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ABSTRACT 

THE FUNCTION AND MECHANISM OF CHMP1A IN TUMOR 

DEVELOPMENT 

                                                                                                  By Jing Li 

Chmp1A (Chromatin modifying protein 1A/Charged multivesicular protein 1A) is a 

member of the ESCRT-III (Endosomal Sorting Complex Required for Transport) 

family. ESCRT complexes play central roles in endosome mediated trafficking via 

MVB (multivesicular body) formation and sorting.  Chmp1A is a potential tumor 

suppressor, especially in the pancreas. Knockdown of Chmp1A resulted in an 

increase of anchorage-independent growth of HEK 293T cells. Chmp1A shRNA 

expressing HEK 293T cells transformed these non-tumorigeneic cells to form 

tumors in xenograft assays. Doxycycline inducible over-expression of Chmp1A in 

human pancreatic ductal tumor cells (PanC-1) induced growth inhibition in vitro 

and in vivo xenograft assays. Knockdown of Chmp1 via short hairpin RNA 

(shRNA) in PanC-1 cells promoted cell growth. Over-expression of Chmp1A 

strongly increased the protein level of pan-P53 and phospho-P53.  

All-trans retinoic acid (ATRA) and its derivatives play an important role in 

regulating proliferation. Cellular retinol-binding protein (CRBP-1) is a key 

regulator of ATRA through controlling ATRA metabolism and nuclear localization. 

Chmp1A positively regulated CRBP-1 at mRNA level. To investigate the specific 

role of Chmp1A in ATRA signaling, ATRA responsive and non-responsive 

pancreatic tumor cells were treated with ATRA in vitro. Growth assays were 

performed and confirmed the previously reported growth inhibitory activity of 
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ATRA. In the ATRA responsive cell line, ATRA treatment apparently increased 

the expression of Chmp1A, CRBP-1, phospho-P53 and pan-P53. ATRA also 

facilitated translocation of Chmp1A into the nucleus. The knockdown of Chmp1A 

via shRNA abolished the growth inhibition of ATRA on pancreatic cancer cell 

lines.  Taken together, our data indicates that Chmp1A is a potential tumor 

suppressor and Chmp1A is indispensable for anti-proliferative action of ATRA in 

pancreatic cancer cell lines; Chmp1A may mediate ATRA signaling by regulating 

the expression of CRBP-1, and P53.  
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Chapter1 

Chmp1A Is Involved in Anti-proliferative Effects of All-trans Retinoic Acid  

in vitro in Pancreatic Cancer cells 

 

Abstract: All-trans retinoic acid (ATRA) and its derivatives play an important role in 

regulating proliferation. Cellular retinol-binding protein 1 (CRBP-1) is a key regulator of 

ATRA through its ability to control ATRA metabolism and nuclear localization. ATRA 

inhibits tumor growth by regulating genes such as p53, a known tumor suppressor that 

is mutated in many human cancers. Microarray studies using HEK 293T cells showed 

that Chmp1A (Chromatin modifying protein/Charged multivesicular protein) positively 

regulated CRBP-1 at the mRNA level, indicating a potential involvement of Chmp1A in 

ATRA signaling. To test this hypothesis, we treated ATRA responsive and non-

responsive pancreatic tumor cells with ATRA in vitro. Growth assays were performed 

and they confirmed the previously reported growth inhibitory activity of ATRA. In the 

ATRA responsive cell line, ATRA treatment significantly increased the protein 

expression of Chmp1A, CRBP-1, P53 and phospho-P53 at serine 15 and 37 position. 

We found that knockdown of Chmp1A via shRNA abolished the growth inhibitory effect 

of ATRA and promoted the growth of PanC-1 cells. Furthermore, Chmp1A shRNA 

treatment diminished the increase of Chmp1A, CRBP-1, P53 and phospho-P53 protein 

expression induced by ATRA treatment. In the ATRA non-responsive cells, however, 

ATRA treatment did not have any effect on the protein level of Chmp1A, CRBP-1, P53 

and phospho-P53. Interestingly, ATRA treatment facilitated translocation of Chmp1A 

into the nucleus in ATRA responsive cells.  In the ATRA-non-responsive cells, Chmp1A 
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expression appears to be localized mainly at the plasma membrane in the presence or 

absence of ATRA. Collectively our data provide evidence that Chmp1A mediates the 

growth inhibitory activity of ATRA in pancreatic cancer cells through positively regulating 

CRBP-1 expression and P53 activity. Our results also suggest that nuclear localization 

of Chmp1A is important in mediating ATRA signaling. 
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Review of the literature 

Retinoic Acid 

Retinoids are natural or synthetic derivatives of vitamin A. Retinoids exert their 

biological effects by both retinoid receptors and retinoid-binding proteins. On the one 

hand, the active form of retinoids (ATRA or 9-cis-RA) in nucleus interacts with their 

nuclear receptors, retinoic acid receptors (RARα, β,and γ), and retinoic X receptors 

(RXRα, β, and γ), and each receptor has several isoforms [1, 2]. There has been major 

progress in understanding the interactions between retinoids and their receptors. RARs 

preferentially bind RXRs to form a heterodimer [3-5]. However, RXRs bind other 

receptors including a number of orphan receptors [6]. Binding of retinoid to RAR, not 

RXR in the heterodimer allows RXR to interact with its ligand, which results in 

synergistic increase in target gene transcription [7, 8]. All-trans retinoic acid (ATRA) is 

one of the most active and physiological members of the retinoid family. By binding to 

its receptor RAR, ATRA effects broad spectrum of biological processes such as 

proliferation and differentiation [9]. Because of anti-proliferative effects of ATRA, it has 

been used as therapeutic and/or preventive agent in certain cancers such as leukemia 

[10].  

 

Cellular retinol-binding protein-I 

On the other hand, the retinoid-binding proteins are composed of two cellular retinol-

binding proteins (CRBP- I and II) and two cellular retinoic acid-binding protein isoforms 

(CRABP- I and II) [11].  Each has a different expression pattern and function (Fig.1). 

Cellular retinol-binding protein-I (CRBP-I) is a key regulator of ATRA through its ability 
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to control ATRA metabolism and nuclear localization [11-13].  The regulation of tumor 

growth associated with CRBP-I have been proven to be RARs-dependant [13, 14].  

 

 

Figure 1. Metabolism of vitamin A in target cells to biologically active retinoic acid. Once 

in the nucleus the retinoid signal is transduced by means of gene expression by two 

families of nuclear receptors, the retinoic acid receptor (RAR) and the retinoid X 

receptor (RXR). –Dr. Kenneth J. Soprano’s Lab [15] 

 

Pancreatic Cancer  

Despite recent insights into the molecular basis of pancreatic cancer, the prognosis for 

this disease remains extremely poor [16]. In 2006, the American Cancer Society 

reported that the survival rate of pancreatic cancer patients is 20% for 1-year and only 

4% for 5-year for all stages combined. Cancer Statistics, 2007 [17] predicted that 

pancreatic cancer will be the 4th causes of cancer death, following lung and bronchus, 
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colon and rectum, and breast, based on American Cancer Society estimation.  However, 

the survival rate of pancreatic cancer patients is the lowest among all the cancer types 

combined [17] . Therefore, development of new efficient anticancer therapy is 

imminently needed to increase survival rate of pancreatic cancer patients.  

 

Chmp1A 

Chmp1A/Vps46p belongs to class E family of vacuolar protein sorting (Vps) and has 

different names such as Chromatin Modifying Protein1 (Chmp1), Pcoln3 (Procollagen 

(type III) N-endopeptidase), and Sal1 (Supernumerary Aleurone Layers 1) [19-21]. For 

simplicity we will refer this protein “Chmp1A” in this report. Chmp1A has been reported 

to silence gene activation by interacting with a transcriptional repressor Polycomb-group 

(PcG) protein, BMI1 [18-21]. Chmp1A has also been shown to physically associate with 

the multivesicular sorting protein, SKD1/VPS4  (Vacuolar Protein-Sorting 4) [19]. 

Chmp1A localizes at the endosomes, where it functions in vesicle sorting and MVB 

(multivesicular body) formation [19]. In maize, a mutation in Chmp1A homolog sal1, 

results in more aleurone cell layers, suggesting that Sal1 might play a role in cell growth 

[22]. Collectively these studies indicate that Chmp1A may play critical roles in 

development by controlling cell growth and signaling activity via MVB 

formation/transcription repression [23]. However, the functions and signaling activities of 

Chmp1A in vertebrates have not been investigated.  
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INTRODUCTION 

 Retinoids are natural or synthetic derivatives of vitamin A. Nuclear receptors and 

cellular binding proteins are involved in mediating the biological effects of retinoids [4, 

15, 24, 25]. The active form of retinoids (ATRA or 9-cis-RA) interacts with their nuclear 

receptors, retinoic acid receptors (RAR α, β, and γ), and retinoic X receptors (RXR α, β, 

and γ). All-trans retinoic acid (ATRA) is one of the most physiologically active members 

of the retinoid family. By binding to its receptor RAR, ATRA exercises a broad spectrum 

of biological effects such as proliferation and differentiation [9]. Because of anti-

proliferative effects of ATRA, it has been used as a therapeutic and/or preventive agent 

in certain cancers such as promyelocytic leukemia [10].  

 There are two cellular retinol-binding proteins; CRBP- I and II [11]. Cellular 

retinol-binding 1 controls ATRA activity by presenting the retinol to various enzymes for 

retinoic acid synthesis [11-13]. CRBP-I protein expression was previously shown to 

correlate with tumor growth [13, 14]. P53, a known tumor suppressor, is mutated in 

most tumors including pancreatic cancer. The mutation of P53 causes further mutation 

of the P53 gene itself, an increase in an ubiquitin-dependant degradation of P53 

mediated by MDM2 [26], and an inactivation of P53 [27].  p53 gene located at 

chromosome 17; P53 has a DNA binding domain and acts as a “genome gatekeeper” 

[28]. The inherited loss of one allele of p53 [29, 30] usually results in several 

independent tumors in early adulthood (Li-Faumeni syndrome) [31].  

