1)∗ x (2 ) ) ] ;

end

%}

%Lorenz system

%

func t i on f = F(x , t )
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f = [ sigma ∗(x (2 ) − x ( 1 ) ) ;

x (1 )∗ ( rho − x ( 3 ) ) − x ( 2 ) ;

x (1)∗ x (2 ) − beta∗x ( 3 ) ] ;

end

%}

%Ross l e r system

%{

f unc t i on f = F(x , t )

f = [−x (2 ) − x ( 3 ) ;

x (1 ) + a∗x ( 2 ) ;

b + x (3 )∗ ( x(1)−c ) ] ;

end

%}

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Written 2010 by Clyde−Emmanuel Meador

end %end func t i on

B.2. IMPLICIT 8TH-ORDER RUNGE-KUTTA METHOD

f unc t i on OS g8 i d r i v e r ( )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%func t i on name : OS g8 i d r i v e r ( )

%Inputs : none

%Outputs : none

%Notes on use : This s c r i p t r e q u i r e s uncommenting in

%tandem of the system o f ODEs ( in the ‘ ‘ nested

%funct i ons ’ ’ s e c t i o n at the end and a l s o o f the
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%a s s o c i a t e d system parameters ( at the beg inning ) .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l e a r a l l %c l e a r workspace

format long %d i sp l ay dec imals to d e f a u l t p r e c i s i o n

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%The systems

%RF system parameters

%{

a = 0 . 1 ;

b = 0 . 0 5 ;

%}

%Lorenz system parameters

%

sigma = 10 ;

beta = 8/3 ;

rho = 28 ;

%}

%Ross l e r system parameters

%{

a = 0 . 2 ;

b = 0 . 2 ;

c = 5 . 7 ;

%}

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%I n i t i a l i z a t i o n s

t0 = 0 ; %i n i t i a l time value

dt = . 0 1 ; %t imestep

51



tEnd = 1000 ; %end time

t1 = 20 ; %time be f o r e which to d i s ca rd va lue s

T = t0 : dt : tEnd ; %vecto r ho ld ing time va lue s

%i n i t i a l c o n d i t i o n s

num IVs = 1000;%number o f random i n i t i a l va lue s to take

LLE vector = ze ro s (1 , num IVs ) ; %holds exponents

%for−loop i t e r a t e s f o r each s e t o f IVs

f o r co1 =1:num IVs

x0 = rand ;

y0 = rand ;

z0 = rand ;

%sepa ra t i on constant d0

d0 = 10ˆ(−9);

%s e t up new matr i ce s to handle s epara t e s o l u t i o n s

v = ze ro s (3 , l ength (T) ) ;

w = ze ro s (3 , l ength (T) ) ;

%i n i t i a l i z e new vec to r s

v ( : , 1 ) = [ x0 ; y0 ; z0 ] ;

w( : , 1 ) = [ x0 ; y0 ; z0 ] ;

%separa t e by d0

w(1 , 1 ) = w(1 , 1 ) + d0 ;

k = 1 ; %counter f o r s o l u t i o n

n =0; %counter f o r number o f l o g s taken

L2 = 0 ; %sum of Lyapunov cons tant s

t=t0 ; %i n i t i a l i z e time

whi le t<tEnd %numer i ca l ly s o l v e system
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%i t e r a t e s o l u t i o n 1 step

J = jacob ianCal ( v ( : , k ) ) ; %Jacobian matrix

J2 = jacob ianCal (w( : , k )) ;% Jacobian matrix

v ( : , k+1) = gauss8 newton ( v ( : , k ) , dt ,@F, J ) ;

w( : , k+1) = gauss8 newton (w( : , k ) , dt ,@F, J2 ) ;

