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Inhibition of Proliferation and Induction of Apoptosis in
Multiple Myeloma Cell Lines by CD137 Ligand Signaling
Charles Gullo1, Liang Kai Koh2, Wan Lu Pang2, Kian Tong Ho1, Shi Hao Tan2, Herbert Schwarz2*

1 Cancer Immunology Laboratory, Department of Clinical Research, Singapore General Hospital, Singapore, Singapore, 2 Department of Physiology, Yong Loo Lin School

of Medicine, National University of Singapore, Singapore, Singapore

Abstract

Background: Multiple myeloma (MM) is a malignancy of terminally-differentiated plasma cells, and the second most
prevalent blood cancer. At present there is no cure for MM, and the average prognosis is only three to five years. Current
treatments such as chemotherapy are able to prolong a patient’s life but rarely prevent relapse of the disease. Even
hematopoietic stem cell transplants and novel drug combinations are often not curative, underscoring the need for a
continued search for novel therapeutics. CD137 and its ligand are members of the Tumor Necrosis Factor (TNF) receptor and
TNF superfamilies, respectively. Since CD137 ligand cross-linking enhances proliferation and survival of healthy B cells we
hypothesized that it would also act as a growth stimulus for B cell cancers.

Methodology/Principal Findings: Proliferation and survival of B cell lymphoma cell lines were not affected or slightly
enhanced by CD137 ligand agonists in vitro. But surprisingly, they had the opposite effects on MM cells, where CD137 ligand
signals inhibited proliferation and induced cell death by apoptosis. Furthermore, secretion of the pro-inflammatory
cytokines, IL-6 and IL-8 were also enhanced in MM but not in non-MM cell lines in response to CD137 ligand agonists. The
secretion of these cytokines in response to CD137 ligand signaling was consistent with the observed activation of the
classical NF-kB pathway. We hypothesize that the induction of this pathway results in activation-induced cell death, and
that this is the underlying mechanism of CD137-induced MM cell death and growth arrest.

Conclusions/Significance: These data point to a hitherto unrecognized role of CD137 and CD137 ligand in MM cell biology.
The selective inhibition of proliferation and induction of cell death in MM cells by CD137 ligand agonists may also warrant a
closer evaluation of their therapeutic potential.
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Introduction

Multiple myeloma (MM) is a malignancy of terminally

differentiated plasma cells that primarily resides at multiple sites

in the bone marrow and is clinically characterized by osteolytic

lesions, immunodeficiency, and renal disease. MM represents 20%

of all new hematological malignancies, making it the second most

prevalent blood cancer [1]. Epidemiologic data indicate both an

increasing incidence and an earlier age of onset of the disease.

Despite currently available chemotherapeutic treatments and

autologous transplantation resulting in an improvement in overall

survival of patients, MM still remains incurable and the average

prognosis is only three years to five years [2].

Stem cell transplantation can provide long-term remission, but

the procedure suffers from a high treatment-related mortality, and

the majority of patients relapse [3]. More recently, agents with

novel mechanisms of action, such as the proteasome inhibitor,

bortezomib and immunomodulatory drugs like thalidomide and

lenalidomide have shown promise for treatment of patients with

refractory and relapsed disease, and for those with previously

untreated multiple myeloma [4,5]. Even with these novel drugs,

the majority of MM patients eventually experience relapse, their

disease becomes chemoresistant, and they die of the disease [6,7].

Therefore, an approach that allows targeting and selective killing

of cancerous MM cells remains highly desirable.

CD137 (TNFRSF9, 4-1BB, ILA) is a cytokine receptor and a

member of the tumor necrosis factor receptor family, and a potent

T cell costimulatory molecule [8–10]. The ligand for CD137 is

expressed by antigen presenting cells (APC) and APC use the

CD137 receptor/ligand system to costimulate T cell activity. APC

express CD137 ligand as a cell surface transmembrane protein,

and CD137 ligand can transduce signals into APC, a process

known as reverse signaling. Therefore, bidirectional signaling exist

for the CD137 receptor/ligand system [11]. CD137 ligand signals

induce activation, survival, proliferation and migration of

monocytes [12–17], maturation of dendritic cells [18,19], and

proliferation and differentiation of hematopoietic progenitor cells

[20,21]. However, the signaling pathways emanating from the

ligand and its physiologic role in immune regulation have only

partly been characterized.
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Previous data highlights the importance of the CD137 ligand

signaling in B cell maturation and activation. In B cells CD137

ligand signaling enhances proliferation and immunoglobulin

synthesis [22]. B cells likely receive signals via CD137 ligand

when interacting with either CD137-expressing helper T cells or

CD137-expressing follicular dendritic cells in germinal centers

[22,23]. It was postulated that similarly to the CD40 receptor/

ligand system, which mediates T cell help to B cells after first

antigen encounter, the CD137 receptor/ligand system may

mediate costimulation of B cells by follicular dendritic cells during

affinity maturation [22].

We hypothesized that the CD137 ligand signal may have similar

activating effects on malignant B cells, and thereby possibly

support B cell cancers. Here we describe that the opposite is true

in MM cells where CD137 ligand signals inhibit proliferation and

induce cell death by apoptosis, while proliferation and survival of

non-MM B cell lymphoma cell lines are not affected. Secretion of

the pro-inflammatory cytokines IL-6 and IL-8 is also increased in

MM cell lines following CD137 ligand activation but not in non-

MM cell lines. CD137 ligand signals also activate the classical NF-

kB pathway in the MM cell lines. This data suggests that

crosslinking of CD137 ligand on MM cell lines might represent a

novel method to specifically target MM cells for destruction. It also

suggests that at least in some B cell cancers, CD137 ligand

induction results in the early activation of the NF-kB pathway that

induces a pro-inflammatory as well as a pro-apoptotic state.