  Chmp1A (Chromatin Modifying Protein 1A/Charged multivesicular protein 1A) 

belongs to the class E family of Vps and is also called Vps 46p [19, 23, 32-35]. Chmp1A 

was shown to physically associate with the multivesicular sorting protein, SKD1/VPS4  
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(Vacuolar Protein-Sorting 4), with AMSH, an endosome-associated ubiquitin 

isopeptidase, and with VPS4 ATPases [19]. Chmp1A localizes at the endosomes, 

where it functions in vesicle sorting and multivesicular body (MVB) formation [19]. 

Chmp1A has also been reported to silence gene activation by interacting with a 

transcriptional repressor Polycomb-group (PcG) protein, BMI1 [18, 20, 21, 36]. In maize, 

mutation in the Chmp1A homolog sal1, results in more aleurone cell layers, suggesting 

that Sal1 might play a role in cell growth [22]. Collectively these studies indicate that 

Chmp1A may play critical roles in vertebrate development by controlling cell growth and 

signaling activity via MVB formation/transcription repression [23]. However, the 

functions and signaling activities of Chmp1A in vertebrates have not been investigated.  

 Pancreatic cancer has the worst prognosis of all cancers with a dismal 5-year 

survival rate. ATRA alone or in combination with other chemotherapeutic reagent has 

been successful in treating tumors [37-39]. Preclinical studies using ATRA for treating 

human pancreatic cancer suggest this compound might useful for treatment. The 

molecular mechanism by which ATRA inhibits growth of pancreatic cancer cells is not 

clear. This paper focuses on the role of Chmp1A in ATRA mediated growth inhibition. 

The objective of our study was to investigate whether Chmp1A expression and/or 

localization is essential for ATRA induced growth inhibition of human pancreatic tumor 

cells.  

 

 

 

 



 8 

Materials and methods:  

Antibodies and chemicals: 

Rabbit polyclonal antibody against Chmp1A was generated in our laboratory by using 

recombinant Chmp1A protein (Belogortseva and Park, unpublished). Other antibodies 

were purchased from commercial sources: rabbit polyclonal antibodies against P53 

(Cell Signaling) and Phospho-P53 (Cell Signaling); rabbit polyclonal antibodies against 

P53 phosphorylated at Ser37 (Cell Signaling), Ser15 (Cell Signaling); mouse 

monoclonal antibodies against Gapdh (Cell Signaling), and rabbit polyclonal antibody 

against CRBP-1 (abcam). Goat anti-rabbit/mouse HRP conjugated secondary antibody 

was purchased from Chemicon. All Trans Retinoic Acid was purchased from Sigma. 

Puromycin was from Invitrogen. All other chemical reagents were purchased from 

Sigma, unless otherwise described. 

 

Cell Culture 

All cell lines were obtained from American Type Culture Collection (Manassas, VA). 

PanC-1 (human pancreatic ductal tumor cells, poorly differentiated), CRL-2151 (mouse 

acinar tumor cells), and HEK 293T (human embryonic kidney, CRL-11268) cells were 

cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum 

(FBS, Gibco). Capan-2 (human pancreatic ductal tumor, well differentiated) cells were 

cultured in McCoy with 10% fetal bovine serum. All cell culture assays were performed 

at 37°C under 5% CO2.  
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RT-PCR 

HEK 293Tcells (CRL-11268) were transiently transfected with Chimp1A-Cs2+ or control 

CS2+ plasmid using Lipofectamine and Plus reagent (Invitrogen).  Total RNA was 

isolated 16 hours post-transfection using Trizol reagent (Invitrogen).  Quality and 

quantity of isolated RNA was analysed using Bioanalyzer (Agilent). RT-PCR (reverse-

transcriptase-PCR) was performed using Titan one tube RT-PCR system that was 

purchased from Roche. For each reaction, 500 ng of total RNA was reverse transcribed 

and used to amplify Chmp1A and CRBP-1. PCR products were separated on 1.5 % 

agarose gel containing ethidium bromide. The primer used for Chmp1A was: 5’– 

GAGACAGCGGGTCCGTAAC-3’, and 5’–ACCTGGGCCATATTCTTGGT-3’ for forward 

and backward primer respectively. CRBP-1 primer used in this experiment was 

described in Arapshian, A., et al., [40]. The cycling parameter for amplifying PCR 

products was: 94℃ for 2 min, 10 cycles of (94℃ for 30 second, 48℃ for 30 second, 68

℃ for 1 min), followed by 15, or 18 additional cycles of (94℃for 30 second, 48℃ for 30 

second, 68℃ for 1 min), and last step is 68℃ for 7min.  

 

ATRA treatment: 

PanC-1 and Capan-2 cells were seeded at 350,000 and 300,000 cells per 10 cm plate 

respectively. The next day, cells were replaced with fresh media containing either 

vehicle (DMSO) or ATRA (20 µM final concentration). We used 20 µM of ATRA as a 

working concentration since that concentration showed obvious growth inhibition. ATRA 

treated cells were kept in the dark since ATRA is light sensitive. Every other day, cells 

were given fresh media containing either DMSO or ATRA. The cells were cultured for 
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up to 5 to 6 days for the following experiments. For PanC-1 and CRL-2151 cells, the 

media was supplemented with 10% FBS containing antibiotics during ATRA treatment. 

For Capan-2, serum free media supplemented with antibiotics was used for ATRA 

treatment [41].  

 

Generation of stable Chmp1A knockdown cell lines  

PanC-1 cells were cultured in DMEM media supplied with 10% FBS. RNAintroTM pSM2 

retroviral vector (Open Biosystems) was used to subclone control and Chmp1A shRNAs. 

The shRNA sequence was designed by online software from Open Biosystems.  This 

vector contains a puromycin-resistant marker site for positive colony selection. The 

specificity of Chmp1A shRNA was verified by transient transfection using Arrest-In 

transfect reagent (open system) followed by Western blotting. To generate stable cell 

lines, shRNAs targeted to Chmp1A or non-silencing control were transfected into 

PanC1 cells. Stable transfectants were selected in the presence of 2 ug/ml puromycin 

(Invitrogen), which was determined by kill curve. Cells derived from these transfectants 

were used for Western blotting to confirm the decrease of Chmp1A protein expression. 

Chmp1A knockdown stable Panc-1 cells were maintained in DMEM media supplied with 

10% FBS containing 1ug/ml puromycin.  

 

Western blot analysis 

The cell lysates were prepared from cells using RIPA buffer plus complete mini protein 

inhibitor cocktail (Roche). Protein concentration of cell lysates was measured by BCA 

assay kit (Pierce). The cell lysates were subjected to 10% SDS-PAGE, and the proteins 
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were electroblotted to nitrocellulose membranes. After blotting the membranes were 

incubated with appropriate primary antibody followed by peroxidase-conjugated 

secondary antibody and was developed using the enhanced chemiluminescence kit 

(Amersham). 

 

Confocal microscopic analysis  

PanC1 and CRL2151 cells were seeded onto sterile glass coverslips in twelve-well 

plates at an approximate density of 0.5×105 cells/well in DMEM (Gibco) containing 10% 

FBS (Gibco), 100 U/ml penicillin and 100 mg/ml streptomycin (Gibco).  These cells were 

incubated at 37° C with 5% CO2 (Gibco). The following day cells were treated with 

ATRA dissolved in DMSO (20 umol, final concentration). Following 24, 48 and 72 hours 

of incubation, cells were washed with 1 x cold PBS, and fixed with 4% formaldehyde in 

1X PBS at room temperature for 30 min. Fixed cells were then washed with PBS before 

being permeabilized in PBS/0.1% Triton X-100 (Sigma) for 5-10 min at room 

temperature. Following permeabilization cells were washed three times in cold PBS and 

incubated in blocking solution (PBS, 10% heat inactivated FBS) for 30 min. Next, the 

cells were incubated with a primary antibody (Chmp1A antibody) for 3 hours. After being 

washed three times with 1 x PBS cells were incubated with anti-rabbit Alexa Flour 488 

secondary antibody (Molecular Probes). In each case secondary antisera were used at 

a dilution of 1/300 in blocking buffer. Cells were washed in PBS and mounted on the 

slide using Vectashield (Vector Laboratories, Inc. Burlingame). Confocal images were 

taken by using a confocal laser scanning microscope (Carl Zeiss LSM510) at Marshall 

University Imaging Core. 
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Statistical Analysis 

Statistical analysis was performed with Sigma Stat software using paired student test 

analysis. All numerical data are reported as the Mean ± SEM. P values less than 0.05 

were considered statistically significant, and all P values are one-sided. 

 

Results: 

Overexpression of Chmp1A positively regulates CRBP-I expression  

A microarray screen identified Chmp1A and cellular retinol binding protein-1 (CRBP-I) 

as up-regulated genes in HEK 293T cells overexpressing Chmp1A. Chmp1A 

(NM_002768) and CRBP-1 (NM_002899) showed a 9.44 and a 3.46 fold change 

respectively upon Chmp1A overexpression compared with a control. Reverse 

transcriptase PCR (RT-PCR) was carried out to verify the microarray data. As shown in 

Fig. 2, Chmp1A mRNA was increased by 2.2 fold at 25 cycles and 1.7 fold at 31 cycles 

compared to the control. CRBP-1 mRNA level was also increased by 1.3 fold at 25 

cycle and 1.2 fold at 31 cycle compared to control. Consistent with the microarray data, 

the increase of Chmp1A mRNA was greater that the increase of CRBP-1 mRNA. Since 

CRBP-1 is involved in retinoid metabolism and function we developed a hypothesis that 

Chmp1A might be involved in ATRA signaling. 
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Figure 2. Chmp1A over-expression positively regulates CRBP-1 transcription. (A) 

Reverse transcriptase PCR (RT-PCR) indicates that CRBP-1 transcripts were increased 

at 25 and 31 cycles respectively. RT-PCR control Gapdh was amplified similarly in 

control and Chmp1A over-expression respectively. (B) Densitometric analysis reveals 

that CRBP-1 are up regulated at both 25 and 31 cycle by Chmp1A over-expression, 

compared with control that was set as 1 (not shown in the graph). 

