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Abstract 

With age, the cardiovascular system experiences substantial alterations in cellular 

morphology and function.  The factors regulating these changes are unknown; however, 

the mitogen activated protein kinase (MAPK) pathways have emerged as critical 

components for mediating numerous cellular responses including control of cell growth, 

differentiation and adaptation.  Here we compare the expression, basal activation and the 

ability of increased  pressure to activate the MAPK pathways in adult (6 month old), aged 

(30 month old) and very aged (36 month old) Fischer 344 x Brown Norway F1 Hybrid 

rats.  Histochemical analysis demonstrated an age-related increase in tunica media 

thickness of approximately 11% and 21% in aortae from aged and very aged animals, 

respectively.  Western blot analysis of the MAPK family extracellular signal-regulated 

kinase (ERK 1/2), p38, and c-Jun NH2 -terminal kinase (JNK) MAPKs showed 

differential expression and activation among these proteins with age.  Expression of ERK 

1/2, p38, and JNK were unchanged, slightly increased (10 ± 17.5%) or significantly 

increased (72.3 ± 27%), respectively, in very aged aortae. By comparison, basal 

activation levels of these proteins were reduced (-26.2 ± 7.4%), markedly increased (97.0 

± 16.8%) and slightly increased (14.4 ± 4.5%), respectively, in very aged versus 6-month 

rat aortae.  An acute increase of aortic intraluminal pressure (200 mm Hg) indicated that 

ERK 1/2 regulation differed from p38 or JNK.  Pressure loading-induced phosphorylation 

of ERK1/2 was unchanged or increased with aging while p38 and JNK phosphorylation 

was attenuated (P<0.01).  These observations confirm previous conclusions that MAPK 

proteins are mechanically regulated and expand these studies to suggest that MAPK 

expression and the control of activation are changed with aging. 
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 Chapter 1 

INTRODUCTION 

 By the year 2030, the number of older Americans will double from the current 35 

million people over the age of 65.  The risk of coronary artery disease, hypertension, 

congestive heart failure, and stroke greatly increase with age, and with advanced aging 

the incidence and prevalence of these diseases steeply raise.  Through the many 

improvements in health care and modern medical science the elderly now comprise the 

fastest growing segment of the population in the United States (Census, 1990).  

Cardiovascular diseases (CVD) have reached epidemic proportions on a global 

dimension, with hypertension, cardiovascular diseases, and heart related illnesses a major 

health concern throughout the United States and the world.  More than 30% of all deaths 

worldwide are due to cardiovascular diseases. Cardiovascular diseases are expected to be 

the leading cause of mortality and disability by the year 2020, surpassing even infectious 

diseases. (66)  

 Little is known about the normal aging process involved in vascular smooth 

muscle. This is due primarily to the emphasis on vascular smooth muscle diseases within 

symptomatic patients.  Understanding true age related changes may lead us to a better 

understanding of the true nature of CVD. To determine the threshold at which these 

disease mechanisms manifest themselves into pathological illness we must consider age-

associated changes in cardiovascular structure and function along with pathophysiologic 

disease mechanisms.  Gerontological investigations can be compromised when the 

difference observed between young and old animals are actually different between 

normal and diseased states. Animals chosen for investigation of age-related phenomena 
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should have certain characteristics (136).  Mortality rates should increase exponentially 

with chronological age indicating a  population aging naturally without perturbation by 

infectious disease and poor diet (59)  Thus far, several strains and lines of rats have been 

used in gerontological investigations, including he Wistar, Brown Norway, Sprague-

Dawley, and with the greatest frequency in literature the Fisher 344 (F344) (81).  

However, recent reports detailing an absence of age associated changes in F344 muscle 

morphology (23) along with an increased degree of lesion formation in the aging F344 

model and other rat strain models have suggested that the F1 hybrid rat strain may be 

more suitable for gerontological investigation (81, 119).  Recently, on the basis of these 

pathological assessments the National Institute of Aging (NIA) has recommended the F1 

hybrid as the superior1 animal model for aging research and has selected the F1 hybrid 

model to be the standard rat strain to be used by the NIA to conduct gerontological 

research (119). 

 To date only two published reports, (104) (131) have investigated age associated 

alteration in smooth muscle in the F1 model. However, only one addressed vascular 

smooth muscle changes with age (131).  These researchers demonstrated marked 

increases in vitamin A in aged aortic vessel walls (131). No further research has been 

conducted to characterize other age associated alterations in the vasculature of these 

animals. Furthermore, no research has examined the ability of vascular smooth muscle 

(VSM) from these animals of different ages to adapt to alteration in pressure. 

The fundamental mechanism, whereby mechanical stress acts upon a cell to 

initiate intracellular signaling, is known as mechanotrasduction. This mechanism is 

implemented in many cell types.  Processes governing tissue architecture (18, 112, 132, 
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145), metabolic response (48), and cellular growth and survival (26) (105), all utilize 

mechanotransdution.   Sensitivity to mechanical forces appear in all adhesion-dependents 

cells (105, 134) no where is this more evident than in mechanocytes or cells routinely 

subjected to mechanical forces, such as skeletal muscle sells (31, 132), osteocytes (95), 

chondrocytes (47, 140), airway smooth muscle cells (114, 115), cardiomyocytes (107, 

112, 142, 143), vascular endothelial (85)and smooth muscle cells (99).  

Mitogen-activated protein kinase (MAPK) cascades involvement in mechanically 

induced signaling remains consistent across various cell types (2, 36, 47, 49, 62, 79, 107, 

109-111, 142, 143, 147). MAPK activation has been linked to many extra-cellular 

mechanisms.  MAPKs may act as points of convergence for various cell signaling 

cascades triggering gene expression (29).   

 Recently, three parallel cascades of MAPKs have been described in mammalian 

cells: extracellular signal-regulated kinase p42/44 (ERK 1/2), p38, and c-Jun NH-

terminal kinase (JNK)/stress-activated protein kinase (SAPK).  ERK1/2 and p38 MAPK 

pathways have been proposed as the most likely modulators of vascular smooth muscle 

contraction (21, 65, 91, 94, 135, 144).  Within the large conduit vessel, in which 

intraluminal pressure induced spontaneous tone is not developed, MAPK have been 

shown to be phosphorylated and activated by mechanical stretch (4, 82, 98)  However, 

how this mechanical stretch induced phosphorylation is altered with age is unknown. Yet 

another area which has been poorly addressed is if stretch induced phosphorylation is a 

true physiological response for VSMC.  The concern raised by this line of thought leads 

us to the question, does mechanical stretch truly model force perception or transduction 

experienced by VSMC under hypertensive pressures?  
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 Although not well understood, the increased risk of CVD with aging is thought, in 

part, to be due to age-associated changes in cardiovascular structure and / or function.  

How aging may affect the ability of the vascular to initiate and respond to physiological 

stimuli has not been well studied.  Recent studies have demonstrated that increased 

mechanical stretch is, by itself, able to influence smooth muscle cell proliferation, the 

production of extracellular matrix protein, actin synthesis, and smooth muscle cell size.  

These data suggest that mechanical stimuli are important in regulating vascular structure 

and function.  The precise pathways regulating stretch-induced alterations in vascular 

phenotype are not known however vessel stretch leads to the activation of protein kinase 

C and the mitogen activated protein kinase (MAPK) pathways (111, 133).  Although the 

effects of mechanical stress could be mediated in part, by activation of mechanosensitive 

ion channels or by locally and systemically released growth factors,  the seminal studies 

of Ingber and others (50-57) have demonstrated that mechanical input itself is able to 

trigger cellular signaling mechanisms through the process of mechanotransduction.  How 

mechanotransduction occurs in fully differentiated vascular tissues and how aging affects 

these processes is not known. 
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PURPOSE  

 The purposes of this research project are to examine: 1) whether alterations in age 

change the basal levels of extracellular signal-regulated kinase p42/44 (ERK 1/2), p38, 

and c-Jun NH-terminal kinase (JNK)/stress-activated protein kinase (SAPK) protein 

expression 2) and whether aging affects the way in which the aorta activates these 

MAPKs pathways. Alteration in basal levels of protein expression and changes in 

pathway signaling may point toward a key in understanding age-associated pathology.  

Determining these alterations may lead to steps for early intervention in pathological 

onset. 
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SPECIFIC AIMS 

 The marked increase in vessel wall thickness and increased stiffening 

(arteriosclerosis) is one of the major problems in aging.  The long-term goals of this study 

are to understand the cellular mechanisms that might regulate adaptations to increased 

vessel wall thickness. The goals of this study are to firstly, determine the comparative 

extent of the aging alteration on vascular smooth muscle basal MAPKs expression in the 

F1 rat model and secondly to determine if the activation of these pathways are altered 

with age. 

 

Specific Aim #1  

To determine if the basal levels of MAPKs are altered with age. 

 Hypothesis:  Aging will alter aortic MAPK content and basal 

phosphorylation. 

 

Specific Aim #2  

To determine if the pressure induced phosphorylation of the MAPK pathway is 

altered with age. 

 Hypothesis:  Aging will alter the extent of aortic MAPK phosphorylation 

following an increase in intraluminal pressure. 
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Figures and Legends  

Figure 1-1  

 

Figure 1 – 1  This is a representation of the anatomy from which the vessel sections 

were taken. 
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Figure 1-2  

 

  

Figure 1 – 2 This is a representative model of the pressurization system designed by the 

author. 
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Chapter 2 

Review of Literature 

INTRODUCTION

  

  The following chapter presents a review of the pertinent literature concerning the 

present study.  Specifically, the following areas will be addressed: 1.) Mitogen activated 

kinases and the regulation of MAPK activity by mechanical stimuli and 2.) the F344XBN 

strain as an aging model for cardiovascular investigation. 

 

Age associated alterations in vascular smooth muscle 

  Vascular aging contributes to the age-dependent rise in hypertension and 

atherosclerotic disease and the chronic heart failure or stroke that result from these 

diseases.  Recent studies examining large cohorts have demonstrated that aging, by itself, 

confers a greater risk for cardiovascular diseases (CVD) than do the other major risk 

factors such as plasma lipid levels, smoking, diabetes, or sedentary life style (19).  

Although not well understood, the increased risk of CVD with aging is thought, in part, to 

be due to age-associated changes in cardiovascular structure and / or function.  Age-

associated remodeling of the wall of large arteries of rodents and nonhuman primates is 

quite similar to that observed in humans and includes luminal dilation, intimal and medial 

thickening, and endothelial dysfunction (68). The mechanisms and etiology responsible 

for the age-related changes in vascular smooth muscle physiology and function are quite 

complex and not well understood.    
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Mitogen activated kinases and the regulation of MAPK activity by mechanical 

stimuli  

 Recent studies have demonstrated that increased mechanical stretch is, by itself, 

able to influence smooth muscle cell proliferation, the production of extracellular matrix 

protein, actin synthesis, and smooth muscle cell size.  These data suggest that mechanical 

stimuli are important in regulating vascular structure and function.  The precise pathways 

regulating stretch-induced alterations in vascular phenotype are not known.  Although the 

effects of mechanical stress could be mediated in part, by activation of mechanosensitive 

ion channels or by locally and systemically released growth factors,  the seminal studies 

of Ingber and others (50-57) have demonstrated that mechanical input itself is able to 

trigger cellular signaling mechanisms through the process of mechanotransduction.  How 

mechanotransduction occurs in fully differentiated vascular tissues and how aging affects 

these processes is not known.  Processes governing tissue architecture (18, 112, 132, 

145), metabolic response (48), and cellular growth and survival (26) (105), all utilize 

mechanotransdution.  Sensitivity to mechanical forces appears in all adhesion-dependents 

cells (105, 134) with this property being particularly evident in the mechanocytes or cells 

routinely subjected to mechanical forces, such as skeletal muscle sells (31, 132), 

osteocytes (95), chondrocytes (47, 140), airway smooth muscle cells (114, 115), 

cardiomyocytes (107, 112, 142, 143), vascular endothelial (85)and smooth muscle cells 

(99).  