%

%c a l c u l a t e d i s t ance between v , w

d11 = ( v (1 , k+1)−w(1 , k +1))ˆ2;

d12 = ( v (2 , k+1)−w(2 , k +1))ˆ2;

d13 = ( v (3 , k+1)−w(3 , k +1))ˆ2;

d1 =s q r t ( d11+d12+d13 ) ;

i f t>t1 %only perform a f t e r time t1

L1 = log ( abs ( d1/d0 ) ) ; %eva luate l og

L2 = L1 + L2 ; % sum l o g s

n = n+1; %i t e r a t e l og count

end

%adjus t w so i t i s e p s i l o n ( d0 ) from v

d i f f = [w( : , k+1)−v ( : , k +1) ] ;

w( : , k+1) = v ( : , k+1) + ( d0/d1 )∗ d i f f ;

t = t+dt ; %i t e r a t e time

k = k+1; %i t e r a t e index

end

L3 = (L2/n)/ dt ; %c a l c u l a t e l a r g e s t Lyapunov exp .

LLE vector ( co1 ) = L3 ; %ente r the LLE in to vec to r

end
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L4 = (sum( LLE vector ) )/ num IVs ; %average LLEs

d i sp l ay (L4 ) ; %d i sp l ay average

%can ungreen p lo t3 to check s o l u t i o n

%plot3 ( v ( 1 , : ) , v ( 2 , : ) , v ( 3 , : ) )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%The nested f u n c t i o n s

%RF system

%{

f unc t i on f = F(x , t )

f = [ x (2 )∗ ( x (3 ) − 1 + x (1)ˆ2 ) + a∗x ( 1 ) ;

x (1 )∗ ( 3∗x (3 ) + 1 − x (1)ˆ2 ) + a∗x ( 2 ) ;

−2∗x (3 )∗ ( b + x (1)∗ x (2 ) ) ] ;

end

func t i on j = jacob ianCal ( x )

j =[2∗x (1)∗ x(2)+a x(1)ˆ2+x(3)−1 x ( 2 ) ;

−3∗x(1)ˆ2+3∗x(3)+1 a 3∗x ( 1 ) ;

−2∗x (2)∗ x (3 ) −2∗x (1)∗ x (3 ) −2∗(x (1)∗ x(2)+b ) ] ;

end

%}

%Lorenz system

%

func t i on f = F(x , t )

f = [ sigma ∗(x (2 ) − x ( 1 ) ) ;

x (1 )∗ ( rho − x ( 3 ) ) − x ( 2 ) ;

x (1)∗ x (2 ) − beta∗x ( 3 ) ] ;

end
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f unc t i on j = jacob ianCal ( x )

j = [−sigma , sigma , 0 ;

rho−x ( 3 ) , −1, −x ( 1 ) ;

x ( 2 ) , x ( 1 ) , −beta ] ;

end

%}

%Ross l e r system

%{

f unc t i on f = F(x , t )

f = [−x (2 ) − x ( 3 ) ;

x (1 ) + a∗x ( 2 ) ;

b + x (3 )∗ ( x(1)−c ) ] ;

end

func t i on j = jacob ianCal ( x )

j = [ 0 −1 −1;

1 a 0 ;

x (3 ) 0 x(1)−c ] ;

end

%}

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Written 2010 by Clyde−Emmanuel Meador

end %end func t i on

B.3. IMPLICIT 8TH ORDER RUNGE-KUTTA METHOD: CHUA’S

CIRCUIT
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f unc t i on OS g8i dr iver Chua ( )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%func t i on name : OS g8i dr iver Chua ( )

%Inputs : none

%Outputs : none

%Notes on use : Not every i n i t i a l va lue in the cube

% x , y , z in [ 0 , 1 ] approaches the a t t r a c t o r . I f an o r b i t

% does not approach the a t t r a c t o r in t h i s case , i t

% s p i r a l s outward and has i n f i n i t e Lyapunov exponent

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l e a r a l l %c l e a r workspace

format long %d i sp l ay dec imals to d e f a u l t p r e c i s i o n

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Chua ’ s c i r c u i t constant parameters