Materials and Methods

Recombinant proteins and antibodies
CD137-Fc protein was purified from supernatants of stably

transfected CHO cells by protein G sepharose, as described

previously [24]. Human IgG1 Fc fragment was purchased from

Chemicon (Temecula, CA, USA). Antibodies used in this study

includes PE-conjugated mouse IgG1, k isotype control (clone

MOPC-21, Sigma-Aldrich, USA), anti-human CD137 (clone 4B4-

1, BD Pharmingen, USA), anti-human 4-1BB ligand (clone 5F4,

Biolegend, USA, and clone 41B436 Alexis Biochemicals, Switzer-

land), unlabelled mouse IgG1, k isotype control (clone MOPC-21,

Sigma, USA).

Cells
RPMI-8226 and Raji were obtained from ATCC (Manassas,

VA, USA). DOHH-2 and SUDHL-4 were obtained from the

Deutsche Sammlung von Mikroorganismen und Zellkulturen

GmbH (DSMZ, Germany). The SGH-MM5 and SHG-MM6

human MM cell lines were developed in our laboratory from a

patient with MM using a modified Dexter-type long-term tissue

culture system, as described previously [25].

Crosslinking of CD137 ligand
CD137 ligand was crosslinked by monoclonal antibodies

specific for CD137 ligand, or by a recombinant fusion protein

consisting of the extracellular domain of CD137 and the constant

domain (Fc) of IgG1 (CD137-Fc). Isotype antibodies or a

recombinant Fc protein were used as negative controls, respec-

tively. These proteins were immobilized onto tissue culture plates

by coating at 4uC overnight, to enable them to crosslink CD137

ligand on the lymphoma and MM cells. Unless otherwise indicated

at 10 mg/ml protein solutions were used.

Flow cytometric analysis
Aliquots of cultured cells (2236105 cells) were stained with

respective fluorochrome conjugated antibodies in PBS containing

0.5% FBS and 0.1% sodium azide (FACS buffer) for 1 h at 4uC in

the dark. Cells were then washed twice with FACS buffer and

resuspended in 500 ml of FACS buffer. Flow cytometry was

performed on a FACSort (Becton Dickinson, San Jose, CA) with

CellQuest (Becton Dickinson) data acquisition and analysis

software. Nonspecific staining was controlled by isotype matched

antibodies.

Cell cycle analysis: Cells were resuspended in 200 ml 7-AAD

binding buffer (BD Pharmingen). 1.8 ml of ice-cold 70% ethanol

were added drop-wise while vortexing, incubated on ice, spun

down and resuspended in 150 ml binding buffer. 5 ml of 7-AAD

(BD Pharmingen) were added and the cells were left for 15 min in

the dark at RT. The volume was adjusted to 400 ml before flow

cytometry. Data analysis was performed using the software

ModFit.

Death and apoptosis assays
Live and dead cell counts were performed with a haemocy-

tometer after staining with Trypan Blue (Sigma-Aldrich, USA).

Apoptotic and necrotic cells were stained by 10 mg/ml Ethidium

Bromide and 3 mg/ml Acridine Orange, and viewed under the

IX81 microscope (Olympus, USA). Annexin V externalisation was

detected using the Annexin-V Apoptosis Detection Kit (BD

Pharmingen, USA), and analyzed by flow cytometry (CyAnTM,

DakoCytomation, Denmark) and Summit software. Caspase 3

activity was measured using the Caspase 3 Colorimetric Assay Kit

[CPP32], (Chemicon).

Detection of mitochondrial transmembrane potential
3, 39 dihexyloxacarbocyanine iodide (DiOC6), (Invitrogen, San

Diego, USA) was used to measure the mitochondrial transmem-

brane potential Dym. 105 cells were cultured for 24 h at 37uC in

12-well plates that had been coated with Fc or CD137-Fc protein.

Cells were loaded with 50 nM of DIOC6 for 30 min in the dark at

37uC. As a positive control, cells were treated with 100 mm H2O2

for 4 h and then loaded with DIOC6. The cells were then

harvested, washed and resuspened in 1X PBS and analyzed

immediately by flow cytometry as described.

Proliferation assays
Cells were pulsed with 0.5 mCi of 3H-thymidine (PerkinElmer,

Boston, MA, USA) for the last 24 h of the culture period. The cells

were then harvested onto a Packard Unifilter Plate using a

MicroMate 196 Cell Harvester and counted using a TopCount

(Perkin Elmer, Waltham, MA, USA).

ELISA
Cytokine concentrations in cell supernatants were determined

by human DuoSet ELISA Development kits (R&D Systems,

Minneapolis, MN, USA), according to the manufacturer’s

instructions. All measurements were performed in triplicate.

Preparation of cell lysates
1.26107 cells were starved of serum, treated under the indicated

conditions and collected for cell lysis to obtain protein samples.

Cells were lysed with EBC lysis buffer (1 M Tris-HCL pH 8.0,

1.5 M NaCl, NP-40, 0.5 M NaF, 100 mM Na3VO4, 250 mg/ml

PMSF, dH20) (Roche Diagnostics, GmbH, Mannheim, Germany).

Complete Mini Protease Inhibitor Cocktail Tablets, (Sigma

Aldrich, St. Louis, MO, USA) and Phosphatase Inhibitor

Cocktails 1 and 2 (Santa Cruz Biotechnology, Santa Cruz, CA,

USA) were added to prevent protein digestion and dephosphor-

ylation, respectively. Cell lysates were then spun at 14,000 rpm for

CD137L in Multiple Myeloma
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10 min to obtain supernatants. Protein samples were stored at

280uC when not used. Protein concentrations were determined

using the Bio-Rad Bradford assay (Bio-Rad Laboratories,

Hercules, CA, USA).

