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Huntington, WV 25755 

 

Molecular investigations of microbial community structure and dynamics involve costly and 
time-consuming methods. This approach is limiting when rapid assessment and detection of 
microbial organisms are needed.  In aquatic environments, especially freshwater environments 
which may be used as a water source, rapid detection of pathogenic microbes is essential. 
Likewise, monitoring for the presence or absence of various functional genes can be used to 
indicate the type of microbial community present in the environment of interest.  Therefore, 
the aim of this study was to develop and optimize methods necessary for the rapid assessment 
of freshwater microbial community structure and dynamics.  Primers for several genes of 
interest (i.e. small subunit (SSU) rRNAs, nifH, rbcL, stx I & II, and primers targeting 
Cryptosporidium parvum, Giardia lamblia, Entamoeba histolytica, and Listeria 
monocytogenes) were either constructed de novo or synthesized from previously published 
sequences. These primers were used to establish optimal PCR amplification parameters and to 
create probes from type-strain cultures representing the twelve main divisions of bacteria 
(Actionmycetes, Aquificales, Low GC Gram positives, Cytophaga/ Flavobacteria/ Bacteroides 
[CFB], Cyanobacteria, Deinococcus, Green Non-Sulfur, Green Sulfur, Planctomyces, 
Proteobacteria [α, β, γ, and δ], Spirocheta, and Thermotogales), Archaea (kingdoms 
Crenarchaeota and Euryarchaeota), and  Eukarya (Brown Algae, Green Algae, Red Algae, 
Diatoms, Dinoflagellates, Cryptomonas, Euglenozoa).  Water samples from Mill Creek, in 
southern Wayne County (a fresh water environment) were collected seasonally. DNA 
extraction by sonication was optimized and used to collect total DNA from the water samples.  
Environmental DNA was labeled with 35S using the random prime label method for 
hybridization to target genes immobilized on nylon membranes.  This method is called Reverse 
Sample Gene Probing (RSGP). PCR amplification of specific gene targets was significantly 
improved for some template DNAs by including either a touchdown PCR method, titrating the 
Mg 2+ concentration and/or diluting the DNA. However, some templates could not be amplified 
and were, therefore, eliminated from the study.  Hybridization by RSGP was attempted twice, 
once using lower stringency conditions, and once using higher stringency conditions.  In both 
cases the optimum conditions were not obtained and thus, it was concluded that the optimum 
parameters must lie somewhere between the parameters attempted.  With further optimization 
and development, the application of RSGP can provide a rapid and inexpensive alternative to 
current methods used in microbial ecology studies of aquatic environments.   
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PREFACE   
 
         

Why Study Microbial Life? 

 Microbes are everywhere, literally, from the hottest thermal vents to the coldest reaches of 

Antarctica, to the most acidic and salty environments.  In fact, most microbiologists will not 

venture to say, without some reservation, what the limits to microbial life are for fear that they too 

will succumb to the fate of their predecessors whom made such inferences only to be proven 

wrong. Microbes are an inherent, fundamental part of the global ecosystem. 

 It is not an overstatement to say that microbes are an essential component to all other life on earth 

and thus understanding the complexity and nature of these organisms is imperative. It is easy for 

the non-microbiologist to dismiss such statements as tyrannical rhetoric aimed at inflating the 

importance of the microbiology field.  All scientists see their field of study as being the most 

important.  Perhaps such beliefs have prevented most scientists, except the microbiologist, from 

seeing the truth.  Louis Pasture realized the power of the microbe when he said “The microbes 

have the last word”.  In Pasteur’s time only a small fraction of microbial life and diversity was 

understood.  Today, microbial life has been more extensively studied.  However, only a slightly 

larger fraction is still understood. .What scientists do know is that as microbes become more 

understood, Pasteur’s statement is being proven true.  For microbes will truly have the last word. In 

fact they had the first word.  They were the first living organisms on earth and they will 

undoubtedly be the last organisms on the earth; for they are the ultimate survivors, existing in 

almost every environment.  

 
 



 
 
 

C h a p t e r  1  

LITERATURE REVIEW 
 
 
 

The Development of Methods for Microbial Biodiversity Determination 

 Diversification of life began approximately 3.5 billion years ago when cells developed a 

genome and gained the ability to replicate their genetic material.  With the development of a 

mechanism for information storage, came the possibility of mutation and selection; and through 

this life gained the ability to adapted and survive in an ever-changing environment. This led to the 

speciation and diversification of today (Stiling, 1996).  These early organisms were adapted to the 

earth’s primordial conditions, and through time, changed the environment to make it inhabitable 

for eukaryotic cells, which further led to the evolution of plants and animals (Staley, 2002).   

  The importance of studying biodiversity was realized in the  late 1950’s when a 

series of publications by R.H. MacArthur (1955; 1957) and G.E. Hutchinson (1959) described 

diversity as a means to measure processes such as resource partitioning, competition , succession, 

and community productivity and stability (Morris et al., 2002).  However, these studies were 

limited to plants and animals – the macroscopic world.   

 It was not until the late 1960’s that microbiologists began studying biodiversity and related 

it to the functions and structures of microbial communities (Hairston et al., 1968; Swift, 1974).  

However, for several reasons, these studies proved to be much more difficult than diversity studies 

involving macroscopic organisms.  First, there was a lack of existing methods to correctly classify 

and establish phylogenetic relationships between microbes.  At the time, diversity studies were 

limited to morphologic and physiologic determinations.  These methods worked well among 
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macroscopic organisms however; the simplicity of microbial cell morphology (Woese, 2002), and 

vast physiologic diversities (van Niel, 1946) rendered these studies misleading and non-

informative.   

 Second, most studies were cultivation-based.  Bacteria cultivated from the environmental 

do not reflect the true biodiversity of the sample (Jones, 1977).  Although this may not have been 

clearly understood at the time, most microbes from the environment are not cultivable using 

standard techniques (Amman et al., 1995). Thus, studies based on cultivation were incomplete.   

  Third, existing technology limited the study of microbial communities in situ.  

Understanding microbial diversity requires the ability to examine the microbial life in its natural 

environment, for the environment and the microbial community exists in an intimate, dynamical 

nature, constantly redefining and changing each other (Hurst, 1991; Morgan and Winstanley, 

1996).  Without taking this into account, a true representation of the biodiversity can not be 

obtained.   It was the mid-1970’s before methods were developed and implemented which allowed 

microbial diversity to be more accurately investigated (Woese, 2002). 

 Revitalized interest in microbial ecology and diversity began when molecular methods, 

which were more commonly used by evolutionists, were applied to determine microbial 

relationships.  Two new methods were indispensable to the field.  The Sanger method, which 

allowed nucleic acids to be sequenced (Sanger et al., 1975; Sanger et al., 1977), and comparative 

analysis of molecular sequences, first developed by Zuckerandl and Pauling, (1965). These 

techniques facilitated higher level classification of bacteria and ultimately freed microbial 

ecologists from constraints of cultivation by allowing them to study nucleic acids, which could be 

isolated directly from the environment.   
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 With the molecular tools in place, the focus was on determining phylogenetic relationships 

between microbes.  Many molecular sequences were compared, however, the ribosomal 

Ribonucleic Acids (rRNAs) proved to be most reliable for phylogenetic studies (Sogin et al., 1972; 

Fox et al., 1977).  Woese (1987) found the small subunit (SSU) rRNAs were relatively easy to 

sequence and highly reliable for sequence comparison.  These molecules were later used to 

establish a Universal Phylogenetic Tree of Life (Figure 1.1) consisting of three main branches 

termed domains: Bacteria, Archaea, and Eucarya (Woese et al., 1990).   

 With the foundations of microbial phylogeny in place, microbial ecologist began to focus 

on microbial diversity and community structure.  Stahl et al. (1985) characterized the microbial 

community of a hot spring in Yellowstone National Park. This was the first study to used culture-

independent methods to characterize a microbial community. Later studies (e.g., DeLong et al., 

1989; Risatti et al., 1994) used oligonucleotide probes to detect microbial community structure at 

numerous taxonomic levels (e.g., species, genus, and family).  These methods led the way for 

many techniques that are now used to study of microbial ecology, some of which will be reviewed 

in greater detail below. 

Methods for Studying Biodiversity 

 The Purpose of this method review is to compare and contrast current and past methods 

used to assess microbial diversity and community structure.  A brief description of theory and 

technique followed by a discussion of advantages and limitations is presented for several methods. 

Therefore, only the most commonly used methods will be discussed here.   
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Cultivation Based Methods 

 The classical method for studying microbial diversity is by cultivation of microbial cells on 

a growth medium followed by counting the number of colonies that are present on the medium 

after a defined incubation period.  Cells can then be isolated and identified by colony appearance, 

cell morphology, and biochemical properties.  Estimated species diversity can be calculated by 

using traditional diversity models such as the Shannon-Weaver index (Shannon and Weaver, 

1963).  Early diversity studies (Sieburth 1979; Gunderson et al., 1972) reported that most marine 

environmental habitats yielded low species diversity and cell numbers.   However, direct 

microscopic counts showed the same environmental samples contained much higher numbers 

(Jannasch and Jones 1959; Ferguson et al., 1984). Staley and Konopka (1985) termed this 

phenomena the “Great Plate Count Anomaly” and reported that as little as 1% of  the total 

organisms in oligotrophic environments were being cultivated using the viable plate count method.  

Studies using culture-independent methods (molecular based studies) have proven this estimate to 

be accurate not only for marine environments, but for other environments as well (DeLong, 1992; 

Giovannoni et al., 1990; Fuhrman et al., 1993).     

 The cause of this phenomenon is still not clearly understood, however, studies have shown 

that it may be due to a combination of several factors. Some cells enter a viable but not cultivable 

state when exposed to oligotrophic conditions and/or low temperatures and transition from these 

conditions to a nutrient rich, culture medium, may inhibit growth.  Although these cells may not be 

actively reproducing and metabolizing, they do still synthesize proteins and take up substrates 

(Roszak and Colwell, 1987) and where found to utilize significant amounts of nutrients in aquatic 

environments (Giovannoni et al., 1990).  Therefore, these cells are considered to be a major 

influence in the environmental.  Other influences may include the absence of growth factors such 
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as cytokines, chemical communication via methods such as quorum-sensing, or other unknown 

substances produced by other microbes and macroscopic organisms (Guan et al., 2000; 

Mukamalova et al., 1998; Breznak, 2002).  Although new methods such as producing dilution 

cultures with sterile sea water have shown some improvements (Schut et al., 1993; Button et al., 

1993), biodiversity studies based solely on cultivation methods are rarely used today.   

 
  

Culture-Independent Methods 

Direct Microscopic Counts 

 The oldest culture-independent method to survey microbial communities is by microscopic 

examination.  Traditionally these examinations are done by using a light microscope. Several 

staining procedures, such as Gram staining, are used to facilitate cell detection and identification.  

In theory, counts could be preformed directly on environmental samples, thereby eliminating the 

need for cultivation and providing a more accurate cell estimation than by cultivation based 

methods.   However, there are many disadvantages to this method.  As stated earlier, microbial cell 

identification by morphology alone can provide misleading results since many microbes have 

similar morphologies making it difficult to differentiate them taxonomically.  Additionally, 

misidentification of cells from aquatic environments is common, since these environments may 

contain microbes with nondistinct and/ or variable morphologies, especially cells found in 

oligotrophic environments (Sieburth, 1979). 
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 Francisco et al. (1973) and Hobbie et al. (1977) used fluorescence stains and an 

epifluoroescenct microscope to facilitate the direct counting of bacterial cells from filter-

concentrated aquatic environmental samples.  By using a fluorescent based method, it was easier to 

detect and count the cells.  The use of flurochrome stains such as DAPI, which binds to cellular 

 



 
 
 
DNA, allowed for the direct enumeration of bacteria coupled with the use of flow cytometry 

making the procedure more automated by eliminating the need for sample filtration and hand 

counting (Kepner and Pratt, 1994).   

 The advances in direct microscopic counting methods improved the ability of counting 

microbial cells and thereby, allowed for a more accurate estimation of total microbial cells in 

aquatic environments.  However, advances in these microscopic methods did little to contribute to 

the ability to understand microbial diversity by means of taxonomic differentiation; since there is 

no correlation between morphological diversity and genetical diversity among most microbes.  

Only until the implementation of molecular based methods such as lipid biomarker determination 

and nucleic acid differentiation was taxonomic differentiation and diversity estimation possible.  

The use and continued improvement of these methods has allowed the complexity and diversity of 

the microbial more accurately understood.   

Lipid Biomarkers 

 All organisms contain lipids within their cells, and some lipids are characteristic of certain 

groups of organisms.  It is possible to determine biomass and biodiversity based upon the analysis 

of these signature lipids (White, 1994).  Phospholipid fatty acids (PLFAs) are common biomarkers 

which are used in this method.  PLFAs are found in the cytoplasmic membrane of viable cells.   

Upon cell death, the molecules degrade rapidly to lipid diglycerides (White and Tucker, 1969).  

This property makes it possible to survey the diversity of cells only.   

 In this method, total PLFA are extracted from an environmental sample using organic 

solvents and analyzed by gas chromatography. These data can be analyzed in two ways: either as 

total PLFA patterns characteristic to the entire community, or on an individual PLFA pattern basis 
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to distinguish the presence of certain microbial groups.  Findlay and Watling (1998) used lipid 

biomarker to determine patterns of seasonal variation in a marine benthic microbial community.  

They found PLFAs more characteristic to marine algae, were more abundant in colder months than 

in warmer months and was always more predominant than the PLFAs characteristic to diatoms, 

which also showed a similar seasonal trend.  By using lipid biomarkers, Findlay and Watling 

(1998) were able to detect community dynamics within the marine environment on a seasonal basis 

and demonstrate how microbial communities can shift given certain environmental changes.     

 Lipid biomarkers are an effective way to measure environmental biomass and monitoring 

community changes among major microbial groups, there are certain disadvantages when using 

this method; as many microbes may contain overlapping PFLA patterns, so detection below a 

major group level is difficult (White et al., 1997). Because of this limitation, the use of nucleic 

acids, that can be more specific at virtually any taxonomic level, are mainly used. These methods 

have proven very useful for both taxonomic analysis and diversity studies.  Several of the most 

commonly used methods are reviewed below. 