The involvement of the mitogen-activated protein kinase (MAPK) cascades in 

mechanically induced signaling remains consistent across various cell types (2, 36, 47, 

49, 62, 79, 107, 109-111, 142, 143, 147).  MAPKs may act as points of convergence for 
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various cell signaling cascades triggering gene expression (29).  The MAPK pathway is 

one of the most significant signaling systems used by an organism to elicit a variety of 

responses at the cellular level. 

 Recently, three parallel cascades of MAPKs have been described in mammalian 

cells: extracellular signal-regulated kinase p42/44 (ERK), p38, and cJun NH-terminal 

kinase (JNK).  The MAPK response to chemical and mechanical stresses is regulated 

through substrate-level phosphorylation of three-tiered cascades composed of a MAPK, a 

MAPK kinase (MEK), and a MEK kinase (MEKK) (24).  MAPKs are activated through 

dual phosphorylation on threonine and tyrosine residues.  Multiple factors have been 

shown to activate substrate level phosphorylation of MAPKs including hormones, growth 

factors, reactive oxygen species, decreases in pH, and mechanical stress (138).  Of the 

currently identified MAPKs the ERK1/2 and p38 MAPK pathways have been proposed 

as the most likely modulators of vascular smooth muscle contraction (21, 65, 91, 94, 135, 

144).  Within the large conduit vessel, in which intraluminal pressure induced 

spontaneous tone is not developed, MAPK proteins have been shown to be 

phosphorylated and activated by mechanical stretch (4, 82, 98)  However, how this 

mechanical stretch induced phosphorylation is altered with age is unknown.  

 

Summary 
   Since it is unclear whether aging affects the ability of vascular smooth muscle to 

respond to mechanical stimulation, it remains possible that both aging or age related 

changes in tissue structure and function may contribute to the observed age associated 

changes in MAPK mechanotransduction.  This age-associated change of vascular smooth 
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muscle structure leads to an altered ability to respond to force and eventually, a decreased 

functional capacity. 

 

The F344XBN strain as an aging model for cardiovascular investigation. 

  Age-associated remodeling of the wall of large arteries of rodents and nonhuman 

primates is quite similar to that observed in humans and includes luminal dilation, intimal 

and medial thickening, and endothelial dysfunction(15, 16, 20, 23, 30).  In an attempt to 

provide a better rodent aging model, the National Institute on Aging has developed the 

Fischer 344/Brown Norway F1 Hybrid (F33XBN).  The generation of this model is 

important because studies have demonstrated that these animals age with minimal 

disease(81, 119) while often living longer, presumably because of their better health. 

Despite a number of studies examining the Fischer 344 X Brown Norway (F1) rat strain 

as a model of human skeletal muscle atrophy (3, 7, 10-14, 17, 22, 25, 32, 34, 35, 40-42, 

72-74, 83, 89, 90, 92, 96, 97, 101, 106, 116, 122, 125, 129, 130), the use of the F344XBN 

(F1) rat model for vascular smooth muscle research has been limited.  Spinetti et al, 

addressed MCP-1 and its receptor CCR2 in aortic VSMCs in the F344XBN. They found 

that MCP-1 and CCR2 mRNAs and proteins increased with age. They concluded that 

MCP-1/CCR2 signaling my play a role in age-associated arterial remodeling. Smith et al 

addressed vascular endothelial dysfunction in aging aortas. Based on research from their 

lab, they indicate a decrease in eNOS phosphorylation with age; they attribute this loss to 

deceases in AKT basil levels of phosphorylation.  And  Gaballa et al examined large 

artery remodeling in aortas during aging: biaxial passive and active stiffness (28, 113, 

118). They document increases in media thickness, collagen content, and collagen/elastin 
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ratio in the carotid arteries with age. Also of interest is their finding of decrease in elastin 

density, and the number of smooth muscle cell nuclei. Taken together, these data suggest 

that multiple factors are involved in age associated changes in vascular smooth muscle 

phenotypic properties, and that the structural changes that occur with age are associated 

with changes in active and passive stiffness, as well as changes in protein expression and 

activation levels. 

   Due of this lack of study, our present research utilizes this model selected by the 

NIH as a model for human aging, and addresses the use of the F344XBN rat strain as a 

model for cardiovascular aging in humans.    
 

 Summary  

  The declines in functional capacity with advancing age in humans are well 

documented.  Much of the evidence in the literature to date suggests that the loss of 

physiologic function observed with advancing age is reversible, perhaps even in the frail 

elderly.  Due to the methodological shortcomings associated with performing invasive 

measures in aged humans, little is known about how aging influences cellular signal 

transduction.  Research concerning cardiovascular aging research in rodent models is 

almost nonexistent. The need for the development of a rodent model that effectively 

mimics human vascular aging and morphology is extremely important due to the 

detrimental effects seen in cardiovascular pathology in humans.   
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Chapter 3  

EFFECTS OF AGING ON PRESSURE-INDUCED MAPK ACTIVATION IN THE 

RAT AORTA 
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Abstract 

With age, the cardiovascular system experiences substantial alterations in cellular 

morphology and function.  The factors regulating these changes are unknown; however, 

the mitogen activated protein kinase (MAPK) pathways have emerged as critical 

components for mediating numerous cellular responses including control of cell growth, 

differentiation and adaptation.  Here we compare the expression, basal activation and the 

ability of increased  pressure to activate the MAPK pathways in adult (6 month old), aged 

(30 month old) and very aged (36 month old) Fischer 344 x Brown Norway F1 Hybrid 

rats.  Histochemical analysis demonstrated an age-related increase in tunica media 

thickness of approximately 11% and 21% in aortae from aged and very aged animals, 

respectively.  Western blot analysis of the MAPK family extracellular signal-regulated 

kinase (ERK 1/2), p38, and c-Jun NH2 -terminal kinase (JNK) MAPKs showed 

differential expression and activation among these proteins with age.  Expression of ERK 

1/2, p38, and JNK were unchanged, slightly increased (10 ± 17.5%) or significantly 

increased (72.3 ± 27%), respectively, in very aged aortae. By comparison, basal 

activation levels of these proteins were reduced (-26.2 ± 7.4%), markedly increased (97.0 

± 16.8%) and slightly increased (14.4 ± 4.5%), respectively, in very aged versus 6-month 

rat aortae.  An acute increase of aortic intraluminal pressure (200 mm Hg) indicated that 

ERK 1/2 regulation differed from p38 or JNK.  Pressure loading-induced phosphorylation 

of ERK1/2 was unchanged or increased with aging while p38 and JNK phosphorylation 

was attenuated (P<0.01).  These observations confirm previous conclusions that MAPK 

proteins are mechanically regulated and expand these studies to suggest that MAPK 

expression and the control of activation are changed with aging. 
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Introduction 

Cardiovascular disease (CVD), which is responsible for more than 30% of all 

deaths worldwide, is expected to be the leading cause of mortality and disability by the 

year 2020, surpassing even infectious diseases (66, 67, 69-71).  Aging is the single largest 

risk factor for CVD, making heart failure the leading cause of death of individuals over 

the age of 65 years.  It is thought that the impact of age on the risk of the occurrence, 

severity, and prognosis of cardiovascular disease is due, in part, to age-associated 

changes in cardiovascular structure and/or function.  However this hypothesis has not 

been well studied.  The lack of information concerning the effects of aging on the 

vasculature is not surprising when one considers the difficulties associated with human 

aging studies, e.g. cross-sectional design and an inability to control for lifetime activity 

patterns.  Because of these methodological difficulties, many aging vascular studies have 

been performed using the rat.  However, many rat strains such as the Fisher 344, 

Sprague-Dawley, Long-Evans, and Wistar fail to exhibit a similar degree of age-

associated muscle atrophy or muscle impairment when compared to humans. (23, 43)  

The reasons for differences between the aging human and rat are not entirely known.  

However, inconsistencies may in part be explained by the use of rat strains prone to 

premature death, age related disease, or variations in the specific muscles evaluated.  In 

an attempt to minimize these confounding variables, the National Institute on Aging has 

developed the Fischer 344/Brown Norway F1 Hybrid as a rodent model for age-related 

physiological studies.  The generation of this model is important because studies have 

demonstrated that these animals age with minimal disease (81, 119) while often living 

longer, presumably because of their better health.  For example, male rats of the Fischer 
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344 and Brown Norway strains are reported to have median life spans of 103 and 129 

weeks, respectively; whereas, their F1 hybrid has a median life span of 145 weeks when 

fed ad libitum.  To our knowledge: however, the F1 hybrid model has not yet been 

utilized for the investigation of aging effects on the physiological signaling of vascular 

smooth muscle.  In the present study, we employed probability of survival curves 

generated by the NIA for the F1 hybrid strain to ensure that the rats used in this study 

corresponded roughly to humans in their third, sixth, and eighth decade of life.  This 

latter time point was chosen because cardiovascular dysfunction in humans accelerates 

during the eighth decade of life, and because this age represents one of the fastest 

growing segments of the aging population in the United States.   

Blood pressure induces mechanical stress on vascular smooth muscle that, if 

excessive, leads to adaptive remodeling in the form of smooth muscle hypertrophy and 

hyperplasia. (58, 88, 93)  In addition to adaptive remodeling, excessive wall strain causes 

vascular inflammation, which has been implicated in the pathogenesis of 

atherosclerosis.(38)  The factors regulating these changes are unknown; however, the 

mitogen activated protein kinase (MAPK) pathways have been identified as important 

signaling proteins involved in the control of cell growth, differentiation and adaptation. 

Three parallel cascade pathways of MAPK intracellular signaling have been described: 

the extracellular signal-regulated kinases (ERK1/2), c-Jun NH2 -terminal kinase (JNK), 

and p38 kinase.  These pathways require duel phosphorylation on threonine and tyrosine 

residues by specific upstream proteins to initiate their signaling mechanism. (8, 9, 16, 39, 

63, 84, 103, 123, 146)  Studies in rats and humans have implicated the MAPK signaling 

network in the regulation of protein synthesis, mRNA stability, as mediators of apoptosis 
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and the inflammatory response, and as key players in the control of load-induced 

alterations in protein expression.(30, 46, 93, 141)   While these data together suggest that 

MAPK signaling plays an important role in the regulation of gene expression, it is still 

not known how MAPK activity is regulated with aging.    

We hypothesized that aging will alter the ability of vessels to appropriately 

initiate intracellular signaling to mechanical load (stretch).  Hence, we propose that 

altered mechanotransduction may contribute to age-related changes in vascular smooth 

muscle morphology and function.  In the present study, we compared resting levels and 

the MAPK phosphorylation after increases in intraluminal pressure in isolated aortae 

from different age groups of Fisher 344/Brown Norway F1 hybrid rats.  The results 

suggest significant alteration in MAPK expression and stress-induced activation with 

aging.  

 

Material and Methods 

Animals  

 All procedures were performed in accordance with the Guide for the Care and 

Use of Laboratory Animals as approved by the Council of the American Physiological 

Society and the Animal Use Review Board of The Marshall University.  All procedures 

were conducted in strict accordance with Public Health Service animal welfare policy.  

Adult (6 months),  aged (30 months) and very aged (36 months) male F1 rats were 

obtained from the National Institute on Aging.  Rats were barrier housed two per cage in 

an AAALAC approved vivarium.  Housing conditions consisted of a 12H: 12H dark-light 

cycle and temperature was maintained at 22 ± 2 °C.  Animals were provided food and 
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water ad libitum.  Rats were allowed to recover from shipment for at least two weeks 

before experimentation began, and during this time the animals were carefully observed 

and weighed weekly.  None of the older animals exhibited signs of failure to thrive, such 

as precipitous weight loss, disinterest in the environment, or unexpected gait alterations.  

Systolic blood pressure was determined with the animal unanesthetized using a 

programmed electrosphygmomanometer with pneumatic tail cuff (Narco-Biosystems, 

Houston, TX).  Animals were acclimated to the procedure for a minimum of 3 days prior 

to obtaining blood pressure. 