 

 

Figure 3. The growth inhibition of Capan-2 cells by ATRA was accompanied by an 

increase in the protein level of Chmp1A, CRBP-1, P53, and phospho-P53. (A) Growth 
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curve demonstrates that ATRA significantly decreases the growth of Capan-2 cells. 

Black line with square represents DMSO treated and gray line with circle represents 

ATRA treated. t-test was used to obtain P-value. (B) Upon ATRA treatment Chmp1A 

protein level was increased on day 2 and 3. CRBP-1 protein was up regulated highly on 

day 2 only and moderately on day 3. Gapdh protein indicates equal loading of protein 

samples. (C) P53 protein showed a strong 4.8 fold increase on day 2. The protein levels 

of phospho-P53 at serine 15 and 37 position were increased on both days. The fold 

difference was obtained by setting control DMSO as 1 on each day, as shown below the 

blots. 

 
ATRA induced growth inhibition and increase of Chmp1A, CRBP-1, P53 and 

phospho-P53 protein levels in human pancreatic ductal tumor cells  

Human pancreatic ductal tumor cells, Capan-2 and PanC-1 were treated with ATRA (20 

µM) [42]. Capan-2 is poorly differentiated and PanC-1 is a highly metastatic ductal 

adenocarcinoma cell line. Cell number was counted on a daily basis for 5 days using a 

hemocytometer. ATRA treatment induced growth inhibition of Capan-2 and PanC-1 

cells (Fig. 3A and 4A respectively) compared with vehicle DMSO treatment. This data is 

consistent with the results reported from other researchers [43-46]. To determine if 

Chmp1A is involved in the growth inhibition of ATRA, we performed Western blot 

analysis. As shown in Fig. 3B and 4B, the expression level of Chmp1A protein was 

increased upon ATRA treatment in both cell lines compared to control. Furthermore, 

CRBP-1 protein expression was increased in both cell lines upon ATRA treatment 

compared to control (Fig. 3B and 4B). ATRA is shown to regulate tumor growth by 

controlling a known tumor suppressor P53 [47-49]. Thus we investigated whether ATRA 

controls the expression of P53 and phospho-P53 in both ATRA responsive cell lines. 

Western blot analyses (Fig. 3C and 4C) demonstrated that ATRA increased the protein 
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expression of P53 and phospho-P53 (at Serine 15 and Serine 37, respectively) in ATRA 

responsive Capan-2 and PanC-1 cells. The fold increases of Chmp1A, CRBP-1, P53 

and phospho-P53 (at serine 15/37) protein level compared with control was reported 

below each blot.  

 

 

Figure.4.  The growth inhibition of PanC-1 cells by ATRA was accompanied by an 

increase of Chmp1A, CRBP-1, P53 and phospho-P53 protein expression. (A) Growth 

curve demonstrates that ATRA induces growth inhibition of PanC-1 cells compared to 

DMSO vehicle treated cells.  P value was obtained using t-test. (B) Chmp1A protein 

level was increased greater on day 1 than on day 2 by ATRA treatment. CRBP-1 also 

showed similar increase on day one and two upon ATRA treatment.  (C) The protein 

levels of P53 and phospho-P53 at serine 15 and 37 position were increased both on 

day 1 and 2. The fold difference was obtained by setting control DMSO as 1 on each 

day, as shown below the blots.  

 

Chmp1A, CRBP-1 and P53 protein level was not changed in ATRA non-

responsive cells 
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To determine whether the increase of Chmp1A protein is linked with ATRA function we 

treated CRL 2151 cells with ATRA. This cell line was previously shown to be resistant to 

ATRA-mediated growth inhibition [50]. Consistent with previous reports ATRA did not 

inhibit growth of CRL 2151 cells (Fig. 4A). In ATRA-responsive cells Chmp1A protein 

expression was increased upon ATRA treatment (Fig. 3B and 4B). However, as shown 

in Fig. 5B, the Chmp1A protein level did not change upon ATRA treatment in this cell 

line. In addition, as shown in Fig. 5B, the expression level of P53 remained similar in 

ATRA treated cells compared to DMSO treated cells.  

 

 Figure 5. CRL-2151 cells are resistant to 

ATRA treatment in growth inhibition and did not 

exhibit the increase of proteins in Chmp1A and 

P53. (A) CRL-2151 cells did not show any 

difference in growth in the presence or 

absence of ATRA. Notice the similar growth 

pattern between DMSO treated and ATRA 

treated cells. (B) Western blot analysis reveals 

similar levels of Chmp1A and P53 protein 

expression in vehicle DMSO treated or ATRA 

treated cells  

 

Chmp1A is required for ATRA mediated growth inhibition 

Next we investigated whether Chmp1A is necessary for the growth inhibition of ATRA.  

We generated stable cell lines that express shRNA to knockdown Chmp1A in PanC-1 

cells. Before we used the stable knockdown cells for growth assays, we determined the 

knockdown efficiency by Western blot analysis. Knockdown stable colony 1 and 2 (KD 1 
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and KD 2) showed a significant decrease of Chmp1A protein (Fig. 6A) by 72% and 85%, 

respectively compared to a control colony that stably expressed non-silencing shRNA. 

Since stable colony 2 showed greater knockdown efficiency we used this colony for the 

following growth analysis.   

We treated cells, which stably express Chmp1A shRNA or control shRNA, with ATRA 

(or DMSO as control) and tested whether Chmp1A was required for growth inhibition of 

ATRA signaling. Similar to non-treated cells, the non-silencing shRNA expressing cells 

exhibited growth inhibition upon ATRA treatment (black line), compared with DMSO 

treatment (black dashed line) (Fig. 6B). On the other hand, the cells that stably express 

Chmp1A shRNA promoted cell growth in the presence of ATRA or DMSO. The growth 

promotion by Chmp1A knockdown was obvious in the DMSO treated cells (gray dashed 

line) as well as in the ATRA treated cells (gray line) compared with control. Importantly, 

ATRA treated PanC-1 cells that express Chmp1A shRNA revealed the same growth 

pattern as DMSO treated cells demonstrating that ATRA signaling is not translated to 

growth inhibition in the absence of Chmp1A. In addition, the growth was promoted in 

both ATRA and vehicle treated PanC-1 cells that express Chmp1A shRNA compared to 

the cells that express non-silencing shRNA. Our data indicates that Chmp1A 

knockdown mediates growth promotion, and that Chmp1A is indispensable for the 

growth inhibition of ATRA signaling. 
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Figure 6. Chmp1A knockdown abolished ATRA mediated growth inhibition and the 

increase of protein levels of Chmp1A, CRBP-1, P53 and phospho-P53. (A) Two 

Chmp1A knockdown colonies (KD1 and KD2) of PanC-1 cells demonstrated the 

decrease of Chmp1A protein by 72% and 84% respectively compared to control. Non-

silencing shRNA was used as control. Densitometric analysis was shown below the 

blots.  (B) Control shRNA expressing cells showed growth inhibition upon ATRA 

treatment that is similar to non-transfected PanC-1 cells, as shown in Fig. 3A. However, 

Chmp1A knockdown cells did not exhibit any growth inhibition upon ATRA treatment. In 

addition, both ATRA and DMSO treated Chmp1A knockdown cells showed significant 

growth promotion compared to control cells. (C) Compared to control Chmp1A shRNA 

expressing cells showed robust reduction of Chmp1A protein in both DMSO and ATRA 

treated on both days. Compare Chmp1A expression in lane 3, 4 and 7, 8 to control lane 

1, 2 and 5, 6. CRBP-1 expression was deceased only on day 2 in Chmp1A depleted 

cells upon ATRA treatment (compare the lane 8 to 7). Compared with control Chmp1A 

depleted cells showed the reduction of CRBP-1 in the presence of ATRA and DMSO 

(compare the lane 7, 8 to control 5, 6). (D) The protein expression of P53 was increased 

slightly by ATRA treatment in both control and Chmp1A shRNA expressing cells. 

However, Phospho-P53 expression at serine 15/37 in control cells were greatly reduced 
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in Chmp1A depleted cells (compare lane 3 and 4 to 1 and 2). ATRA treatment did not 

abolish the increase of Phospho-P53 expression at serine 15/37 in Chmp1A depleted 

cells (compare lane 4 to 3). The fold difference was obtained by setting control DMSO 

as 1 on each day and in each group (control shRNA and Chmp1A shRNA), as shown 

below the blots.  

 

The knockdown of Chmp1A diminished the ATRA mediated increase in protein 

expression level of Chmp1A, CRBP-1, P53 and phospho-P53  

We have shown that Chmp1A expression is increased upon ATRA treatment. Thus we 

tested if Chmp1A expression was changed upon ATRA treatment in Chmp1A depleted 

cells. In the control shRNA-expressing cells, Chmp1A expression was increased on day 

one and day two compared with control upon ATRA treatment (compare lane 2 and 6 

with 1 and 5 respectively in Fig. 6C). However, in the Chmp1A shRNA-expressing cells, 

Chmp1A expression was either decreased (compare lane 4 to 3 in Fig. 6C) or remained 

the same (compare lane 8 to 7 in Fig. 6C) upon ATRA treatment. Chmp1A protein level 

was decreased upon both ATRA and DMSO treatment in Chmp1A depleted cells in 

comparison with that in control, verifying the knockdown of Chmp1A in these cells 

(compare lane 3, 4 to lane 1, 2 and lane 7, 8 to lane 5, 6 respectively). 