 

Nucleic Acid Based Methods 

Denaturant gradient gel electrophoresis  

 Denaturant gradient gel electrophoresis (DGGE) is a method that is based on the analytical 

separation of nearly identical fragments of DNA by electrophoresis. In microbial diversity studies, 

DGGE is used to analyze the Polymerase Chain Reaction (PCR) amplified gene fragments 

amplified from environmental samples (Muyzer et al., 1993).   Fragment separation is based on 

changes in electrophoretic mobility of DNA fragments in a polyacrylamide gel containing a 

linearly increasing concentration of DNA denaturants (e.g., urea or formamide).  As the DNA 
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fragments reaches the region of the gel containing sufficient denaturant, denaturation occurs in 

certain regions termed the melting domains.  This slows DNA fragment migration.   Sequence 

variation within each domain alters DNA melting behavior, and sequence variants of the 

amplification products migrate differently in the denaturing gradient (Lerman et al., 1984; Myers et 

al., 1987). 

 DGGE analysis of PCR amplified gene fragments provides a rapid method to estimate 

community complexity.  However, only a specific banding pattern can be established.  More 

specific community determinations (i.e., assigning populations t specific taxa) require additional 

PCR, cloning and sequencing steps (Muyzer et al., 1993).  

Cloning 

 Pace et al. (1985) were the first to apply cloning methods to study microbial diversity and 

phylogeny.  They used a method termed “Shotgun cloning” to study diversity among planktonic 

marine environments.  In this method, total microbial DNA is isolated and fragmented by 

restriction enzymes.  DNA fragments are ligated into lambda bacteriophage (or plasmid) vectors 

and transformed into E. coli to make a clone library.  The library is then screened for the clones 

containing the gene fragments of interest using a gene-specific probe (Schmidt et al., 1991).  The 

successful clones are then partially characterized to cluster identical clones and then the inserts are 

sequenced. These sequences are aligned to other sequences obtained from known organisms and 

the environmental sequences are classified by clustering based on sequence identity.  In this 

manner, phylogenic relationships can be established based on sequence similarity and microbial 

diversity estimated. 

 The major advantage to this method of cloning is that no biases are introduced to interfere 

with the cloning of certain microbial groups and that libraries can be screen for several genes at the 
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same time (Embley and Stackebrandt, 1991).  However, a limitation to this method is the amount 

of time required to screen the library, as only a small percentage of the clones with have the gene 

fragments of interest.  Schmidt et al. (1991) found that only 0.02% to 0.30% of the total clones 

contained the rRNA genes, which are most commonly used for phylogenetic studies.   

 This cloning method was modified slightly by Ward et al. (1990) to retrieve and clone only 

selected genes from hot springs in Yellowstone National Park.  16S rRNA from the environment 

was extracted and reverse transcription was used to make complementary DNA (cDNA).  The 

cDNA was then cloned into a vector.   

 The advantage of using rRNA as the initial template is that organisms which contain a large 

number of rRNA are more likely to be selected, and the amount of rRNA in a cell reflects the state 

of metabolic activity.  Thus, viable cells will contain more rRNA.  Therefore, this method is more 

likely to detected viable microbes than other cloning methods (Weller and Ward, 1989).  The 

transcription reliability of the enzyme reverse transcriptase is a limitation; as it may not always 

produce accurate, full-length copies (Weller et al., 1991). 

 The simplest and most common method of cloning is by adding an initial nucleic acid 

amplification step by the polymerase chain reaction (PCR).   PCR is performed on the extracted 

community DNA with primers that target the specific gene of interest.  The primers can be 

designed to amplify at different taxonomic levels, from kingdom (DeLong, 1992; Britschgi and 

Giovannoni, 1991) to family (Giovannoni et al., 1990) to genus or species (Champliaud et al., 

1998). 

 Adding PCR to the cloning method greatly increases cloning efficiency, as all of the 

successful clones contain the target gene.  However, there are limitations to this method.  PCR 

introduces the possibility of chimeric gene sequences (Giovannoni, 1991). Chimeric genes can 
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form in a mixed population sample when two partially amplified gene segments from different 

organisms combine to form a single amplicon.  The product is a gene segment which is not 

representative of an actual organism.  During subsequent PCR cycles, the gene segment can be 

amplified to significant numbers thus; during cloning procedures, a large number of clones may 

contain a DNA sequence representing a non-existent organism. It may be difficult to distinguish 

chimeric genes from actual genes (Giovannoni, 1991).  Another limitation comes from primer-

probe annealing affinity inequalities, in which some templates in a mixed population sample will 

have a higher annealing affinity for the primers than others.  This results in biased amplification of 

some templates over others, and thus a true representation of the community is not achieved 

(Theron and Cleote, 2000).   

Slot- or dot-blot hybridization 

 Blot hybridizations provide a rapid method for determining microbial diversity without the 

need for cloning or sequencing.  In this method, DNAs are extracted from an environmental 

sample.  These target nucleic acids are denatured and applied to a membrane either in a round (dot) 

or longitudinal (slot) formation, depending on vacuum chamber configuration (Kafatos et al., 

1979).  The nucleotides are fixed to the membrane by either heat or UV cross linking and either 

radiolabeled or fluorescently labeled DNA probes or either partial regions of a gene or the entire 

gene is hybridized to the target nucleic acids.   Quantification can be achieved by comparing 

probes of specific taxa with universal probes, and the relative abundance of microbes can then be 

calculated by dividing the amount of taxon-specific probe hybridized by the amount of universal 

probe hybridized (Theron and Cloete, 2000).  This technique allows for the detection of a gene in 

numerous environmental samples at the same time.  However, probing with multiple probes 

simultaneously is limited and difficult (Wang and Wang, 1995).   
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Reverse Sample Gene Probing 

  Reverse Sample Gene Probing (RSGP) is a method similar to slot- or dot blot 

hybridizations. However, the probe and target relationship is reversed.  The genomic DNA from 

various reference organisms or target genes is denatured and immobilized on a membrane support. 

DNA extracted from the environment is then labeled and hybridized to the reference DNA (Stahl, 

1997).   

   This method was developed by Voordouw et al. (1993, 1996) to analyze the diversity of 

sulfate-reducing bacteria (SRB) in oil fields, and has since been mostly limited to this area,  

although, this method could be applied to numerous molecular microbial ecological studies. It 

gives more rapid results than cloning with multiple samples, more specific microbial detection than 

DGGE and lipid analysis, and it has the potential for a wider range of detection than standard slot-

blots.  Moreover, this method can be used to assess a wide range of environments, including both 

soil and aquatic. 

 

Whole cell in situ hybridization 

 Whole cell in situ hybridization combines microscopic techniques with nucleic acid 

hybridization, thereby allowing for the detection of single, whole cells, while preserving cell 

morphology.  Giovannoni et al. (1988) demonstrated that fixed, whole cells were permeable to 

short, radioactively labeled probes and that, under the right hybridization conditions, these probes 

would hybridize to intracellular nucleic acids.  This provided in situ cell detection at various 

phylogenetic levels determined by probe specificity.   DeLong et al. (1989) used fluorescently 

labeled probes instead of radioactively labeled probes, and the technique was termed FISH 

(fluorescent in situ hybridization).  The fluorescent technique yielded a much higher resolution and 
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facilitated detection methods by use of epifluorescence microcopy, flow cytometry or confocal 

scanning laser microscopy (Amann et al., 1990a; Kenzaka et al., 1998; Caldwell et al., 1992).   

 There are several advantages to this method.  It incorporates both morphology 

identification and abundance in one procedure.  Also, the need for nucleic acid extraction, 

purification, and amplification is eliminated, thereby removing steps which may bias the results.              

Likewise, there are several limitations to in situ hybridization.  Low cell numbers and low numbers 

of target molecules can produce weak fluorescence intensity (Amann et al., 1995).  Probe 

permeability and probe hybridization may also be affected by cell growth state.  Kenzaka et al., 

(1998) found that as much as 68% of all cells counted from a eutrophic site by staining procedures 

could be detected using FISH and a universal probe; however, only 39%  of all cells from a 

oligotrophic site hybridized to the same probe.  This study suggests that FISH may not be an ideal 

method for studies in oligotrophic environments. 

 

Molecular Systematics 

Molecular Chronometers 

 Cellular macromolecules can be used as evolutionary chronometers. That is, they can be 

used to measure evolutionary changes, and infer evolutionary distances between organisms.  These 

relationships are established by measuring the number of differences in nucleotide or amino acid 

sequences of homologous molecules, assuming that the numbers of sequence differences are 

proportional to the number of stable mutational changes fixed in the DNA encoding the molecule 

in organisms that diverged from a common ancestor (Madigan et al., 1997; Pace, 1997).  Thus, 

organisms whose homologous molecules exhibit close similarity are likely to have diverged from a 
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common ancestor more recently than those who have fewer sequences in common.  Based on the 

evolutionary distance between organisms, a phylogenetic tree is constructed (Logan, 1994). 

 A molecule must posses several properties to be a molecular chronometer.  It must: (1) 

have universal distribution across the taxa of interest, (2) have functional homology in each 

organism (3) posses the ability to be aligned for comparison, (4) have a  mutation rate that is 

proportional to evolutionary distance, (5) be of adequate size, and (6) not be influenced by lateral 

gene transfer (Madigan, 1997; Stahl, 1997).   

 A limited number of molecules are used as molecular chronometers, including 

cytochromes, elongation factors and ATPases (Goodfellow and O’Donnell, 1993); however, the 

most commonly used molecules are the rRNAs.  Prokaryotes contain three types of rRNA 

molecules: 5S (approximately 120 nucleotides), 16S (approximately 1500 nucleotides), and 23S 

(approximately 2900 nucleotides).  The homologous rRNA molecules in eukaryotes are slightly 

larger and are termed the 5.8S (approximately 156 nucleotides), 18S (approximately 1900 

nucleotides), and 28S (approximately 4700 nucleotides) respectively.  

  Of these rRNAs, the 16S and the 18S, (the small subunit [SSUs] rRNAs) have proven to 

be the most useful as chronometers because they are much easier to sequence entirely than the 23S 

or 28S molecules, and provide significantly more phylogenetic information than the 5S or 5.8S 

rRNAs.  The SSUs are ideal for phylogenetic work because they contain both conserved and 

variable regions.  Conserved regions are more slowly evolving sections that facilitate alignments 

and are ideal for phylogenetic comparisons at higher taxonomic levels, e.g., domain and kingdom.  

The most variable regions are more rapidly evolving and are useful for lower taxonomic 

determinations, e.g., genus and species.   
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The Universal Tree of Life 

 Woese et al. (1990) described all life on earth as belonging to one of three Domains: 

Bacteria, Archaea or Eucarya.  Each domain includes several kingdoms. Based upon sequence 

analysis of 16S and 18S rRNA of a wide range of prokaryotic and eukaryotic organisms, a 

universal phylogenetic tree of life was constructed (Figure 1.1).  

The Bacterial Domain   

 Woese (1987) initially described The Bacteria as containing 12 major groups based on 16S 

rRNA analysis, however, Hugenholtz et al. (1998) reported that at least 24 additional major groups 

exist, most of which have no cultured representatives.   This study was limited to the 12 original 

groups proposed by Woese and therefore, only those groups will be discussed here. 

 Proteobacteria.  The Proteobacterial kingdom is comprised of five subclasses (alpha, beta, 

gamma, delta and epsilon) and represents the largest, most physiologically diverse group of all 

currently known bacteria (Madigan et al., 1997; Logan, 1994).  All genera within this kingdom are 

Gram-negative (i.e., containing several layers of lipoproteins, lipopolysaccharieds, and 

phosolipids, but only a single layer of peptidoyglycan in their cell walls). It includes 

representatives that are:  phototrophic (anoxygenic and oxygenic), non-phototrophic, pathogenic, 

sulfur oxidizing, and sulfur and sulfate reducing among others. 

 Gram-positive bacteria.  This kingdom is distinguished from the proteobacteria by its cell 

wall characteristics (containing a thick layer of peptidoglycan), and can be divided into 

subdivisions based on DNA base composition, those species containing a high molar percentage (> 

50%)  of G-C pairs (high GC) and those species with low molar percentage)(< 50%)of G-C pairs 

(low GC).  The high GC subdivision (Actinobacteria) consists primarily of species that are 
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pleomorphic or exhibit branching growth. They are aerobic and common in soil.  The low GC 

subdivision contains genera that are aerobic, anaerobic and some endospore-formers and these 

organisms live in a variety of habitats from soil to human skin (Woese, 1987, Logan, 1994).   

 Cyanobacteria.  A large morphologic and physiologic diversity exists within this 

kingdom.  However, all members are oxygenic phototrophs that utilize chlorophyll a as a 

photosynthetic pigment.  Cyanobacteria are important contributors to carbon and nitrogen cycling, 

especially in aquatic environments (Graham and Wilcox, 2000).  This kingdom includes the closest 

common ancestor of the chloroplast of green plants and green algae (Logan, 1994).   

 Green Sulfur Bacteria.  This kingdom consists of anoxygenic phototrophs that gain 

energy by oxidizing reduced sulfur compounds under anaerobic conditions.  Species in this group 

are usually found in anoxic regions of aquatic environments were sufficient light is available for 

growth (Woese, 1987).  Some planktonic species possess gas vesicles which allow them to move 

in response to changes in light and H2S levels (Lansing et al., 1999).  

 Spirochetes.  This kingdom is comprised of helical and coiled bacteria with one or more 

polar flagella that wrap around the cells inside the Gram-negative-like outer membrane.  

Movement is facilitated by the flagella and by cellular flexing and rotation.  The habitat range of 

these organisms is vast, ranging from fresh and marine waters, to soils and sediments, to parasitic 

relationships with insects, molluscs and mammals (Woese, 1987; Logan, 1994).   The best known 

member of the kingdom is Treponema pallidum, the causative agent of syphilis.  

 Cytophaga-Flexibacter-Bacteriods (CFB).  This kingdom contains a mixture of strict 

anaerobes and strict aerobes.  Gliding bacteria are found within the genera Cytophaga and 

Flexibacter (Madigan et al., 1997).  Members of Bacteroides can be found in the oral cavity and 

intestinal tract of humans and other animals where they benefit the host by degrading cellulose and 
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other complex carbohydrates.  Cytophaga species also degrade complex carbohydrates and are 

commonly found in soil and aquatic environments were they contribute significantly to cellulose 

decomposition. 

 Deinococcus-Thermus.  The Deinococci are unique in that are highly resistant to radiation 

and desiccation. These organisms have an unusual ability to repair damaged DNA even when it has 

been fragmented (Madigan et al., 1997).  Deinococcus radiodurans can withstand 50-100 times 

more ionizing radiation than most other bacteria (Daly et al., 1994). Thermus species are 

thermophilic, hot spring dwellers and are of scientific interest because they produce heat stable 

enzymes (Madigan et al., 1997).  For example, A DNA polymerase from Thermus aquaticus (Taq 

polymerase) is commonly used in PCR reactions.  