 

Materials 

Anti-p38 MAPK, JNK, and p44/42 MAPK (ERK1/2) mouse IgG and rabbit IgG 

antibodies were purchased from Cell Signaling Technology (Beverly, MA).  Precast 10% 

SDS-PAGE gels were procured from Cambrex Biosciences (Baltimore, MD), and 

enhanced chemiluminescence (ECL) western blot detection reagent was from Amersham 

Biosciences (Piscataway, NJ).  Restore western blot stripping buffer was obtained from 

Pierce (Rockford, IL) and 3T3 cell lysates were from Santa Cruz Biotechnology (Santa 

Cruz, CA).  All other chemicals were purchased from Sigma (St. Louis, MO).  

 

Isolated Vessel Protocol 

 Rats were anesthetized with a ketamine-xylazine (1:4) cocktail (50 mg/kg ip) and 

supplemented as necessary for reflexive response. In a sterile aseptic environment, the 

ventral surface of the thorax was shaved and the superficial musculature was exposed by 

means of a transverse incision through the skin distal to the thoracic cavity. After midline 
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laparotomy and perforation of the heart, the aorta was isolated and the in situ length taken 

as the distance from the subclavian artery to the diaphragm. Aortas were removed from 

the left ventricle to the renal arch and placed in Krebs-Ringer bicarbonate buffer (KRB) 

maintained at 37°C. 

Isolated aortas were cleaned of connective tissue, transected at the subclavian 

artery and the diaphragmatic insertion, and secured with silk suture onto polystyrene 

tubing (outside diameter 3.0 mm; inner diameter 2.6 mm) with the aid of a dissection 

microscope.  After mounting, all micro vessels were cauterized to prevent leakage and 

vessel length was adjusted with the aid of a micromanipulator to coincide to the in situ 

resting length.  All dissection and mounting procedures were performed rapidly and with 

care to prevent stretching or tearing of the aorta with the vessels incubated in oxygenated 

(95 O2:5 CO2) KRB maintained at 37ºC throughout the procedure.  After mounting, 

aortas were allowed to equilibrate in the vessel chamber for at least 1 hr. before the 

pressure loading experiment.  To examine the effect of increased loading on aortic signal 

transduction, mounted vessels were subjected to 200 mm Hg of pressure for 15 min. This 

pressure was selected based on a previous report detailing an increase in c-fos expression 

following loading at “hypertensive levels” (204 ±5 mm Hg) (87) and to minimize the 

effect of potential differences in vessel compliance.  To minimize the possibility of 

hypoxia in thickened vessels, the aortae were perfused with oxygenated (95% O2, 5% 

CO2) KRB maintained at 37º C during the incubation, using a peristaltic pump with the 

flow rate set at 11.1 ml/min., resulting in a shear stress of ~0.5 dynes/cm2.  The 

intraluminal pressure was controlled by adjusting the air pressure introduced into a fluid 

reservoir (Fig 3-1A).  The system was calibrated before all experiments.  System pressure 
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was monitored using pressure transducers (Gould model P23ID) situated before entry 

into and exit from the mounted vessel.  During the loading procedure, the pressure in 

vessels was raised in a stepwise fashion (10 mm Hg / min) to a mean arterial pressure of 

200 mm Hg which was then maintained for an additional 15 minutes.  Control vessels 

were pressurized just to the point where pressure was recorded (zero pressure) and 

maintained at this condition for 35 minutes.  Vessel diameter was obtained by the aid of a 

video camera (Logitech Quick Cam Pro 4000) mounted on an adjustable stand.  External 

vessel diameter in µm was determined from still video images using Adobe Photoshop 

and a calibrated computer software program (Measure it Right, Ver. 1.0).  Twenty-four (6 

pre-, 6 post-pressurization and 12 during pressurization) still images were taken for each 

experiment.  The mean of four width measurements, taken perpendicular to the long axis 

of the vessel, was obtained from each still frame to calculate vessel distention with 

increased loading.   

 

Western Blot Analysis 

At the end of each experiment, two segments were cut from each vessel for 

biochemical and histological analysis, and immediately snap-frozen in liquid nitrogen.  

Samples were homogenized and suspended in 100 µl of RIPA buffer (50 mM Tris, 150 

mM NaCl, 1% NP-40, 0.25% Na-deoxycholate, 1 mM EDTA, 1 µg/ml aprotinin, 1 µg/ml 

leupeptin, 1 µg/ml pepsatin, 1 mM PMSF,1 mM Na3VO4,1 mM NaF).  Samples were 

incubated on ice for 15 minutes and centrifuged at 4ºC for 5 min at 150x g to pellet 

insoluble material.  Protein concentrations of the supernate were determined in triplicate 

using BSA as a standard and the Bradford method (Pierce, Rockford, IL).  Samples were 
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diluted to a concentration of 3mg/ml in SDS-loading buffer and after boiling for 5 

minutes, 30 µg of total protein for each sample was separated on a 10% SDS-PAGE gel.  

Western blot transfer of protein onto nitrocellulose membranes was performed using 

standard conditions. (117, 126-128)  To verify transfer of proteins and equal loading of 

lanes the membranes were stained with Ponceau S.  For immunodetection, membranes 

were blocked in 5% Milk TBST for 1 hour at room temperature and then incubated with 

the appropriate primary antibody overnight.  After washing in TBST, the membranes 

were exposed to horseradish peroxidase-labeled IgG secondary antibody for 1 hour at 

room temperature.  Protein bands were visualized with ECL (Amersham Biosciences).  

Exposure time was adjusted to keep the integrated optical densities (IODs) within a linear 

and nonsaturated range, and band signal intensity was quantified by densitometry using a 

flatbed scanner (Epson Pefection 3200 PHOTO) and Imaging software (AlphaEaseFC).  

Molecular weight markers (Cell Signaling) were used as molecular mass standards and 

NIH 3T3 cell lysates were included as positive controls. A total of three SDS-PAGE gels 

were run for each experimental set to evaluate; MAPK tissue content, basal 

phosphorylation, and stretch-induced phosphorylation.  In order to obtain direct 

comparisons between expression and phosphorylation levels of different signaling 

molecules, immunoblots were stripped with Restore western blot stripping buffer as 

detailed by the manufacturer. After verifying the absence of residual HRP activity by 

reacting the membrane with the ECL reagent, membranes were washed and reprobed.  To 

minimize potential experimental error associated with membrane stripping, the order of 

immunostaining was randomized between experiments. 
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Histology and Morphometry 

 Aortic specimens were serially sectioned (8 µm) using an IEC Minotome cryostat 

and collected on poly-lysine coated slides.  After fixing in acetone, (-20°C for 2 min) 

sections were stained with hematoxylin and eosin, mounted and cover slipped.  

Morphometric evaluation was performed with the use of a computerized imaging analysis 

system (Olympus MicroSuite™ Basic).  Medial thickness in µm was calculated from the 

average of eight different points of cross section. 

 

Data Analysis 

Results are presented as mean ± SEM.  Multiple group comparisons were 

performed by one-way ANOVA followed by Student’s t-test where appropriate.  

Regression analysis of the relationship between MAPK expression or basal 

phosphorylation levels and tunica media thickness was performed across age groups 

using values from four individual aortae from each group.  Significance of correlation 

was analyzed by one-way ANOVA.  For all comparisons, the alpha level was set at P ≤ 

0.05 outside of age groups, and P≤ 0.01 for within-group analysis.   

 

Results 

Verification of loading stimulus 

During the isolated vessel experiments, the isolated vessels responded to 

incremental increases in pressure in a passive manner.  To examine if the loading 

stimulus was constant throughout the loading procedure, we constantly recorded system 

pressure before entry into and exit from the mounted aorta (Fig 3-1B).  If fluctuations in 
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loading pressure occurred, the vessel was immediately discarded.  At 200 mm Hg 

intraluminal pressure, the aortic diameter of the 6- , 30- and 36-month old animals 

increased 44.6 %, 67.0 %, and 61.1 %, respectively. 

 

Aging effects on aortic pressure and wall morphology 

 No evidence of age-associated pathology was observed in any of the cross 

sections (Fig 3-2).  Compared to the 6 month old animals, aging increased the tunica 

media thickness of the aorta ~11.2% and 21.1% at 30- and 36-months, respectively 

(P<0.01) (Fig 3-2B).  Systolic blood pressure was not significantly different among the 

three age groups (Table 3-1).  Body weights of aged and very aged rats were not 

significantly different but were increased compared to 6 month values. 

 

Aging effects on MAPK expression and phosphorylation 

To explore whether aging influenced the total amount of ERK 1/2, p38 and JNK 

MAPK present in the aorta, gel electrophoresis and Western blot analysis were performed 

using antibodies which recognize both the unphosphorylated and phosphorylated forms 

of the proteins. Western blot analysis failed to demonstrate any changes in the expression 

of the ERK1/2 MAPK with aging (Fig. 3-3, Table 3-2).  However, in the 30-month 

aortas, total p38 MAPK and JNK MAPK expression increased 83.4% and 81.4%, 

respectively (P<0.01).  Compared to 6-month aortas, total JNK MAPK expression in 36 

month aortas increased 72.3% (P<0.01).   

Because the MAPK proteins are activated by phosphorylation it was important to 

determine if aging in the aorta was characterized by changes in the basal level of MAPK 
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protein phosphorylation.  Similar to our analysis of the total MAPK expression, it 

appeared that the phosphorylation status of the MAPK proteins was also regulated 

differently with aging.  Compared to 6-month aortae, basal phosphorylation of the ERK 

1/2 MAPK decreased 31.3% and 26.2% at 30- and 36-months, respectively (P<0.01) 

(Fig. 3-4, Table 3-2).  In contrast, the phosphorylation of the p38 MAPK increased 

128.7% at 30-months and 97.0% at 36-months (P<0.01) (Fig. 3-5, Table 3-2).  In a 

similar fashion, the phosphorylation of the JNK MAPK increased with aging 23.9% and 

14.5 % at 30- and 36-months, respectively (Fig. 3-6, Table 3-2).  Regression analysis 

indicated significant correlation between the tissue content of JNK, the phosphorylation 

levels of ERK 1/2 and p38 and the thickness of the tunica media (Table 3-4). 

 

Aging effects on MAPK phosphorylation in response to intraluminal pressure 

 

 In parallel studies, the effect of pressurization of aortae on ERK 1/2, p38 and JNK 

MAPK phosphorylation was determined.  In aortae subjected to 15 minutes of pressure 

loading (200 mm Hg), phosphorylation of the ERK1/2 MAPK increased 27%, 73%, and 

42 % for the 6-, 30-, and 36-month age groups, respectively (P<0.05) (Fig. 3-4, Table 3-

3).  In a similar fashion, pressure loading increased p38 MAPK phosphorylation in the 6-, 

30-, and 36-month aortas by 320.2%, 98.55, and 45.7%, respectively (P<0.05) (Fig. 3-5, 

Table 3-3).  Increased JNK MAPK phosphorylation of 51.2% and 21.4% with pressure 

loading was found in the 6- and 30- month aortas (P<0.05).  However, pressure loading 

failed to increase JNK MAPK phosphorylation in the 36-month old aortas (Fig. 3-6, 

Table 3-3). 
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Discussion 

Arteries are capable of structural and functional changes in response to alterations 

within their milieu or to changes in hemodynamic variables.  Vascular remodeling may 

be considered as an adaptive process in response to long-lasting changes in arterial blood 

flow and/or pressure, in which the ultimate effect tends to be maintenance of the 

constancy of tensile and/or shear stresses.  Similar to previous reports (27, 33, 37), tunica 

media thickness was found to significantly increase with age.  This age-associated 

increase in aorta media thickness is thought to occur via smooth muscle cell hypertrophy. 