 Our data suggest that Chmp1A mediates ATRA signaling through the 

transcriptional activation of CRBP-1 (Fig. 2A and B). Thus we investigated the CRBP-1 

protein expression in Chmp1A knocked-down stable cells. On day one CRBP-1 protein 

was increased in control as well as Chmp1A shRNA expressing cells upon ATRA 

treatment compared with DMSO treatment (compare lane 4 and 2 to lane 3 and 1 

respectively). The fold increase of CRBP-1 in these cells was similar to that was shown 

in non-treated PanC-1 cells (2 fold increase in Fig. 3B compared to 1. 6 and 2 fold 
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increase in Fig. 6C). On day two, however, the up-regulation of CRBP-1 by ATRA was 

abolished in the Chmp1A depleted cells compared with control, from 1.6 and 2.0 fold 

increase to 0.6 and 0.9 fold increase in control and Chmp1A-shRNA expressing cells 

that were treated with ATRA (compare lane 6 and 8 to lane 2 and 4 in Fig. 6C). In 

addition, in Chmp1A depleted cells, CRBP-1 expression was not increased upon ATRA 

treatment compared with DMSO treatment on day 2 (compare lane 8 to 7 in Fig. 6C). 

 Next we tested whether Chmp1A knockdown affected P53 activity by determining 

the level of total P53 and phospho-P53 at serine 15/37.  Since we observed the 

significant changes in the expression of these proteins on day one we showed the 

results obtained on day one. In control shRNA expressing cells, ATRA treatment 

elevated the P53 and phospho-P53 expression (6D). In control expressing cells, the fold 

increases in P53 and phospho-P53 at serine 15 was similar to that we obtained from 

non-treated PanC-1 cells (compare lane 2 in Fig. 6D to lane 2 in Fig. 4C). Both DMSO 

and ATRA treatment decreased phospho-P53 expression at serine 15/37 in Chmp1A 

shRNA expressing cells compared with non-silencing shRNA expressing cells (compare 

P53 in lane 4 to lane 2 in Fig. 6D). However, it appears that the knockdown of Chmp1A 

did not abolish the ATRA mediated increase in total P53 expression (compare lane 4 to 

lane 2 in Fig. 6D).  

 

Nuclear expression of Chmp1A is important for ATRA mediated growth inhibition 

ATRA is known to exert its effect via interacting with its nuclear receptors [4, 51]. 

Chmp1A protein is shown to be distributed in the cytoplasm and nucleus. It is possible 

that ATRA regulates cellular growth by enhancing the nuclear localization of Chmp1A. 
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We tested this hypothesis by determining the subcellular distribution of Chmp1A in the 

presence of ATRA or vehicle DMSO. Confocal microscopic analysis demonstrated that 

Chmp1A protein is ubiquitous with stronger staining in the nucleus in ATRA responsive 

PanC-1 cells. When cells were treated with ATRA, Chmp1A staining was increased 

especially in the nucleus compared to control (Fig. 7. A b,d compare with A a, c). In 

ATRA non-responsive cells Chmp1A protein was also ubiquitous initially, and up to day 

2 with or without ATRA treatment (Fig. 7. B a, b). By day three, Chmp1A was recruited 

into the plasma membrane and remained at the membrane in both ATRA and DMSO 

treated cells (Fig.7. B c, d).  

 

Figure 7. Chmp1A protein was translocated to the nucleus in PanC-1 cells upon ATRA 

treatment, but recruited to the membrane in CRL-2151 cells in the presence or absence 

of ATRA.  (A) In the presence of DMSO, Chmp1A protein was modestly detected in the 

nucleus and cytoplasm in PanC-1 cells (a, c). However, Chmp1A protein expression 

became robust in the presence of ATRA, especially in the nucleus (n in c, d).  (a, b) and 

(c, d) is one and two days after vehicle or ATRA treatment respectively. (B) Chmp1A 

was initially distributed ubiquitously in CRL-2151 cells in the presence of ATRA or 
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DMSO (a, b). From day 3 on, however Chmp1A protein was mainly detected and 

remained at the membrane in both DMSO and ATRA treated cells (arrows in c, d). (a, b) 

is for day two and (c, d) is for day three after DMSO and ATRA treatment respectively.  

 

Figure 8. Model: Chmp1A mediated ATRA 

signaling amplification. Chmp1A increases 

the expression of CRBP-1. In turn, CRBP-

1 controls the activity of ATRA via 

regulating the storage and metabolism of 

retinol A. ATRA increases the expression 

level of Chmp1A, which increases total and 

‘active’ P53 resulting in a decrease in cell 

proliferation. 

 

 

 

 

DISCUSSION 

 In this study we provide a new insight into the function and mechanism of the 

ESCRT family by studying Chmp1A, a member of ESCRT-III family. As shown in our 

model in Fig. 8, Chmp1A regulates CRBP-1 expression. In turn, CRBP-1 regulates the 

availability of ATRA via controlling the storage and metabolism of retinol A [11, 52]. 

ATRA then increases the protein level of Chmp1A, which activates its own expression 

as shown in our RT-PCR and Western blot analyses. This model proposes a positive 

amplification of ATRA signaling resulting in inhibition of tumor cell proliferation mediated 

at least in part by Chmp1A. 
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 CRBP- I binds retinol and is thought to carry this retinoid to various enzymes for 

its metabolism into retinoic acid [11]. The expression of CRBP-1 is reduced in various 

tumors including breast [53], prostate [54], ovarian [55], and endometrial carcinomas 

[56]. The decrease of cytoplasmic immunoreactivity of CRBP-1 is associated with the 

increase of tumor grade in endometrioid carcinomas [56].  In our study, we have shown 

that Chmp1A positively regulated the expression of CRBP-1. This protein localizes to 

lipid rafts, specialized membrane domains, where retinol is stored [13]. We have 

identified SPFH domain containing proteins as Chmp1A binding partners (Belogortseva 

and Park, unpublished). SPFH domain-containing proteins are also found in the lipid 

rafts of various membrane including plasma membrane and endosomes [57]. Thus it is 

possible that Chmp1A, by interacting with SPFH domain containing proteins at lipid rafts 

of various membranes, could have effects on CRBP-1 and retinol storage. 

 We examined the involvement of Chmp1A in ATRA signaling by determining the 

effect of ATRA on Chmp1A expression in pancreatic tumor cell lines. We chose two of 

ATRA responsive cell lines and one of ATRA non-responsive cell line for our 

experiments. Capan-2 and PanC-1 cells are poorly differentiated and highly metastatic 

human pancreatic ductal tumor cells respectively whose growth was inhibited by ATRA 

treatment. CRL-2151 is mouse pancreatic acinar tumor cell line that did not show 

growth inhibition upon ATRA treatment. Our results on ATRA-mediated growth inhibition 

of pancreatic tumor cells are consistent with the already published reports [41, 43, 50, 

58]. However, the increase of Chmp1A upon ATRA treatment in two ATRA responsive 

cell lines is a novel finding. Our observation that ATRA increased iP53 and phospho-
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P53 expression also agrees with several reports demonstrating that ATRA inhibits 

tumor growth in part by regulating P53 expression and activity [49, 59]. 

 We tested whether Chmp1A is required for ATRA induced growth inhibition by 

using shRNA mediated stable knockdown of Chmp1A. Clones of PanC-1 cells that 

heavily reduced Chmp1A protein levels were resistant to ATRA-induced growth 

inhibition. In addition, Chmp1A knockdown resulted in increased growth of pancreatic 

ductal tumor cells relative to cells expressing control shRNA. These results suggest that 

Chmp1A mediates the effect of ATRA on cell proliferation, at least in this human 

pancreatic cancer cell lines. We are currently testing whether Chmp1A might inhibit 

tumor growth in ATRA-independent manner. Knockdown of Chmp1A also resulted in 

the decrease of protein levels of CRBP-1, which is consistent with our model (Fig. 8) 

suggesting the positive effect of Chmp1A on CRBP-1. In addition, the decrease of P53 

and phospho-P53 (at serine 15/37) by Chmp1A knockdown is consistent with model 

that proposes regulation of P53 expression and activation by Chmp1A.  

 This model is further supported by our experiments with ATRA resistant cells. 

Since human pancreatic acinar tumor cell lines are not available we used mouse acinar 

tumor cells for this assay. We hypothesized that ATRA non-responsive cells should not 

show any difference in Chmp1A or CRBP-1 protein level. Our data indeed 

demonstrated that the expression of Chmp1A or CRBP-1 did not change upon ATRA 

treatment. In addition, we did not observe any change in the protein expression of P53 

suggesting that ATRA regulation of P53 expression and activity is important for 

inhibition of cell proliferation. 
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 We investigated whether ATRA had any effect on the nuclear localization of 

Chmp1A. In the absence of ATRA, Chmp1A was expressed ubiquitously in the 

cytoplasm and the nucleus (Fig. 7) in both ATRA responsive and non-responsive cells. 

However, Chmp1A protein had stronger nuclear localization upon ATRA treatment in 

the responsive cells. In the ATRA non-responsive cells, addition of ATRA resulted in 

translocation of Chmp1A to the plasma membrane. These results indicate that nuclear 

localization of Chmp1A might be important for its ability to regulate cell proliferation 

ATRA signaling activity.  