 Green Non-Sulfur Bacteria.  This kingdom contains only three genera Chloroflexus, 

Heliothrix and Herpetosiphon. It includes phototrophic bacteria that do not oxidize sulfide to 

obtain energy.  Chloroflexus species are thermophilic, photoorganotrophs or chemoorganotrophs 

depending on environmental conditions, and can be seen forming orange-reddish mats in neutral to 

alkaline hot springs (Lansing et al., 1999).  Heliothrix are photosynthetic and are commonly found 

in lakes where sufficient light reaches the anoxic zone (Woese, 1987; Logan, 1994).  

Herpetosiphon are not photosynthetic and are common in soil (Lansing et al., 1999).    

 Planctomyces.  Microbes within this kingdom are mostly aquatic and reproduce by 

budding. They are unusual among bacteria in that they lack peptidoglycan in their cell walls 

(Madigan et al., 1997).  These bacteria are common in aquatic habitats, and contain flagella and 

stalk structures that facilitate cell attachment to surfaces (Schmidt and Star, 1989).   

 Thermotogales.  Species within this kingdom have been isolated from hyperthermophilic 

marine sediments and geothermally heated soils.  These organisms have unique cell wall 
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structures, in that they lack peptidoglycan and contain large amounts of proteins, and cells are 

enclosed in a loose sheath (toga-like) envelope.  Metabolically, Thermotogales are fermentative 

chemoorganotrophs (Madigan et al., 1997; Logan, 1994).   

 Aquificales.  This is the earliest branching bacterial kingdom from the common ancestor of 

the Bacterial domain.  These microbes are hyperthermophilic, chemolithotrophs that generate 

energy by oxidizing hydrogen or sulfur compounds.  There are only nine known genera in this 

group and all are physiologically similar (Madigan et al., 1997).  Aquifex species are the most 

thermophilic of all known bacteria.  They have optimum growth temperatures up to 95°C (Staley, 

2002).   

The Archaeal Domain 

 The Archaea are often characterized by growth under extreme conditions, although some 

types are abundant in non-extreme habitats. They have unusual metabolic characteristics and cell 

structures.  These prokaryotic microbes lack peptidoglycan in their cell walls and have unique 

ether-linked lipids (unlike Bacteria and Eukarya which have ester-linked lipids).  The Archaeal 

domain includes microbes that are hyperthermophiles, methanogens (produce methane gas from 

CO2 reduction), extreme halophiles and acidophiles.  The domain is comprised of three kingdoms: 

Crenarchaeota, Euryarchaeota and Korarchaeota (Staley, 2002).   

 Crenarchaeota.  This kingdom contains mostly hyperthermophiles found in geothermally 

heated soils and waters containing sulfur or hydrogen sulfide (Fuhrman et al., 1992).  These 

microbes are mostly obligate anaerobes and have an optimum growth temperature above 80oC.  

New species are regularly discovered in this kingdom as more extreme environments are explored 

(Logan, 1994). 
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 Euryarchaeota.  This kingdom contains methanogens and halophiles.  The methanogens 

are strict anaerobes obtaining energy by oxidizing hydrogen or simple organic compounds.  They 

use the electrons generated to reduce carbon dioxide to methane.  These organisms have been 

found in aquatic sediments, the intestinal tracts and rumens of animals, sewage sludges and oil 

field soils (Madigan et al., 1997).  Halophiles can live in salt lakes, soda lakes, or heavily salted 

foods in which the sodium chloride concentration is greater than 8% (Logan, 1994).   

 Korarchaeota.  This kingdom is comprised of microbes that have only been identified 

from 16S rRNA sequences obtained from terrestrial hot springs and marine waters. Their function 

in the environments is unknown, and there are no culture representatives for this kingdom 

(Madigan et al., 1997).   

The Eukaryal Domain 

  The Eukaryal domain includes plants and animals, as well as several kingdoms of 

microorganisms. The microbial kingdoms include microscopic algae, protists and microscopic 

fungi However, only the algae and protists were included in this study.  The diversity of eukaryotic 

microbes is vast and not well understood (Sogin, 1996). In general, they have 80S ribosomes, a 

nuclear membrane and intracellular organelles, e.g., mitochondria and chloroplasts and; based on 

18S rRNA sequences, they appear to be more closely related to Archaea, than Bacteria (Staley, 

2002).  

 Algae.  Eukaryotic algae make up a large fraction of primary producers in aquatic 

environments (Graham and Wilcox, 2000; Ford, 1993). These organisms can be found in virtually 

any aquatic environment from cold arctic oceans to temperate waters.  Microscopic algae can vary 

in organization from unicellular to multicellular to filamentous clusters.  All algae contain plastids 

containing chlorophyll, however, some groups contain several accessory pigments that may mask 
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the chlorophyll, and therefore, give the cell a color other than green (Graham and Wilcox, 2000; 

Sorokin, 1999).  Generally, algae are grouped by pigment color.  This study included brown algae, 

red algae, green algae, and diatoms. 

 Protozoa.  Protozoans (protists) are unicellular eukaryotic microbes that lack cell walls, 

and are motile by the use of  a flagella, cilia, pseudopodia, or are non-motile.  This kingdom is 

comprised of several separate lineages, but is usually combined together because of the common 

characteristics described above.  Protists are found in a variety of freshwater and marine 

environments, soils, and as parasites in or on other organisms (Madigan et al, 1997).  Most protists 

are primarily heterotrophic, although some genera, e.g., Euglena, contain chloroplasts and can exist 

as phototrophs (Graham and Wilcox, 2000).  Aquatic protists are important components in the food 

web, for they act as predators on smaller eukaryotes and prokaryotes, and prey for larger 

invertebrates and vertebrates (Sorokin, 1999).  This study was limited to the study of the following 

protozoans: ciliates, cryptomonads, dinoflagellates and euglenids.   

 

Pathogen Detection in Aquatic Environments 

 Many waterborne pathogens are propagated through the intestinal tracts of humans and 

animals. They include commonly bacteria, protozoans and viruses.   These organisms cause 

gastrointestinal illnesses and in severe cases, can cause death.  Waterborne contamination occurs 

through fecal pollution of the water either from natural or anthropogenically-introduced sources.  

Several factors determine whether transmission will occur:  (1) the concentration of pathogens in 

the water, (2) the infectious dose of organisms, and (3) the amount of exposure to the contaminated 

water (Moe, 1997).   
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 Several methods are used for the detection of waterborne pathogens. However, most of 

these methods are time consuming, as they involve cultivation and/or microscopic identification.  

Identification by molecular methods such as oligonucleotide probing or PCR is becoming more 

popular, since it gives rapid results, allows for the detection of low cell numbers, and the detection 

of numerous pathogens simultaneously (Kaucner and Stinear, 1998).  Additionally, probes or 

primers can be constructed that detect only pathogenic species or strains, something that may not 

be possible using other, non-molecular, methods.   

Escherichia coli 

 Most strains of Escherichia coli are not pathogenic and exist in commensalistic or 

synergistic interactions the intestines of humans and warm blooded animals.  However, some 

strains are pathogenic, causing severe gastrointestinal illnesses.  The most severe infections come 

from the enterohemorrhagic strains.  Among these, E. coli O157:H7 is the most well known.  This 

strain not only adheres to and invades host tissue, but produces toxins that kill host cells.  Host cell 

death leads to hemorrhagic colitis and possibly to hemorrhagic uremia and even death (Madigan, et 

al., 1997).  These toxins are termed shiga-like toxins (STX) and are encoded by the stxI or stxII 

genes.  Molecular probing for these genes allows pathogenic strains of E. coli to be distinguished 

from nonpathogenic strains, assuming that only the pathogenic strains will contain the toxin genes.  

The nucleic acid sequence for these genes contains some highly variable regions, but a few 

conserved regions are present and thus, it is possible to construct PCR primers which will amplify 

portions of both genes (Read et al., 1992). Primers amplifying conserved regions or these genes 

were used in this study. 
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Giardia lamblia  

 Giardia lamblia is a flagellated protozoan that is commonly found in freshwater streams 

and rivers.  The organism exists in the environment in cyst form and germinates upon entering the 

intestinal tract of a warm-blooded animal.  The differences between the pathogenic species G. 

lamblia and the non-pathogenic G. muris are difficult to distinguish, even at a molecular level, as 

many genes are too similar (Kaucner ad Stinear, 1998).  However, the giardin (grn) gene, which 

encodes for a cytoskeleton component, does have some variability between the two species.  This 

makes it an ideal gene for primer and probe development (Kaucner ad Stinear, 1998).  Primers 

amplifying this region of the G. lamblia genome were used in this study. 

Cryptosporidium parvum 

 Cryptosporidium parvum is also a protozoan parasite in vertebrates with a life cycle similar 

to G. lamblia, in that it exists as an oocyst while in the environment and germinates in the 

intestines of the host animal.  Only those who are immunocompromised are at risk of serious, life-

threatening symptoms.  Healthy individuals experience only mild symptoms.  Of the eight species 

of Cryptosporidium, only C. parvum is pathogenic to humans.  Thus, it is important to be able to 

differentiate between species present in aquatic habitats. Primers (CpR1f and CpR1r) amplifying 

regions of the repetitive oocyst gene have been shown to differentiate between several species (but 

not all) of Cryptosporidium (Champliaud et al., 1998).  These primers were used in this study.   

Entamoeba histolytica 

 Entamoeba histolytica is also a protozoan that produces a cyst that germinates within the 

epithelial lining of the intestine.  Symptoms include abdominal cramping and severe bloody 

diarrhea.  An infection of this type is often called amoebic dysentery.  EH1 and EH2 (Hauge et al., 

1998) primers targeting 18S rRNA were used in this study as a means to detect this organisms.  
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Study Objectives 

 

 The purpose of this study was to generate a gene grid for hybridization purposes that 

included specific microbial gene probes at known locations.  Total environmental DNA could then 

be isolated, radioactively labeled and hybridized to the grid.  The pattern of positive hybridizations 

could then be used to determine what taxa of microbes were present in the original water sample.  

The addition of gene probes for important functional genes and human pathogens was indented to 

reveal important information about the health and safety of the water.  This work lays the 

foundation for the environmental DNA grid by identifying specific probes and determining the 

appropriate conditions for probe preparation.      
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C h a p t e r  2  

METHODS 
 

Study Area 

 Microbial studies were conducted on a one-mile section of Mill Creek located within the 

future Tolsia Highway (US 52) wetland mitigation site in Wayne County, West Virginia.  The 

mitigation area encompasses an approximate 40-acre floodplain section of Mill Creek that is 

characterized by a mixture of open fields, cropland and bottomland hardwood forest.  Although the 

area was previously used for cattle grazing and hay cultivation, the site is currently relatively 

isolated from human impact (WVDOH, 1995), except as noted below.     

 The mitigation site has been subdivided into five cells (termed A-E).  Sections of the 

stream within each cell will be dammed to serve as the water source for the wetland.  Water 

samples were taken from the section of the stream that was near the approximate middle of each 

cell (Figs. 2.1 and 2.2). 

 Site A. Collection site A (38º 04' 50" N, 82º 32' 29" W) was in a riffle section of the stream 

and was approximately 9 cm deep at normal flow.  The water in this area contained an unusual red 

precipitate, red slimes and oily rock coating. Microscopic examination revealed that the precipitate 

and slimes contained microorganisms characteristic of unpolluted anoxic waters containing iron 

(Emersion and Revsbech, 1994).  It was speculated that the iron was seeping from a sandstone cliff 

near the stream’s edge.  The stream bed was composed mostly of rock. 

 Site B.  Collection site B (38º 04' 56" N, 82º 32' 29" W) was in a riffle section of the stream 

and was approximately 6 cm deep on average.  Stream flow was impeded by the presence of 

vegetation during the spring and summer.  The streambed was composed of fine silt.    
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 Site C.  Collection site C (38º 05' 05" N, 82º 32' 31" W) was in a riffle section of the stream 

and was approximately 15 cm deep on average.   The streambed was composed of mostly rock and 

some fine sediment. 

 Site D.  Collection site D (38º 05' 11" N, 82º 32' 25" W) was in a riffle section of the 

stream and was approximately 5 cm deep on average. The streambed was composed of mostly rock 

and some fine sediment.  This area was close to an illegal trash-dumping site and numerous tires, 

rusting debris and trash were present in the stream during the sampling period.   

 Site E.  Collection site E (38º 05' 15" N, 82º 32' 28" W) was in a pool section of the stream 

approximately 2 m deep on average.  This area contained less foliage cover and thus received more 

sunlight than other sites.  The area also contained several fallen trees in the stream, which served as 

a habitat for aquatic macrovertebrates (i.e., turtles and fish). 

 

Environmental Sample Processing 

Sample collection 

 Water samples (> 500 ml) were collected in sterilized 1 L Nalgene Polycarbonate bottles at 

each site (A-E) at least once per month from July 2001 through June 2002 (Table 2.1).  Only 

surface water was collected and sediment was avoided as much as possible.  Water samples were 

placed on ice until filtered at Marshall University (approximately one hour later), or were 

immediately filtered on-site.  Samples were filtered using 250 ml pre-sterilized, disposable filter 

units containing a nitrocellulose membrane filter (47 mm diameter, 0.2-µm pore size) (Nalgene) 

until filter was clogged (approximately 250-500 ml depending on sample turbidity).  Filters were 

stored in 50 mm petri dishes at -20ºC until further processed.  
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 Samples collected on 5 dates were further processed.  These sample dates were chosen by 

graphing the mean daily temperature (National Weather Service, www.nws.gov) for the duration of 

sample collection and establishing a weather trendline for daily mean temperatures (Fig. 2.3).  

Sampling dates closest to the trendline representing the high, moderate and low temperatures 

(Table 2.1) where chosen. 

Optimization of DNA Extraction by Sonication 

 All glassware used during sonication was thoroughly cleaned by overnight submersion in a 

sulfuric acid bath, followed by rinsing in distilled water and baking at 250ºC.  Glassware was then 

inverted for 1 hour in an oven and then covered and stored upright overnight or until used.  All 

instruments that were in contact with samples (including sonicator probe), were immersed in 1 N 

HCl, rinsed with sterile water, immersed in 10 N NaOH, rinsed again in sterile water and then 

stored in 95% ethanol. Cleaning was repeated before each sample was sonicated.   All samples 

were kept on ice throughout the sonication procedure to inhibit nuclease activity and avoid heat 

denaturation of nucleic acids during sonication.   