(120, 121)  Both human and animal studies have demonstrated that hypertension, if not 

controlled, can cause wall thickening (15, 30)and it is thought that this wall hypertrophy 

in turn acts to normalize wall tension.  The exact mechanism(s) underlying hypertension-

associated remodeling are not known; however, an elevation in blood pressure will cause 

an increase in the amount of tension experienced by vascular smooth muscle cells 

(VSMC) residing in the vessel wall.  It has been demonstrated that stretch is an important 

hypertrophic stimulus for both smooth and striated (cardiac and skeletal) muscle.  Indeed, 

a number of in vitro studies using VSMC cultured on deformable substrates have 

demonstrated that direct mechanical loading of the cell is capable of inducing cell 

growth.(60, 76)  A previous report has indicated systolic blood pressure is increased in 

30- vs. 6-month old F1 hybrid rats.(80)  However, our results show no age-associated 

elevation of blood pressure in these animals, suggesting the described changes in vessel 

morphology is not a result of hypertensive stimuli. 
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A major finding of the present study is that when normalized based on total 

protein, MAPK concentrations and basal levels of phosphorylation appear to be regulated 

differently with aging in the rat aorta.  For example, total ERK 1/2 MAPK content 

remains constant with age, while p38 MAPK levels are increased at 30 months, and JNK 

MAPK is elevated at both 30- and 36-months.  To our knowledge, age-associated change 

in the concentration of these molecules has not been reported before in vascular smooth 

muscle.  However, similar to our findings in rat smooth muscle, Williamson et al. (139) 

found ERK 1/2 MAPK expression levels were unchanged with aging in the skeletal 

muscle of humans.  The physiological impact of increased p38 and JNK MAPK 

expression in vascular smooth muscle with aging is unknown.  However, these kinases 

are both characterized as stress-activated proteins.(9)  Given our finding of normotensive 

blood pressure in aged F1 hybrid rats, the results suggest the vessel hypertrophy seen in 

these animals is due to regulatory dysfunction not directly related to changes in pressure 

and hemodynamic conditions.  Our finding of an increased basal activation of p38 and 

JNK MAPK family members with aging (Table 3-2) is consistent with significant 

alteration in regulatory function.  One possibility is that increased basal MAPK activation 

in aged rats could result from non-mechanical stimuli (7) including; H2O2, reactive 

oxygen species, cytokines, inflammation, angiotensin II, endothelin-1, and receptor 

tyrosine kinases (insulin-like growth factor, transforming growth factor-β, and fibroblast 

growth factor). (8, 44, 45, 64, 75)  Previous investigations have demonstrated an 

increased H2O2 production in the aorta from older animals which is not surprising in light 

of the general increase in reactive oxygen species in other tissues with aging. (124)  

Finally, increased basal p38 and JNK MAPK expression may be causally linked to 
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increases in tunica media thickening.  Indeed, a number of studies have found that these 

two MAPK family members are required for cardiac hypertrophy. (102)  However, only 

JNK expression showed significant correlation with medical thickness in the present 

study (Table 3-4).  Conversely, the lack of an increase in ERK1/2 expression with aging 

and poor correlation of the expression of this protein with medial thickness may suggest 

that this MAPK is not directly involved in smooth muscle cell hypertrophy.  In any case, 

our results clearly indicated changes in MAPK protein expression and signaling with 

aging suggesting exaggerated basal activity in at least two pathways.  Further information 

on the individual or combined effects of these changes in tissue content and activity of 

the MAPKs on downstream signaling may reveal their overall impact on VSMC status. 

A novel finding is that activation (phosphorylation) of p38 and JNK MAPK 

proteins in response to acute mechanical stress is blunted while ERK1/2 is enhanced in 

aortae from aged animals.  The smooth muscle cells of the vasculature are constantly 

exposed to mechanical strain from superimposed pulsatile and mean pressure loads by the 

cardiac contractile cycle in vivo.  It is thought that this mechanical strain modulates 

cellular orientation, synthesis of extracellular matrix, myosin isoform expression, and 

cellular proliferation. (60, 76, 84, 87)   Although the cellular mechanism by which 

mechanical strain stimulates VSMC growth remains obscure, recent in vitro studies have 

focused on the potential involvement of MAPK family members in the long-term 

responses including cell proliferation, apoptosis and differentiation. (102)  In this study, 

we measured pressure-induced phosphorylation of the ERK 1/2, p38, and JNK MAPKs in 

freshly isolated aortae from animals of different ages.  Similar to results from previous in 

vivo studies using acute hypertension (75, 146)and balloon-overstretched injury (61)in 
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young adult animals, we demonstrate activation (phosphorylation) of the MAPK cascade 

in adult (6-month) vessels.  We further demonstrate an increased ERK 1/2 MAPK 

activation and reduced p38 and JNK MAPK activation with increasing age which, to our 

knowledge, has not been previously reported in vascular tissue.  Our findings of 

decreased p38 and JNK MAPK phosphorylation in the aorta in response to mechanical 

stimuli are similar to results others have reported using mitogenic activation in other cell 

and tissue types. (61, 77, 78, 100, 137)  Gennanro and colleagues (30) recently noted one 

exception to this trend.  These researchers used VSMC isolated from the aorta of young 

and old rabbits and, similar to the present study, demonstrated an increased degree of 

ERK 1/2 MAPK phosphorylation following serum stimulation of aged cells.  Their 

findings, like ours, suggest that VSMC cells are different from a variety of cell types 

which have all been shown to be characterized by reductions in ERK 1/2 MAPK 

activation with aging.  Why aging in VSMC may be associated with an increased ability 

to activate the ERK 1/2 MAPK is not known.  However, it is possible that augmented 

ERK 1/2 MAPK activity in response to cellular insult may be advantageous in protecting 

aged cells from apoptosis, or perhaps play a role in the enhanced cellular proliferation 

and neointimal formation seen in aged vascular tissues subsequent to wall injury. (121)  

Because most of our knowledge concerning the regulation and function of MAPK has 

resulted from studies on cultured cells, little is known about their activation in vivo.  

However, in adult tissues, the mechanisms regulating ERK1/2, p38, and JNK MAPK 

activation by mechanical stress have been linked to stretch-induced release of angiotensin 

II, phenylephrine, and endothelin-1 in cardiac myocytes, and PDGF, fibroblast growth 

factor, and ATP in VSMC. (8, 20, 44, 45, 64, 75)  It is thought that many of these factors 
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may activate MAPK family members in an autocrine and/or paracrine manner.  The 

presence of such events cannot be excluded in the present study.  However, previous 

investigations showed that cultured VSMC exposed to the conditioned media collected 

from VSMC after stretching failed to produce increases in ERK1/2 MAPK 

phosphorylation suggesting that the release of these factors does not play a significant 

role in vascular smooth muscle.(120)  Other studies investigating MAPK activation with 

mechanical load have proposed that signaling pathways converging at nonreceptor 

tyrosine kinases may play a role. (64)  Whether two prototypical members of this family, 

proline-rich tyrosine kinase 2 or focal adhesion kinase participate in pressure-induced 

ERK 1/2 activation is at present being intensely investigated in our laboratory.    

We feel that one strength of the present investigation was our use of intact vessels 

for loading experiments.  As such, our preparations included both a smooth muscle and 

endothelial layer thus mimicking in vivo conditions as closely as possible.  Hence, the 

possibility exists that non-vascular smooth muscle tissue contributed to results.  Previous 

investigations utilizing differentiated vascular tissues have demonstrated that activated 

MAPK family members are found in the vascular smooth muscle cells (141, 146) and we 

consider it unlikely that endothelial cells, which comprise less than 5% of the artery cell 

population, accounted for a significant proportion of the response we observe.  

Nonetheless, such an issue in our preparations and in animals of different ages requires 

further investigation.  

In summary, we have demonstrated the in vitro activation of ERK1/2, p38 and 

JNK in the arteries of rats following an acute elevation in loading pressure.  Protracted 

loading, such as that induced by hypertension or the cellular response subsequent to 
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injury, is characterized by the growth and proliferation of smooth muscle cells.  That 

MAPK activation occurs with increases in pressure suggests an important role for these 

kinases in the arterial adaptation to fluctuations in blood pressure. Our findings provide 

evidence for the possibility that MAPK activation may also contribute directly to age-

associated alterations in aortic vessel remodeling. 
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Figures and Legends  

Table 3-1 

 Body weight and systolic blood pressure of young adult (6 month), aged (30 month), 

and very aged (36 month) Fischer 344/Brown Norway F1 hybrid rats. 

 

 

 
 

Group 

 

N 

 

Body Weight, g

 

Systolic BP, mmHg 

    

6 month 6 421 ± 17 143 ± 3 

 

30 month 6 549 ± 22 131 ± 8 

 

36 month 6 482 ± 28 135 ± 4 
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Table 3-2  

Tissue concentration and basal levels of phosphorylated MAPKs in aortae excised 

from young adult (6 month), aged (30 month) and very aged (36 month) Fischer 344X 

Brown Norway F1 rats.  Results were obtained by Western blot analysis using antibodies 

which recognized the unphosphorylated and phosphorylated forms of the proteins.  Data 

are presented as percent of the young adult value.  An (n.s.) indicates the value was not 

significantly different from the young adult. 

 

 

 6 mo.  

basal level 

30 mo.  

basal level 

36 mo.  

basal level 

    

ERK1/2 100.0 ± 6.3 n.s. n.s. 

p-ERK1/2 100.0 ± 1.1   68.7 ± 2.4   73.8 ± 6.3 

    

p38 100.0 ± 7.9   183.4 ± 17.6 n.s. 

p-p38 100.0 ± 3.2 228.7 ± 2.6   197.0 ± 13.6 

    

JNK   100.0 ± 23.2 181.3 ± 9.5 172.3 ± 3.8 

p-JNK 100.0 ± 2.9 123.9 ± 4.1 114.5 ± 1.6 
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Table 3-3 

 Pressure-induced, percent change in phosphorylation of MAPKs in aortae 

obtained from young adult (6 month), aged (30 month), and very aged (36 month) Fischer 

344X Brown Norway F1 rats.  Values were obtained by Western analysis utilizing 

antibodies that recognized the phosphorylated forms of the proteins.  An asterisk (*) 

indicates a significant difference from the 6 month value, p < 0.05. 

 

 

 

 6 mo. 30 mo 36 mo 

    

p-ERK1/2 +27.0 ± 1.8   +50.3 ± 11.6* +30.6 ± 17.3 

    

p-p38 +320.0 ± 12.2 +225.1 ± 17.6*   +89.9 ± 22.7* 

    

p-JNK +51.2 ± 4.3 +26.5 ± 5.0*  -17.0 ± 2.5* 
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Table 3-4 

 Regression analysis of the relationship between basal levels of expression and 

phosphorylation of ERK 1/2, p38, and JNK MAPKs and the thickness of the tunica media 

of aortae obtained young adult (6 month), aged (30 month), and very aged (36 month) 

Fischer 344/Brown Norway F1 hybrid rats.  The results reflect the analysis of combined 

MAPK and thickness comparisons of four individual aortas from each age group.  An 

asterisk (*) indicates significant correlation between parameters, p < 0.01 or greater. 

 

Total Tissue Content R 

  

ERK 1/2 0.005 

P38 0.011 

JNK   0.522* 

  

  

Percent Phosphorylation  

  

ERK 1/2   0.628* 

P38   0.572* 

JNK 0.383 
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Figure 3-3 

A.     

 

B.
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Figure3-1.  A: Schematic of experimental setup.  A reservoir positioned upstream of 

the peristaltic pump maintained perfusate and was temperature controlled. A second fluid 

reservoir served as a hydraulic mechanism for increasing pressure in the system.  A 

sphygmometer bulb (Welch Allyn) was used to pressurize the system.  Two inline 

transducers measured pre- and post-aortic pressure levels.  A force transducer (PCB, 

Piezoelectronics) located on an adjustable micrometer measured the force experienced by 

the vessel perpendicular to the flow of the system. Vessel intraluminal pressure was 

controlled by adjusting the air pressure introduced into the fluid reservoir.  System 

calibration was performed before all experiments.  B: Representative pressure-time 

tracing of aortic loading.  Tracing obtained from force transducer positioned proximal 

to aortic vessel.  Note the consistency of pressure maintenance over the interval of 

experimentation. 
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Figure 3-4  

A. 

 

 

 

B. 
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Figure 3-2.  Morphometric changes in the aortic wall of young adult (6 month), aged 

(30 month) and very aged (36 month) rats.  A) Sections stained with hematoxylin and 

eosin demonstrate the progressive thickening of the medial layer of the aortic wall with 

aging.  Bar indicates 100 :m.  B) Bar graph indicating significant increases (*) in the 

thickness of the tunica media of aortae from aged and very aged rats compared to young 

adult animals.  Thickness was measured from serial cross-sections of each vessel with 

data averaged from eight different points of cross-section. 
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Figure 3-5 

 

 



Kevin M. Rice Page 51 4/22/2005  

Figure 3-3. Aging differentially affects MAPK protein expression. Aortic segments 

from young adult (6 month), aged (30 month), and very aged (36 month) rats were 

analyzed by Western analysis for age-related changes in total ERK 1/2, p38, and JNK 

MAPK protein expression.  Results are expressed as percent of the 6 month value.  An 

asterisk (*) indicates significant difference from the young adult (6 month) value, p < 

0.05 or greater.  



