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ABSTRACT 

 

Ethylene production as an indicator of stress conditions in hydroponically-grown 

strawberries 

 

By Justin Donald Hogan 

 

With the worldwide phaseout of methyl bromide, the use of hydroponic systems has 

increased as an economic alternative for the growth of many horticulturally-important 

crops, including strawberries.  In this study, the effect of hydroponics on strawberry plant 

physiology was examined by first measuring ethylene levels, a plant hormone known to 

increase due to stressful conditions, and plant growth and yield.  Using a gas 

chromatograph, ethylene was measured from plants which showed that light and 

temperature have minimal effects, but placement of plants could have an effect on plant 

growth and yield.  Next, the mechanism of ethylene production was examined by 

measuring levels of the ACS gene.  Several techniques to obtain RNA from strawberries 

were tested, but inconclusive results were obtained.  In conclusion, the use of ethylene 

measurements and elucidation of the ethylene pathway could be used as indicators for 

plant stress to help minimize stress and increase growth and yield.   
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CHAPTER I 

 

Introduction 

 

Historical Overview 

 

Plants, like all living organisms, have to adapt to their environment to survive.  

When at optimal growth, all the different systems within a plant are working to sustain an 

optimal homeostasis.  But, when the environment surrounding a plant changes so that the 

plant has to respond to that stimulus, different mechanisms are employed to counteract 

the change in environment.  One of the products that can be measured due to 

environmental changes affecting a plant’s homeostasis is ethylene, which is one of the 

major hormones produced when a plant is not at optimal living conditions.  Ethylene was 

first discovered as a biologically active compound in St. Petersburg by Dimitry 

Nikolayevich Neljubov in 1886 (Abeles et al., 1992).  Historical overviews from 

Buchanan et al. (2000) and Abeles et al. (1992) have described how Neljubov noticed 

that when pea seedlings were germinated and grown in the dark, they grew in a horizontal 

position when exposed to laboratory air, but grew vertically when exposed to outside air.  

After ruling out cultural practices such as light and temperature, Neljubov discovered that 

the composition of the air is what caused the seedlings to grow differently, or more 

specifically, the gas used for illumination caused the abnormal effect.  Neljubov noted 

that the addition of the illuminating gas to outside air resulted in the same growth 

phenomenon observed in the laboratory air.  Subsequent studies that confirmed and 

expanded on Neljubov’s results found that ethylene was the biologically active 

component of the illuminating gas and smoke, and caused the abnormal growth.   
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CHAPTER II 

 

Review of Literature 

 

Overview of Stress-Induced Ethylene Biosynthesis 

 

The Ethylene Biosynthetic Pathway 

 

The first elucidation of ethylene biosynthesis was first described by Lieberman 

and Mapson who demonstrated that methionine was an ethylene precursor (reviewed in 

Abeles et al., 1992).  In 1977, Adams and Yang showed that ethylene was derived from 

S-adenosylmethionine (SAM or AdoMet).  In 1979, in separate experiments by Adams 

and Yang and also by Lurssen, Naumann, and Schroder, 1-aminocyclopropane-1-

carboxylic acid (ACC) was identified as the immediate precursor to the final product of 

ethylene (reviewed in Abeles et al., 1992). 

Ethylene is synthesized from the amino acid methionine.  Methionine is first 

converted to S-adenosyl-L-methionine (SAM) by the SAM synthetase, SAM is then 

converted to either 5’-methylthioadenosine, which can be recycled, or to 1-

aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS).  ACC is then 

converted to ethylene by ACC oxidase (Buchanan et al., 2000).  Methionine quantities 

within plants are too low to sustain normal rates of ethylene production, so it is therefore 

recycled by the plant.  This recycling of methionine is called the methionine cycle or 

Yang cycle after S. F. Yang who performed much of the early work in the elucidation of 

the pathway (Abeles et al., 1992) which is summarized below: 

 

 

 

 

 

Methionine SAM ACC Ethylene 

SAM Synthetase ACC Synthase (ACS) ACC Oxidase 
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Stress Conditions Known to Increase Ethylene Biosynthesis 

Many physiological effects of ethylene on plants such as seed germination, root 

and shoot growth, flower development, etc. were reported in early studies, but not until 

the 1960’s did ethylene emerge as an important plant hormone when many other aspects 

of ethylene production and biosynthesis were found to be of interest due to advances in 

technology.  When this hormone began to be studied extensively, both abiotic and biotic 

stress conditions were found to increase the ethylene production of plants and this 

increase in ethylene biosynthesis due to these stress conditions was termed “stress 

ethylene”.   