 Membrane filters (seven) carrying environmental sample retentates were placed in 

previously sterilized beakers containing 9.0 ml of lysis buffer (Appendix A) per filter and 

sonicated for a range of 0-120 seconds at 20 second intervals (one filter per each sonication time) 

using a  Tekmar 600 Ultrasonicator with a 10.2 mm diameter probe, while maintaining a 15 power 

monitor reading (approximately 90 Watts).  During sonication, the probe was immersed at least 3 

cm into the liquid and centered over the filter to reduce occurrence of sample foaming.  All sample 

vessels were placed in a cold ethanol bath continuously bubbled by dry ice to reduce temperature 

elevation. The sonicated samples (including all filter particles) were transferred to 25-ml 

polypropylene screw-cap centrifuge tubes. Probe and beaker walls were rinsed with 1 ml of sterile 
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1× SSC, which was added to the centrifuge tubes. Tubes were immediately frozen (−70°C) until 

further use.   

 This procedure was repeated again, sonicating in 24 ml of lysis buffer over a time range of 

80-180 seconds. The process was repeated for a third time using 35 ml lysis buffer over a time 

range of 60-220 seconds.  Sonicated samples were frozen (−70ºC) until further use for DNA 

concentration determinations.   

 Frozen sonicated samples were thawed in a 50°C water bath and divided into 15 ml 

aliquots in glass 25-ml Corex ® II centrifuge tubes.  The crude lysates were extracted with an 

equal volume (15 ml) of phenol: chloroform: isoamyl alcohol (Appendix A).  Tubes were 

centrifuged at 7,000 x g for 10 minutes and the aqueous phases were transferred to 30 ml 

polycarbonate centrifuge tubes.   Partially purified DNAs were ethanol precipitated by the addition 

of 1/10 volume of 7.5 M ammonium acetate, and an equal volume of cold isopropanol, and stored 

overnight at −20°C.  DNA was pelleted by centrifugation at 16,000 × g for 30 minutes at room 

temperature. The liquid was discarded and pellets were washed with 70% ethanol, centrifuged 

again for 15 minutes, decanted, and dried.  Pellets were resuspened in 100 µl of TE buffer pH 8.0 

(Sambrook et al., 1989).  

  DNA was quantified using a TD-360 Fluorometer (Turner Designs, CA) containing a 360 

nanometer wavelength excitation filter and a 460 nanometer wavelength emission filter, a 

Fluorescent DNA Quantification Kit (Bio-Rad, Hercules, CA) and 1 cm2   methacrylate 

fluorescence cuvettes.  A standard curve was generated (Fig. 2.4) and quantifications were carried 

out according to the manufacture’s instruction for a 0.1 µg/ml Hoechst 33258 dye solution and low 

range DNA (10-500 ng/ml) detection.   
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Primer Design 

 All primers used in this study were either constructed de novo, taken from previous 

literature, or adapted from previously described primers.  Primers taken from previous literature 

were checked by aligning (ClustalX 1.8, Thompson et al., 1994) all gene sequences available (or 

one representative sequence from each genus available) from the National Center for 

Biotechnology Information (NCBI)  GenBank database for the gene of interest with the primers.  

Any sequence discrepancies were eliminated by adapting the primer sequence to the aligned 

sequences.  Primers constructed for this study were done so by searching for conserved regions 

within the aligned sequences and avoiding areas that would require numerous degeneracies within 

the primers.   Primers were synthesized at the Marshall University DNA Core Facility, Huntington, 

WV.  See Table 2.2 for primers used in this study.   

 

Microbial Group Detection 

 The 16S rRNA gene was chosen for the microbial taxon amplification portion of this study 

because of the abundance of sequences available for this gene. Upon alignment, the Universal 

primer pair 530f and 907r (Lane, 1991) proved to be most useful for this study because the primers 

amplify a 341 base pair hypervariable region flanked by two highly conserved regions (primer 

locations).   Primers were adapted for some groups to reduce degenerate pairing and increase 

specificity. 

 The consensus sequence for Crenarchaeota revealed sequence discrepancies between the 

530f primer and the template at the third priming position.  Therefore, 530f-cren (see Table 2.2 for 

primer sequence) was designed and synthesized.  Consensus sequences for both the Euryarchaeota 

and Crenarchaeota showed a thymine deletion at primer position 13, as well as, an adenine 
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substitution for guanine at primer position 16 on 907r.   To avoid potential problems, primer 907r-

eury/cren was made (Table 2.2).   

 The epsilon-Proteobacterial group showed that the consensus sequence at the 907r priming 

location contained one substitution; the sixth primer position contained a thymine instead of 

adenine (Appendix B).  Primer 907r-epsilon (Table 2.2) was synthesized to amplify epsilon-

Proteobacterial sequences.   

 The euglena group had a cytosine substitution at the tenth priming position of primer 530f.  

Primer 530f-euglena (Table 2.2) was constructed to amplify euglenoid sequences.    

 

Detection of Functional Genes and Microbes of Health Concern 

 Primers used for the detection of functional genes and pathogenic microbes were designed 

as stated above; however, genes segments which were highly conserved for a particular function, 

toxin, or protein (depending on gene of interest) were chosen and Genbank sequences for the 

corresponding genes were retrieved and aligned.  The most conserved regions that would yield the 

largest gene fragments were chosen.  For primers used in the detection of functional genes and 

pathogens, in most cases, few or no adequate sequences were available on GenBank for 

alignments.  Therefore, primers were checked for priming specificity by performing an NCBI 

blast.  All primers sequences returned no matches (in the case of genes with no sequences 

available), or resulted in matches only to the target organisms.  A sufficient number of full length 

sequences were found for the large subunit of Rubisco, therefore, these primers were aligned to 

check for accuracy.  Alignments revealed that the rbcL gene was highly conserved among both 

eukaryotic and prokaryotic organisms, with only a few variable regions. The primer pair rub1 and 
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rub2 (See Table 2.2 for primer sequence) was found to amplify a 395 bp conserved region of the 

rbcL gene. 

Pure Culture Processing 

Harvesting Cell from Reference Cultures 

 Representative pure culture, reference strains from each phylogenetic group of interest 

were obtained from type culture collection (see Table 2.3).  Cultures received on a solid medium 

were removed from the medium with a sterile swab and suspended in a 1.5 ml microcentrifuge 

tube containing 1 ml of sterile water by plunging the swab into the liquid several times until the 

suspension was visibly turbid.  Freeze-dried cultures were resuspended in 1 ml of sterile water and 

500 µl of the suspension was transferred to a sterile 1.5 ml microcentrifuge tube. The remaining 

culture was stored at −70ºC until further use.   Liquid cell suspensions were pelleted by 

centrifugation at 20,000 × g for 10 minutes.  The liquid was removed and the pellet resuspended in 

100-500 µl (depending on pellet size) of TE buffer and stored at −20°C until further use. 

 

DNA Isolation 

 DNA was isolated using either a DNeasy® Tissue Kit (Qiagen, Valencia, CA) or by 

Chelex extraction (de Lamballerie et al., 1992).  DNeasy® isolations were carried out as specified 

by the manufacturer.  For samples extracted by Chelex, 50 µl of a 5% Chelex suspension was 

added to 50 µl of cell suspension in a 1.5 ml microcentrifuge tube.  Tubes were incubated in a dry 

bath at 56ºC for at least 1.5 hours for Gram-negative bacteria and eukaryotic cells, and overnight 

for Gram-positive bacteria.  Following incubation, tubes were boiled for 8 minutes then 
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immediately centrifuged at 16,200 x g for 5 minutes.  The supernatant was transferred to sterile 1.5 

ml microcentrifuge tubes and stored at −20ºC.  

 

DNA Amplification and Verification 

 DNA was amplified by the Polymerase Chain Reaction (PCR) using primers targeting a 

specific gene in the corresponding DNA template (Tables 2.2 and 2.3).  Amplification mixtures 

were prepared using either a PCR Core Kit (Roche, Mannheim, Germany) as specified by the 

manufacturer or as given in Table 2.4.  Amplifications were carried out in a Bio-Rad Gene 

Cycler™ with the following parameters:  1-5 minute hot start at 94°C (during which Taq 

Polymerase was added) followed by 30 cycles of denaturation (1 minute at 94°C), annealing (1.5 

minute [temperature varies with primer pair, see Table 2.3]), and polymerization (2 minutes at 

72°C), with a final cycle including an extended polymerization at 72°C for 10 minutes. After 

amplification was complete, amplicons were stored at −20°C.  Amplifications were repeated either 

using fresh DNA template or previous amplicons until a total of  > 2,500 ng of DNA was obtained 

for each organism.   

 

PCR Optimization  

 Several optimization steps were used to amplify those templates that did not amplify under 

standard conditions (Fig. 2.5).  Optimization included one or a combination of the following 

parameters:  titration of Mg2+ concentration, titration of DNA concentration, and varying annealing 

temperatures using touchdown PCR.   
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 Templates requiring Mg2+ titration were amplified as previously described, except reactions 

were set up with 0.5, 1.0, 1.25, 1.50, 1.75, 2.0, and 2.5 mM of MgCl2.  Amplification results were 

 



 
 
 
analyzed by agarose gel electrophoresis.  The Mg2+ concentration resulting in the most effective 

amplification was used for subsequent amplification of the corresponding template.     

 Templates requiring titration of DNA concentration were amplified as previously described 

except template concentrations were varied by adding 1, 10, and 20 µl of template DNA stock for 

each template in question.  Amplification success was analyzed by agarose gel electrophoresis.  

The concentration yielding the best amplification was used for subsequent amplifications of that 

template.   

 Templates optimized by touchdown PCR were amplified as previously described except 

variable annealing temperatures were used.  The annealing step contained several cycles, the 

temperature during the first cycle was 5°C above the estimated primer pair annealing temperature.  

During each following cycle, the temperature was reduced by 1°C (for 1.5 min) until the 

temperature had reached 5°C below the estimated annealing temperature.   

 Following the touchdown cycles, 30 rounds of standard amplification were done as 

previously described.  For some templates, PCR optimization was unsuccessful and no amplicons 

could be obtained.  For these instances, the reference organism (and the corresponding group or 

gene) was eliminated from the study.   

 

Preparative Agarose Gel Electrophoresis of Amplicons 
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 Amplicons were purified by agarose gel electrophoresis as follows.  Amplicons of the same 

gene fragment were pooled (total volume ≤ 800 µl) and 1/10 volume of 10× loading dye (Appendix 

A) was added. The samples were transferred to a 1.2% low melting point agarose gel containing 

ethidium bromide (Appendix A) made with a 12 × 0.5 cm sample well.  A 1 kilobase DNA ladder 

(Promega, Madsion, WI) was used as a standard to determine fragment length.  DNA fragments 

 



 
 
 
were resolved by electrophoresis using TAE buffer (Appendix A) and a Bio-Rad Sub-Cell® GT 

with Bio-Rad Power Pack Junior power supply at 100 V.  Gels were viewed using an Ultra-Violet 

Products Transilluminator at 302 nanometers and photographed using Polaroid-Documentation 

Camera containing a Tiffen® 40.5 mm deep yellow filter with Polaroid type 667, ISO 3000 black 

and white film.   

 

Agarose Gel Extraction Method Comparison 

 DNA bands of the correct size were excised from the agarose gel using a sterile razor 

blade, placed into pre-weighed sterile microcentrifuge tubes and extracted using the MiniElute™ 

Gel Extraction Kit (Qiagen) according manufacturer’s directions for the.  Alternatively, DNA was 

recovered by the freeze squeeze method.  In the latter method, the gel fragments were completely 

melted at 65°C and 200 µl of phenol was added while the agarose was still molten.  The tube was 

vortexed and incubated at 70°C for 5 min., then centrifuged for 15 min at full speed in an 

microcentrifuge tube.  After centrifugation, the aqueous layer was removed and held on ice, and 

the residual agarose was saved.  TE buffer (200 µl) was added to the agarose and phenol remaining 

in the tube and heated at 65°C for 4 min.  The tube was centrifuged for 15 additional minutes.  The 

aqueous phase was recovered and added to the previously recovered aqueous phase on ice.  The 

total aqueous phase was extracted twice with equal volumes of phenol, ethanol precipitated as 

described above.  Pellets were resuspended in 10 µl of sterile H2O.  Extracted DNA from both 

methods was resolved by electrophoresis in agarose gels and banding patterns were visually 

compared to determine which method had the greatest extraction efficiency.  In most cases, the 

Qiagen Kit provided superior recovery, therefore, DNA extraction of reference cultures was carried 

out using the MiniElute™ Gel Extraction Kit and fluorometrically quantified as described above.   
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Reverse Sample Gene Probing 
 

Membrane Preparation 

 Membranes with purified reference DNA (target DNA) were prepared as follows.  Using a 

24-well Hybri-Slot™ filtration manifold (Life Technologies).  The manifold was thoroughly 

cleaned by submersion in 1.0 N NaOH, followed by rinsing in sterile water.  Nylon membranes 

(Micron Separations Inc.) were first wetted in sterile water at room temperature and then soaked in 

20× SSC (Appendix A) for 1 hour at room temperature. Two sheets of blotting paper (Whatman 

3mm filter paper) per membrane were soaked in 20× SSC for 10 minutes.  The blotting paper and 

membrane were placed into the filtration manifold and individual slots were filled with 800 µl of 

10× SSC and the buffer was pulled through the membrane by applying a vacuum to the base of the 

manifold.  The 10× SSC wash was repeated.     

  Target DNAs (100 ng/ 40µl) were denatured by the addition of 10 µl 1 N NaOH and 

incubated for 10 minutes.  DNAs were then neutralized by placing samples on ice and adding equal 

volumes of cold 10× SSC, and then vacuum blotted immediately (See Fig. 2.6 for membrane 

configuration).   Wells were rinsed with an additional 2 ml of 10× SSC per well.  The membrane 

was dried under continuous vacuum for 5 minutes and then baked overnight at 37°C between 2 

sheets of blotting paper.  Membranes were stored at −20°C until used.   
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Probe DNA Labeling 

 Environmental DNAs (Probes) were radioactively labeled by random prime DNA labeling 

using [α-35S]-Deoxycytidine-5- triphosphate (35S-dCTP) (ICN, Irvine, CA) using a High Prime 

DNA Labeling Kit (Roche) as specified by the manufacturer for 25 ng of template DNA.   

 

Slot-blot Hybridization Comparison 

 Membranes with bound target DNA were pre-hybridized in 50 ml Bellco AutoBlot® jars 

containing 4.6 ml (1 ml per cm2 of membrane) of Blotto (Appendix A) and incubated overnight at 

65°C in an AutoBlot® Micro Hybridization Oven (Bellco).  Probes were added to the 

hybridization jar and incubated at 65°C for (3× Cot1/2), as determined by the equation: 

                                 Hours to Cot1/2 = (1/X) × (Y/5) × (Z/10) 

Where X is equal to the weight of the probe in µg, Y is equal to the length of the probe in kilobases 

and Z is equal to the volume of the reaction in ml.   Membranes were washed 6 times for 5 minutes 

each with wash reagent (Appendix A) at 65°C and then counts were checked using a Geiger-

Mueller (GM) counter.  Membranes were air dried and then exposed to Kodak Biomax MR Film to 

produce autoradiographic records. 