Kevin M. Rice Page 52 4/22/2005  

Figure 3-6 

 

 

Figure 3-4.  Effects of aortic pressurization on phosphorylation of ERK 1/2 MAPK.  

Aortae were removed from 6, 30 and 36-month old animals, cannulated and pressurized 

to 200 mm Hg for 15 minutes.  ERK 1/2 MAPK phosphorylation was determined by 

Western analysis and immunodetection for ERK 1/2 MAPK phosphorylated on Thr 202 

and Tyr 204 (phospho-ERK 1/2 MAPK).  Phosphorylation status was calculated as 

phospho-specific optical density divided by the 6 month value.  An asterisk (*) or (+) 

indicates significant difference from the non-pressurized control of that group or the 

corresponding 6 month value, respectively, p < 0.01, n = 4 observations for each group. 
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Figure 3-7 

 

 

Figure 3-5.  Effects of aortic pressurization on phosphorylation of p38 MAPK.  

Aortae obtained from 6, 30, and 36 month old rats were cannulated and pressurized to 

200 mm Hg.  p38 MAPK phosphorylation was determined by Western analysis and 

immunodetection for p38  MAPK phosphorylated on Thr 180 and Tyr 182 (phospho- p38α 

MAPK).  Phosphorylation status was calculated as phospho-specific optical density 

divided by the 6 month value.  An asterisk (*) or (+) indicates a significant difference 

from the non-pressurized control of that age group or the corresponding 6 month value, 

respectively, p < 0.01, n = 4 observations per group.  
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Figure 3-8 

 

 

Figure 3-6.  Effects of aortic pressurization on JNK MAPK phosphorylation.  Aortae 

obtained from 6, 30, and 36-month old rats were cannulated and pressurized to 200 mm 

Hg.  JNK MAPK phosphorylation was determined by Western analysis and 

immunodetection for JNK MAPK phosphorylated on Thr183 and Tyr185 (phospho-JNK 

MAPK).  Phosphorylation status was calculated as phospho-specific optical density 

divided by the 6 month value.  An asterisk (*) or (+) indicates a significant difference 

from the non-pressurized control of that age group or the corresponding 6 month value, 

respectively, p < 0.01, n = 4 observations for each group. 
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Chapter 4 

CONCLUSIONS 

1. Aging was found to significantly alter basal expression of p38 and JNK in the 

30 month animals, how ever on JNK remained scientifically altered in the 36 

month aortas. 

 

2. Aging was found to significantly alter the basal phosphorylation of ERK 1/2, 

p38, and JNK. 

 

3. Aging was found to alter pressure induced signaling in the aortas. ERK 1/2, 

and p38 pressure induced phosphorylation was slightly diminished with age. 

However pressure induced JNK phosphorylation was lost in the very aged 

animals.      

 

4. We observed age associated increase in tunica medial thickness similar to age-

associated vascular structure seen in humans, these data support the utility of 

the F1 strain as a tool to investigate the age associated alterations 

cardiovascular seen in aging humans.   
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Further directions  

 Future directions for research based on this study should focus on the mechanisms 

associated with the differences in load induced MAPK activation with aging in the 

F344BN aorta.   

MAPK activation is a complex process necessitating the integration of many 

different participants.  The mechanisms associated with differences in MAPK activation 

with aging may lie in differences in aortic wall structure.  A study designed to determine 

how mechanical properties are altered with age may be invaluable to understanding age-

associated changes in aortic mechanotransduction.  This study could be done by 

subjecting aortas from different aged animals to increased pressure and examining the 

physical response.  Alterations in compliance, contractile response, K+ sensitivity, and 

numerous other factors could be examined to address age related alterations. Conversely 

endothelia damage has been associated with many pathological conditions with aging, in 

addressing the above mentioned mechanical properties of the aortic tissue the removal of 

the endothelium may shine light on the age related loss or damage of this tissue layer. 

Overall many age-associated changes involving mechano-sensing, mechano-stimulation, 

mechano-transduction, and force perception have not been addressed. If age alters the 

tissues ability to perceive and respond to mechanical stimuli, knowing if these alteration 

are due to changes in tissue structure and architecture or in proteins associated with 

specific signaling pathways may provide an avenue to inhibit age-associated changes in 

mechanotrasduction. 

 Although the effects of mechanical stress could be mediated in part, by activation 

of mechanosensitive ion channels or by locally and systemically released growth factors,  
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the seminal studies of Ingber and others (50-57) have demonstrated that mechanical input 

itself is able to trigger cellular signaling mechanisms.  Increasing evidence supports the 

notion that living cells transduce and transmit forces into biochemical signals through 

specialized focal sites of the membrane known as focal adhesion complexes.  These 

regions are rich in a variety of signaling molecules including focal adhesion kinase 

(FAK), RhoA, c-Src family kinases, paxillin, cdc42, Rac1, Ras family proteins, 

phosphatidylinositol 3-kinase (PI3-K), PKC, and MAPK.  It is thought that these 

signaling molecules may act as the “transducers” of mechanical stimuli that integrin 

dependent signals use to regulate alterations in gene transcription and translation (1, 86, 

109).  To investigate the possibility that age-associated alterations in FAK signaling may 

be involved in the different MAPK phosphorylation we see with aging, we could 

compare resting levels and the phosphorylation (activation) of the FAK signaling 

pathway after increases in intraluminal pressure in isolated aortae from different age 

groups of F344XBN rats.   

Alternatively, another potent activator of MAPK phosphorylation may be reactive 

oxygen species (ROS). Defined as an imbalance between the generation of ROS and the 

existing antioxidative defense mechanisms, oxidative stress has been implicated to play 

important roles in tissue injury, vascular remodeling, apoptosis, and aging.  Recent 

investigations have identified that oxidative stress is capable of activating MAPK 

proteins (5, 6, 108).  To investigate whether alterations in ROS contribute to age-

associated differences in MAPK signaling we could repeat the experiments performed in 

this study in the absence and presence of ROS scavengers.  A similar MAPK response to 

increased intraluminal pressure in the presence of ROS scavengers with aging would 
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suggest that ROS are not factor involved in age associated changes of pressure induced 

MAPK activation. Conversely,  if introduction of ROS in the 6-month animals altered 

MAPK pathway activation to resemble that of the 36-month age group, we could 

postulate that age related increase in ROS alter the pressure induced activation of 

MAPKs pathway related proteins. 
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Appendix A 

Subsection A (Pressure traces) 

Preliminary Pressurization Experiments 

The following is the preliminary pressurization experiments performed to test the 

validity of our project design. 

Figure A -9 

 

 

 

Figure  
Preliminary experiment on 3-11-2004, this represents a 6-month-old F1 male rat 

aorta pressurized for 15 min at 200mm hg.  

 

Figure A - 10 

 

Figure  
Preliminary experiment on 3-11-2004, this 

represents a 6-month-old F1 male rat aorta 
pressurized for 5 min at 200mm hg.  

 



Kevin M. Rice Page 81 4/22/2005  

 

 

Figure A - 11 

 

 

 

 

Figure  
Preliminary experiment on 3-16-2004, this represents a 6-month-old F1 male 

rat aorta pressurized for 15 min at 200mm hg.  

Figure A - 12  

Figure  
Preliminary experiment on 3-22-2004, 

this represents a 6-month-old F1 male rat aorta 
pressurized for 15 min at 200mm hg.  
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6 Month Pressure Experiments 

 The following represent the graphical output of the force-transducers for the 

designated experiment. 

 

 15 Minute Pressure Experiment 

Figure A - 13 

 

Figure  
Experiment on 5-11-2004, this 

represents a 6-month-old F1 male rat aorta 
pressurized for 15 min at 200mm hg.  
 

 

Figure A - 14 

 

Figure  
Experiment on 5-11-2004, this 

represents a 6-month-old F1 male rat aorta 
pressurized for 15 min at 200mm hg.  
 



Kevin M. Rice Page 83 4/22/2005  

Figure A - 15 

Figure  
Experiment on 4-5-2004, this 

represents a 6-month-old F1 male rat aorta 
pressurized for 15 min at 200mm hg.  
 

 

Figure A - 16 

 

Figure  
Experiment on 5-25-2004, this 

represents a 6-month-old F1 male rat aorta 
pressurized for 15 min at 200mm hg.  
 

 

 

 

Figure A - 17 
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Figure  
Experiment on 5-26-2004, this 

represents a 6-month-old F1 male rat aorta 
pressurized for 15 min at 200mm hg.  
 

 

30 Month Pressure Experiments 

  

 15 Minute Pressure Experiment 

Figure A - 18 

 

 

 

Figure  
Experiment on 5-7-04, this represents a 30-month-old F1 male rat aorta 

pressurized for 15 min at 200mm hg.  
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Figure A - 19 

 

Figure  
Experiment on 5-10-04, this represents 

a 30-month-old F1 male rat aorta pressurized 
for 15 min at 200mm hg.  
 

Figure A - 20 

 

Figure  
Experiment on 5-27-04, this represents 

a 30-month-old F1 male rat aorta pressurized 
for 15 min at 200mm hg.  
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Figure A - 21 

 

Figure  
Experiment on 5-28-04, this represents 

a 30-month-old F1 male rat aorta pressurized 
for 15 min at 200mm hg.  
 

Figure A - 22 

 

Figure  
Experiment on 6-3-04, this represents a 

30-month-old F1 male rat aorta pressurized for 
15 min at 200mm hg.  
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36 Month Pressure Experiments 

 15 Minute Pressure Experiment 

Figure A - 23 

 

Figure  
Experiment on 4-14-2004, this represents a 36-

month-old F1 male rat aorta pressurized for 15 min at 
200mm hg.  
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Figure A - 24 

 

Figure  
Experiment on 5-25-2004, this represents a 36-

month-old F1 male rat aorta pressurized for 15 min at 
200mm hg.  
 

Figure A - 25 

 

Figure  
Experiment on 5-27-2004, this represents a 36-

month-old F1 male rat aorta pressurized for 15 min at 
200mm hg.  
 

Figure A - 26 

 

Figure  
Experiment on 5-28-2004, this represents a 36-

month-old F1 male rat aorta pressurized for 15 min at 
200mm hg.  
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Appendix B 

Film interpretation 

 Working guidelines: 

1. Shoot for a film exposure that gives “scan worthy” bands when the 

exposure is > 1 min.  The longer the exposure, the better, because this 

suggests that the slope of the enzyme reaction rate line is < 1.0. 

 

2. Examine the bands- is any one of them “saturated”?  If so, this film 

cannot be used without justification. 

 

 

3. Examine the background- is it “excessive”?  Does it compromise the 

interpretation?  If so, this film cannot be used without justification. 

 

4. Examine the band shape present in each and all lanes.  “A band should 

be a band” and it should “look like a band” e.g. a line.  Not a “blob”, 

“smudge”, “or something else. 

 

 

5. Refer to “Figure worthy” data point criteria before proceeding further. 
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“Figure worthy” data point 

Definition:  

1. If using a pooled sample (minimum n=3 separate samples), each 

sample must be run on a minimum of 3 lanes (preferably ≥ 4).  Take 

this mean value (IDV or area or some other assessment) and find the 

mean value.   

 

2. If this mean value, when subjected to statistical analysis, does not 

“work” then data point must be re-done. 

 

3. * A “lane” or “gel” cannot be displaced without adherence to sampling 

assumptions. 