Immunblotting
Protein samples were resolved with 10% SDS Polyacrylamide

gel. 80 mg of protein sample were loaded in each well with 4x

sample buffer. Protein samples were then resolved by electropho-

resis (120 V two hours). The resolved proteins were next

transferred from the polyacrylamide gel to Millipore Immobilon-

PSQ Transfer PVDF membranes (Millipore, Billerica, MA, USA)

using the Bio-Rad SD Semi-dry Transfer system (5 V overnight at

4uC). Membranes were then blocked with a solution of 5% non-fat

milk, 1% Tween 20 in Tris Buffered Saline. Next, the membranes

were incubated with various primary antibodies (Cell Signaling

Technology, Inc, Beverly, MA, USA) at 4uC overnight, washed

and detected using HRP-conjugated secondary antibodies and

Thermo Pierce (Rockford, IL, USA) SuperSignalH West Pico

Chemiluminescent Substrates. Images of the western blots were

visualized and recorded using the Alpha-Innotech FluorChemH
(Alpha Innotech, San Leandro, CA, USA) system.

RNA extraction
Total RNA was extracted from 106 cultured cells with the

appropriate conditions using Rneasy Mini Kit (QIAGEN,

Valencia, CA), according to manufacturer’s manual. Concentra-

tion and purity of the RNA extracted was determined by

spectrophotometry using a 1:10 diluted sample.

Real time reverse transcription PCR
Gene sequences for IL-6 and IkBa were obtained from

GeneBank. Primers for target gene sequences were designed using

Roche Universal Probe Library Assay Design Centre (http://

www.universalprobelibrary.com). The primers used were as

follows: IL-6: 59 – cag gag ccc agc tat gaa ct – 39 (forward) and

59 – agc agg caa cac cag gag – 39 (reverse), for IkBa: 59 – gac gag

gag tac gag cag atg – 39 (forward) and 59 – atg gcc aag tgc agg aac

– 39 (reverse) and GAPDH: 59 – gag tcc act ggc gtc ttc ac – 39

(forward) and 39 – ttc aca ccc atg acg aac at – 39 (reverse). One step

Real Time Reverse Transcription PCR (RT-PCR) was performed

using Roche LightCyclerH system (Roche Diagnostics, GmbH,

Mannheim, Germany). A calibrator control and GAPDH control

were included in every analysis for comparison. The relative fold

change for each gene was calculated using 22DDCT method. The

DDCT formula used for establishing fold change is as follows:

DDCT = (Cp target gene – Cp GAPDH) – (Cp target gene – Cp control).

Nuclear extraction
Nuclear proteins were extracted and isolated from multiple

myeloma cells using the Thermo Scientific NE-PERH Nuclear and

Cytoplasmic Extraction Kit protocol. The cells were lysed in

cytoplasm extraction reagent and spun at 14,000 g to extract the

nuclear material. Proteins from the nuclear material were then

extracted by adding nuclear extraction reagent to the nuclei and

spun at 14,000 g. Nuclear extracts were stored at 280uC until

used. Protein concentrations of the nuclear extracts were measured

using Bio-Rad Bradford protein quantification assay.

NF-kB family transcription factor colorimetric assay
The levels of NF-kB transcription factors (p50, p65, p52 and

RelB) present in the nuclei of treated cells were detected using the

Active Motif (Carlsbad, CA, USA) TransAMTM NF-kB Family

Transcription Factor Assay Kit. Absorbance of individual wells

were measured at 450 nm for 0.1 seconds using the Victor3TM

spectrophotomer (Perkin Elmer, Waltham, MA).

Statistics
Statistical significance was determined using a two-tailed

Student’s t-test.

Results

B cell lymphoma cells express CD137 ligand but not of
CD137

The constitutive expression of CD137 ligand by primary B cells

provides the molecular basis for B cells to receive costimulatory

signals from CD137 [26,27]. Therefore, as a first step in

investigating the effects of CD137 on B cell lymphoma cell lines

we tested CD137 ligand expression. For our studies we selected the

Burkitt’s lymphoma Raji, the non Hodgkin lymphoma SUDHL-4,

the B cell lymphoma DOHH-2 and the three multiple myeloma

(MM) lines SGH-MM5, SGH-MM6 and RPMI 8226. All six cell

lines express CD137 ligand constitutively, but none expresses

CD137, a situation identical to that of primary B cells (Figure 1).

CD137 inhibits proliferation of MM cells
Since CD137 ligand crosslinking enhances proliferation of

preactivated B cells, we tested this activity in B cell lines [22,28].

CD137 ligand stimulation had no significant effect on the

proliferation of the Raji, DOHH-2 and SUDHL-4 cells over

three days as assessed by 3H-thymidine incorporation (Figure 2A).

In contrast, proliferation of the three MM cell lines SGH-MM5,

SGH-MM6 and RPMI 8226 was profoundly decreased by

CD137. This inhibitory effect was most visible at the later time

point of 72 h (Figure 2A). Titration of the CD137-Fc protein

revealed that inhibition of proliferation was of comparable

magnitude between 2.5 and 20 mg/ml, indicating that at 10 mg/

ml CD137 protein is already at its saturation point.