%

alpha = 9 ;

beta = 100/7 ;

a = −8/7;

b = −5/7;

%}

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%I n i t i a l i z a t i o n s

t0 = 0 ; %i n i t i a l time value

dt = . 0 1 ; %t imestep

tEnd = 1000 ; %end time

t1 = 20 ; %time be f o r e which to d i s ca rd va lue s

T = t0 : dt : tEnd ; %vecto r ho ld ing time va lue s
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ActNum = 0 ; %o r b i t s which approach a t t r a c t o r

escapeCounter = 0 ; %o r b i t s which don ’ t

%i n i t i a l c o n d i t i o n s

num IVs = 1000 ; %number o f i n i t i a l random IVs to take

LLE vector = ze ro s (1 , num IVs ) ; %holds exponents

%for−loop i t e r a t e s f o r each s e t o f IVs

f o r co1 =1:num IVs

x0 = rand ;

y0 = rand ;

z0 = rand ;

%sepa ra t i on constant d0

d0 = 10ˆ(−9);

%s e t up new matr i ce s to handle s epara t e s o l u t i o n s

v = ze ro s (3 , l ength (T) ) ;

w = ze ro s (3 , l ength (T) ) ;

%i n i t i a l i z e new vec to r s

v ( : , 1 ) = [ x0 ; y0 ; z0 ] ;

w( : , 1 ) = [ x0 ; y0 ; z0 ] ;

%separa t e by d0

w(1 , 1 ) = w(1 , 1 ) + d0 ;

k = 1 ; %counter f o r s o l u t i o n

n =0; %counter f o r number o f l o g s taken

L2 = 0 ; %sum of lyapunov cons tant s

t=t0 ; %i n i t i a l i z e time

whi le t<tEnd %numer i ca l ly s o l v e system
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%i t e r a t e s o l u t i o n 1 step

J = jacob ianCal ( v ( : , k ) ) ; %Jacobian matrix

J2 = jacob ianCal (w( : , k ) ) ; %Jacobian matrix

v ( : , k+1) = gauss8 newton ( v ( : , k ) , dt ,@F, J ) ;

w( : , k+1) = gauss8 newton (w( : , k ) , dt ,@F, J2 ) ;

%c a l c u l a t e d i s t ance between v , w

d11 = ( v (1 , k+1)−w(1 , k +1))ˆ2;

d12 = ( v (2 , k+1)−w(2 , k +1))ˆ2;

d13 = ( v (3 , k+1)−w(3 , k +1))ˆ2;

d1 =s q r t ( d11+d12+d13 ) ;

i f ( ( t>t1 ) ) %only perform a f t e r time t1

L1 = log ( abs ( d1/d0 ) ) ; %eva luate l og

L2 = L1 + L2 ; %sum l o g s

n = n+1; %i t e r a t e l og count

end

%adjus t w so i t i s e p s i l o n ( d0 ) from v

d i f f = [w( : , k+1)−v ( : , k +1) ] ;

w( : , k+1) = v ( : , k+1) + ( d0/d1 )∗ d i f f ; %normal ize

t = t+dt ; %i t e r a t e time

k = k+1; %i t e r a t e index

end

L3 = (L2/n)/ dt ; %c a l c u l a t e l a r g e s t Lyapunov exp .

i f ( i snan (L3 ) ) %i f o r b i t does not approach a t t r a c t o r

escapeCounter = escapeCounter +1;

break

e l s e %i f o r b i t does approach a t t r a c t o r
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LLE vector ( co1 ) = L3;% ente r the LLE in to vec to r

ActNum = ActNum+1;

end

end

L4 = (sum( LLE vector ) )/ActNum ; %average LLEs over #IVs .

d i sp l ay ( ’LLE : ’ )

d i sp l ay (L4 ) ; %d i sp l ay average LLE

d i sp l ay ( ’ Proport ion o f IVs not in bas in : ’ )

d i sp l ay ( escapeCounter /num IVs ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%The nested f u n c t i o n s