 

In an ideal situation, each and every antibody should have standard conditions for 

dilution, blocking, washes, exposures etc.  It is recommended to start with the 

manufactures’ protocol as an initial starting point.  Everyone’s input is encouraged 

and expected.   
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Subsection A (Film Reports) 

 The following are the film reports will immunoblot films, for the appropriate 

protein molecule.  
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JNK  

Film Properties Report JNK (1) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: JNK (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 2°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 5% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 46, 54 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report JNK (2) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: JNK (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 2°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 5% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 46, 54 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report p-JNK (1) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: p-JNK (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 2°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 5% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 46, 54 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report p-JNK (2) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: p-JNK (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 2°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 5% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 46, 54 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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P38  

Film Properties Report p38 (1) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody:  p38 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 2°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 38 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  



Kevin M. Rice Page 97 4/22/2005  

Film Properties Report p38 (2) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody:  p38 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 4°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight:  38 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report p-p38 (1) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody:  p-p38 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 2°C   Medium: 10% BSA  

Secondary Antibody: Anti Mouse     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 38 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report p-p38 (2) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody:  p-p38 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 4°C   Medium: 10% BSA  

Secondary Antibody: Anti Mouse     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight:  38 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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P44/42 MAPK (ERK 1/2)   

Film Properties Report ERK1/2 (1) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: ERK 1/2 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 4°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 42, 44 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report ERK1/2 (2) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: ERK 1/2 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 4°C   Medium: 10% BSA  

Secondary Antibody: Anti Rabbit     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 42, 44 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report p-ERK1/2 (1) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: p-ERK 1/2 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 4°C   Medium: 10% BSA  

Secondary Antibody: Anti Mouse     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 42, 44 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Film Properties Report p-ERK1/2 (2) 

Experimenter: Kevin M. Rice   

Muscle / Tissue:  Aorta    Species: F1 rat F344 X BN 

Protein concentration: 30 µg/ml   Gel type: 10% Tris-HCL SDS-PAGE 

Electrophoresis Voltage: 120V Transfer Voltage: 24V  Duration: 45 min   

Primary Antibody: p-ERK 1/2 (Cell Signaling) Primary Antibody Dilution: 1/500 

Incubation Time: overnight @ 4°C   Medium: 10% BSA  

Secondary Antibody: Anti Mouse     Secondary Antibody Dilution: 1/1000 

Incubation Time: 1hr @ room temp  Medium: 1% milk in TBS-T 

Exposure Time 1 min    Molecular weight: 42, 44 kDa 

Lane 1: Hela Cell Extract 3 µl  

Lane 2: NIH 3T3 Activated Cell Extract 3 µl 

Lane 3: L6 IGF Cell Extract 3 µl 

Lane 4: Rainbow Marker RPN756 3 µl 

Lane 5: 6 month control 20 µl 

Lane 6: 6 month 15 min pressure 20µl 

Lane 7: 30 month control 20 µl 

Lane 8: 30 month 15 min pressure 20 µl  

Lane 9: 36 month control 20 µl 

Lane 10: 36 month 15 min pressure 20 µl 

Lane 11: Rainbow Marker RPN756 3 µl 

Lane 12: Biotinylated Ladder 3 µl  
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Subsection B (Raw data) 

This section represents the raw data tables Produced from spot densitometry of 

the immunoblot films.  

 

JNK Data Set  

Total JNK IDV values 

 6 Control 6 Press 30 Control 30 Press 36 Control 36 Press 
IDV 689472 756000 883008 731808 719712 743904
IDV 187488 338688 683424 725760 798336 562464
IDV 696348 756378 906453 726363 714357 750375
IDV 186093 342171 696348 738369 792396 552276
IDV 692208 752928 916872 728640 722568 765072
IDV 188232 346104 704352 734712 807576 552552
IDV 702032 750448 907800 726240 720188 756500
IDV 188232 346104 704352 734712 807576 552552
       
N 8 8 8 8 8 8
Mean 441263.1 548602.6 800326.13 730825.5 760338.63 654461.9
Standard 
Deviation 271296.6 219533.4 110926.23 4772.77817 44300.5 106584.9
Standard 
Error of the 
mean 102540.5 82975.81 41926.175 1803.94058 16744.015 40285.31
       

 6   Control 6 Pressure 30 Control 
30 
Pressure 36 Control 

36 
Pressure 

Relative 
Expression 
Level 1 1.243255 1.8137163 1.65621249 1.7230958 1.483156
Standard 
error of the 
mean 0.232379 0.188042 0.095014 0.00408813 0.0379456 0.091295
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Phosphorylated JNK  IDV Values 

 6 Control 6 Press 
30 
Control 30 Press 

36 
Control 36 Press 

IDV 981558 1399629 1260272 1375393 999735 896732
IDV 805847 1314803 945204 1308744 1054266 830083
IDV 990000 1392000 1230000 1356000 990000 882000
IDV 798000 1302000 960000 1314000 1080000 882000
IDV 960640 1392928 1242828 1380920 936624 906604
IDV 786524 1308872 990660 1320880 1098732 834556
IDV 1003002 1387386 1207206 1369368 984984 888888
IDV 810810 1291290 1003002 1309308 1027026 834834
       
N 16 16 16 16 16 16
Mean 892047.6 1348614 1104897 1341827 1021421 869462.1
Strandard Deviation 99018.65 48008.02 141023.8 31576.23 54108.95 31129.19
Standard Error of the 
mean 25566.51 12395.62 36412.18 8152.948 13970.87 8037.523
       

 
6   
Control 

6    
Pressure 

30 
Control 

30 
Pressure 

36 
Control 

36 
Pressure 

Relative Expression 
Level 1 1.511818 1.238607 1.50421 1.14503 0.974681
Standard error of the 
mean 0.02866 0.013896 0.040819 0.00914 0.015662 0.00901
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P38 Data Set 

Total p38 IDV values 

 6 Control 6 Press 30 Control 30 Press 36 Control 36 Press 
IDV 32256 30240 64512 52416 36288 36288
IDV 30375 30375 62775 46575 38475 36450
IDV 34510 32480 60900 50750 36540 34510
IDV 34680 32640 63240 48960 36720 36720
IDV 22176 32256 38304 58464 24192 28224
IDV 22528 32768 38912 57344 24576 26624
IDV 22880 33280 39520 58240 22880 27040
IDV 22165 32240 38285 56420 24180 26195
       
N 8 8 8 8 8 8
Mean 27696.25 32034.88 50806 53646.13 30481.38 31506.38
Standard 
Deviation 5783.498 1116.106 12925.73 4591.072 7022.009 4873.805
Standard Error 
of the mean 2185.957 421.8486 4885.466 1735.262 2654.07 1842.125
       
 6 Control 6 Pressure 30 Control 30 Pressure 36 Control 36 Pressure
Relative 
Expression 
Level 1 1.15665 1.8344 1.936945 1.10056 1.137568
Standard error 
of the mean 0.078926 0.015231 0.176394 0.062653 0.095828 0.066512
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Phosphorylated p38 IDV Values 

 6 Control 6 Press 30 Control 30 Press 
36 
Control 36 Press 

IDV 652080 797544 403200 614880 463680 491568
IDV 660240 801360 396975 608025 462300 498960
IDV 650160 796320 399424 616832 475264 493920
IDV 655200 801360 401280 616968 461472 488880
IDV 624102 816914 472350 909525 477375 842284
IDV 614880 826560 483840 897120 473760 851760
IDV 619028 821988 481650 907530 476580 842284
IDV 624960 816914 466488 897864 471504 816480
       
N 8 8 8 8 8 8
Mean 637581.3 809870 438150.9 758593 470241.9 665767
Standard 
Deviation 18488.74 11982.19 40932.86 154470 6689.944 184628.8075
Standard Error 
of the mean 6988.086 4528.844 15471.17 58384.16 2528.561 69783.12995
       

 6 Control 
6 
Pressure 30 Control 

30 
Pressure 

36 
Control 36 Pressure 

Relative 
Expression 
Level 1 1.270222 0.687208 1.189798 0.73754 1.044207307
Standard error 
of the mean 0.01096 0.007103 0.024265 0.091571 0.003966 0.109449784

 

 



Kevin M. Rice Page 108 4/22/2005  

P44/42 MAPK (ERK 1/2) Data Set  

 

Total ERK 1/2 IDV values 

 6 Control 6 Press 30 Control 30 Press 36 Control 36 Press 
IDV 582552 690480 650160 645120 720720 778410
IDV 808542 821520 821520 887040 700560 778410
IDV 573249 632875 643001 627812 703757 750804
IDV 791388 774639 830332 891088 713883 776169
IDV 593541 683505 648064 653127 708820 776169
IDV 796461 830332 825269 896151 718946 776169
IDV 583395 709800 664170 648960 725010 781242
IDV 796461 821340 811200 882180 709800 776169
       
N 8 8 8 8 8 8
Mean 690698.6 745561.4 736714.5 766434.8 712687 774192.8
Standard 
Deviation 115164.8 75975.3 91606.08 131409.8 8511.24 9620.797
Standard Error of 
the mean 43528.21 28715.97 34623.84 49668.25 3216.946 3636.32
       

 6   Control 6 Pressure 30 Control 
30 
Pressure 36 Control 

36 
Pressure 

Relative 
Expression Level 1 1.079431 1.066622 1.109651 1.031835 1.120884
Standard error of 
the mean 0.063021 0.041575 0.050129 0.07191 0.004658 0.005265
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Phosphorylated ERK 1/2 IDV Values 

 6 Control 6 Press 
30 
Control 30 Press 

36 
Control 36 Press 

IDV 652080 797544 403200 614880 463680 491568
IDV 660240 801360 396975 608025 462300 498960
IDV 650160 796320 399424 616832 475264 493920
IDV 655200 801360 401280 616968 461472 488880
IDV 624102 816914 472350 909525 477375 842284
IDV 614880 826560 483840 897120 473760 851760
IDV 619028 821988 481650 907530 476580 842284
IDV 624960 816914 466488 897864 471504 816480
       
N 8 8 8 8 8 8
Mean 637581.3 809870 438150.9 758593 470241.9 665767
Standard Deviation 18488.74 11982.19 40932.86 154470 6689.944 184628.8075
Standard Error of the 
mean 6988.086 4528.844 15471.17 58384.16 2528.561 69783.12995
       

 
6   
Control 

6    
Pressure 

30 
Control 

30 
Pressure 

36 
Control 36 Pressure 

Relative Expression 
Level 1 1.270222 0.687208 1.189798 0.73754 1.044207307
Standard error of the 
mean 0.01096 0.007103 0.024265 0.091571 0.003966 0.109449784
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Subsection C (Statistics)  

 

JNK  

One Way Analysis of Variance  

Normality Test: Passed (P > 0.050) 

Equal Variance Test: Failed (P = <0.001) 

Test execution ended by user request, ANOVA on Ranks begun 

Kruskal-Wallis One Way Analysis of Variance on Ranks  

Group N  Missing  Median    25%      75%     

6 Control 8 0 438852.000 187860.000 694278.000  

6 Press  8 0 548276.000 344137.500 754464.000  

30 Control 8 0 793680.000 700350.000 907126.500  

30 Press 8 0 730224.000 726301.500 734712.000  

36 Control 8 0 757482.000 719950.000 802956.000  

36 Press 8 0 653184.000 552552.000 753437.500  

 

H = 15.432 with 5 degrees of freedom.  (P = 0.009) 

 

The differences in the median values among the treatment groups are greater than would 

be expected by chance; there is a statistically significant difference (P = 0.009) 

 

To isolate the group or groups that differ from the others use a multiple comparison 

procedure. 
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All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method): 

 

Comparison   Diff of Ranks  q P<0.05   

36 Control vs 6 Control 186.500  4.710 Yes   

36 Control vs 6 Press  88.000   2.661 No   

36 Control vs 36 Press 72.000   2.714 Do Not Test   

36 Control vs 30 Press 32.000   1.600 Do Not Test   

36 Control vs 30 Control 5.500   0.408 Do Not Test   

30 Control vs 6 Control 181.000  5.474 Yes   

30 Control vs 6 Press  82.500   3.109 Do Not Test   

30 Control vs 36 Press 66.500   3.325 Do Not Test   

30 Control vs 30 Press 26.500   1.968 Do Not Test   

30 Press vs 6 Control  154.500  5.823 Yes   

30 Press vs 6 Press  56.000   2.800 Do Not Test   

30 Press vs 36 Press  40.000   2.970 Do Not Test   

36 Press vs 6 Control  114.500  5.725 Yes   

36 Press vs 6 Press  16.000   1.188 Do Not Test   

6 Press vs 6 Control  98.500   7.315 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

 

 



Kevin M. Rice Page 112 4/22/2005  

t-test 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 438852.000 187860.000 694278.000  

30 Control 8 0 793680.000 700350.000 907126.500  

 

T = 41.500  n(small)= 8  n(big)= 8  P(est.)= 0.006  P(exact)= 0.003 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = 0.003) 
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t-test 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 438852.000 187860.000 694278.000  

36 Control 8 0 757482.000 719950.000 802956.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 793680.000 700350.000 907126.500  

36 Control 8 0 757482.000 719950.000 802956.000  

 

T = 68.000  n(small)= 8  n(big)= 8  P(est.)= 0.958  P(exact)= 1.000 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 1.000) 
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P-JNK 

 

One Way Analysis of Variance p-JNK  

Normality Test: Passed (P > 0.050) 

Equal Variance Test: Failed (P = <0.001) 

Test execution ended by user request, ANOVA on Ranks begun 

Kruskal-Wallis One Way Analysis of Variance on Ranks  

Group N  Missing  Median    25%      75%     

6 Control 8 0 885725.000 801923.500 985779.000  

6 Press 8 0 1351094.500 1305436.000 1392464.000  

30 Control 8 0 1105104.000 975330.000 1236414.000  

30 Press 8 0 1338440.000 1311654.000 1372380.500  

36 Control 8 0 1013380.500 987492.000 1067133.000  

36 Press 8 0 882000.000 834695.000 892810.000  

 

H = 39.286 with 5 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would 

be expected by chance; there is a statistically significant difference (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison 

procedure. 