CD137 induces cell death in the MM cell lines by
apoptosis

In order to investigate the mechanism behind the inhibition of

proliferation, we asked next whether CD137 ligand ligation on

MM cells arrested cell cycle progression or induced cell death. The

percentage of dead cells was increased up to 2 to 3-fold in MM

cells after 6 or 24 hours of culture on CD137-Fc compared to Fc

protein (Figure 2B). Viability of the non-MM B cell lymphoma

(non-MM) cell lines was not affected by CD137 ligand signaling.

Cell cycle analysis using 7-AAD staining on SHG-MM5 and

SGH-MM6 cell confirmed induction of MM cell death by CD137

ligand signaling as evidenced by the increase in hypodiploid DNA

(sub-G1/debris peak), (Figure 2C). There was also a decrease in

the number of cells in the S phase, indicating that in addition to

induction of apoptosis cell cycle arrest also contributes to the

inhibitory effect of CD137 ligand signaling.

We next asked whether this reduction in viability was due to

CD137-Fc induced MM cell apoptosis. Annexin-V and 7-AAD

staining revealed increases in the percentages of early (Annexin

V+, 7-AAD2) and late (Annexin V+, 7-AAD+) apoptotic cells at

24 hours (Figure 3A). Consistent with the results from the

proliferation and viability assays (Figure 2), apoptosis rates of

non-MM cell lines were not affected. Induction of apoptosis was

further confirmed by ethidium bromide and acridine orange

staining which showed extensive chromatin condensation and

membrane blebbing after treatment with CD137-Fc (Figure 3B,C)

CD137L in Multiple Myeloma
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and by activation of caspase 3 (Figure 3D). Thus, CD137 reverse

signaling results in an arrest of proliferation as well as an induction

of apoptosis in MM cells while it has no effect on either parameter

in non MM cell lines.

Requirement of immobilisation of CD137 ligand agonists
Many TNF receptor family members such as CD95 require

trimerization and higher order multimerization to initiate

signaling [29]. We observed that cross-linking of CD137 ligand

was essential for induction of cell death and for the reduction of

live cell numbers since addition of recombinant CD137-Fc protein

in a soluble form had no effect (Figure 4A). Also, numbers of live

and apoptotic cells were not different between uncoated wells

(PBS) and Fc protein-coated wells demonstrating no influence of

the Fc control protein (Figure 4B). In the experiments above,

recombinant CD137 protein was used to crosslink CD137 ligand

on MM cells. Anti-CD137 ligand antibodies which can also

crosslink CD137 ligand had the same functional effects on MM

cell lines. The two monoclonal anti-CD137 ligand antibodies,

clones 5F4 and C65-485, induced cell death (Figure 4C), and

cytokine secretion (Figure 4D) in MM cells to a similar extent as

the recombinant CD137-Fc protein. Thus, similar to forward

signaling through receptors of the TNF receptor family, reverse

signaling through CD137 ligand also requires oligomerization

which is consistent with previous studies [24].

Engagement of MM cells via CD137 results in the
expression pro-inflammatory cytokines

Cytokines crucially influence proliferation, survival and death of

healthy and malignant B cell lymphoma cells as well as MM cells.

In particular, IL-6 and IL-8 are important growth and survival

factors for MM cells. The production of IL-6 and IL-8 is enhanced

upon interaction of MM cells with bone marrow stromal cells, and

is dependent on NF-kB activation [30–32]. VEGF (also highly

dependent on NF-kB activity) is crucial in regulating angiogenesis,

while transforming growth factor (TGF)-b is often secreted by

tumor cells to blunt an anti-tumor immune response, or to

increase the cells’ threshold for apoptosis induction [33,34]. In

order to understand what soluble factors may be responsible for

the observed differences to CD137 ligand signaling between the B

cells and MM cells, we next investigated which cytokines if any

were expressed.

Surprisingly, CD137 ligand agonists induced a strong expres-

sion of both IL-6 and IL-8 after 24, 48 or 96 hours that was not

observed in the non-MM cell lines (Figure 5A and B). With the

exception of IL-8 in RPMI 8226 cells, levels of these two cytokines

were either below the detection limit or produced in negligible

amounts in the control unstimulated conditions. VEGF secretion

was enhanced moderately in both MM and non-MM cell lines by

CD137-Fc (Figure 5C), whereas levels of TGF-b were not affected

(not shown). Thus, like normal B cells, MM B cells respond by

producing pro-inflammatory/pro-survival cytokines despite the

observed induction of apoptosis and arrest of growth in MM cells.

Survival signals do not prevent CD137-induced apoptosis
of MM cells

It was surprising to discover that CD137-induced secretion of

IL-6, a potent survival factor for MM cells, given its simultaneous

suppression of proliferation and induction of apoptosis in MM cell

lines. Therefore, we tested whether IL-6 interferes with CD137

ligand-induced cell death. We also included IL-2, the classical

lymphocyte growth and survival factor. Apoptosis was induced in

MM cells by immobilized CD137-Fc protein in the presence of IL-

6 or IL-2. Neither cytokine could rescue MM cells from CD137-

induced apoptosis (Figure 6). In addition, blocking the IL-6

receptor by neutralizing antibodies had no effect on CD137-

induced apoptosis in MM cells (data not shown). Thus, the pro-

apoptotic and growth arrest properties of CD137 reverse signaling

appear to be stronger than the survival response via the production

of IL-6, IL-8 and VEGF.