%Chua ’ s C i r c u i t

func t i on f = F(x , t )

i f ( x (1 ) > 1)

f = [ alpha ∗(x(2)−x(1)−( b∗x (1 ) + a − b ) ) ;

x(1)−x(2)+x ( 3 ) ;

−beta∗x ( 2 ) ] ;

e l s e i f ( x (1 ) < −1)

f = [ alpha ∗(x(2)−x(1)−( b∗x (1 ) − a + b ) ) ;

x(1)−x(2)+x ( 3 ) ;

−beta∗x ( 2 ) ] ;

e l s e

f = [ alpha ∗(x(2)−x(1)−( a∗x (1 ) ) ) ;

x(1)−x(2)+x ( 3 ) ;

−beta∗x ( 2 ) ] ;

end
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end

func t i on j = jacob ianCal ( x )

i f ( x (1 ) > 1)

cc = b ;

e l s e i f ( x (1 ) < −1)

cc = b ;

e l s e

cc = a ;

end

j = [ 0 , alpha , cc ;

1 , −1, 1 ;

0 , −beta , 0 ] ;

end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Written 2011 by Clyde−Emmanuel Meador

end %end func t i on
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APPENDIX C

NUMERICAL METHODS The two scripts in this appendix, rk4.m and

gauss8newton.m were written by Scott Sarra. They implement the numerical methods RK4

and IRK8.

C.1. RK4

f unc t i on v = rk4 (V, t , k ,F)

s1 = f e v a l (F ,V, t ) ;

s2 = f e v a l (F ,V + k∗ s1 /2 , t+k / 2 ) ;

s3 = f e v a l (F ,V + k∗ s2 /2 , t+k / 2 ) ;

s4 = f e v a l (F ,V + k∗ s3 , t+k ) ;

v = V + k∗( s1 + 2∗ s2 + 2∗ s3 + s4 ) / 6 ;

%wr i t t en by Scott Sarra

C.2. IRK8

% 8th order i m p l i c i t Runge−Kutta method

%

% Gauss Method , s t a g e s =4, order=8

%

% modi f i ed Newton ’ s method to s o l v e

% the non l i nea r systems
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f unc t i on v = gauss8 newton (V, dt , F , J ,TOL,MAXIT)

%use d e f a u l t max i t e r a t i o n s

i f nargin <6, MAXIT=250; end

i f nargin <5, TOL=1e−14; end%use d e f a u l t t o l e r a n c e

s = 4 ; %four s t ag e s

N = length (V) ; %number o f v a r i a b l e s

%RK c o e f f i c i e n t s

w1 = 1/8 − s q r t ( 30 )/144 ;

w1p = 1/8 + s q r t (30 )/144 ;

w2 = 0.5∗ s q r t ( (15 + 2∗ s q r t ( 3 0 ) ) / 3 5 ) ;

w2p = 0.5∗ s q r t ( (15 − 2∗ s q r t ( 3 0 ) ) / 3 5 ) ;

w3 = w2∗ (1 . /6 + s q r t ( 3 0 ) / 2 4 ) ;

w3p = w2p∗(1/6 − s q r t ( 3 0 ) / 2 4 ) ;

w4 = w2∗(1/21 + 5∗ s q r t ( 3 0 ) / 1 6 8 ) ;

w4p = w2p∗(1/21 − 5∗ s q r t ( 3 0 ) / 1 6 8 ) ;

w5 = w2 − 2∗w3 ;

w5p = w2p − 2∗w3p ;

%A8 = tab l e o f a i j s tage c o e f f i c i e n t s

A8 = [ w1 w1p−w3+w4p w1p−w3−w4p w1−w5 ;

w1−w3p+w4 w1p w1p−w5p w1−w3p−w4 ;

w1+w3p+w4 w1p+w5p w1p w1+w3p−w4 ;

w1+w5 w1p+w3+w4p w1p+w3−w4p w1 ] ;