 In summary we have novel findings that support a role for Chmp1A in mediating 

ATRA signaling induced growth inhibition of human pancreatic ductal tumor cells.  
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Chapter2 

IN VIVO AND IN VITRO INVESTIGATION OF CHMP1A IN TUMOR DEVELOPMENT  

 

Abstract: Chmp1A (Chromatin modifying protein 1A/Charged multivesicular protein 1A) 

is a member of the ESCRT-III (Endosomal Sorting Complex Required for Transport) 

family. ESCRT complexes (0, I, II, and III) play central roles in endosome mediated 

trafficking via MVB (multivesicular body) formation and sorting.  An increasing amount 

of data suggests that ESCRT complexes are also involved in broader cell signaling 

events such as cell cycle progression and tumor development. Using in vitro and in vivo 

model systems, we provide evidence that Chmp1A is a potential tumor suppressor, 

especially in the pancreas. The in vitro soft-agar assay demonstrated that shRNA 

mediated knockdown of Chmp1A resulted in an increase of anchorage-independent 

growth of HEK 293T cells. In addition, Chmp1A shRNA expressing HEK 293T cells 

transformed these non-tumorigeneic cells to form tumors in xenograft assays. To 

determine the role of Chmp1A in human tumor development we screened human 

cancer profiling arrays and human pancreatic tissue arrays. We found out that Chmp1A 

mRNA and protein is reduced in various human pancreatic tumors. Furthermore, we 

discovered that Chmp1A protein is either reduced or mis-localized in human pancreatic 

ductal tumors. To substantiate the data we obtained from cancer profiling arrays, we 

either over-express or knockdown the expression of Chmp1A and study its effect on 

PanC-1 cell and tumor growth in vitro and in vivo respectively. Doxycycline inducible 

over-expression of Chmp1A in human pancreatic ductal tumor cells (PanC-1) induced 

growth inhibition in vitro and in vivo xenograft assays. On the other hand, knockdown of 
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Chmp1 via short hairpin RNA (shRNA) in PanC-1 cells resulted in the elevation of cell 

growth in vitro. Mechanically, over-expression of Chmp1A strongly increased the protein 

level of pan-P53 and phospho-P53. Taken together, our data indicates that Chmp1A is 

a potential tumor suppressor, especially in pancreas and that Chmp1A regulates tumor 

growth in part through activation of P53. 
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Review of the literature 

Tumor development 

Cancer involves uncontrolled cell growth, invasion, and sometimes metastasis. 

Hyperplasia usually is benign proliferation, and self-limited, whereas neoplasm is a 

malignant hyperplasia, which is much more dangerous than hyperplasia for people. 

According to the origin, neoplasm is classified as two groups, one originated from 

epithelial is defined as carcinoma, and another one originated from mesenchymal is 

called stroma. Lymphoma and leukemia are derived from hematopoietic cells. 

As we know, tumor formation is a multi-step process [60]. Multiple genetic alterations 

might be involved in tumor formation. According to Robert Weinberg, tumor must 

acquire six kinds of capabilities acquired, which are self-sufficiency in growth signals, 

insensitivity to antigrowth signals, evading apoptosis, limitless replicative potential,  

sustained angiogenesis, tissue invasion and metastasis [61].  

At present, metastasis and angiogenesis of tumors is the hot spot of investigation in 

cancer biology field. 

 

Cell transformation 

Cell transformation is defined by changes of a cell that affects its morphology and 

physiology through natural or artificial mechanism or sources. In the cancer biology field, 

a transformed cell is able to survive without growth factors, and they do not require the 

anchorage to a solid support [62, 63]. The extent of cell transformation is usually 

measured by soft-agar assay [64, 65].  
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Definition of Tumor suppressor  

In contrast with oncogenes, tumor suppressor genes are defined as the counterpart of 

oncogene that is able to slow down cell division and repair DNA mistakes.  The tumor 

suppressor gene usually has a low expression level or is mutated in cancer. The known 

tumor suppressors include P53, RB, pTEN, PP2A, BRCA1, BRCA2, and APC. 

 

 

Fig.1. Tumor suppressor activitiy versus gene dosage. Wild type (+/+) activity represents 100% 

of diploid gene function and true null (–/–) represents complete loss of functionality. 

Haploinsufficient tumor suppressors exhibit a continuum of activity based on gene dosage with 

even 50% reduction sufficient for phenotypic manifestation, i.e. accelerated tumorigenesis. 

While some genes may be less dosage-sensitive than others (in which a true threshold of close to 

0% of normal gene product is required in order to detect a phenotype), Christopher J. 

Kemp predict that most genes will be sensitive to dosage with some threshold that varies on a 

continuum between 0 and 100%. By Shannon R. Payne and Christopher J. Kemp [66] 

 

Tumor suppressor genetics  

There are two kinds of tumor suppressor [66]. The first one is “two hit” tumor suppressor 

(Fig.1), for example, RB, which involves dominant oncogene and recessive tumor 

suppressor. The later one is haploinsufficient tumor suppressor (Fig.1), where loss of a 

single allele can show a strong phenotype. This kind of tumor suppression by tumor 
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suppressor is gene-dose dependent. The example of this kind of genes includes P53 

[67, 68], P27 [69].  

 

P53 

P53, a known tumor suppressor, mutated in most tumors including pancreatic cancer. 

The mis-regulation of P53 includes mutation of P53 gene itself, increased ubiquity-

dependant degradation of P53 protein products mediated by murine double minute 2 

(MDM2) [26], and some other situations which abolished the activity of P53. P53 might 

be the clearest protein which got investigated currently [27].  p53 gene is located on 

chromosome17. P53 protein has a DNA binding domain and act as “genome 

gatekeeper” [28]. The inherited loss of one copy of allele of p53 [29, 30] usually results 

in the several independent tumors in early adulthood, which is named as Li-Faumeni 

syndrome [31].  

 

RB 

The full name of RB is retinoblastoma protein-susceptibility gene, which is a prototypical 

tumor suppressor, which means it inhibits cell growth. Some reports indicated that RB 

also has important implications in apoptosis, and cell cycle by repression of elongation 

factor-2s (E2Fs) [70-72]. Hereditary retinoblastoma results from bi-allele loss of RB 

gene in embryonic retinoblasts.  There is also inactivation of genetic mutations in the 

sporadic cancers. 

The phosphorelated form of RB is usually considered as the inactive form of RB, 

degradation of RB also is one of inactivation mechanism of RB. In one word, this 
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inactivation mechanism of RB mainly comprised of phosphorylation, degradation, 

genetic mutation and viral inactivation [71, 73].  

 

Rules for making tumor cells either in rodent or human cells 

According to Robert Weinberg, Human embryonic kidney 293 cells expressing SV40 

large antigen (LT), telomerase reverse transcriptase (hTERT), H-RAS, and small 

antigen (ST) have the characteristics of tumorigenesis, whereas cells expressing only 

LT, hTERT, and H-RAS are immortal but not tumorigenic [62, 74].  HEK293T/17 cells 

(CRL-11268) constitutively express the SV40 large antigen (LT) only, it is not 

tumorigenic [75, 76]. Mechanically, previous reports showed that SV40 large antigen is 

able to inactivate RB and P53. 

Transformation of cultured cells is itself a multi-step process, for rodent cells at least two 

ectopic genetic alterations are required before they acquire tumorigenic competence 

[61]. However, it is more difficult to repeat this experiment in human cells and species-

specific difference between mice and human do exist [77]. Until 1999, Hahn and 

Weinberg reported that Ras in combination with telomerase apparently were able to 

transform both human embryonic kidney cells and fibroblast cells into tumor cells by cell 

transformation assay in vitro and xenograft experiment in vivo [75]. Consequently, they 

also published one review which talked about rules of making human normal cells to 

tumor cells [78].   
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Introduction 

The ESCRT complexes (Endosomal Sorting Complex Required for Transport, 0, I, II, III) 

mediate the lysosomal degradation of transmembrane proteins and are critical for 

receptor down regulation, and other normal and pathological cell processes [32, 79, 80]. 

Proteins, such as receptors at the membrane are internalized by endocytosis [81]. 

Some membrane receptor proteins (e.g. transferring receptors and low density 

lipoprotein) are recycled to the membrane, and others (e.g. mannose 6-phosphate 

receptors) enter into the trans Golgi network (TGN). In contrast, misfolded proteins and 

activated growth factor receptors are transported into the multivesicular bodies (MVBs), 

which will fuse with late endosome or lysosomes for protein degradation [82, 83]. 

Chmp1A is a member of the ESCRT-III complex. Mammalian orthologues of ESCRT-III 

components and their related proteins are collectively called Chmps. All Chmps 

reported to date have common features: they contain an approximately 200 amino acid 

long open reading frame (ORF), a coiled-coil region and charged residues, basic at the 

N terminus and acidic at the C terminus [80]. Chmp1A is a member of these structurally-

related Chmp family proteins.  

 Chmp1A localizes at the endosomes, where it functions in vesicle sorting and 

MVB formation [19]. Chmp1A is peripherally associated with the membrane of both 

early and late endosomes and over-expression of Chmp1A alters endosomal structure. 

Chmp1A was shown to physically associate with the multivesicular sorting protein, 

SKD1/VPS4 (Vacuolar Protein-Sorting 4) [19]. The binding of Chmp1A to SKD1/VPS4 is 

shown to mediate ATP-dependent disassembly of the ESCRT-III complex, which leads 

to restructuring and/or dissociating from the membrane [19]. Recent studies 
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demonstrate that in addition to their endosomal function in protein sorting, ESCRT 

complexes have non-endosomal functions. In Drosophila melanogaster, genetic defects 

in Vps25 (Tsg101, ESCRT-I) are shown to cause loss of cell polarity in epithelial tissue, 

followed by cell autonomous and non-autonomous over-proliferation [84, 85]. 