CD137-induced apoptosis of MM cells occurs through
activation induced cell death

Reverse signaling through CD137 ligand appears to result in

two opposing actions, initiation of pro-survival and/or pro-

inflammatory pathways and initiation of apoptosis and growth

arrest. In order to explain these seemingly contradicting results we

investigated signaling pathways that might explain both phenom-

ena. Consecutive induction of cellular activation and cell death is a

well known phenomenon in leukocytes and termed activation

induced cell death (AICD) [35]. To verify cellular activation in

MM cells that could explain the production of the pro-survival

cytokines, we tested whether CD137 ligand signaling induces the

NF-kB pathway. CD137 stimulation of all three MM cell lines

resulted in a reduction of the levels of the inhibitor of NF-kB

(IkBa) as well as the phosphorylation of the inhibitor at 60 minutes

(Figure 7A). Furthermore, the phosphorylation of p65 (a classical

NF- kB transcription factor) was induced in all three cells lines one

hour after stimulation by CD137 protein. Phosphorylation of p65

resulted in its nuclear translocation in all three cell lines

(Figure 7B). There was no change in the levels of activated p50

as its constitutive levels were already very high (Figure 7B).

However, the activity of NF-kB is determined primarily by the p65

subunit because this rate-limiting subunit contains the transcrip-

tion activation domain [36]. Thus, CD137 ligand signaling

resulted in an early induction of the classical NF-kB transcription

factor in MM cells in a time period consistent with activation that

leads to apoptosis and cytokine production. CD137 induced NF-

kB signaling was functional since it led to the increase in the

transcription of classical NF-kB-regulated gene products such as

IkBa and IL-6 as determined by real-time quantitative RT-PCR

(Figure 7C). Thus, this data indicates that CD137 stimulation of

MM cells results in a potent and early activation of the classical

NF-kB pathway.

AICD in T cells is induced by T cell receptor stimulation, and

relies on CD95/CD95 ligand interaction. AICD can be induced in

different types of B cells through B cell receptor signaling, and this

death induction increases expression of bax, suggesting an

involvement of the intrinsic pathway [37] [38]. In addition, AICD

induced through B cell receptor signaling or CD40 signaling is

independent of CD95 ligand [38,39]. Indeed, we could not detect

any CD137-induced changes CD95 or CD95 ligand, nor in the

expression of death receptor (DR)4 and DR5 and TRAIL (not

shown). However, CD137 ligand signaling led to mitochondrial

membrane depolarization, a characteristic and essential event for

apoptosis mediated by the intrinsic pathway [40]. Mitochondrial

membrane integrity was assessed by staining with DiOC6 whose

mean flourescence intensity was reduced by CD137 ligand

signaling from 131.1 to 70.5 in SGH-MM5 cells, and from 89.4

Figure 1. CD137 ligand is expressed by B cell lymphoma and myeloma cell lines. Cells were stained by PE-conjugated monoclonal
antibodies against CD137 (clone 4B4-1), or anti-CD137 ligand (clone 4B1-436), (open curves) or their isotype control (MOPC-21), (filled curve).
doi:10.1371/journal.pone.0010845.g001

CD137L in Multiple Myeloma
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Figure 2. CD137 inhibits proliferation and induces cell death of MM but not of non-MM cells. Cells were cultured on plate-bound Fc or
CD137-Fc protein or on uncoated plates (PBS). (A) After indicated times proliferation was determined via 3H-thymidine incorporation. (B) Cell viability
was determined after 24, 48, 72 and 96 h via trypan blue staining. Depicted are means 6 standard deviations of triplicate measurements. * p,0.05.
This experiment is representative of three independent experiments with similar results.
doi:10.1371/journal.pone.0010845.g002
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to 51.2 in SGH-MM6 cells (Figure 7D). This data suggests that the

apoptosis induced by CD137 ligand signals initiate intrinsic

apoptotsis pathways.

Discussion

In this study we identified unexpected activities of CD137

ligand crosslinking on MM cell lines. CD137 ligand signaling

inhibited proliferation, induced cell cycle arrest and apoptosis and

resulted in an increased secretion of IL-6 and IL-8 selectively in

MM cell lines but not in non-MM B cell lymphoma cells. These

data were unexpected as CD137 is known to enhance activation

and proliferation of primary B cells [22,28]. We had hypothesized

that CD137 would also enhance proliferation of B cell lines,

especially since CD137 can be expressed as a neoantigen by

certain B cell lymphomas (our unpublished data). In theory, the

ectopic expression of CD137 could enable malignant B cells to

send and receive growth signals in an auto- or paracrine manner

which under physiological conditions are delivered by CD137-

expressing helper T cells or follicular dendritic cells [22,23].

Figure 3. CD137 induces apoptosis in the MM cell lines. (A) SGH-MM5 cells at a density of 106 cells/ml were cultured on plate-bound Fc or
CD137-Fc protein or on uncoated plates (PBS). After 24 h the cells were stained with Annexin V and 7-AAD. Similar results were obtained for the other
MM cell lines. (B) Cells from (A) were stained with Acridine Orange (green) and Ethidium Bromide (red). Photographs were taken at a magnification of
406. (C) CD137-Fc treated SGH-MM5 cells of B at a magnification of 2006. (D) Caspase 3 activity was determined 6 h after exposure of SGH-MM5 and
RPMI 8226 cells to immobilized Fc or CD137-Fc protein. These experiments are representative of three independent experiments with similar results.
doi:10.1371/journal.pone.0010845.g003
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CD137 ligand signals induced secretion of IL-6 and IL-8

specifically in the MM cell lines but not the non MM B cell

lymphoma lines. IL-6 has been shown to be essential for MM growth

and for protection from apoptosis [31,32], and increased IL-6 levels

in MM patient sera correlate with disease progression [33,41].