Abiotic stress conditions which stimulate ethylene production include chilling and 

freezing, heat, flooding, drought, chemical, radiation, mechanical, and bending (Abeles et 

al., 1992).  McMichael et al. (1972) reported an increase in ethylene production during 

drought conditions in cotton plants.  They noted that sharp increases in ethylene 

production were found during severe water deficit, but when the plants were watered, 

ethylene production rates fell rapidly.  Similarly, Wright (1977) looked at the relationship 

between leaf water potential, a function of cell turgidity in the leaf, and ethylene 

production in wheat leaves.  In this study, leaves were allowed to wilt until they had lost 

2 to 8% of their fresh weight and ethylene measurements were taken every 135 min for 

the first 675 min and a final sampling at 24 hrs.  Ethylene biosynthesis was found to be 

greatest in the most severely stressed leaves.   

More recently in Arabidopsis, Larkindale and Knight (2002) compared oxidative 

damage and survival rates after heat-induced damage was applied to both an ethylene-

insensitive mutant etr-1 (ethylene response), which has a defective ethylene receptor 
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subunit and consequently insensitive to ethylene, and wild-type plants.  After the heat-

induced oxidative damage was performed, ethylene was added exogenously and a 

thiobarbituric acid-reactive substance (TBARS) assay was performed, which is a 

common assay for oxidative damage to membranes that measures lipid peroxidation in 

plants after heating.  Thus, higher levels of TBARS are found in plants that are subject to 

higher levels of oxidative stress (Larkindale and Knight, 2002).  The authors found that 

the etr-1 mutants in these experiments showed an increased TBARS (>3 fold increase) 

value and a reduced survival rate (approximately 50%) as compared to the wild type.  

These values support the hypothesis that ethylene is used by Arabidopsis to mediate 

protection against, or repair of, heat-induced stress (Larkindale and Knight, 2002) and 

that abiotic stress conditions stimulate ethylene production for protection.   

Biotic stress conditions which stimulate ethylene production include infection by 

viruses, bacteria, fungi, insects, and nematodes (Abeles et al., 1992).  Lund et al. (1998) 

used tomato plants to determine when and if ethylene has an effect on a plant’s defense, 

specifically leaf necrosis caused by bacterial infection.  In this study, an ethylene-

insensitive mutant of tomatoes, Never ripe (Nr), in which the fruit of the plants exhibit 

only a yellow color and marginal softening after several months of growth, was 

inoculated with the bacterial pathogens Xanthomonas campestris vesicatoria and 

Pseudomonas syringae tomatoi, both of which first cause lesions and later necroses and 

abscission, and compared to wild type inoculated plants (Lund et al., 1998).   The authors 

found that at first there was no visible difference between the number and size of lesions 

of both the Nr and wild type plants.  However, 16 days after inoculation, foliar disease 

symptoms were greatly reduced in the Nr leaves when compared to the wild type plants.  
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The authors then measured electrolyte leakage, which is a quantitative measure of cell 

injury or death resulting from pathogen infection, to determine the level of cell injury or 

death resulting from pathogen infection.   The authors compared Nr and wild type leaves 

that were inoculated with either X. c. vesicatoria or P. s. tomato and found that, for both 

experiments, the Nr leaves inoculated with the pathogens had a fourfold decrease in mean 

electrolyte leakage as compared to the wild type.  These findings supported that a 

reducing effect for ethylene insensitivity on foliar disease development hampers the 

affects that pathogens cause on the Nr leaves.  From their study, Lund et al. (1998) 

concluded that foliar disease development can be separated into two stages, the first 

includes lesion formation that is not affected by endogenous ethylene and the second 

stage where leaf necrosis develops and requires endogenous ethylene production.  These 

results demonstrate that ethylene plays a significant role in leaf necrosis and that biotic 

stress conditions stimulate ethylene production for protection. 
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Regulation of Ethylene Biosynthesis (Transcriptional and Post-transcriptional) 