Knockdown of mammalian homologue Vps25 (Tsg101) induces cell transformation and 

forms tumors in mice [86]. HCRP1 (Hepatocellular Carcinoma Related Protein 1, 

ESCRT- I [87]), a human homologue of Vps37P is frequently deleted in hepatocellular 

carcinoma (HCC) [88, 89]. In addition, it was shown that Chmp1A (ESCRT-III) functions 

in gene silencing by interacting with a transcriptional repressor Polycomb-group (PcG) 

protein, BMI1 [18-21, 36]. Over-expression studies in cultured cells demonstrated that 

the gene silencing of Chmp1A was due to its effect on chromatin structure [36]. A maize 

homolog of Chmp1A named SAL1 (supernumerary aleurone layers 1) has been shown 

to regulate the formation of the aleurone cell layer [22]. Mutation in sal1 results in more 

aleurone cell layers, suggesting that Sal1 might play a role in cell growth. 

These studies indicate that Chmp1A, a member of ESCRT, may play critical 

roles in tumor development by controlling cell growth and by regulating signaling activity 

via MVB formation [19, 36, 90]. However, its functions and signaling activities in tumor 

development have not been explored. In this paper we provide evidence that Chmp1A 

functions as a tumor suppressor, especially in pancreas.  
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MATERIALS AND METHODS 

 

Cell lines and culture 

All cell lines were obtained from American Type Culture Collection (Manassas, VA). 

HEK293T (CRL-11268) and PanC-1 cells were cultured in Dulbecco’s modified Eagle’s 

medium containing 10% fetal bovine serum (FBS, Gibco). All cell culture was performed 

at 37°C under 5% CO2. Stable cell lines were cultured in conditional medium as 

indicated in the following. 

 

Antibodies and chemicals 

Rabbit polyclonal antibody against Chmp1A was generated in the lab by using 

recombinant Chmp1A protein (Belogortseva and Park: unpublished). Other antibodies 

were purchased from commercial sources: rabbit polyclonal antibodies against pan-P53 

(Cell Signaling) and rabbit polyclonal antibodies against phospho-P53, which detect 

phosphorylated form of P53 at Serine 37 and serine 15 (Cell Signaling), and mouse 

monoclonal antibodies against Gapdh (Cell Signaling). Goat anti-rabbit/mouse HRP 

conjugated secondary antibody was purchased from Chemicon. All Trans Retinoic Acid 

were purchased from sigma. Puromycin was purchased from Invitrogen. Doxycycline 

was purchased from Clontech. All other chemical reagents were purchased from Sigma, 

unless otherwise described. To determine whether Chmp1A is differentially expressed 

in human tumors, we screened cancer profiling arrays II (Clontech) with Chmp1A probe 

that was generated from the cDNA plasmid (a gift from Dr. Stauffer [36]). The DIG high 

prime DNA labeling and detection starter kit II was used following the instructions from 
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the company (Roche). Clontech Cancer Profiling Array II hybridized with digoxigenin labeled 

human Chmp1A probe. The array was stripped and re-probed with human Ubiquitin (Ubi, 

control) probe.  

 

Immunhistochemical analysis of high density Tissue MicroArrays (TMA)  

The high-density Tissue MicroArrays (TMA) for human pancreatic tumors was obtained 

from BioChain (PACA0909, CA). The immunohistochemical analysis was performed 

based on the manufacture’s direction. Briefly, this process includes: deparaffinization of 

paraffin-embedded tissues, blocking tissue sections, incubation with primary Chmp1A 

antibody followed by secondary goat anti-rabbit antibody, and color reaction with HRP 

substrate.  

 

Generation of stable Chmp1A knockdown cell lines of HEK293T cells 

PanC1 cells were cultured in DMEM media supplied with 10% FBS. RNAintroTM pSM2 

retroviral vector (Open Biosystems) was used to subclone control and Chmp1A shRNAs. 

The shRNA sequence was designed by online software from Open Biosystems.  This 

vector contains a puromycin-resistant marker site for positive colony selection. The 

specificity of Chmp1A shRNA was verified by transient transfection using Arrest-In 

transfect reagent (open system) followed by Western blotting. To generate stable cell 

lines, shRNAs targeted to Chmp1A or non-silencing control were transfected into 

PanC1 cells. Stable transfectants were selected in the presence of 2 ug/ml puromycin 

(Invitrogen), which was determined by kill curve. Cells derived from these transfectants 

were used for Western blotting to confirm the decrease of Chmp1A protein expression. 
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Chmp1A knockdown stable HEK cells were maintained in DMEM media supplied with 

10% FBS containing 1ug/ml puromycin.  

 

Establishment of stable PanC1 cells expressing Chmp1A conditionally 

Tet-On advanced inducible gene expression system was used to generate conditional 

stable PanC1 cell lines [91, 92] (Clontech). Transfection was performed with 

Clontechfectin (Clontech) according to the manufacturer’s instructions. Stable 

transfectants were selected by incubation with Geneticin (700 ng/mL; G418; Invitrogen) 

for a first selection and hygromicin B(300 ng/mL; Clontech) for a second selection, 

PanC1 stable transfectants were selected by incubating the cells with Geneticin (500 

ng/mL; G418; Invitrogen) as first and hygromicin B(200 ng/mL; Clontech) as second 

selection. Luciferase assays were used for confirmation of success of first transfection: 

PanC1 cells after the first transfection was transiently transfected with tet-luc plasmid 

using Clontechfectin (Clontech) according to the manufacturer’s instructions. 24 hours 

after transfection, 50 ul of total 150 ul cell lysate was used to measure luciferase activity 

using Dual Luciferase kit (Promega) with Berthold Centro 960. 

 

Western blot analysis 

The cell lysates were subjected to 10% SDS-PAGE, and the separated proteins in the 

gel were electroblotted to nitrocellulose membrane. The membrane was incubated with 

peroxidase-conjugated secondary antibody and visualized by using an enhanced 

chemiluminescence kit (Amersham).  
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Anchorage-independent growth assay 

HEK293T cells stably expressing Chmp1A shRNA (short hairpin RNA) were subjected 

to Western blot analysis to determine the knockdown efficiency of Chmp1A. Control 

shRNA stable transfectants were used as control. The transfectant with higher 

knockdown efficiency in Chmp1A expression was used in the assay. For anchorage 

independent experiments, stably trnasfected cells were counted and seeded into soft 

agar based on the manufacturer’s directions (Cell Biolabs INC). The colonies were 

photographed and counted for statistical analysis after 7 days incubation.   

 

Xenograft assays in nude/nude mice 

Five-week old male specific, pathogen free athymic nude/nude mice were purchased 

from Jackson Laboratoris. 70% confluent cells, which either over-express or knockdown 

Chmp1A were replaced with fresh medium 3 to 4 hours before harvesting to remove 

dead and detached cells. Cells were washed 3 times with 1X PBS, dissociated by 

trypsin, and counted by cellometor (Nexcelom). Next, cells were pelleted, washed with 

1X cold PBS and re-suspended to a concentration of 3×106 cells/ 300 µl. We cleaned 

the inoculation area with ethanol. 

Cells were mixed and drawn into 1-cc syringe without a needle to avoid negative 

pressure which can cause cell damage. Cells were subcutaneously (s.c.) injected into 

the mid-scapular region of the nude mice using a 23-gauge needle [93, 94]. To induce 

Chmp1A over-expression fresh doxycycline (Dox, Clontech, 631311) in drinking water 

was supplied at a concentration of 200 µg/ml every other day. For control mice, fresh 

water without Dox was supplied.  Once a tumor was detected, the tumor volume was 
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measured every three days with vernier calipers (Fisher Scientific). Tumor volume was 

calculated using the formula, Volume = length×width2 × 0.5236 [95, 96]. When the 

tumors reached 2.0 cm in diameter, the mice were sacrificed and tumors were cut out 

for further investigation.  
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RESULTS 

 

Reduction of Chmp1A protein increased anchorage- independent growth in HEK 

293T cells 

Chmp1A, a member of ESCRT, has been shown to function in cell cycle progression 

[36] and some ESCRT members have been shown to be involved in tumor suppression 

(references). Hence we investigated whether Chmp1A also has the ability to function as 

a tumor suppressor. To test this, we knocked-down Chmp1A stably via short hairpin 

RNA (shRNA) and examined its effect on the anchorage- 

 

Fig. 2. Knockdown of Chmp1A expression increases anchorage-independent growth of 

HEK 293T cells. (A) The specificity of short hairpin RNA aimed to knockdown Chmp1A 

protein is shown. Compare with the Chmp1A protein level in control shRNA transfected. 

KD 1 and KD 2: knockdown colony 1 and 2. (B, C) The increase of the colony formation 

by Chmp1A knockdown is shown. The graph in (C) indicates about 30 fold increase of 

colony formation by Chmp1A knockdown. 
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independent growth of HEK 293T cells (human embryonic kidney cells).  We carried out 

the assay using a CytoselectTM 96-well Transformation Assay kit. This kit allowed us to 

evaluate the anchorage-independent growth in a short period of time since colonies 

formed faster compared to the conventional method [75]. As shown in Fig. 2A, cells 

stably expressing Chmp1A shRNA decreased Chmp1A protein level by 70% compared 

to control cells expressing non-silencing shRNA in two independent colonies. Further, 

Chmp1A shRNA expressing cells revealed an increase in an anchorage-independent 

growth compared to control (Fig. 2Bb, compare with control Ba). The graph 

demonstrates that the knockdown of Chmp1A in HEK 293T cells increased an 

anchorage independent growth by almost 30 fold (Fig. 2C).  
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Fig. 3. Chmp1A shRNA expressing HEK 293T cells induce tumors in nude mice. (A) 

Both Chmp1A knockdown colonies induced tumors in nude mice. (B) The tumor volume 

induced by the injection of HEK 293T cells expressing knockdown colony 1 and 2 was 

plotted in a graph. Pink and blue represent KD 1 and KD 8 respectively. No tumor was 

formed by the injection of HEK 293T cells expressing non-silencing shRNA, (blue at the 

X-axis). (C) Tumors formed by Chmp1A knockdown developed new blood vessels (red 

arrows in Cb) compare with control (Ca). The tumor cells exhibit a high nuclear/ 

cytoplasm ratio, with multinucleated cells and abnormal mitosis (arrow heads in Cc). 