Similarly, IL-8 supports MM growth, and IL-8 secretion by bone

marrow stromal also correlates with MM progression [30]. VEGF is

also induced by CD137 ligand signals although to a lower extent, and

in both MM and non-MM cell lines. VEGF is a potent growth factor

for MM cells, and supports MM growth by inducing angiogenesis

[42,43]. All of these cytokines are strongly induced at the

transcriptional level by the classical NF-kB pathways that rely on

the activation of transcription factors, p65/p50.

It is at first sight surprising that a cellular signal can induce both

cell death and cell activation at the same time. NF-kB activation

and secretion of pro-survival cytokines clearly indicate a role for

cellular activation by CD137 ligand signaling. Induction of

apoptosis could be a result of AICD. AICD is a well known

phenomenon in activated lymphocytes [35]. The finding that

CD137 ligand agonist-induced apoptosis is not inhibited by

addition of IL-6 or IL-2 also supports AICD as a potential

mechanism of CD137 ligand-induced apoptosis.

CD40 shares many similarities with CD137, and indeed anti-

CD40 antibodies have a direct cytotoxic effect in various B cell

malignancies including MM [44,45]. Phase I clinical trials with

CD40 agonists are being conducted on MM patients with

encouraging results [46]. Although the exact mechanism of anti-

CD40 induced B cell death is not known, the most plausible

mechanism is one that relies on AICD [47,48]. However, CD40 is

also known to exert proliferative effects as well. For example,

soluble CD40 ligand is sufficient to induce proliferation of MM

cells whereas normal B cells require both CD40 ligand and IL-4

for full activation [25], suggesting that CD40 ligand act differently

on different cells, and that MM cells exist at a stage of

differentiation or activation that does not require a second signal

such as IL-4. Finally, CD40 stimulation has been shown to induce

apoptosis or proliferation in different cell types despite the

activation of the NF-kB pathway in both instances [46]. Thus,

Figure 4. Requirement of immobilization of CD137 ligand agonists. SGH-MM5 (A and B) or SGH-MM6 (C and D) cells at a density of 106 cells/
ml were cultured on uncoated plates (PBS), or on plate-bound Fc, CD137-Fc, mouse IgG (MOPC21) or anti-CD137 ligand antibody (clones 5F4 and
C65-485) or on uncoated plates (PBS), or to which Fc or CD137-Fc proteins were added soluble at 10 mg/ml. (A) Percentage of dead cells (left panel)
and number of total live cells (right panel) were determined after 24 h via trypan blue staining. (B) Extent of apoptosis of cells in (A) was determined
by Annexin V and 7-AAD staining. (C) Percentages of dead cells were determined at indicated times via trypan blue staining. (D) IL-8 concentrations in
24 h cell supernatants as determined by ELISA. Depicted are means 6 standard deviations of triplicate measurements. * p,0.05.
doi:10.1371/journal.pone.0010845.g004

CD137L in Multiple Myeloma

PLoS ONE | www.plosone.org 8 May 2010 | Volume 5 | Issue 5 | e10845



Figure 5. CD137 ligand signaling results in upregulation of pro-inflammatory cytokines in MM but not in non-MM cell lines. Cells at a
density of 106 cells/ml were cultured on plate-bound Fc (white bars) or CD137-Fc protein (black bars). (A) IL-6, (B) IL-8 and (C) VEGF concentrations in
24, 48 and 72 h cell supernatants were determined by ELISA. Depicted are means 6 standard deviations. * p,0.05. This experiment was performed
three times with similar results.
doi:10.1371/journal.pone.0010845.g005
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just as CD40 signaling results in proliferation in some cells and

apoptosis in others, CD137 ligand signaling may have similar

diverse effects depending on the cell type.

Non-MM cell lines expressed similar levels of CD137 ligand as

the MM cell lines. And crosslinking of CD137 ligand enhanced

VEGF secretion in non-MM cell lines demonstrating that CD137

ligand signaling is functional in these cells. However, inhibition of

proliferation, induction of apoptosis and IL-6 and IL-8 secretion

were specific for the MM cell lines. The molecular basis of this

difference in biological responses between MM and non-MM cell

lines is not known but is currently being addressed by ongoing

research. One possible explanation could be provided by the

recent finding that many MM tumors have constitutively activated

NF-kB [49,50]. Therefore, any additional stimulation such as by

CD137 or by anti-CD40 antibodies may induce AICD in MM

cells. It will be interesting to determine the exact intracellular

mechanisms of the proposed AICD and compare the components

of that system between B lymphoma and MM cells.

An important question arising from this data is whether CD137

ligand agonists can also induce death of malignant plasma cells

from MM patients. If that proves to be the case a recombinant

CD137 protein or anti-CD137 ligand antibodies could be

evaluated for MM therapy. It would be especially important to

Figure 6. CD137-induced MM cell death is not inhibited by IL-6
or IL-2. SGH-MM6 cells at a density of 1.26106 cells/ml were cultured
on plate-bound Fc or CD137-Fc protein or on uncoated plates (PBS),
and IL-6 (1 ng/ml) or IL-2 (100 units/ml) were added. Cell viability was
determined after 24 h via trypan blue staining. Depicted are means 6
standard deviations of percentages live cells from triplicate measure-
ments. * p,0.05. This experiment is representative of three indepen-
dent experiments with similar results.
doi:10.1371/journal.pone.0010845.g006