 

Ethylene production can be regulated at both the transcriptional (synthesis of 

ribonucleic acid, RNA) and post-transcriptional levels.  Since the primary rate-limiting 

step in the ethylene biosynthetic pathway has been found to be the conversion of SAM to 

ACC by the protein ACS (reviewed in Rieu et al., 2005) and because the level of ACS 

activity closely parallels the level of ethylene production in most plants (Chae et al., 

2003), the understanding of the regulation by the ACS protein, both transcriptional and 

post-transcriptional, is important in determining the biosynthesis of ethylene production 

by plants.  

Typically, ACS is part of a multigene family that encodes different ACS protein 

isoforms.  In Arabidopsis, there are nine different ACS forms which produce functional 

and nonfunctional homodimers (reviewed in Tsuchisaka and Theologis, 2004).  In 

tomato, seven different ACS forms have been identified and found to be differentially 

expressed (reviewed in Shiu et al., 1998).  The biological significance for such multigene 

families, ACS in particular, is unknown (Tsuchisaka and Theologis, 2004).  The primary 

sequence encoded by these genes shows a conservation ranging from 50 to 96% in amino 

acid sequence identity, with the highest variability at the caroboxy end of the protein 

(reviewed in Tsuchisaka and Theologis, 2004).  In some cases, the expression of specific 

ACS protein forms is differentially regulated in response to internal or external factors, or 

alternatively, one ACS member could respond to several different developmental signals 

(reviewed in Ge et al., 2000).  For example, in tomato, the Lycopersicon esculentum (Le) 

ACS2 gene is expressed in root, ripe fruit, stamens, and floral senescence.  In Geraniums, 

the Pelargonium hortorum (Ph) ACS2 gene is induced in young leaf, leaf bud, stem, and 
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roots (reviewed in Ge et al., 2000).  It is also speculated that regulation of ACS could be 

controlled by a single developmental cue which can induce a coordinated expression of 

several ACS genes. For example, Le-ACS2 and Le-ACS4 genes are simultaneously 

induced in the pericarp tissue (the wall) of ripening fruit (reviewed in Ge et al., 2000).  

The search to understand all the multiple facets of how ACS effects the biosynthesis of 

ethylene has lead to an abundance of articles on this topic. 

In a study to determine the effect of multiple environmental stress conditions 

(wounding, light, and chilling) on the regulation of a single ACS gene, Ge et al. (2000) 

identified four new ACS cDNA fragments of tobacco, Nicotiana tabacum (Nt-ACS2, Nt-

ACS3, Nt-ACS4, and Nt-ACS5), along with a previously isolated ACS tobacco gene (Nt-

ACS1).  The authors used a Northern blot analysis to determine when and which of the 

different ACS isoforms were expressed when subjected to the multiple conditions.  For 

wounding, Ge et al. (2000) found that the transcript levels of three genes, Nt-ACS2, Nt-

ACS3, and Nt-ACS5, peaked at 6 hrs and declined by 10 hrs after wound induction, while 

Nt-ACS4 expression increased to a significant level at 1 hr, reached peak accumulation by 

2 hrs, and disappeared by the sixth hour.  For light, Ge et al. (2000) found that the 

transcript level of Nt-ACS2 increased transiently and peaked 0.5 hrs after light induction, 

and dropped to basal level by 1 hr after light induction, while no other ACS transcripts 

were detectable after light induction.  For chilling, Ge et al. (2000) found that the level of 

only the Nt-ACS2 transcript increased and after 24 hrs of chilling induction increased to a 

higher level.  From their results, Ge et al. (2000) demonstrated that multiple stimuli can 

induce several ACS isoforms simultaneously, such as wounding up-regulating three ACS 

isoforms, or only a single ACS isoform can be up-regulated, such as chilling only up 
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regulating ACS2.  These findings and others lead to much research needing to be done to 

elucidate how each specific ACS isoform is regulated. 