Blue and pink represent nucleus and cytoplasm respectively. Compare to Chmp1A 

knocked-down cells, control knocked-down cells remain primitive with no clear nuclear 

division (arrow head in the inset of Ca). Red arrows indicate blood vessel. The tumor 

shown appears to be epithelial in origin based on the epithelial marker, pan-Cytokeratin 

(Invitrogen). Most of the cells in the section express pan-Cytokeratin, either strongly 

(arrow) or mildly (arrow heads). Tumor was processed for paraffin embedding followed 

by sectioning for H&E (Hematoxylin and Eosin) and pan-Cytokeratin staining at the 

Pathology Department of Saint Mary’s Hospital at Huntington, WV.  

 

Transformation of HEK 293T cells to tumors by stable knockdown of Chmp1A in 

xenograft assay 

 

The anchorage-independent growth assay demonstrated that the loss of Chmp1A 

elevated the colony formation in soft agar, indicating a potential transformation of cells 

by the Chmp1A knockdown. Thus we tested whether non-tumorigenic HEK 293T cells 

transformed to tumors when Chmp1A was stably knocked-down via shRNA in vivo 

using a xenograft assay. The nude mice injected subcutaneously with Chmp1A shRNA 

expressing HEK 293T cells developed tumors compared with the mice injected with 

HEK 293 cells expressing non-silencing shRNA. Fig. 3 A demonstrates that HEK 293T 
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cells expressing Chmp1A shRNA developed tumors in nude mice (Fig. 2a), compared 

to control (Fig. 3 Aa). The graph in Fig. 3B illustrates the average size of tumors formed 

by the knockdown of Chmp1A (pink and black lines for KD1 and KD8 respectively). Both 

Chmp1A knockdown colonies (KD1 and KD8) induced tumors although KD1 cells 

formed tumors with larger volume compared to KD8 cells. None of the mice injected 

with cells expressing control shRNA exhibited tumor formation (blue line). The tumors 

induced by Chmp1A knockdown showed evident neo-angiogenesis (red arrow in Fig. 

3Cb). Tumor cells exhibited the characteristics of a high grade or poorly differentiated 

neoplasm such as high nuclear/cytoplasm ratio, multinucleation and abnormal mitosis 

(arrow heads in Fig. 3Cc). Control cells however remained primitive, showing no clear 

nuclear division (arrow head in the inset of Fig. 3Ba). In addition, the tumor shown 

appears to be epithelial in origin based on the epithelial marker, pan-Cytokeratin. Most 

of the cells in the section express pan-Cytokeratin, either strongly (arrow) or mildly 

(arrow heads in Fig. 3Bd). Fig.3A is data from 17days nude mice. Section is from 50 

days nude mice tumor. 

Chmp1A mRNA and protein expression in human pancreatic cancers 

Courtesy of Dr.Park (data not shown) 

To determine whether Chmp1A is implicated in human cancer development we 

screened cancer-profiling arrays (designated I and II from Clontech). These arrays 

contain cDNAs from various tumor tissues and corresponding normal tissues taken from 

the same patient. When array I (containing one pancreatic tumor sample) was 

hybridized with Chmp1A antisense probe, a significant reduction of Chmp1A was 

noticed in pancreatic tumor compared to the corresponding normal sample. Therefore 
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we screened cancer- profiling array II, which contains various pancreatic tumor samples. 

Consistent with the data obtained from array I, pancreatic tumors showed a 

considerable reduction of Chmp1A mRNA expression compared to corresponding 

normal samples. The reduction of Chmp1A mRNA was robust in adenocarcinoma, 

which is the most common cancer in human pancreas. Equality of samples was verified 

by hybridizing the array with human ubiquitin. Densitometric analysis was used to 

compare the reduction of Chmp1A mRNA in pancreatic tumors with corresponding 

normal samples. Next we examined Chmp1A protein level and localization by 

immunohistochemical analysis on human pancreatic tumor tissue arrays. In normal 

ducts of pancreas, Chmp1A is strongly localized to the apical side of ductal cells that 

face the lumen of the ducts. However the ductal cells of the ductal adenocarcinoma 

displayed either randomized localization or reduced expression of Chmp1A. Taken 

together, our results indicated that not only the level of mRNA and protein, but also the 

localization of Chmp1A protein, is important for proper cell growth.  

 

Over-expression of Chmp1A inhibited the growth of pancreatic cancer cells in 

vitro  

To substantiate the results obtained from the arrays we investigated the role of Chmp1A 

in vitro using human pancreatic ductal tumor cells. We chose PanC-1 cells since they 

are highly metastatic human pancreatic ductal tumor cells. Chmp1A over-expression 

was carried out via Tet-on Advanced Transgenic System to regulate Chmp1A over-

expression in a doxycyclin (Dox) dependent manner. The induction of Chmp1A protein 

by Dox was determined as shown in Fig. 4A. Two independent colonies revealed the 
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induction of Chmp1A protein in a doxycyclin dose-dependent manner. We chose 1,000 

ng/ml of doxycyclin as a working concentration for in vitro growth assay. Western blot 

analysis demonstrated that at this dose Chmp1A protein was significantly induced 

without non-specific effect; compare the Chmp1A expression in Dox treated to non-Dox 

treated samples (Fig. 4B).  The same amount of Dox was used to determine the effect 

of Chmp1A over-expression on PanC-1 cell growth. Chmp1A over-expression inhibited 

the growth of PanC-1 cells by 35% on day 2 and 30% on day 5 in vitro (Fig. 4C). PanC-

1 cells are shown to form tumors in xenograft assay.  

 
Figure 4. Over-expression of Chmp1A suppresses cell growth and the tumors formed by 

PanC-1 cells in nude mice. (A) Western blot analysis demonstrates Chmp1A over-
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expression upon doxycyclin treatment in two independent colonies. Compare the 

Chmp1A expression level to non-dox treated control. Gapdh was used as protein 

loading control. (B) Chmp1A over-expression induced growth inhibition in human 

pancreatic ductal tumor cells, PanC-1. Over 30% growth inhibition was observed on day 

2, and this growth inhibition was maintained through day 5. Cell numbers are in millions. 

(D) The size of tumors was reduced by a dox-dependent over-expression of Chmp1A (b, 

d), compared to control (a, c). 

 

Over-expression of Chmp1A inhibits tumor growth in xenograft assay 

We have demonstrated that loss of Chmp1A increased an anchorage-independent 

growth of HEK 293T cells and transformed these non-tumorigenic cells to form tumors 

in nude mice (Fig. 1 and 2).  We also showed that over-expression of Chmp1A induced 

growth inhibition in human pancreatic ductal tumor cells (Fig. 4. C). Although our 

findings indicate that Chmp1A is a potential tumor suppressor, it did not illustrate 

whether Chmp1A could inhibit the growth of tumors, which were already formed. To test 

this, we subcutaneously injected Chmp1A over-expressing PanC-1 cells into 6-weekold 

nude mice. The mice were left to develop tumors until the tumors became visible 

(around two weeks after the injection). The mice with visible tumors were divided into 

two groups, one for control and the other for Chmp1A over-expression. These two 

groups of mice were supplied with either regular water for control or with Dox-containing 

water (200 µg/ml) for Chmp1A over-expression. As shown in Fig. 4D, Dox-mediated 

Chmp1A over-expression inhibited tumor growth compared to control in vivo.  Moreover, 

Chmp1A over-expression appears to inhibit neo-angiogenesis as compared to control 

since the tumors (Db, d) did not show red blood vessels compared to control (Da, c).  
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 Fig. 5. Decrease of Chmp1A protein expression 

promotes the growth of PanC-1 cells. (A) 

Western blot analysis showed the reduction of 

Chmp1A protein by stable Chmp1A shRNA 

transfection (KD1 and KD2), compare with 

control shRNA transfection. (B) PanC-1 cells 

showed a significant growth promotion by the 

reduction of Chmp1A expression. More than a 

two-fold difference in the number of cells was 

observed by day 5 compared to control. 

 

 

 

Knockdown of Chmp1A promoted the growth of pancreatic cancer cells in vitro  

Next we examined the effect of Chmp1A knockdown on PanC-1 cell growth. Short 

hairpin RNA technology was used to knockdown Chmp1A in PanC-1 cells. Fig. 5A 

demonstrated the knockdown efficiency of Chmp1A protein in PanC-1 cells, 

demonstrating about 65% reduction of Chmp1A protein level compared with non-

silencing control shRNA expressing cells. The increase in growth of PanC-1 cells 

expressing Chmp1A shRNA was apparent. By day five, shRNA expressing PanC-1 cells 

exhibited more than 1.5 fold increase in growth compared to control. Taken together the 

results demonstrate that Chmp1A expression inversely regulates the growth of 

pancreatic tumor cells and provide evidence that Chmp1A is a novel tumor suppressor 

in pancreas.  
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Over-expression of Chmp1A accompanies the increase of P53 activation 

 Fig. 6. Over-expression of Chmp1A 

increased the protein expression of pan-P53 

and phospho-P53. (A) Western blot analysis 

showed the increase of pan-P53 and 

phospho-P53 at serine 15 and 37 upon 

Chmp1A over-expression. (B) Potential 

mechanism of Chmp1A on growth regulation: 

The binding of Tif-1β with MDM2 induces the 

ubiquitination of P53 followed by degradation. 