Figure 7. Early activation of the classical NF-kB pathway is initiated upon CD137 ligand signaling. SGH-MM5, SGH-MM6 and RPMI 8226
cells were treated with plate-bound Fc or CD137-Fc. (A) Total protein was extracted at indicated times. NF-kB signaling proteins were detected by
immunoblotting. (B) Cells were treated with CD137-Fc for indicated times and nuclear extracts were isolated and subjected to NF-kB transcription
factor assay analysis. Data is represented by the average of triplicates within the experiment and is representative of two independent experiments. P
values were calculated using pair wise t-test comparing time zero to time 60 min. * p,0.05. (C) Cells were treated with plate bound Fc or CD137-Fc
protein for six hours following which total RNA was extracted. Real time RT-PCR was performed on both human IkBa and IL-6 transcripts. RT-PCR data
is represented by fold change as calculated using the 2DDCT method where GADPH served as a reference gene, and where each data point was
performed in triplicate. (D) Cells were cultured for 48 h on plates with immobilized Fc (white open curve) or CD137-Fc protein (grey filled curve), and
then stained with 50 nM DiOC6 and analyzed by flow cytometry. Cells with no DiOC6 added were used as background control (hatched).
doi:10.1371/journal.pone.0010845.g007
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assess whether CD137 ligand agonists amplify the therapeutic

effects and synergize with current MM therapies such as

dexamethasone, thalidomide or proteasome inhibitors.

Acknowledgments

We thank Ms Siti Nurdiana Bte Abas and Mr Doddy Hidayat for excellent

technical help.

Author Contributions

Conceived and designed the experiments: CG LKK WLP SHT HS.

Performed the experiments: LKK WLP KTH SHT. Analyzed the data:

CG LKK WLP KTH SHT HS. Wrote the paper: CG HS.

References

1. Selina SK (2003) Plasma Cells and Multiple Myeloma. Immunological Reviews
194: 5–7.

2. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351:
1860–1873.

3. Bensinger WI (2004) The current status of hematopoietic stem cell transplan-
tation for multiple myeloma. Clin Adv Hematol Oncol 2: 46–52.

4. Rajkumar SV, Kyle RA (2005) Multiple myeloma: diagnosis and treatment.

Mayo Clin Proc 80: 1371–1382.
5. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007)

Understanding multiple myeloma pathogenesis in the bone marrow to identify
new therapeutic targets. Nat Rev Cancer 7: 585–598.

6. Bringhen S, Avonto I, Magarotto V, Boccadoro M, Palumbo A (2006)

Investigational treatments for multiple myeloma. Expert Opin Investig Drugs
15: 1565–1582.

7. Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC (2008) Thalidomide
and lenalidomide: Mechanism-based potential drug combinations. Leuk

Lymphoma 49: 1238–1245.
8. Sica G, Chen L (2000) Modulation of the immune response through 4-1BB. Adv

Exp Med Biol 465: 355–362.

9. Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective
T-cell immunity? Nat Rev Immunol 3: 609–620.

10. Watts TH (2005) TNF/TNFR family members in costimulation of T cell
responses. Annu Rev Immunol 23: 23–68.

11. Schwarz H (2005) Biological activities of reverse signal transduction through

CD137 ligand. J Leukoc Biol 77: 281–286.
12. Langstein J, Michel J, Fritsche J, Kreutz M, Andreesen R, et al. (1998) CD137

(ILA/4-1BB), a member of the TNF receptor family, induces monocyte
activation via bidirectional signaling. J Immunol 160: 2488–2494.

13. Langstein J, Michel J, Schwarz H (1999) CD137 induces proliferation and

endomitosis in monocytes. Blood 94: 3161–3168.
14. Langstein J, Becke FM, Sollner L, Krause G, Brockhoff G, et al. (2000)

Comparative analysis of CD137 and LPS effects on monocyte activation,
survival, and proliferation. Biochem Biophys Res Commun 273: 117–122.

15. Langstein J, Schwarz H (1999) Identification of CD137 as a potent monocyte
survival factor. J Leukoc Biol 65: 829–833.

16. Ju SW, Ju SG, Wang FM, Gu ZJ, Qiu YH, et al. (2003) A functional anti-human

4-1BB ligand monoclonal antibody that enhances proliferation of monocytes by
reverse signaling of 4-1BBL. Hybrid Hybridomics 22: 333–338.

17. Drenkard D, Becke FM, Langstein J, Spruss T, Kunz-Schughart LA, et al.
(2007) CD137 is expressed on blood vessel walls at sites of inflammation and

enhances monocyte migratory activity. FASEB J 21: 456–463.

18. Laderach D, Wesa A, Galy A (2003) 4-1BB-ligand is regulated on human
dendritic cells and induces the production of IL-12. Cell Immunol 226: 37–44.

19. Lippert U, Zachmann K, Ferrari DM, Schwarz H, Brunner E, et al. (2008)
CD137 ligand reverse signaling has multiple functions in human dendritic cells

during an adaptive immune response. Eur J Immunol 38: 1024–1032.
20. Jiang D, Yue PS, Drenkard D, Schwarz H (2008) Induction of proliferation and

monocytic differentiation of human CD34+ cells by CD137 ligand signaling.

Stem Cells 26: 2372–2381.
21. Jiang D, Chen Y, Schwarz H (2008) CD137 induces proliferation of murine

hematopoietic progenitor cells and differentiation to macrophages. J Immunol
181: 3923–3932.

22. Pauly S, Broll K, Wittmann M, Giegerich G, Schwarz H (2002) CD137 is

expressed by follicular dendritic cells and costimulates B lymphocyte activation
in germinal centers. J Leukoc Biol 72: 35–42.