 To compare different slot-blot hybridization methods, several steps were modified (e.g., 

membrane filter material, hybridization time, and wash stringency).  Hybond-N membranes 

(Amersham Pharmacia Biotech) were used as given by the manufacturer for slot-blot hybridization 

using the same DNAs given above.  Hybridization was carried out as follows.  Membranes were 

pre-wetted in water and then in pre-hybridization buffer (Appendix A).  Membranes were placed in 

hybridization tubes and 10 ml of pre-hybridization buffer was added and pre-hybridized for 30 min 
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at 65°C in a hybridization oven.  Labeled probes (as previously described) were added and allowed 

to hybridize overnight.  Membranes were washed (1) briefly in 2× SSC, 0.1% SDS, (2) twice for 5 

min each in 2× SSC, 0.1% SDS, (3) twice for 10 minutes each in 1× SSC, 0.1% SDS, (4) four 

times at 5 min each in 0.1× SSC, 0.1% SDS.  All wash steps were conducted at 65°C using wash 

buffer solutions that were pre-warmed to the same temperature.   X-ray film exposure was carried 

out as previously stated.  Hybridization results were compared for both protocols by visually 

comparing autoradiographic records.   
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C h a p t e r  3  

RESULTS 
 

Optimization Results  

 Sonication Optimization.  Sonication of membrane filters in 9, 24, and 35 ml of 1x SSC 

buffer showed similar extraction trends over a time range between 0 and 220 seconds (Fig. 3.1).  

Each volume showed an optimal sonication time where a maximum amount of DNA was extracted 

from the cell, and any further sonication beyond this time yielded less detectable DNA.  For filters 

containing 9 ml of buffer, the optimum sonication time was 60 seconds.  For filters sonicated in 24 

ml and 35 ml of buffer, optimum times were 120 and 180, respectively.  Sonication for 180 

seconds in 30 ml of buffer was used for subsequent sonications as this volume was adequate to 

reduce the frequency of foaming (aeration) that occurred during the procedure.   

 Total DNA Extraction from Environmental Samples.  DNA was extracted from filtered 

samples for the dates given in Table 2.1 and total DNA in each environmental sample was 

determined (Fig 3.2).  The least amount of DNA was extracted on July 31, 2001.  All sites yielded 

nearly the same quantity of DNA (approximately 3.0 × 102 ng /ml), except site E which contained 

considerably less (0.6  × 102 ng /ml).  The five January 2002 samples resulted in the second lowest 

quantity of DNA.  On this date, site E again had the lowest amount of DNA (1.3 × 102 ng /ml) and 

the remaining site had variable concentrations ranging from 5 × 102 to 3 × 102 ng /ml.  October 

2001 and April 2002 showed similar overall DNA concentrations as well as similar concentration 

trends among the individual collection sites (ranging from 2.0 × 102 to 9 × 102 ng /ml).  June 2002 

yielded the greatest concentration of DNA with site A have the highest (2.3  × 103 ng /ml) and site 

D having the lowest (1.1 × 103 ng/ml). 
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 Primer Design.  Sequence fidelities were checked for each primer pair (Table 2.2, 

Appendix B) used in this study, except for those genes which had few or no sequences available in 

GenBank. The universal primer pair 530f and 907r was found to amplify a fragment of 

approximately 341 bp for all groups of interest to this study.  Primer and sequence alignments 

revealed that the annealing locations of these primers were highly conserved, however, the 

sequences between the priming locations was variable, thus making this primer ideal for  

producing a taxon –specific amplicon.  Some groups did show degenerate primer annealing sites, 

so new primers were synthesized for those groups with numerous or destabilizing mismatches.    

 PCR optimization.   Table 3.1 gives amplification parameters and optimization 

conditions for DNA templates that successfully amplified and were further used in this study.  

Table 3.2 gives attempted amplification parameters and optimization steps of templates eliminated 

from the study.   Fig. 3.3A shows Campylobacter fetus amplicons titrated with Mg2+ 

concentrations between 0.5 and 2.5 mM.  The gel reveals that 1.5 mM of magnesium worked the 

best and that concentration above that amount produced results below the detection limits of the 

gel (approximately 10 ng total of DNA).  Fig. 3.3B shows Actinomyces israelli amplicons titrated 

with Mg2+ concentrations between 1 and 5 mM.  For this template, 1 mM Mg2+ yielded the best 

amplification.  Fig. 3.4 shows templates amplified by touchdown PCR that would not amplify 

under standard PCR conditions.  Several bands are apparent on most of the amplified templates 

indicating some non-specific priming events.  Note that some templates still did not amplify. 

 Gel Extraction Method Comparison.  Agarose gel electrophoresis banding patterns of 

PCR amplicons revealed that gel extraction by both the MiniElute™ Gel Extraction Kit and the 

freeze squeeze methods yielded similar extraction efficiencies (Fig. 3.5).   
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 Slot-Blot Hybridization Method Comparison.  Hybridization using the MSI membrane, 

the Blotto blocking agent (Appendix A), and a low stringency wash, gave initial readings of 

approximately 4,000 cpm (count per minute) by a hand held radiation (GM) counter.  

Autoradiographic record revealed that background was extremely high (Fig. 3.6).  It was difficult 

to distinguish back ground signal from hybridized DNA signal.  Using a light table results were 

found as given in Table 3.3 

 Hybridization using the Hybond-N membrane, Denhardt’s blocking agent and a high 

stringency wash, gave GM counts between 1,000 and 2,000 cpm.  Autoradiographic records 

revealed that background levels were lower than previous hybridization, but still high (Fig. 3.7).  

However, results were inconclusive, suggesting that no signal due to hybridization was detectable.    

 

Results of Method Development 

  This study involved determining methods for the rapid assessment of freshwater microbial 

community structure and dynamics with respect to temporal and spatial changes.  The following 

are the optimum methods found for each step for the microbial assessment described above.   

 Sample collection.   Water samples (>500 ml) should be collected in sterilized 1 L 

Nalgene Polycarbonate bottles.  Only surface water should be collected in order to avoid sediment 

that may impede filtration steps.  Immediately filter on-site using 250 ml pre-sterilized, disposable 

filter units containing a nitrocellulose membrane filter (47 mm diameter, 0.2-µm pore size) 

(Nalgene) until filter was clogged.  Store filters in 50 mm petri dishes at -20ºC until further 

processed. 

 Sonication.  All glassware used during sonication should be thoroughly cleaned by first, an 

overnight submersion in a sulfuric acid bath, followed by rinsing in distilled water and baking at 
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250ºC.   Invert glassware for 1 hour in the oven, and then cover and store upright overnight or until 

used.  All instruments that are in contact with samples (including sonicator probe), should be 

immersed in 1 N HCl, rinsed with sterile water, immersed in 10 N NaOH, rinsed again in sterile 

water and then stored in 95% ethanol.  Repeat cleaning before each sample is sonicated.   Keep all 

samples on ice throughout the sonication procedure to inhibit nuclease activity and avoid heat 

denaturation of nucleic acids during sonication.  

 Membrane filters carrying environmental sample retentates should be placed in previously 

sterilized beakers containing 35 ml of lysis buffer (Appendix A) per filter and sonicated for 180 s 

using a  Tekmar 600 Ultrasonicator with a 10.2 mm diameter probe, while maintaining a 15 power 

monitor reading (approximately 90 Watts).  During sonication, immerse the probe at least 3 cm 

into the liquid and center over the filter to reduce occurrence of sample foaming.  Place all sample 

vessels in a cold ethanol bath continuously bubbled by dry ice to reduce temperature elevation. 

Transfer the sonicated samples (including all filter particles) to 25-ml polypropylene screw-cap 

centrifuge tubes. Probe and beaker walls should be carefully rinsed with 1 ml of sterile 1× SSC, 

and add the rinsing solution to the centrifuge tubes. Immediately freeze (−70°C) tubes until further 

use.   

Thaw frozen sonicated samples in a 50°C water bath and divide them into 15 ml aliquots in 

glass 25-ml Corex ® II centrifuge tubes.  Extract the crude lysates with equal volumes of phenol: 

chloroform: isoamyl alcohol (Appendix A).  Centrifuge tubes at 7,000 x g for 10 minutes and 

transfer the aqueous phases to 30-ml polycarbonate centrifuge tubes.   Ethanol precipitate partially 

purified DNAs by the addition of 1/10 volume of 7.5 M ammonium acetate, and an equal volume 

of cold isopropanol, and store overnight at −20°C.   Pellet DNA by centrifugation at 16,000 × g for 

30 minutes at room temperature. Discard the liquid and wash the pellets with 70% ethanol, 
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centrifuged again for 15 minutes, decant, and dry.  Resuspend the pellets in 100µl of TE buffer pH 

8.0 (Sambrook et al., 1989).    

Quantify DNA using a TD-360 Fluorometer (Turner Designs) containing a 360 nanometer 

wavelength excitation filter and a 460 nanometer wavelength emission filter, a Fluorescent DNA 

Quantification Kit (Bio-Rad, Hercules, CA) and 1 cm2 methacrylate fluorescence cuvettes.  A 

standard curve should be generated (Fig. 2.4) according to the manufacture’s instruction for a 0.1 

µg/ml Hoechst 33258 dye solution and low range DNA (10-500 ng/ml) detection.   

 DNA Amplification.  Amplify DNA by the Polymerase Chain Reaction (PCR) using 

primers targeting a specific gene in the corresponding DNA template (Tables 2.2 and 3.1).  

Amplifications mixtures should be prepared using either a PCR Core Kit (Roche, Mannheim, 

Germany) as specified by the manufacturer or as given in Table 2.4 using the parameters given in 

Table 3.1.  Amplify DNA in a Bio-Rad Gene Cycler™ with the following parameters:  1-5 minute 

hot start at 94°C (during which Taq Polymerase was added) followed by 30 cycles of denaturation 

(1 minute at 94°C), annealing (1.5 minute [temperature varies with primer pair, see Table 2.3]), 

and polymerization (2 minutes at 72°C), with a final cycle including an extended polymerization at 

72°C for 10 minutes. After amplification is complete, store amplicons at −20°C.  Repeat 

amplification procedure using either fresh DNA template or previous amplicons until a total of  > 

2,500 ng of DNA is obtained for each organism. 

 Preparative gel analysis.   Purify amplicons by agarose gel electrophoresis as follows.  

Pool amplicons of the same gene fragment (total volume ≤ 800 µl) and add 1/10 volume of 10× 

loading dye, and transfer the solution to a 1.2% low melting point agarose gel containing ethidium 

bromide (Appendix A) with a 12 × 0.5 cm well.  Resolve DNA fragments by electrophoresis using 
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TAE buffer (Appendix A) and a Bio-Rad Sub-Cell® GT with Bio-Rad Power Pack Junior power 

supply at 100 V.  View gels using a transilluminator at 302 nanometers and photographed using 

Polaroid-Documentation Camera containing a Tiffen® 40.5 mm deep yellow filter with Polaroid 

type 667, ISO 3000 black and white film. 

 DNA gel purification.  Excise DNA gel fragments of the correct size from the agarose gel 

using a sterile razor blade, and place into pre-weighed sterile microcentrifuge tubes, and extracted 

using the MiniElute™ Gel Extraction Kit (Qiagen) according manufacturer’s directions.    

 Reverse Sample Gene Probing.  Prepare membranes with purified reference DNA (target 

DNA) as follows using a 24-well Hybri-Slot™ filtration manifold (Life Technologies). The 

manifold should be thoroughly cleaned by submersion in 1.0 N NaOH, followed by rinsing in 

sterile water.  Wet nylon membranes (Micron Separations Inc.) first in sterile water at room 

temperature and then soaked them in 20× SSC (Appendix A) for 1 hour at room temperature. Two 

sheets of blotting paper (Whatman 3mm filter paper) per membrane should be soaked in 20× SSC 

for 10 minutes.  Place the blotting paper and membrane into the filtration manifold and fill 

individual slots with 800 µl of 10× SSC.  Pull the buffer through the membrane by applying a 

vacuum to the base of the manifold.  Repeat the 10× SSC wash.     

  Denature target DNAs (100 ng/ 40µl) by the addition of 10 µl 1 N NaOH and incubated for 

10 minutes.  Neutralize DNAs by placing samples on ice and adding equal volumes of cold 10× 

SSC, and then vacuum blotted immediately (See Fig. 2.6 for membrane configuration).   Rinse the 

wells with an additional 2 ml of 10× SSC per well.  Dry the membrane under continuous vacuum 

for 5 minutes and then baked overnight at 37°C between 2 sheets of blotting paper.  Store the 

membranes at −20°C until used.    
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 Environmental DNAs (Probes) should be radioactively labeled by random prime DNA 

labeling using [α-35S]-Deoxycytidine-5- triphosphate (35S-dCTP) (ICN, Irvine, CA) using a High 

Prime DNA Labeling Kit (Roche) as specified by the manufacturer for 25 ng of template DNA.  

 Use Hybond-N membranes (Amersham Pharmacia Biotech) as given by the manufacturer 

for slot-blot hybridization using previously amplified DNA given above.  Hybridization should be 

carried out as follows.  Pre-wet membranes with bound target DNAs in water and then in pre-

hybridization buffer (Appendix A).  Place membranes in 50-ml Bellco AutoBlot® jars containing 

10 ml of pre-hybridization buffer and pre-hybridized for 30 min at 65°C in an AutoBlot® Micro 

Hybridization Oven (Bellco).  Add labeled probes (as previously described) and allowed to 

hybridize overnight.  Wash membranes (1) briefly in 2× SSC, 0.1% SDS, (2) twice for 5 min each 

in 2× SSC, 0.1% SDS, (3) twice for 10 minutes each in 1× SSC, 0.1% SDS.  Conduct all wash 

steps at 65°C using wash buffer solutions that are pre-warmed to the same temperature.  Take 

radioactive counts using a GM counter.  Air dry membranes and then exposed to Kodak Biomax 

MR Film to produce autoradiographic records.   
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C h a p t e r  4  

DISCUSSION 
 

  The purpose of this study was to develop a method for the rapid assessment of freshwater 

microbial community dynamics. These methods are intended to detect numerous prokaryotic and 

eukaryotic microbial groups, as well as functional genes and pathogens found in the environment.  

This study was done in hopes that the methods developed here will contribute to future studies on 

freshwater microbial ecology.    