 



Kevin M. Rice Page 116 4/22/2005  

All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 

 

Comparison Diff of Ranks q P<0.05   

6 Press vs 36 Press 260.000 6.566 Yes   

6 Press vs 6 Control 242.000 7.319 Yes   

6 Press vs 36 Control 149.500 5.634 Yes   

6 Press vs 30 Control 132.500 6.625 Yes   

6 Press vs 30 Press 8.000 0.594 No   

30 Press vs 36 Press 252.000 7.621 Yes   

30 Press vs 6 Control 234.000 8.819 Yes   

30 Press vs 36 Control 141.500 7.075 Yes   

30 Press vs 30 Control 124.500 9.246 Yes   

30 Control vs 36 Press 127.500 4.805 Yes   

30 Control vs 6 Control 109.500 5.475 Yes   

30 Control vs 36 Control 17.000 1.262 No   

36 Control vs 36 Press 110.500 5.525 Yes   

36 Control vs 6 Control 92.500 6.869 Yes   

6 Control vs 36 Press 18.000 1.337 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 885725.000 801923.500 985779.000  

6 Press 8 0 1351094.500 1305436.000 1392464.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 1105104.000 975330.000 1236414.000  

30 Press 8 0 1338440.000 1311654.000 1372380.500  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Passed (P = 0.151) 

 

Group Name N  Missing Mean Std Dev SEM  

36 Control 8 0 1021420.875 54108.948 19130.402  

36 Press 8 0 869462.125 31129.192 11005.831  

 

Difference 151958.750 

 

t = 6.885 with 14 degrees of freedom. (P = <0.001) 

 

95 percent confidence interval for difference of means: 104622.544 to 199294.956 

 

The difference in the mean values of the two groups is greater than would be expected by 

chance; there is a statistically significant difference between the input groups (P = 

<0.001). 

 

Power of performed test with alpha = 0.050: 1.000 
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t-test  

 

Normality Test: Failed (P = 0.010) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 885725.000 801923.500 985779.000  

30 Control 8 0 1105104.000 975330.000 1236414.000  

 

T = 45.500  n(small)= 8  n(big)= 8  P(est.)= 0.021  P(exact)= 0.015 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = 0.015) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 885725.000 801923.500 985779.000  

36 Control 8 0 1013380.500 987492.000 1067133.000  

 

T = 44.500  n(small)= 8  n(big)= 8  P(est.)= 0.016  P(exact)= 0.010 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = 0.010) 
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t-test 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 1105104.000 975330.000 1236414.000  

36 Control 8 0 1013380.500 987492.000 1067133.000  

 

T = 77.000  n(small)= 8  n(big)= 8  P(est.)= 0.372  P(exact)= 0.382 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 0.382) 
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P38  

 

One Way Analysis of Variance  

Normality Test: Passed (P > 0.050) 

Equal Variance Test: Failed (P = <0.001) 

Test execution ended by user request, ANOVA on Ranks begun 

Kruskal-Wallis One Way Analysis of Variance on Ranks  

Group N  Missing  Median    25%      75%     

6 Control 8 0 26627.500 22352.000 33383.000  

6 Press  8 0 32368.000 31307.500 32704.000  

30 Control 8 0 50210.000 38608.000 63007.500  

30 Press 8 0 54418.000 49855.000 57792.000  

36 Control 8 0 30432.000 24186.000 36630.000  

36 Press 8 0 31367.000 26832.000 36369.000  

 

H = 32.354 with 5 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would 

be expected by chance; there is a statistically significant difference (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison 

procedure. 



Kevin M. Rice Page 124 4/22/2005  

 

 

All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 

 

Comparison   Diff of Ranks  q P<0.05   

30 Press vs 6 Control  233.000  5.884 Yes   

30 Press vs 6 Press  181.000  5.474 Yes   

30 Press vs 36 Control 178.500  6.727 Yes   

30 Press vs 36 Press  173.500  8.675 Yes   

30 Press vs 30 Control 2.000   0.149 No   

30 Control vs 6 Control 231.000  6.986 Yes   

30 Control vs 6 Press  179.000  6.746 Yes   

30 Control vs 36 Control 176.500  8.825 Yes   

30 Control vs 36 Press 171.500  12.736 Yes   

36 Press vs 6 Control  59.500   2.242 No   

36 Press vs 6 Press  7.500   0.375 Do Not Test   

36 Press vs 36 Control 5.000   0.371 Do Not Test   

36 Control vs 6 Control 54.500   2.725 Do Not Test   

36 Control vs 6 Press  2.500   0.186 Do Not Test   

6 Press vs 6 Control  52.000   3.862 Do Not Test   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 26627.500 22352.000 33383.000  

30 Control 8 0 50210.000 38608.000 63007.500  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Failed (P = 0.002) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 26627.500 22352.000 33383.000  

36 Control 8 0 30432.000 24186.000 36630.000  

 

T = 52.500  n(small)= 8  n(big)= 8  P(est.)= 0.115  P(exact)= 0.105 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 0.105) 
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t-test  

 

Normality Test: Failed (P = 0.047) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 50210.000 38608.000 63007.500  

36 Control 8 0 30432.000 24186.000 36630.000  

 

T = 98.000  n(small)= 8  n(big)= 8  P(est.)= 0.002  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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p-p38 

One Way Analysis of Variance  

Normality Test: Passed (P > 0.050) 

Equal Variance Test: Failed (P = <0.001) 

Test execution ended by user request, ANOVA on Ranks begun 

Kruskal-Wallis One Way Analysis of Variance on Ranks  

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 51650.000 47540.000 54060.000  

6 Press  8 0 216452.000 207268.000 218196.000  

30 Control 8 0 115674.000 114240.000 119806.000  

30 Press 8 0 232044.000 212160.000 251030.000  

36 Control 8 0 103020.000 82560.000 117416.000  

36 Press 8 0 143960.000 138216.000 157884.000  

 

H = 43.560 with 5 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would 

be expected by chance; there is a statistically significant difference (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison 

procedure. 
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All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 

 

Comparison   Diff of Ranks  q P<0.05   

30 Press vs 6 Control  301.000  7.601 Yes   

30 Press vs 36 Control 218.500  6.608 Yes   

30 Press vs 30 Control 191.500  7.217 Yes   

30 Press vs 36 Press  109.000  5.450 Yes   

30 Press vs 6 Press  26.000   1.931 No   

6 Press vs 6 Control  275.000  8.317 Yes   

6 Press vs 36 Control  192.500  7.255 Yes   

6 Press vs 30 Control  165.500  8.275 Yes   

6 Press vs 36 Press  83.000   6.164 Yes   

36 Press vs 6 Control  192.000  7.236 Yes   

36 Press vs 36 Control 109.500  5.475 Yes   

36 Press vs 30 Control 82.500   6.127 Yes   

30 Control vs 6 Control 109.500  5.475 Yes   

30 Control vs 36 Control 27.000   2.005 No   

36 Control vs 6 Control 82.500   6.127 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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t-test  

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Passed (P = 0.189) 

 

Group Name  N  Missing Mean  Std Dev SEM  

6 Control 8 0  51062.500 4380.299 1548.669  

6 Press  8 0  214539.000 12168.622 4302.258  

 

Difference -163476.500 

 

t = -35.752 with 14 degrees of freedom. (P = <0.001) 

 

95 percent confidence interval for difference of means: -173283.547 to -153669.453 

 

The difference in the mean values of the two groups is greater than would be expected by 

chance; there is a statistically significant difference between the input groups (P = 

<0.001). 

 

Power of performed test with alpha = 0.050: 1.000 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 115674.000 114240.000 119806.000  

30 Press 8 0 232044.000 212160.000 251030.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = 0.027) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

36 Control 8 0 103020.000 82560.000 117416.000  

36 Press 8 0 143960.000 138216.000 157884.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Passed (P = 0.732) 

 

Group Name  N  Missing Mean  Std Dev SEM  

6 Control 8 0  51062.500 4380.299 1548.669  

30 Control 8 0  116755.000 3562.867 1259.664  

 

Difference -65692.500 

 

t = -32.907 with 14 degrees of freedom. (P = <0.001) 

 

95 percent confidence interval for difference of means: -69974.092 to -61410.908 

 

The difference in the mean values of the two groups is greater than would be expected by 

chance; there is a statistically significant difference between the input groups (P = 

<0.001). 

 

Power of performed test with alpha = 0.050: 1.000 
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t-test 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 51650.000 47540.000 54060.000  

36 Control 8 0 103020.000 82560.000 117416.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 115674.000 114240.000 119806.000  

36 Control 8 0 103020.000 82560.000 117416.000  

 

T = 81.500  n(small)= 8  n(big)= 8  P(est.)= 0.172  P(exact)= 0.161 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 0.161) 
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P44/42 MAPK (ERK 1/2) 

 

One Way Analysis of Variance  

Normality Test: Passed (P > 0.050) 

Equal Variance Test: Failed (P = <0.001) 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks  

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 692464.500 582973.500 796461.000  

6 Press  8 0 742219.500 686992.500 821430.000  

30 Control 8 0 737685.000 649112.000 823394.500  

30 Press 8 0 767653.500 647040.000 889064.000  

36 Control 8 0 711841.500 706288.500 719833.000  

36 Press 8 0 776169.000 776169.000 778410.000  

 

H = 3.487 with 5 degrees of freedom.  (P = 0.625) 

 

The differences in the median values among the treatment groups are not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference    (P = 0.625) 
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t-test 

 

Normality Test: Failed (P = 0.004) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 692464.500 582973.500 796461.000  

30 Control 8 0 737685.000 649112.000 823394.500  

 

T = 52.000  n(small)= 8  n(big)= 8  P(est.)= 0.104  P(exact)= 0.105 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 0.105) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 692464.500 582973.500 796461.000  

36 Control 8 0 711841.500 706288.500 719833.000  

 

T = 68.000  n(small)= 8  n(big)= 8  P(est.)= 0.958  P(exact)= 1.000 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 1.000) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 737685.000 649112.000 823394.500  

36 Control 8 0 711841.500 706288.500 719833.000  

 

T = 68.000  n(small)= 8  n(big)= 8  P(est.)= 0.958  P(exact)= 1.000 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 1.000) 
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p-P44/42 MAPK (ERK 1/2) 

One Way Analysis of Variance 

Normality Test: Failed (P = <0.001) 