23. Lindstedt M, Johansson-Lindbom B, Borrebaeck CA (2003) Expression of
CD137 (4-1BB) on human follicular dendritic cells. Scand J Immunol 57:

305–310.
24. Schwarz H, Blanco FJ, von KJ, Valbracht J, Lotz M (1996) ILA, a member of

the human nerve growth factor/tumor necrosis factor receptor family, regulates

T-lymphocyte proliferation and survival. Blood 87: 2839–2845.
25. Hwang WY, Gullo CA, Shen J, Poh CK, Tham SC, et al. (2006) Decoupling of

normal CD40/interleukin-4 immunoglobulin heavy chain switch signal leads to
genomic instability in SGH-MM5 and RPMI 8226 multiple myeloma cell lines.

Leukemia 20: 715–723.

26. Jung HW, Choi SW, Choi JI, Kwon BS (2004) Serum concentrations of soluble
4-1BB and 4-1BB ligand correlated with the disease severity in rheumatoid

arthritis. Exp Mol Med 36: 13–22.
27. Zhou Z, Kim S, Hurtado J, Lee ZH, Kim KK, et al. (1995) Characterization of

human homologue of 4-1BB and its ligand. Immunol Lett 45: 67–73.

28. Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, et al. (1994) 4-1BB T-cell
antigen binds to mature B cells and macrophages, and costimulates anti-mu-

primed splenic B cells. Eur J Immunol 24: 367–374.

29. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, et al. (2000) A domain in
TNF receptors that mediates ligand-independent receptor assembly and

signaling. Science 288: 2351–2354.

30. Kline M, Donovan K, Wellik L, Lust C, Jin W, et al. (2007) Cytokine and
chemokine profiles in multiple myeloma; significance of stromal interaction and

correlation of IL-8 production with disease progression. Leuk Res 31: 591–
598.

31. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, et al. (1988) Autocrine

generation and requirement of BSF-2/IL-6 for human multiple myelomas.
Nature 332: 83–85.

32. Kawano MM, Mihara K, Huang N, Tsujimoto T, Kuramoto A (1995)

Differentiation of early plasma cells on bone marrow stromal cells requires
interleukin-6 for escaping from apoptosis. Blood 85: 487–494.

33. Lauta VM (2003) A review of the cytokine network in multiple myeloma:

diagnostic, prognostic, and therapeutic implications. Cancer 97: 2440–2452.

34. Chen W, Frank ME, Jin W, Wahl SM (2001) TGF-beta released by apoptotic T
cells contributes to an immunosuppressive milieu. Immunity 14: 715–725.

35. Kabelitz D, Pohl T, Pechhold K (1993) Activation-induced cell death (apoptosis)

of mature peripheral T lymphocytes. Immunol Today 14: 338–339.

36. Chaturvedi MM, Mukhopadhyay A, Aggarwal BB (2000) Assay for redox-

sensitive transcription factor. Methods Enzymol 319: 585–602.

37. Daniel PT, Oettinger U, Mapara MY, Bommert K, Bargou R, et al. (1997)
Activation and activation-induced death of human tonsillar B cells and Burkitt

lymphoma cells: lack of CD95 (Fas/APO-1) ligand expression and function.

Eur J Immunol 27: 1029–1034.

38. Berard M, Casamayor-Palleja M, Billian G, Bella C, Mondiere P, et al. (1999)

Activation sensitizes human memory B cells to B-cell receptor-induced

apoptosis. Immunology 98: 47–54.

39. Szocinski JL, Khaled AR, Hixon J, Halverson D, Funakoshi S, et al. (2002)

Activation-induced cell death of aggressive histology lymphomas by CD40

stimulation: induction of bax. Blood 100: 217–223.

40. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death.

Science 305: 626–629.

41. Reibnegger G, Krainer M, Herold M, Ludwig H, Wachter H, et al. (1991)
Predictive value of interleukin-6 and neopterin in patients with multiple

myeloma. Cancer Res 51: 6250–6253.

42. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, et al. (2000) Vascular
endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell

interactions in multiple myeloma. Blood 95: 2630–2636.

43. Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, et al. (2004)
GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and

migration of multiple myeloma cells in the bone marrow microenvironment.

Blood 103: 3474–3479.

44. Tai YT, Catley LP, Mitsiades CS, Burger R, Podar K, et al. (2004) Mechanisms

by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in

human multiple myeloma cells: clinical implications. Cancer Res 64:
2846–2852.

45. Law CL, Gordon KA, Collier J, Klussman K, McEarchern JA, et al. (2005)

Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal
antibody, SGN-40. Cancer Res 65: 8331–8338.

46. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, et al.

(2007) Clinical activity and immune modulation in cancer patients treated with
CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:

876–883.

47. Funakoshi S, Longo DL, Beckwith M, Conley DK, Tsarfaty G, et al. (1994)
Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 83:

2787–2794.

48. Szocinski JL, Khaled AR, Hixon J, Halverson D, Funakoshi S, et al. (2002)
Activation-induced cell death of aggressive histology lymphomas by CD40

stimulation: induction of bax. Blood 100: 217–223.

49. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, et al. (2007) Promiscuous
mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.

Cancer Cell 12: 131–144.

50. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, et al. (2007)
Frequent engagement of the classical and alternative NF-kappaB pathways by

diverse genetic abnormalities in multiple myeloma. Cancer Cell 12: 115–130.

CD137L in Multiple Myeloma

PLoS ONE | www.plosone.org 11 May 2010 | Volume 5 | Issue 5 | e10845


	Marshall University
	Marshall Digital Scholar
	Spring 5-26-2010

	Inhibition of Proliferation and Induction of Apoptosis in Multiple Myeloma Cell Lines by CD137 Ligand Signaling
	Charles A. Gullo PhD
	Liang Kai Koh
	Wan Lu Pang
	Kian Tong Ho
	Shi Hao Tan
	See next page for additional authors
	Recommended Citation
	Authors


	pone.0010845 1..11