 Different optimal sonication times using different volumes (Fig. 3.1) of buffer were most 

likely due to DNA degradation caused by heat generated at the tip of the sonicator probe.  Samples 

containing less buffer were less likely to dissipate heat, and therefore, heat up more quickly, 

leading to DNA degradation.  Also, foaming is more likely to occur, since the volume was smaller, 

causing aeration of the sample due to inadequate probe submersion.   A larger volume of buffer 

reduces the heating and likelihood of aeration; however, increasing the volume too much may 

reduce the sonication efficacy and dilute the nucleic acids too much. Thus, it was imperative to 

find the correct volume and time to maximize extraction efficiency.  Sonicating for 180 seconds in 

35 ml of buffer solution was found to reduce both heating and foaming for samples in this study.   

 Extracted DNA data from the environmental samples only provided the total DNA in the 

environment, there was no differentiation between microbial and other DNA present in the sample.   

Seasonal trends could be seen among the October 2001, January 2002, April 2002, and June 2002 

collection dates (Fig. 3.2).  DNA concentrations were higher during summer months, possibly due 

to higher temperatures and longer daylight periods.  These environmental conditions are usually 

more favorable for phototrophic growth, which in turn leads to increased heterotrophic growth. 
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October 2001 and April 2002 showed a decrease in DNA concentration from June 2002.  This 

trend was expected as well, since the lower temperatures and reduced light periods associated with 

fall and spring can lead to a reduction of phototrophic activity and subsequently heterotrophic 

activity.   As for the July 2001 date, it is unclear as to why DNA quantities were lowest.  This date 

would be expected to yield DNA quantities similar to June 2002 since conditions were similar.  

Instead, this date yielded some of the lowest DNA yields among the sampling time frame.   It is 

possible that results were compromised by DNA degradation due to nuclease activity, but repeated 

sampling is required to establish valid seasonal trends.  

 When DNA yield was compared on a site by site (spatial) basis, site E consistently yielded 

the lowest or a lower quantity than other sites during all collection dates.  This site was on average 

2 m deep at normal flow, much deeper than the other sampling sites.  This factor could have led to 

the lower DNA quantities.  However, collection of additional environmental parameters is needed 

to establish a correlation.  The data from the remaining sites do not reveal a seasonal or spatial 

trend.  It is likely that other parameters not measured (e.g., pH, dissolved oxygen, BOD, light 

intensity etc.) may contribute significantly to microbial growth in the creek and, therefore, effect 

DNA quantities extracted from collected water samples.   However, the present data suggest that 

water depth is inversely correlated with microbial biomass in Mill Creek.  

 The total extracted DNA results are given only as preliminary data conducted to test 

method development for DNA extraction from environmental samples on membrane filters and to 

estimate the quantity of DNA obtained from filtered samples from the Mill Creek sites.  These data 

are not conclusive and not intended to represent a complete study of the microbial temporal and 

spatial dynamics within Mill Creek.  Some ambiguity could be eliminated in future studies by 

reducing the amount of time and steps used to process the samples (i.e., the immediate filtration, 
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sonication, and quantification of the sample).  It is recommended that in future studies that sample 

preparation be done as soon as possible after collection. 

 For microbial group, functional gene, and pathogen detection, primers were designed to 

give gene fragments of greater than 100 bp, with ideal fragments being between 400-800 bp.  This 

size was chosen to create probes large enough to allow for high stringency washes following the 

hybridization step, thereby, making detection more reliable.  The primer pair 530f and 907r as 

reported by Lane (1991) contained some degenerate bases.  These degeneracies were retained in 

universal primers for this study so the same primers could be used to amplify a wide range of 

microbial groups.  However, when the primers were adapted to specific groups due to sequence 

discrepancies, degenerated based were remove from the primers and replaced with the correct 

consensus base (Table 2.2 and Appendix B).   

 Titrating Mg2+ concentration proved to be an important first step in troubleshooting PCR 

problems.  Several templates that failed to amplify by other optimization steps, were successfully 

amplified after finding the correct Mg2+ concentration.  Having the correct Mg2+ concentration is 

essential for good amplification, and the Mg2+ concentration that was appropriate for one template 

does not necessarily work for others.  Therefore, it is recommended that the optimum Mg2+ 

concentration be determined for all target DNAs. 

 Touchdown PCR proved successful for some templates; however, lowering the annealing 

temperature usually produced numerous unwanted gene fragments due to nonspecific priming.  

Upon gel analysis, numerous bands could be seen for each amplicon, and in some cases, so many 

fragments we reproduced, that a smearing pattern was seen on the gel (Fig.  3.4). Because of this, 

touchdown PCR use was limited.  In some instances, fragments of the correct size can be excised 
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and reamplified at higher annealing temperatures, however some templates yielded so many 

fragments that it was impossible to excise the correct fragment.   

 DNA extraction from agarose gels was performed using the MiniElute™ Gel Extraction 

Kit because the method was faster and easier than using the freeze squeeze method.  Although both 

the freeze squeeze and the kit methods had similar extraction efficiencies, it was apparent that up to  

50%  of some DNA was lost in gel purification,.  Fig. 3.5 shows a DNA sample before and after 

gel purification.  The band intensity of DNA before gel extraction is much greater than the band 

intensity after gel extraction.  The gel extraction step may have resulted in the largest loss of DNA.  

Finding ways to minimize DNA loss was an important issue in this study, as well as in other 

molecular studies.  Therefore, finding alternative methods to eliminate the need for gel extraction 

would be advantageous.   

 Hybridization of DNA requires many optimization steps.  The high background after 

hybridization and washing (Fig. 3.6) likely could have been reduced using a lower salt (higher 

stringency) wash buffer.  Since even the negative controls showed some hybridization, it is 

difficult to determine how much signal indicated a true detection.  However, the fact, that some 

slots produced a signal while other did not (Table 3.1), suggests that hybridization was successful 

The hybridization using the higher stringency wash and Denhardt’s solution did show less 

background, but most of the probe signal was removed as well (Fig 3.7).  The wash stringency was 

probably too high and the shorter hybridization time may have also contributed to the ambiguous 

results.  The optimum hybridization parameters were not found in this study.  It is speculated that 

using the Hybond-N membrane, the Denhardt’s solution as a blocking agent, and using a 

moderately stringent wash procedure would yield optimal hybridization results.   
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CHAPTER 5 
 
 

CONCLUSIONS 
 Initially the purpose of this study was to determine microbial community structure and 

dynamics of Mill Creek location within a future wetland mitigation site. However, method 

development proved to exhaust most of my time and budget, therefore, the optimization, 

troubleshooting, and protocol comparisons were reported.  However, the commitment to the 

Appalachian Transportation Institute and the future Mill Creek mitigation site was not lost, in that 

methods developed in this study could be implemented in future studies conducted at the Mill 

Creek site as well as other similar sites and studies concerning wetland pre- and post-construction.  

 PCR optimization consumed the majority of the project, since numerous templates were 

used and optimization was required for most of them.  The universal primers 530f and 907r proved 

to amplify most prokaryotic templates; however, those primers targeting functional genes and 

pathogenic microbes did not do as well.  It was unfortunate that a large number of groups, 

organisms, and functional genes were eliminated from the study, for including these groups would 

give more detailed and accurate data on the community structure and dynamics.   

 With further development, the methods described in this study could give a rapid 

determination of microbial community structure and dynamics in any aquatic environment, not just 

freshwater.  Based on results from this study, it is recommended that in future studies, steps to 

expedite sample processing be implemented, for it is believed that DNA loss (whether by nuclease 

degradation or physical loss during precipitation) is an important limiting factor.  These steps for 

rapid sample processing include: sample filtration on-site, and sonicated, extracted, labeled, and 

hybridized immediately upon return to the lab, thereby eliminating most variables that compromise 

DNA yield.  Membranes with target DNA could be mass produced and stored until needed.    

 

 
47

 



 
 
 
 In general, this study determined methods to assess the microbial community structure and 

dynamics of freshwater environments on a seasonal and temporal basis using more rapid 

techniques than previously descried in similar studies.  Other methods such as cloning, DGGE, and 

lipid analysis may be time consuming and give less exhaustive results at lower taxonomic levels.  

Reverse Sample Gene Probing (Voordouw, 1993) is a rapid method for assessing microbial 

community structure at various taxonomic levels.  However, applications of the technique are not 

commonly applied to freshwater environments.  Therefore, this study developed methods which 

adapted the Reverse Sample Gene Probing method given by Voordouw (1993) for use in 

freshwater environments.  These methods could easily be applied to future freshwater studies and 

with little adaptation to other environments as well. 
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Figure 1.1.  The Universal Tree of Life.  Genetic distances are based upon comparison of 16S 
rRNA and 18S rRNA sequences, adapted from Woese et al., 1990. 
 
 

 
 

 

Planctomyces Bacteria 

 
 

 
 

 

Proteobacteria 

Gram Positives 

Entamoebae

Aquficales 
Thermotogales 

Deincocci 

Cyanobacteria 

Bacteroides Chlamydiae 
Eukarya Archaea

Green Sulfur  
Bacteria Plants Fungi 

Euryarchaeota

Spirochetes

Korarchaeota

Crenarchaeota

Ciliates 
AnimalsSlime 

Molds 
 

Flagellates
Trichomonads 

Microsporidia
Diplomonads

 72



 

Figure 2.1.  Map of Mill Creek Mitigation site showing cells A-E and collection sites.  Geographical coordinates were as follows:  site 
A, 38º 04' 50" N, 82º 32' 29" W; site B, 38º 04' 56" N, 82º 32' 29" W; site C, 38º 05' 05" N, 82º 32' 31" W; site D, 38º 05' 11" N, 82º 
32' 25" W; site E, 38º 05' 15" N, 82º 32' 28" W. 
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Figure 2.2.  Water collection site for each cell A-E. Location of one-liter bottle indicates 
location of sample site.  Photographs of cells A-D were taken on Sept. 20, 2001 and cell D was 
photographed on Nov. 15, 2001.                                                                                                                                
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Figure 2.3.  Mean daily air temperature data for Huntington, WV during the period from June 2001- July 2002.  This graph was used to 
determine which sampling dates would best represent seasonal high, low and moderate temperatures.   Represents mean daily 
temperature. ● Represents date closest to trend line. ▲ Represents collection date of samples that were further processed. Data obtained 
from The National Weather Service for Huntington, WV.   
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Figure 2.4.  Standard fluorescence curve for Hoechst 33258 and a TD 360 Mini Fluorometer using known concentrations of 
calf thymus DNA. A standard curve was generated using stock DNA concentrations of 1000, 500, 250, 100, 50, 25, 10, and 1 
ng/ml  according to manufacture’s direction for a Fluorometer DNA Quantification Kit (Bio-Rad, Hercules, CA) 
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Figure 2.5.  Flow chart of methods used in this study.  ---- Represents steps that required optimization and − Represents steps that 
required no optimization. 
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Figure 2.6.  Function and slot orientation of DNA probes on hybridization membrane.   * 
represents slots used for microbial group (phylogenetic) detection and † represents slots 
detecting functional genes. 
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Figure 3.1.  Effects of sonication time and buffer volume on extracted DNA yield of filtered 
water samples. Samples were collected from the Ohio River at Huntington, WV in order to have 
a representative fresh water environment sample.  Samples were collected at different times, 
therefore, filters do not contain equal biomass, and thus only trends were compared.   
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Figure 3.2.  Total DNA extracted from filtered water samples collected from 2001-2002 at Mill 
Creek sites A-E.  Values report the amount of DNA extracted per ml of water filtered.  
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Figure 3.3.  Results of Mg2+ concentration titration. (A) Campylobacyer fetus DNA amplified using:  1.0, 1.25, 1.5, 1.75, 2.0, 2.5, and 
5.0 mM Mg2+as seen in lanes 2 through 8 respectively.  (B) Actinomyces israelli DNA amplified using. 0.5, 1.0, 1.25, 1.5, 1.75, 2.0, 
and 2.5 mM Mg2+ as seen in lanes 2 through 8 respectively.     
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Figure 3.4. Various DNA templates amplified by touchdown PCR using 530f and 907r universal primers.  Aliquots (5µl) of a 100 µl 
amplification reaction for each of the following organisms was resolved by electrophoresis: (2) Archaeoglobus fulgidus, (3) Anabaena 
variabilis, (4), Sulfolobus solfataricus, (5) Deinococcus radiodurans, (6) Aquifex pyrophilus, (7) Actinomyces israelli, (8) 
Herpetosiphon geysericola, (9) Tetrahymena fugasoni, (10) Planctomyces maris, (11) Pyrocysitis lunula, (12) Ectocarpus variabilis 
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Figure 3.5.  Comparison of agarose gel extraction methods.  (A) Anabaena variables amplicons (50 µl in each lane)  before gel 
extraction, (B)  Anabaena variables amplicons (5µl in each lane)  after extraction with lane two being extracted by Qiagen® Gel 
Extraction Kit and lane three extracted by the freeze squeeze method. 
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Figure 3.6.  First hybridization attempt using Hybond-N membrane (Amersham Pharmacia Biotech). Blotto was used as a blocking 
agent for unwanted spurious DNA binding. The membranes with bound probes were subjected to an overnight pre-hybridization, 
followed by a 12 hr. hybridization time and washed with in 2 × SSC (low stringency washes). See Figure 2.6 for probe orientation.   
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Figure 3.7.  Hybridization using Hybond-N membranes with modified conditions.  Denhardt’s 
Solution was used as a blocking agent, followed by a 30 min. pre-hybridization period. An 
overnight hybridization period was added, as well as higher stringency washes in 2 ×, 1×, and 
0.1× SSC. See Figure 2.6 for probe orientation.   
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Table 2.1. Water Sample Collections (2001-2002). Rows correspond to the sample site and columns to sample date. 
 

 
Volume 
filtered 
at cite 
(ml) 

 

Datea

                 

 
 

7/7/01*                  8/9/01 8/22/01 9/20/01 10/5/01 10/18/01* 11/15/01 12/18/01 1/5/02* 2/11/02 2/25/02 3/29/02 4/15/02 4/29/02* 5/15/02 5/31/02 6/16/02* 729/03

 Ab  290c 350                 450 280 300 270 410 330 500 550 500 475 340 340 440 440 495 240
B 315                  345 -- 300 330 225 400 390 520 515 545 389 490 370 460 470 485 245
C 390                  310 400 300 310 260 430 380 260 520 420 540 295 440 432 545 495 240
D 250                  -- 360 340 260 250 410 370 475 600 480 530 300 430 490 480 470 240
E 240                  -- -- 330 370 290 470 440 435 550 350 420 290 425 490 420 545 220

 
 

*  Indicates that DNA was extracted as described in methods and materials from filters collected on this date. 
a  Columns designate date of sample collection. 
b  Rows correspond to sample location shown in Fig. 2.1 and 2.2. 
c  Tabular values indicate the volume of Mill Creek water filtered in ml. 
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Table 2.2.  Primers Used In This Study. 
 