Test execution ended by user request, ANOVA on Ranks begun 

Kruskal-Wallis One Way Analysis of Variance on Ranks  

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 637560.000 621565.000 653640.000  

6 Press 8 0 809137.000 799452.000 819451.000  

30 Control 8 0 434844.000 400352.000 477000.000  

30 Press 8 0 757044.000 615856.000 902697.000  

36 Control 8 0 472632.000 462990.000 475922.000  

36 Press 8 0 657720.000 492744.000 842284.000  

 

H = 33.517 with 5 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would 

be expected by chance; there is a statistically significant difference (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison 

procedure. 
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All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 

 

Comparison Diff of Ranks q P<0.05   

6 Press vs 30 Control 237.000 5.985 Yes   

6 Press vs 36 Control 219.000 6.623 Yes   

6 Press vs 6 Control 70.500 2.657 No   

6 Press vs 36 Press 56.000 2.800 Do Not Test   

6 Press vs 30 Press 17.500 1.300 Do Not Test   

30 Press vs 30 Control 219.500 6.638 Yes   

30 Press vs 36 Control 201.500 7.594 Yes   

30 Press vs 6 Control 53.000 2.650 Do Not Test   

30 Press vs 36 Press 38.500 2.859 Do Not Test   

36 Press vs 30 Control 181.000 6.822 Yes   

36 Press vs 36 Control 163.000 8.150 Yes   

36 Press vs 6 Control 14.500 1.077 Do Not Test   

6 Control vs 30 Control 166.500 8.325 Yes   

6 Control vs 36 Control 148.500 11.028 Yes   

36 Control vs 30 Control 18.000 1.337 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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t-test 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = 0.007) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 637560.000 621565.000 653640.000  

6 Press 8 0 809137.000 799452.000 819451.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 434844.000 400352.000 477000.000  

30 Press 8 0 757044.000 615856.000 902697.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test 

 

Normality Test: Failed (P = 0.025) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

36 Control 8 0 472632.000 462990.000 475922.000  

36 Press 8 0 657720.000 492744.000 842284.000  

 

T = 36.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 637560.000 621565.000 653640.000  

30 Control 8 0 434844.000 400352.000 477000.000  

 

T = 100.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test 

 

Group N  Missing  Median    25%      75%     

6 Control 8 0 637560.000 621565.000 653640.000  

36 Control 8 0 472632.000 462990.000 475922.000  

 

T = 100.000  n(small)= 8  n(big)= 8  P(est.)= <0.001  P(exact)= <0.001 

 

The difference in the median values between the two groups is greater than would be 

expected by chance; there is a statistically significant difference (P = <0.001) 
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t-test  

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test  

 

Group N  Missing  Median    25%      75%     

30 Control 8 0 434844.000 400352.000 477000.000  

36 Control 8 0 472632.000 462990.000 475922.000  

 

T = 59.000  n(small)= 8  n(big)= 8  P(est.)= 0.372  P(exact)= 0.382 

 

The difference in the median values between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is 

not a statistically significant difference  (P = 0.382) 
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Table of Measures 
Systeme Internationale (SI) Unit Chart - International System of weights and measures. 

Yotto  [Y] 1,000,000,000,000,000,000,000,000  = 1x10 24

Zeta [Z] 1,000,000,000,000,000,000,000  = 1x10 21

Exa [E] 1,000,000,000,000,000,000   = 1x10 18

Peta [P] 1,000,000,000,000,000   = 1x10 15

Tera [T] 1,000,000,000,000    = 1x10 12

Giga [G] 1,000,000,000     = 1x10 9

Mega [G] 1,000,000     = 1x10 6

Kilo [k] 1,000      = 1x10 3 

Hecto [h] 100      = 1x10 2 

Deca [da] 10      = 1x10 1 

basic unit 1      = 1

Deci [d] 0.1      = 1x10 -1 

Centi [c] 0.01      = 1x10 -2 

Milli [m] 0.001      = 1x10 -3 

Micro [µ] 0.000 001     = 1x10 -6 

Nano [n] 0.000 000 001      = 1x10 -9 

Pico [p] 0.000 000 000 001    = 1x10 -12 

Femto [f] 0.000 000 000 000 001   = 1x10 -15 

Atto [a] 0.000 000 000 000 000 001   = 1x10 -18 

Zepto [z] 0.000 000 000 000 000 001   = 1x10 -21 

Yocto [y] 0.000 000 000 000 000 001   = 1x10 -24
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Basic SI units 

Category    Name   Abbreviation 

Length     meter    m 

 Mass     gram    g 

 Time     second    s 

 Electric current   ampere    A 

 Temperature    kelvin    K 

 Temperature    Celsius    C 

 Amount of substance    mole    mol 

 Luminous intensity   candela   cd 

 Electrical capacitance   farad    F 

 Frequency    hertz    Hz 

 Energy (work)    joule    J 

 Force     newton    N 

 Electrical conductor resistance ohm    Ω 

 Pressure generated by force  pascal    Pa 

 Electric potential   volt    V 

 Power or rate of work   watt    W 

 Speed  

 Volume    liter    L 
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Metric System of Measurements 

 

Length 

10 millimeters (mm) = 1 centimeter (cm) 

10 centimeters (cm)  = 1 decimeter (dm) 

10 decimeters (dm)  = 1 meter (m) 

10 meters (m)          = 1 decameter (dam) 

10 decameters(dam)= 1 hectometer (hm) 

10 hectometers(hm) = 1 kilometer (km) 

1,000 meters (m)      = 1 kilometer (km) 

Volume 

1,000 cubic mm        = 1 cubic cm 

1,000 cubic cm         = 1 cubic dm 

1,000 cubic dm        = 1 cubic meter 

1 million cm 3          = 1 cubic meter 

Capacity 

10 milliliters (mL)    = 1 centiliter (cL) 

10 centiliter (cL)      = 1 deciliter (dL) 

10 deciliters (dL)     = 1 liter (L) 

1,000 liters (L)        = 1 m 3

 

Area 

100 square mm         = 1 square cm 

10,000 cm 2               = 1 m 2

100 m 2                     = 1 are 

100 ares          = 1 hectare 

10,000 m 2               = 1 hectare 

100 hectares         = 1 km 2

1,000,000 m 2          = 1 sq. 

Mass 

1,000 grams (g)         = I kilogram (kg) 

1,000 kilograms (kg) = 1 tonne 

 

Time 

1 minute (min)         = 60 seconds (s) 

1 hour (h)          = 60 minutes (min) 

1 day (d)                  = 24 hours (h) 

1 week (wk)            = 7 days (d) 

1 year (a)                = 12 months (mo) 
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The UK (imperial) System of Measurements 

Length 

12 inches                   = 1 foot 

3 feet                         = 1 yard 

22 yards                     = 1 chain 

10 chains                   = 1 furlong 

8 furlongs                  = 1 mile 

5,280 feet                  = 1 mile 

1,760 yards               = 1 mile 

Volume 

1,728 cubic inches       = 1 cubic foot 

27 cubic feet    = 1 cubic yard  

Mass 

437.5 grains      = 1 ounce 

16 ounces          = 1 pound (7,000 grains) 

14 pounds          = 1 stone 

8 stones          = 1 hundredweight [cwt] 

20 cwt            = 1 ton (2,240 pounds)  

Area 

144 square inches    = 1 square foot 

9 square feet            = 1 square yard 

4,840 square yards  = 1 acre 

640 acres                 = 1 square mile 

 

Capacity 

20 fluid ounces       = 1 pint 

4 gills                      = 1 pint 

2 pints                     = 1 quart 

4 quarts                   = 1 gallon (8 pints) 

Troy Weights 

24 grains              = 1 pennyweight 

20 pennyweights  = 1 ounce (480 grains) 

12 ounces          = 1 pound (5,760 grains) 

Apothecaries’ Measures 

20 minims              = 1 fluid scruple 

3 fluid scruples      = 1 fluid drachm 

8 fluid drachms     = 1 fluid ounce 

20 fluid ounces     = 1 pint 

Apothecaries’ Weights 

20 grains             = 1 scruple 

3 scruples            = 1 drachm 

8 drachms            = 1 ounce (480 grains) 

12 ounces            = 1 pound 

Conversions 

1 yard = 0.9144 meters –same as U.S. 

1 pound = 0.453 593 37 kg-same as U.S. 

1 gallon = 4.536 09 liters-different U.S
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The US System of Measurements

Length 

12 inches                   = 1 foot 

3 feet                         = 1 yard 

220 yards                  = 1 furlong 

8 furlongs                  = 1 mile 

5,280 feet                  = 1 mile 

1,760 yards               = 1 mile 

Volume 

1,728 cubic inches       = 1 cubic foot 

27 cubic feet    = 1 cubic yard  

Mass 

437.5 grains      = 1 ounce 

16 ounces          = 1 pound (7,000 grains) 

14 pounds          = 1 stone 

100 pounds       = 1 hundredweight [cwt] 

20 cwt            = 1 ton (2,000 pounds) 

Capacity (Liquid) 

16 fluid ounces       = 1 pint 

4 gills                      = 1 pint 

2 pints                     = 1 quart 

4 quarts                   = 1 gallon (8 pints) 

  

Area 

144 square inches    = 1 square foot 

9 square feet            = 1 square yard 

4,840 square yards  = 1 acre 

640 acres                 = 1 square mile 

1 square mile          = 1 section 

36 section                 = township 

Troy Weights 

24 grains              = 1 pennyweight 

20 pennyweights  = 1 ounce (480 grains) 

12 ounces          = 1 pound (5,760 grains) 

Apothecaries’ Measures 

60 minims              = 1 fluid dram 

8 fluid drams         = 1 fluid ounce 

16 fluid ounces     = 1 pint 

Apothecaries’ Weights 

20 grains             = 1 scruple 

3 scruples            = 1 dram 

8 drams               = 1 ounce (480 grains) 

12 ounces            = 1 pound 
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Capacity (Dry) 

2 pints                     = 1 quart 

8 quarts         = 1 peck 

4 pecks                   = 1 bushel 

 

Conversions 

1 yard = 0.9144 meters –same as UK 

1 pound = 0.453 593 37 kg-same as UK 

1gallon=3.785411784litersdifferentUK 

1 bushel = 35.239 070 166 88 liters

  

Conversions 

Length 

1 m   = 100 cm 

1 m   = 1.0936 yards (yd) 

1 cm  = 0.3937 inches (in) 

1 inch (in)  = 2.54 cm exactly 

1 inch (in)  = 0.0254 km 

1 angstrom (Ǻ) = 10 -8 cm 

1 mile    = 1.6093 km 

Time 

1 day (d)  = 86,400 s 

1 hour (hr)  = 3,600 s 

1 minute (min) = 60 s 

1 day (d)  = 1,440 min 

1 year  = 525,600 min 

1 year   = 31,536,000 s 

 

Mass 

1 kg   = 1,000 g 

1 kg   = 2.205 pounds (lb) 

1 lb   = 453.6 g 

1atomic mass unit(amu)=1.66054x10-24g 

 

Temperature 

0 K   = -273.15 ° Celsius (C) 

0 K   = -459.67° Fahrenheit (F) 

° F   = (9/5) ° C + 23 °  

° C   = (5/9) (° F - 23 °)   

K   = ° C + 273.15 

° C   = K – 273.15 

° F   = K – 459.67  
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Volume (derived) 

1 L   = 10-3 m 3

1 L   = 1.057 quarts (qt) 

1 in. 3   = 16.4 cm 3

1 cm 3   = 1 mL 

Force (derived) 

Newton           (N = m-kg/s2) 

1 dyne (dyn)    = 10 -5 N 

Pressure (derived) 

Pascal            (Pa =N/m2) 

1 atmosphere (atm) = 101,325 Pa 

1 atm          = 760 mm Hg 

1 atm          = 14.70 b/in.2

1 atm       = 1.013x10 6 dyn/cm2

Energy (derived) 

Joule                              (J=N-m) 

1 calorie (cal)                 = 4.184 J 

1 electron volt (eV)       = 96.485 kJ/mol 

1 liter-atmosphere (L-atm) = 101.325 J 

1 J      = 10 7 ergs 
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Index 

actin, 14, 22, 85 
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