In Arabidopsis, post-transcriptional regulation of ACS has been documented.  

Woeste et al. (2003) described the physiological characterization of etiolated Arabidopsis 

seedlings and found that ACS is regulated by other means than transcriptional regulation.  

Woeste et al. (2003) used eto1 and eto3 (ethylene overproducer) mutant etiolated 

seedlings which cause a triple response in adult Arabidopsis plants.  This triple response 

in Arabidopsis consists of shortening and radial swelling of the hypocotyl, inhibition of 

root growth, and exaggerated curvature of the apical hook (Woeste et al., 2003).  The 

authors first determined that eto1 and eto3 mutants displayed the triple response 

phenotype as etiolated seedlings, where as wild-type did not, and determined this was 

caused by an overproduction of ethylene (Woeste et al., 2003).  The authors then looked 

at the level of ACS activity within the eto1 and eto3 mutants compared to wild-type.  The 

level of ACS from crude extracts of wild-type, eto1, and eto3 were assayed.  Woeste et 

al. (2003) found that both mutants showed high elevated levels of ACS activity compared 

to the wild-type, which indicates the increase in ACS activity may be responsible for the 

elevated ethylene biosynthesis observed in the mutant seedlings.  Finally, Woeste et al. 

(2003) compared several ACS mRNA (ACS4, ACS5, ACS6, and ACS7) levels from both 

wild-type and the mutant etiolated seedlings by northern blotting.  The authors found that 

the steady-state levels of expression from the mutants was close to the steady-state level 

of the wild-type, and for ACS2 and ACS4 comparison, the mutant steady-state level was 

actually lower than the wild-type steady-state level of ACS (Woeste et al., 2003).  From 

these findings, when the ACS level increases, ethylene production increases, but the 
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regulation is not from translational regulation, but most likely from some type of post-

translational regulation (Woeste et al., 2003).      

A further study to determine the mechanism of post-transcriptional regulation of 

ACS was conducted by Chae et al. (2003) using the eto3, eto2, and eto1 mutations which 

are located within different ACS genes.  The authors found that ethylene biosynthesis is 

controlled by regulation of the stability of ACS, mediated in part through the C-terminal 

domain (Chae et al., 2003).  To confirm this finding, Chae et al. (2003) sequenced 

Arabidopsis genomic DNA, and the eto3 mutant was found to have a T-to-A transversion 

within the C-terminus of the ACS protein (Chae et al., 2003).  To determine if this C-

terminus change was responsible for the overproducing phenotype of eto3, 3.2-kb 

genomic DNA fragments containing either wild-type ACS9 (ACS9
WT

) or the eto3 ACS9 

(ACS9
eto3

) coding region and flanking sequences were cloned into a plant transformation 

vector and introduced into wild-type Arabidopsis.  All of the ACS9
eto3

 transformants 

displayed the triple response as etiolated seedlings, and the ethylene production was 

highly increased over the nontransgenic, wild-type seedlings.  The ACS9
WT

 seedlings 

displayed a wild-type phenotype with ethylene production levels similar to those of the 

wild-type, nontransgenic plants.  Chae et al. (2003) then used real-time reverse 

transcriptase-mediated PCR to show that ACS9 mRNA levels from eto3 were comparable 

to that of wild-type, indicating that the steady state level of ACS9 transcription in the eto3 

mutant seedlings were the same as wild-type. Thus, the authors concluded the eto3 

mutation affects ethylene biosynthesis through post-transcriptional regulation of ACS 