 
 
 

 
 

Primer Name Sequence 
(5'-3') 

Target  
Genea

Location
(bp)b

Reference 

530f GTGCCAGCMGCCGCGG 16S rRNA 530 Lane, 1991 
907r CCGTCAATTCMTTTRAGTTT 16S rRNA 907 Lane, 1991 
530f- cren GTGTCAGCCGCCGCGG 16S rRNA 530 Adapted from Lane, 1991 
907r-epsilon CCGTCTATTCCTTTGAGT TT 16S rRNA 907 Adapted from Lane, 1991 
907r-eury/cren CCGTCAATTCMTTRAATTT 16S rRNA  Adapted from Lane, 1991 
nifHf TAYGGHAARGGNGGNATYGG Nitrogenase 394 Lovell et al., 2000 
nifHr ACGATRTADATYTCYTSNGCYTT Nitrogenase 800 This study 
VTf 

GARCRRAATAAKTTATATGT stx I & 
 stx II 

495 Read et al., 1992 

VTr 
TGATGATGYCAATTCAGTAT stx I & 

 stx II 
984  This study

hlyf  TCCGCCTGCAAGTCCTAAGA hly NA Klien et al., 1997 
hlyr  GCGCTTGCAACTGCTCTTTA hly NA Klien et al., 1997 
EH1 AATGGCCAATTCATTCAATG 18S rRNA NA Hague et al., 1998 
EH2 TTTAGAAACAATGCTTCTCT 18S rRNA NA Hague et al., 1998 

 
a  stx I and stx II represent genes that encode for shiga toxin proteins found in some pathogenic E. coli; hly encodes the 
pore-forming cytolysin listeriolysin found in pathogenic listeria monocytogenes. 
b Primer annealing locations based on E. coli numbering for 16S rRNA targets and  
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Table 2.3.  Microbial Taxa Included In This Study And Their Representative Organisms.  ATCC 
= American Type Culture Collection, Manassas, VA.  DSM = German Collection of 
Microorganisms, Braunschweig, Germany.  UTEX = University of Texas Culture Collection 
 
 

Taxon Name Type Strain Strain ID Number
Crenarchaeota Archaeoglobus fulgidus DSM 4304 
Euryarchaeota Sulfolobus solfataricuas DSM 1616 
Actinomyces (High GC gram-positives) Actinomyces israelli ATCC 10049 
Aquificales 

Aquifex pyrophilus 
DSM 6858 

Low GC gram positives Enterococcus gallinarum ATCC 700425 
Cytophaga/Flavobacteria/ 
Bacteriodes (CFB) 

Prophromanas ginivalis ATCC BAA-208D 

Cyanobacteria Anabaena variabilis UTEX B 377 
Deinococci Deinococcus radiodurans DSM 20539 
Green Non-sulfur Bacteria Herpetosiphon geysericola UTEX 7119 
Green Sulfur Bacteria Chlorobium tepidum DSM 245 
Planctomycetes Planctomyces maris ATCC 29201 
α-Proteobacteria Bartonella henselae ATCC 49882D 
β-Proteobacteria  Neisseria lactmaica ATCC 49142 
γ-Proteobacteria  Pseudomnas aeruginosa ATCC 9721 
δ-Proteobacteria Desulfovibrio desulfuricans ATCC 7757 
ε-Proteobacteria Campylobacter fetus ATCC 25936 
Spirochetes Borrelia burgdorgeri ATCC 35210D 
Thermotogales Thermotoga maritima DSM 3109 
Brown Algae Ectocarpus variabilis UTEX LB 1636 
Ciliphora Tetrahymena fugasoni ATCC 9357 
Cryptomonads  Cryptomonas ozolini UTEX LB 2194 
Diatoms Frailaria shiloi  
Dinoflagellates Pyrocysitis lunula  UTEX LB 2166 
Euglenozoa Phacus triqueter UTEX LB 2354 
Green Algae Scenedesmus hystrix UTEX 2451 
Red Algae Hilenbrandia rivularis UTEX LB 2622 

Cryptosporidium parvum 
--  

Entamoeba hystolytica 
-- ATCC 50412 

Listeria monocytogenes  ATCC 19115 
Giardia lamblia   
Nitrogen Fixation Azotobacter chroococcum ATCC 9043 
Rubisco Anabaena variabilis UTEX B 377 
Shiga toxin I Escherichia coli ATCC 43889 
Shiga toxin II Escherichia coli ATCC 43890 
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Table2.4.  Standard Amplification Reaction Mixtures. 
 
 
 
 
 
 
 

Reagent Volume Concentration 
Sterile water Variable -- 
10× Taq Buffer  10 µl 1× 
25 mM MgSO4 Variable Variable (see Table 3.1) 
dNTPs a 2 µl 0.2mM each 
Forward Primer  1 µl 1 µM 
Reverse Primer  1 µl 1 µM 
Template DNA Variable Variable 
Taq DNA polymerase (Promega) b 0.5 µl 2.5 U/100 µl 

 
Total 100 µl  

 
a deoxynucleotide triphosphates (GTP, ATP, CTP, TTP)
b Taq polymerase was added after reaction had reached a temperature of 94° C 
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Table 3.1.  PCR Parameters For Templates That Successfully Amplified.   
 
 
 

 

Group/Function/ 
Organism 

Representative  
Organism 

Primer 
 Paira 

Annealing 
Temp 
(ºC) 

Amplicon 
Size 

[Mg2+] 
mM 

Amplification 
Methodb 

Euryarchaeota Sulfolobus solfataricuas 530f cren  &  
 907r 
eury/cren 

38 376 2.0 *TD PCR 

Actinomyces (High GC 
Gram-positives) 

Actinomyces israelli 530f & 907r 42 377 1.0 PCR 

Low GC Gram-positives Enterococcus gallinarum 530f & 907r 42 377 2.0 PCR 
Cytophaga/Flavobacteria
/Bacteriodes (CFB) 

Prophromonas ginivalis 530f & 907r 42 377 2.0 PCR 

Cyanobacteria Anabaena variabilis 530f & 907r 42 377 2.0 PCR 
Deinococcus/ Thermus Deinococcus radiodurans 530f & 907r 42 377 1.5 TD PCR 
Green Non-sulfur Herpetosiphon geysericola 530f & 907r 42 377 1 PCR 
Green Sulfur Chlorobium tepidum 530f & 907r 42 377 1.5 PCR 
Planctomyces Planctomyces maris 530f & 907r 42 377 1.75 PCR 
α-Proteobacteria Bartonella henselae 530f & 907r 42 377 2.0 PCR 
α-Proteobacteria  Neisseria lactmaica 530f & 907r 42 377 2.0 PCR 
γ-Proteobacteria  Pseudomonas aeruginosa 530f & 907r 42 377 2.0 PCR 
∆-Proteobacteria Desulfovibrio desulfuricans 530f & 907r 42 377 1.0 TD PCR 
ε-Proteobacteria Campylobacter fetus 530f  & 

907r epsilon 
46 377 1.5 TD PCR 

Spirochetes Borrelia burgdorferi 530f & 907r 42 377 2.0 PCR 
Thermotogales Thermotoga maritima 530f & 907r 42 377 2.0 PCR 
Shiga toxin I E. coli VTf & VTr 42 489 2.0 PCR 
Shiga toxin II E. coli VTf & VTr 42 489 2.0 PCR 

Entamoeba hystolytica 
-- EH1 & EH2 42 871 2.0 PCR 

Listeria monocytogenes -- hlyf & hlyr 50 713 1.0-1.75 PCR 
Nitrogen Fixation Azotobacter chroococcum nifHf & nifHr 46 486 1.0-1.5 PCR 

a  primer pair sequence given in Table 2.2 
b PCR =  standard Polymerase Chain Reaction; TD PCR = touchdown PCR 
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Table 3.2.  Amplification parameters tried for unsuccessful DNA templates.   
 
 
 
 

 

Group/Function/ 
Organism 

Representative 
Organism 

Primer 
Pair 

[Mg2+] 
mM 

Amplification 
Method 

Crenarchaeota Archaeoglobus 
fulgidus 

530f-cren & 
907r 

Titrated* PCR, TD PCR** 

Aquificales Aquifex pyrophilus 530f & 
907r-aqui 

Titrated PCR, TD PCR 

Brown Algae Ectocarpus variabilis 530f & 907r 2 PCR 
Ciliphora Tetrahymena fugasoni 530f & 907r 2 PCR 
Cryptomonas  Cryptomonas ozolini 530f & 907r 2 PCR 
Diatoms Frailaria shiloi 530f & 907r 2 PCR 
Dinoflagellates Pyrocysitis lunula  530f & 907r 2 PCR 
Euglenozoa Phacus triqueter 530f & 907r 2 PCR 
Green Algae Scenedesmus 

dimorphus 
530f-
euglena & 
907r 

2 PCR 

Red Algae Hilenbrandia rivularis 530f & 907r 2 PCR 
Brown Algae Ectocarpus variabilis 530f & 907r 2 PCR 
Rubisco Anabaena variabilis Rbcf & 

Rbcr,  Rub1 
& Rub2 

Titrated PCR, TD PCR 

Cryptosproidium 
parvum 

-- Cpr1 & 
Cpr2 

Titrated PCR, TD PCR 

Giardia lamblia -- grdf & grdr Titrated PCR, TD PCR 

 
* titrated templates were subjected to increasing Mg2+ concentrations of 0.5, 1.0, 1.25, 1.5, 1.75, 
2.0 and 2.5 mM during PCR. **TD PCR = touchdown PCR. 
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Table 3.3.  DNA hybridization results for water sample June 16, 2002 site A.  35S signals were 
visually determined using a light table.  Intensities are given on a scale were + is the weakest 
signal present and +++++ is the strongest signal present.  
   

 

Group (Row A) 35S Signal 
Intensity 

Group (Row B) 35S Signal 
Intensity 

1. Negative control ++ 1. Negative control ++ 
2. Euryarchaeota  + 2. Green Non-sulfur + 
3. Actionomyces ++ 3. Green Sulfur +++ 
4. alpha-proteobacteria + 4. Planctomyces + 
5. Low GC Gram pos. + 5. Spirochet ++ 
6. CFB group + 6. Thermotogales + 
7. beta-proteobacteria + 7. Shiga tox I ++ 
8. Cyanobacteria + 8. Shiga tox II ++ 
9. Deinococcus/Thermus ++ 9. Entamoeba 

histolytica 
+++ 

10. delta-proteobacteria +++++ 10. Listeria 
monocytogenes 

+++ 

11. epsilon-proteobacteria +++ 11. Nitrogenase +++ 
12. gamma-proteobacteria ++++ 12. Negative control ++ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
92



Appendix A.  Composition for reagents not commercially synthesized. 
 

Item Composition 
 

Sterile water 16-18 megohm-cm purity, 
autoclave sterilized and/or filtered 
through 0.2 µm filter 
 

Triton X-100 5% Triton X-100 in water (filter 
sterilized) 
 

Phenol:chloroform:isoamyl  
Alcohol 
 

Mixed to a ratio of 25:24:1 using 
buffer saturated Phenol 

7.5 M Ammonium acetate 
 

57.8 g of Ammonium acetate 
100 ml sterile water 
 

Tris-EDTA (TE) buffer  
 
 

10 mM Tris 
1 mM EDTA 
pH 8.0 
 

5% Chelex 5 g chelex  
100ml of water 
 

1× Tris-acetate (TAE) buffer  0.04M Tris-acetate 
0.001 M EDTA 

 
 
1% Agarose gel 

 
50 ml of 1× TAE buffer 
0.1 g Agarose 
2µl of Ethidium Bromide (10 
mg/ml) 

 
Lysis buffer 

 
30 ml 1× SSC 
40 µl 5 % Triton X-100 

 
10 × Loading dye 

 
30% Glycerol 
0.25g Bromphenol blue/ 100 ml 
 

20 × SSC 0.3 M Sodium citrate 
3.0 M Sodium cholride 
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Blotto 

 
0.25 g of dry milk to 100 ml of 6 × 
SSC and 1% SDS 

 
 
Wash reagent 

 
 
100 ml of 20 × SSC 
5 ml of 20% SDS 

 
 
 
Pre-hybridization buffer 

 
 
 
5 × SSC 
5 ×Denhardt’s solution 
5% SDS  
 

100 ×Denhardt’s solution 1 g Bovine Serum Albumin 
1 g Ficoll 400 
1 g Polyvinylpyrrolidone 
50 ml sterile water 
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Appendix B: Alignments of NCBI database sequences to universal primers (530f and 907r) for bacterial groups used in this study.  
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Figure B.1.  Aquifex sequence alignments. 
 

 
 

 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ******************** 

Aquifex aeolicus AJ309733 (Deckert et al., 1998) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGGCGG 

Thermocrinis sp. AJ278895 (Huber et al., 1998) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGGCGG 
Hydrogenobacter acidophilus D16296 (Shima et al., 1994) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGGCGG 
Calderobacterium hydrogenophilum Z30242 (Pitulle et al., 1994)  
Primer Sequence   GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGGCGG 
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Figure B.2.  Low GC sequence alignments.  
 