However, in the presence of Chmp1A, Tif-

1β interacts with Chmp1A, which results in 

the activation of P53. 

 

 

 

Chmp1A over-expression induced growth inhibition of PanC-1 cells in vitro and in vivo 

(Fig. 4 C, D). To understand the mechanisms of Chmp1A in growth regulation we 

determined the expression level of a known tumor suppressor, P53. As shown in Fig. 

6A, doxycyclin-mediated Chmp1A over-expression led to an increase of pan-P53, and 

phospho-P53 at serine 15 and 37 compared to control. The activation of P53 by over-

expression of Chmp1A is consistent with our preliminary data indicating that Chmp1A 

interacts with TIF1β /KAP1 (Transcription Intermediary factor 1β/KRAB domain-

associated protein 1) (Belogortseva and Park; unpublished). As mentioned in the 

introduction, Chmp1A has a coiled-coil domain, which potentially mediates its 

interaction with proteins through the coiled-coiled domain of its binding partners. TIF1β 
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has previously been shown to interact with MDM2 (ubiquitin E3 ligase) through a coiled-

coil domain. The interaction of TIF1β and MDM2 promotes ubiquitination and 

subsequent degradation of a suppressor P53 [26]. It is possible that the binding of 

Chmp1A to TIF1β prevents TIF1β from interacting with MDM2. If this is the case, over-

expression of Chmp1A should lead to fewer complexes between TIF1β and MDM2, 

which would lead to an increase of P53 activation (Fig. 6B).  

  

DISCUSSION 

 

There are only two previous publications in the literature on the biologic properties of 

Chmp1A. It was shown that it affect chromatin structure and cell cycle progression. We 

used non-tumorigenic human embryonic kidney, HEK 293T cells to determine whether 

Chmp1A functions as a tumor suppressor.  We had reasons to believe that Chmp1A 

might function as a tumor suppressor. First, Chmp1A belongs to ESCRT family, whose 

members were reported to be either deleted (HCC) [88, 89] or induce cell 

transformation and form tumors in nude mice [86]. Second our preliminary data 

(transient transfection of Chmp1A) indicated that over-expression of Chmp1A induced 

growth inhibition of HEK 293T cells. We employed short hairpin RNA (shRNA) 

technology to stably knockdown Chmp1A expression in HEK 293T cells. We have 

shown that knockdown of Chmp1A expression in HEK 293T cells resulted in an 

increase in anchorage independent growth in vitro and xenograft mediated tumor 

formation in vivo. Chmp1A depleted HEK 293T cells developed tumors with clear neo-

angiogenesis.  Histological analysis of the tumors indicated that the cells show 
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abnormal mitosis, high nuclear/cytoplasm ratio and multi-nucleation. Taken together our 

data demonstrates that Chmp1A is required for normal cell growth and that cells adopt 

tumorigenic characteristics without proper Chmp1A expression.  

 

We screened human cancer profiling arrays to investigate whether Chmp1A functions 

as tissues specifically for tumor suppression. Although we focused mainly on the 

pancreatic tumors in this study Chmp1A mRNA was differentially expressed in many 

tumors including skin tumors. The reason we determined to study pancreatic tumor is 

because among many tumors screened Chmp1A mRNA is the most strongly and 

consistently reduced in various pancreatic tumors compared with corresponding normal 

tissues. Our finding on profiling arrays thus indicates that Chmp1A might function as 

tumor suppressor in many different types of tumors.  

 

The results from human pancreatic tissue array supports further our hypothesis on 

Chmp1A. Chmp1A protein expression was mostly reduced in various pancreatic ductal 

adenocarcinomas compared with normal ducts, substantiating a role of Chmp1A in 

tumor suppression.  In addition to the expression level of Chmp1A its localization in the 

ductal cells appears to be important for the maintenance of normal ducts. In the normal 

ducts Chmp1A is localized towards the lumen of the ducts, which is the apical side of 

ductal cells. However, in the ductal adenocarcinomas, Chmp1A is localized randomly, at 

the lateral or basal side of cells. This observation is particularly interesting since we 

obtained Chmp1A as a binding partner of Strabismus (Park, unpublished) that was 

shown to function in epithelial cell polarity [97]. It will be a great interest to determine 
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whether the polarity of Chmp1A expression is directly related to cancer development.  

 

Since Chmp1A mRNA and protein is reduced in pancreatic cancers we chose a PanC-1 

cells, pancreatic ductal tumor cells to study the function of Chmp1A further in vivo and 

in vitro. As expected, doxycyclin inducible Chmp1A over-expression induced growth 

inhibition of PanC-1 cells in vitro. We had similar effect with transient transfection on the 

growth of PanC-1 cells (data not shown). In addition, the size of tumors formed by the 

injection of PanC-1 cells became smaller upon Chmp1A over-expression in vivo. 

Complementary to our over-expression study in PanC-1 cells, knockdown of Chmp1A 

promoted the growth of cells.  

 

Mechanistically, the increase of pan-P53 and phospho-P53 proteins by Chmp1A over-

expression provides new insights supporting our model as shown in Figure 6B.  We 

identified TIF1β as one of Chmp1A binding protein (Belogortseva and Park, 

unpublished). Since both Chmp1A and TIF1β contains coiled-coil domain, it is possible 

that these two proteins interact each other through coiled-coil domain. The interaction of 

TIF1β to MDM2 (ubiquitin E3 ligase) was previously shown to the increase of 

ubiquitination of a suppressor P53, which results in the degradation of P53 [26]. So we 

hypothesize that Chmp1A binds with Tif-1β and this interaction leads to the prevention 

of P53 ubquitination and an increase of phosphorylation and subsequent activation. 

Although we have shown that Chmp1A regulates tumor growth through P53 activation 

we speculate it is only part of the mechanisms by which Chmp1A control the tumor 

growth. Chmp1A contains various domains that could be easily related to signaling 
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events, which regulates tumor growth. Nonetheless, this study provides in vitro and in 

vivo evidences supporting the tumor suppressor function of Chmp1A in pancreatic 

cancer. The prognosis of pancreatic cancer is extremely poor and there is s need for a 

broader understanding of the molecular mechanisms underlying pancreatic 

carcinogenesis. Our present work potentially provides a foundation for developing new 

treatment and/or early biomarkers to improve the survival rate of pancreatic cancer. 
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SUMMARY AND CONCLUSIONS 

 

Our data showed that Chmp1A is a potential tumor suppressor and plays a pivotal role 

in cell growth inhibition and tumorgenesis. Chmp1A participates in the ATRA signaling 

by regulating CRBP-1 transcription. The main conclusions are: 

1. ATRA increases Chmp1A localization in the nucleus in ATRA responsive pancreatic 

cancer cells. 

2. ATRA increases Chmp1A, P53, phospho-P53 and CRBP1 protein expression in 

ATRA responsive pancreatic cancer cells. 

3. Chmp1A knockdown abolishes ATRA cell growth inhibition of PanC-1 cells. 

4. Chmp1A knockdown abolishes an increase of Chmp1A, p53, and phospho-p53 

expression by ATRA in PanC-1 cells. 

5. The partial loss of Chmp1A of HEK293T/17 (non-tumorgenetic cells) cells formed 

tumor in xenograft nude mice. 

6. The dox-induciable ectopic expression of Chmp1A inhibited pancreatic cancer cell 

growth in vitro and tumor growth of xenograft nude mice in vivo. 

7. The Chmp1A apparently promotes CRBP-1 expression in both transcription and 

translation levels that in turn facilitate ATRA transportation into nuclear receptor.  

 

In conclusion, the Chmp1A-CRBP-1 loop pathway may be, at least in part, the 

molecular foundation of growth inhibition of Chmp1A. On the other hand, the expression 

of Chmp1A also parallel with P53 pathway, which suggests that there is kind of direct 

link between Chmp1A and P53. One is the functional link; both P53 and Chmp1A act as 
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tumor suppressor, partial loss of either is able to result in tumor formation. Another link 

may be related to structure or mechanism which needs more evidence to elucidate. The 

establishment of association between Chmp1A and P53 might be the molecular 

mechanism of tumor suppressor of Chmp1A.  
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Future direction 

 

The tumorgenesis of Chmp1A by xenograft model is strong, but more evidences in 

transgenic mice model is needed to confirm the role of tumor suppressor of Chmp1A. 

And the transgenic mice data also is more convincing about mechanism. Thus, 

transgenic mice work is so attractive for us now. The hypothesized crosstalk between 

Chmp1A and P53 also needs more data to confirm.  The universal expression of 

Chmp1A do work in both nuclear and cytoplasm. How do they coordinate?  This also is 

an interesting question for next step research. We will Knockdown coiled-coil domain 

and transfect mutation plasmid into cells to check its cellular distribution.  

First of all, flow cytometry analysis will be used to confirm its function in apoptosis. 

Annexin V-FITC and propidium iodide staining will be good methods for flow cytometry 

apoptosis analysis. Either western blot or real-time PCR will be used to determine the 

expression of Bcl-XL, BIM, BAX, or DAPK. 

Second, some downstream signals of P53 such as P21, MDM2 will be checked to 

dissect the Chmp1A-P53 pathway. 

Our preliminary data show that over-expression of Chmp1A was able to induce 

apoptosis of panc-1 cells. The apoptosis may be P53-dependant. To evaluate this 

hypothesis, knockdown of P53 may be a good tool. Another possibility can be that 

Chmp1A act as a CDK/Cycline inhibitor.  Chmp1A directly regulate cell cycle through 

inhibiting CDK/Cycline. Western blot will be used to check the effect of Chmp1A on 

typical CDK/Cycline protein expression. Immunoprecipitation will be employed to 

confirm the physical interaction derived from proteomics screen.  
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