(Chae et al., 2003).  
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To further evaluate the mechanism of ethylene overproduction by eto2, Chae et 

al. (2003) looked at the stability of the ACS5 protein in eto2 mutants.  They first 

compared levels of ethylene produced by ACS5
WT

 and ACS5
eto2

 transgenic plants which 

were quantified by immunoblot analysis.  The authors found that the transgenic plants 

produced approximately equal levels of ethylene at comparable levels of expression of 

the fusion proteins indicating that the specific activity of the ACS5
eto2

 is not significantly 

different from the ACS5
WT

.  Therefore, they speculated that the stability of ACS5 could 

be affected by the eto2 mutation (Chae et al., 2003).  To test this, Chae et al. (2003) 

determined the half-life of ACS5
WT

 and ACS5
eto2

 by measuring the level of proteins after 

the inhibition of protein synthesis by cycloheximide-containing MS medium.  The level 

of ACS
WT

 was found to decline rapidly with a half life of 15 min, and reached a minimal 

level at 45 min after cycloheximide application and from there remained stable (Chae et 

al., 2003).  There was a minimal decrease in ACS5
eto2

 protein levels, even 2 hrs after 

cycloheximide treatment, indicating a much longer half life (Chae et al., 2003).  Chae et 

al. (2003) concluded that the change in eto2 increased the ACS5 function by increasing 

the protein stability.  The authors also found that the eto1 mutation also increases the 

ACS5 function by increasing the protein stability, but to a lesser extent compared to the 

eto2 mutation (Chae et al., 2003).  These results, along with Woeste et al. (2003), 

demonstrate that an important mechanism by which ethylene biosynthesis is controlled is 

through post-transcriptional regulation, mainly the stability of ACS. 
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Hypoxia Effects on Plant Growth and Induction of Elevated Ethylene 

 

In many plants, flooding of the roots results in oxygen deprivation and greatly 

increases production of ethylene in the leaves (Jackson, 2002).  Anaerobic conditions in 

plant roots inhibit the oxygen-requiring enzyme, ACC oxidase, which catalyzes ethylene 

production from its immediate precursor, ACC. As a result, ACC accumulates in the 

roots and is then transported by the vascular system to the stems and leaves where it is 

rapidly converted to ethylene. Anaerobic conditions also stimulate the synthesis of ACC 

in the roots, contributing to more ACC to be transported to the leaves. Consequently, 

higher levels of ethylene in leaves appear to be able to stimulate ACC oxidase synthesis 

and activity, further increasing ethylene production.  
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Hydroponic Cultivation of Strawberries 

 

With the worldwide phaseout of methyl bromide as a soil fumigate, the use of 

hydroponic systems has rapidly increased as an economic alternative for the growth of 

many horticulturally-important crops (Environmental Protection Agency, 1997; 

Carpenter et al., 2000; VanSickle et al., 2000; Federal Register, 2004). As a soilless 

system, hydroponics eliminates competing weeds and soil-born pests, thus reducing the 

need for pesticides and avoiding toxic residues that may accumulate in plants. In 

addition, hydroponic cultivation conserves water and provides conditions that can be 

quickly altered to suit specific crops.  Hydroponic systems provide an economical and 

viable alternative for the cultivation of strawberry, a crop that has been particularly 

dependent upon methyl bromide fumigation (Stanley, 1998). 
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Stress Factors Associated with Hydroponic Cultivation (Strawberries) 

 

In hydroponically-grown plants, stress-induced physiological conditions may 

arise within the system if nutrient flow is inconsistent, resulting in some plants receiving 

unequal water supplies.  For example, flooding of root systems causes oxygen intake 

deficiency and interferes with nutrient uptake (Urrestarazu and Mazuela, 2005).  