%i n v e r s e o f A8 , used to get d vec to r
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A8i = inv (A8 ) ;

%b vecto r ho lds weights

b = [2∗w1 2∗w1p 2∗w1p 2∗w1 ] ;

d = b∗A8i ; %x n+1 = x n + sum d , z

c = sum(A8 ’ ) ; %time weights

%I − kronecker product o f A8 and J

A = ( eye ( s∗N) − dt∗kron (A8 , J ) ) ;

%kronecker product o f A8 and I

B = kron (A8 , eye ( 3 ) ) ;

%LU f a c t o r i z a t i o n o f A

[ L ,U] = lu (A) ;

%zero vec to r o f appropr ia t e s i z e

z = ze ro s ( s∗N, 1 ) ;

%o r i g . f ( x ) in matrix form

Fx = repmat ( f e v a l (F ,V) , s ,1) ;% i n i t i a l z i s ze ro

df = 1 ; %counter : convergence ra t e

i t e r = 0 ; %counter : # i t e r a t i o n s

%while−loop performs Newton ’ s method

whi le ( abs ( df )>TOL & i t e r<MAXIT)

Fx ( [ 1 2 3 ] ) = f e v a l (F , V + z ( [ 1 2 3 ] ) ) ;

Fx ( [ 4 5 6 ] ) = f e v a l (F , V + z ( [ 4 5 6 ] ) ) ;

Fx ( [ 7 8 9 ] ) = f e v a l (F , V + z ( [ 7 8 9 ] ) ) ;

Fx ( [ 1 0 11 1 2 ] ) = f e v a l (F , V + z ( [ 1 0 11 1 2 ] ) ) ;

r t = −z + dt∗B∗Fx ; %c a l c u l a t e r t
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dz = U\(L\ r t ) ; %c a l c u l a t e dz

z = z + dz ; %i t e r a t e z

df = norm( dz , i n f ) ; %update convergence counter

i t e r = i t e r + 1 ; %update i t e r a t i o n counter

end % whi le

%new vecto r i s the next t imestep value .

%i f prev . i s x n , t h i s i s x {n+1}

v (1 ) = V(1) + dot (d , z ( [ 1 4 7 1 0 ] ) ) ;

v (2 ) = V(2) + dot (d , z ( [ 2 5 8 1 1 ] ) ) ;

v (3 ) = V(3) + dot (d , z ( [ 3 6 9 1 2 ] ) ) ;

%wr i t t en by Scott Sarra
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• February 11, 2010. Numerical methods for ODEs: Implicit and Explicit Methods. Dis-

cussion of the use of explicit and implicit numerical methods for ordinary differential

equations with a focus on a specific predictor-corrector method that was misrepre-

sented in literature. Given to an audience of faculty members, graduate students, and

undergraduate members of Pi Mu Epsilon (Beta chapter).

• December 8, 2008. Numerical methods and the Rabinovich-Fabrikant Equations.

Overview of implementation of numerical integration methods given to an undergrad-

uate numerical analysis class. Marshall University.

• December 5, 2008. Numerical methods and the Rabinovich-Fabrikant Equations. Pre-

sentation and defense of senior research to faculty members, graduate students, and

seniors. Marshall University.

• November 14, 2008. Numerical methods and the Rabinovich-Fabrikant Equations.

Accessible summary of a process using MATLAB to study the Rabinovich-Fabrikant

equations numerically with emphasis on qualitative phase plot analysis given to under-

graduate and graduate members of Pi Mu Epsilon (Beta chapter) as well as interested

faculty members.

Software Proficiency

• MATLAB scripting

• Python scripting

• Microsoft Office

• HTML
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Language Proficiency

Spanish minor, undergraduate (completed)
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