 
Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          *************** **** 

Megasphaera cerevisiae L37040 (Doyle et al., 1995) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Zymophilus paucivorans AF373025 (Schleifer et al., 1990) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Selenomonas flueggei AF287803 (Paster et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Sporomusa sphaeroides AJ279801 (Biebl et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Aerococcus sanguinicola  AJ276512 (Lawson et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Enterococcus sp. AJ133478 (Bauer et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTKACGG

Streptococcus thermophilus X68418 (Ludwig et al., 1992) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Lactobacillus sp. G22 AF308147 (Niamsup et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Gemella sp. oral strain C24KA AY005051           (Paster et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Paenibacillus sp. P22-9  AJ297713 (Guinebretiere et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Pasteuria penetrans AF375881 (Bekal et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Thermoactinomyces intermedius  AF138734 (Yoon and Park, 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Bacillus sp.            U62623 (Cann et al., 1996) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Heliobacterium sulfidophilum  AF249678 (Briantseva et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Heliorestis baculata  AF249680 (Briantseva et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Butyrivibrio fibrisolvens  AF125217 

 

(Diez-Gonzalez et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Natronincola histidinovorans Y16716 (Zhilina et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Clostridium stercorarium L09176 (Rainey et al., 1993) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Dehalobacterium formicoaceticum  X86690 (Magli, et al., 1996) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Desulfotomaculum sp. TPO  AY007190 (Plugge et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Natronoanaerobium aggerbacterium AJ271452 (Jones et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Mycoplasma leopharyngis U16760 (Brown et al., 1995) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.3.  CFB sequence alignments. 
 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ** ************* *** 

Chitinophaga pinensis  AF078775 (Sly et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Lewinella cohaerens  AF039292 (Sly et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Hymenobacter roseosalivarius  Y18834 (Hirsch et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Taxeobacter sp. Txc1 Y18837   (Hirsch et al., 1998) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Riemerella anatipestifer U10877 

 

(Ban, 1994) GTGCCAGCAGCCGCGG…………………………AATCTCAAAGGAATTGGCGG 

Flavobacterium xylanivorum AF162266 (Humphry et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Polaribacter filamentus  U73726 (Gosink et al., 1998) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Bacteroides uniformis AB050110 (Miyamoto, 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Prevotella disiens L16483 (Paster et al., 1994) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Porphyromonas macacae L16494 (Paster et al., 1994) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Rikenella microfusus  L16498 
 

(Paster et al., 1994) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.4.  Cyanobacteria sequence alignments. 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ******************** 

Anabaena variabilis  AF247593 (Beltran and Neilan, 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG 

Anabaenopsis circularis  AF247595 (Beltran and Neilan, 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Nodularia sp.  AJ224447 (Barker et al., 1999a) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Aphanizomenon sp.  AJ245457 (Barker et al., 1999b) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Chlorogloeopsis sp.  X68780 (Wilmotte et al., 1993) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Calothrix sp.  AJ133164 (Lyra et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Pleurocapsa sp  X78681 (Nelissen et al., 1995) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Prochloron sp  X63141 (Urbach et al., 1991) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Synechococcus sp.  AJ000716 (Nubel et al., 1997) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Cyanothece sp.  AF296872 (Turner et al, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Euhalothece sp.  AJ000713 (Nubel et al., 1997) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Dactylococcopsis sp.  AJ000711 (Nubel et al., 1997) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Halospirulina tapeticola  Y18791 (Nubel et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Spirulina sp.  Y18799 (Nubel et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Microcystis aeruginosa  D89031 (Kondo et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Stanieria cyanosphaera  AF132931 (Turner et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Gloeothece membranacea  X78680 (Nelissen et al., 1995) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Trichodesmium hildebrandtii  AF091322 (Janson et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Planktothrix sp. FP1  AF212922 (Pomati et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Prochlorococcus marinus subsp. pastoris AF180967 (Rippka et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Oscillatoria sp.  AB003163 
 

(Ishida et al., 1997) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG

Primer sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.5.  Deinococcus/ Thermus sequence alignments. 
 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ******************** 

Deinococcus geothermalis AJ000002 (Vaisanen et al., 1998) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Deinococcus murrayi Y13043 (Ferreira et al., 1997) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Deinococcus radiodurans AF289089 (Brim et al., 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Deinococcus radiophilus Y11333 (Rainey et al., 1997) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Thermus aquaticus X58340 (Weisburg et al., 1989) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Thermus brockianus Y18409 

 
(Chung et al.,2000) 
 

GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 

 

 100



Figure B.6.  Green Sulfur sequence alignments. 
 
 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ******************** 

Clathrochloris sulfurica X53184 (Witt et al., 1989) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG 

Pelodictyon 
phaeoclathratiforme 

Y08108 (Overmann, 1996) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Chlorobium limicola AB054671 (Imanaka et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Chloroherpeton thalassium AF170103 
 

(Stolzand and Buzzelli, 1999) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.7.  Green Nonsulfur sequence alignments. 
 
 
 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          **************** 

Chloroflexus aurantiacus M34116 (Oyaizu et al., 1987) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGNNNN 

Dehalococcoides sp. AF357918 

 

Loeffler, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Heliothrix oregonensis L04675 (Ward et al., 1992) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Herpetosiphon sp. X86447 Bradford et al., 1996) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Oscillochloris sp. AF149018 (Keppen et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Thermomicrobium roseum M34115 (Oyaizu et al., 1987) 

 
GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.8.  Alpha-Proteobacteria sequence alignments. 
 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ********** ********* 

Asticcacaulis biprosthecium  AJ007799 (Sly et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Sphingomonas sp  AB021492 (Yabuuch et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGACGG 

Azospirillum sp  AF170353 (Coates et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Brevundimonas intermedia  AJ227786 (Abraham et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Caulobacter crescentus  M83799 (Stahl et al., 1992) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Phenylobacterium immobile  Y18216 

 

 

(Eberspaecher and Ludwig, 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Mesorhizobium tianshanense  AF041447 (Wang et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Phyllobacterium rubiacearum  D12790 (Yanagi and Yamasato, 1993) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Rhizobium sp.  AF054930 (Yan et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Sinorhizobium morelense  AY024335 (Wang et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Agrobacterium albertimagni  AF316615 (Salmassi et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Bartonella henselae  AJ223779 (Sander et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Ochrobactrum sp  AF229848 (Reiter and Sessitsch, 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Blastochloris sulfoviridis  AJ012089 (Zengler et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Bradyrhizobium japonicum  AF239844 (Chueire et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Hyphomicrobium W1-1B  U59505 (Fishbain et al., 1996) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Roseobacter sp. Och114  M59063 (Woese, 1991) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Oseovarius tolerans  Y11551 (Labrenz et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Paracoccus sp. KS2  U58016 (Jordan et al., 1997) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Rhodovulum robiginosum  Y15012 (Straub et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Rickettsia bellii  U11014 (Stothard et al., 1994) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Wolbachia sp.  AJ010275 (Bandi et al., 1998) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.9.  Beta-Proteobacteria sequence alignments. 
 
 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          *** **************** 

Neisseria weaveri  L10738 (Andersen et al., 1993) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Vitreoscilla stercoraria  L06174 (Dewhirst et al., 1992 GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Dechlorisoma sp  AF170350           (Coates et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Propionibacter pelophilus  AF016690 (Meijer et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Ferribacterium limneticum  Y17060 (Cummings et al, 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Azoarcus sp. CC-11  AB033745 (Shinoda et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Thauera terpenica  AJ005817 (Foss and Harder, 1998) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Sterolibacterium denitrificans  AJ306683 

  

 

(Tarlera, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Alcaligenes faecalis AF155147 (Ansede et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Bordetella avium AF177666 (Kattar et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Taylorella asinigenitalis  AF067729 (Jang et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Brackiella oedipodis  AJ277742 (Willems et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Burkholderia sp. HY1  AF210314 (Kahng et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Oxalobacter formigenes  U49758 (Sharp et al., 1996) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Acidovorax avenae subsp. avenae  AB021421 (Anzai et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Aquaspirillum metamorphum  Y18618 (Schulze et al, 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Hydrogenophaga intermedia  AF019037 (Feigel and Knackmuss, 1993) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Tepidimonas ignava  AF177943 (Moreira et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Matsuebacter sp  AB024306 (Kawamukai, 1999) GTGCCAGCAGCCGCGG…………………………AAATTCAAAGGAATTGACGG 

Ralstonia sp  AF139729 (Schloemann and Seibert, 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Nitrosomonas europaea  AF037106 (Juretschko et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Thiobacillus sp  X97534 (Visser et al., 1997) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.10.  Gamma-Proteobacteria sequence alignments. 
 
 
 
 
Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************           ******************* 

Alteromonas sp AB040466 
 

(Kondo and Imai, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG 

Acinetobacter sp AJ275041 (De Baere, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG

Buchnera aphidicola AJ296750  
 

 

 

Martinez-Torres., 2000)
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG

Escherichia coli AB045731 (Akiko, 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG

Haemophilus influenzae AF224306 (Dewhirst et al., 2000) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG

Nitrosococcus oceani AF338212 (Voytek, 1996) GTGCCAGCAGCCGCGG…………………………GAACTCAAATGAATTGAGGG

Pseudomonas syringae AB001439 (Sawada et al., 1997) GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG

Serratia fonticola AJ279002 Ashelford et al., 2001) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG

Vibrio sp AF369642 (Burja, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAATGAATTGAGGG

Xanthomonas sp AF335549 
 

(Taylor et al., 2001) 
 

GTGCCAGCAGCCGCGG…………………………GAACTCAAATGAATTGAGGG

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.11.  Delta-Proteobacteria sequence alignments. 
 
 

 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ********** ********* 

Archangium gephyra s M94273 (Shimkets. and Woese, 1992) 
 

GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Bdellovibrio stolpii M34125 
  

 
  

 

 

 

(Woese, 1990) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Bdellovibrio bacteriovorus M59297 (Woese, 1991) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGAAATTGACGG 
Chondromyces crocatus M94275 (Shimkets  and Woese, 1992) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Corallococcus exiguus AJ233932 (Sproer et al., 1999) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Cystobacter fuscus M94276 (Shimkets and Woese, 1992) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Desulfobacca acetoxidans AF002671 (Oude Elferink et al., 1999) 

 
GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Desulfococcus biacutus AJ277887 (Swiderski, 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Desulfomicrobium norvegicum AJ277897 (Swiderski, 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGAAATTGACGG 
Desulfonema magnu U45989 (Fukui et al., 1999) 

 
GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Desulfovibrio sp AJ251630 (Kulik, 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGAAATTGACGG 
Geobacter grbicium AF335183 (Achenbach. and Coates, 2001) 

 
GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Malonomonas rubra Y17712 (Ludwig., 1998) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Melittangium lichenicola M94277 (Shimkets. and Woese, 1992) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Myxococcus xanthus AJ233930 (Sproer et al., 1999) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Nannocystis exedens AJ233947 (Sproer et al., 1999) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Nitrospina gracilis L35504 (Weisburg et al., 1989) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Pelobacter sp AJ271656 (Thamdrup et al., 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Polyangium cellulosum M94282 (Shimkets and Woese, 1992) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Stigmatella aurantiaca M94281 (Shimkets and Woese, 1992) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Syntrophobacter sp X94911 (Zellner et al., 1996) 

 
GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.12.  Epsilon-Proteobacteria sequence alignments. 
 
 

 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ******************** 

Alvinella pompejana  L35520 (Haddad et al., 1994) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 

Campylobacter jejuni AL139076 (Parkhill et al., 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Dehalospirillum multivorans X82931 (Scholz-Muramatsu et al., 1995) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Helicobacter sp AF320621 (Dewhirst et al., 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Sulfuricurvum kujiense AB053951 (Kodama and Watanabe, 2001) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Thiomicrospira sp U46506 (Voordouw et al., 1996) 

 
GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 

Campylobacter faecalis AJ276874 

  

(Kachler, 2000) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Flexispira rappini AF034135 (Tee et al., 1998) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Arcobacter butzlerii L14626 (Stanley et al., 1993) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Sulfurospirillum arcachonense Y11561  Finster et al., 1997) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Uncultured epsilon 
proteobacterium  

AF367496 (Corre  et al., 2001) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.13.  Planctomyces sequence alignments. 
 

 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ******** *******          ********** ********* 

Gemmata obscuriglobus X85248 (Fuerst et al., 1997) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGAAATAGACGG 

Pirellula staleyi M34126 (Woese and Oyalzu , 1990) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Uncultured Planctomyces AF195423 (Kelly and Chistoserdov., 2001) GTGCCAGGCGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Isosphaera sp X81960 (Ward et al., 1995) GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Planctomyces brasiliensis AJ231190 

 
(Griepenburg  et al., 1999) 
 

GTGCCAGGAGCCGCGG…………………………AAACTCAAAGGAATAGACGG 
Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.14.  High GC Gram positive (Actinomyces) sequence alignments. 
 
 
                          
 
                                   

Organism Accession # Reference 430. . . . . . . . . . . .907     

    
****** * ***** *          ******************** 

Actinomyces sp.  AF28774 (Paster et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Corynebacterium 
kroppenstedtii  

Y10077 (Collins et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Agrococcus baldri AJ309928 (Zlamala, et al., 2002) GTGCCAGCWGCCGCKG…………………………AAACTCAAAGGAATTGACGG 
Microbacterium sp. AF287752 (Paster et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Subtercola sp.            AJ310412 (Behrendt et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Curtobacterium 
flaccumfaciens 

AJ312209 (Behrendt et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Arthrobacter keyseri      AF256196   
   

  
  

 

(Eaton, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Micrococcus luteus      AJ312751 (Wiese, 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Dermabacter sp. B46KS    AF287753 (Paster et al., 2001) 

 
GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Georgenia sp               AJ308598 (Busse, 2001)
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Pseudonocardia compacta AJ252825 (Lee, 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Saccharothrix 
waywayandensis 

AB020029 (Kinoshita et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Amycolatopsis rubidus AF222022 (Huang et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Nocardia seriolae  AF254420 (Chen et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Rhodococcus sp.                         X85242 (Soddell et al., 1995) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Tsukamurella columbiensis AF272835 (Brown et al., 2000) GTGCCARCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Mycobacterium holsaticum AJ310467 (Richter et al., 2002) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Dietzia natronolimnaea X92157 (Duckworth et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Clavisporangium rectum  AB062380 (Nakajima et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Streptomyces sp. SNG9  AF295602 (Mabrouk and Sabry, 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Propionibacterium avidum  AJ003055 (Dasen et al., 1998) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Slackia exigua  AF101240 (Wade et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Anaerobranca bogoriae  AF203703 (Prowe and Antranikian, 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 
Acholeplasma vituli  AF031479 (Angulo et al., 2001) 

 
GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGACGG 

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.15.  Spirochet sequence alignments. 
 
 
 
Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ********** ********* 

Borrelia parkeri AF307100 (Gage et al., 2000) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG 

Borrelia burgdorferi AJ224134 (Postic et al., 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Spirochaeta sp. X97096 (Rheims et al., 1996) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Treponema brennaborense Y16568 (Schrank et al.,1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Leptonema illini Z21632 (Hookey et al.,1994) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Leptospira biflexa Z98591 

 

(Hookey,1997) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Serpulina hyodysenteriae U23036 (Jensen and Stanton, 1994) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGAAATTGAGGG

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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Figure B.16 Thermotogales sequence alignments. 
 
 

Organism Accession # Reference 530. . . . . . . . . . . .907 

   ****************          ******************** 

Caldotoga fontana AJ237665  

 

(Xu, 1999) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG 

Fervidobacterium gondwanense Z49117 (Andrews and Patel, 1996) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Thermotoga neapolitana AJ401024 (Nesbo et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Thermotoga maritima AJ401017 (Nesbo et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Thermopallium natronophilum U37021 (Nesbo et al., 2001) GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Petrotoga mobilis Y15479 (Lien et al., 1998) 
 

GTGCCAGCAGCCGCGG…………………………AAACTCAAAGGAATTGAGGG

Primer Sequence GTGCCAGCMGCCGCGG…………………………AAACTYAAAKGAATTGACGG 
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