Flooding also causes accumulation of high levels of ethylene which may inhibit growth, 

cause premature ripening, and induce the onset of senescence, potentially reducing plant 

productivity (Abeles et al., 1992; Druege, 2006).  In addition to the effects of flooding on 

ethylene production, other environmental factors such as wounding, light, and 

temperature may increase ethylene levels in plants. Therefore, careful management of 

hydroponic systems has become an important consideration for reducing stress conditions 

that negatively impact yield, in order to increase market profitability by decreasing 

cultivation costs.  
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Experimental Objectives 

 

Because stress conditions on plants produce an increase in ethylene levels, 

ethylene measurements may be a useful tool for identifying conditions that impact plant 

growth.  Therefore, this study was to demonstrate that measurements of ethylene 

production from leaves of hydroponically-grown strawberry plants could be used as an 

early indicator of stress conditions within a hydroponic system.  This method could be 

used to identify inconsistencies within a hydroponic system that may cause plant stress 

and affect subsequent plant growth and fruit production.  In addition, changes in ACS 

gene expression levels may also increase resulting from hypoxic conditions within 

hydroponic systems. The experimental objectives of this study were to: 

 

1. Evaluate ethylene biosynthesis as a stress-indicator of hydroponically-grown 

strawberries. 

2. Determine the transcriptional regulation of ethylene biosynthesis during stress 

(hypoxic) conditions in the vegetative parts (leaves) of strawberry plants.
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CHAPTER III 

 

Materials and Methods 

 

Hydroponics System and Plant Growth Parameters 

 

The hydroponic systems and strawberry growth conditions were designed in 

collaboration with Dr. Fumiomi Takeda (USDA-ARS Appalachian Fruit Research 

Station, Kearneysville, WV, USA), and adapted from his procedures (Takeda, 1999).  

The strawberry cultivar Chandler (Fragaria X ananassa), a short day (SD) cultivar 

(flowers under short days), was used in all experiments except experiment 1, system 1.  

This cultivar was chosen because it is a day-length neutral cultivar selected for yield and 

flavor and allows experimentation throughout the year.  Chandler strawberries were 

either purchased as plants (Davon Crest Farm, MD, USA) or grown from runners 

(Strawberry Tyme Farms, Ontario, Canada) with experimental results not influenced by 

experimentation on either plants or runners.  For experiment 1, system 1, 5 different 

cultivars were used which included Fern, Honeyoye, Fort Laramie, Tribute, and Quinault.     

All plants, prior to planting within the hydroponic systems, were cold treated in a 

refrigerator for 6 weeks at 4°C to stimulate flowering and condition the plants for growth 

in the hydroponic systems.  Runners were rooted under a misting bench.  Each 

hydroponic system consisted of 10 trays containing 3 plants each (30 plants total), 

connected to a central nutrient delivery pipe.   Plants or rooted runners were planted in 

15.24 cm circular net pots with commercial peat-based soilless planting mixture (Premier 

Horticulture Inc., Red Hill, PA, USA).  Pots were placed in Hydroware™ trays (106 x 

20.32 x 10.16 cm deep, Sea of Green, Tempe, AZ, USA) lined with plastic screening.  
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Sifted perlite was placed around the pots and white-on-black plastic mulch (Garden 

Indoors, Columbus, OH, USA) was lowered over the trays and around the plants to 

control evaporation and algal growth.   

The nutrient solution of commercial fertilizer (Scotts HydroSol Water Soluble 

Fertilizer 5N-11P-26K), Epson salts (MgSO4), 0.64 g·l
-1

, calcium nitrate (CaNO3), and 

0.015 g·l
-1

 ferric chloride (FeCl3) with pH adjusted to 6.2 if necessary, was circulated 

through the systems by a submersible fountain pump located in a 55 l container.  The 

solution ran through the central nutrient delivery pipe into 1.3 m of irrigation row drip 

tape per tray with 10 cm emitter spacing (RO-DRIP, Roberts Irrigation Products, San 

Marcos, CA, USA).  The drip tape lay over the perlite and pots and under the plastic 

mulch of each tray.  Pressure in the central pipe and the attached drip tape was controlled 

by a valve adjacent to the tray furthest from the pump, so that the drip tape was 

completely expanded over all trays to deliver 5 l·h
-1

·m
-1

.  Troughs were inclined to 

approximately a 15° angle to aid drainage, with the higher end located at the delivery 

pipe.  Excess solution from the central delivery pipe and each tray was collected by 

gravity back to the main 55 l container (Fig. 1).   

Plants were allowed to acclimate to the hydroponic systems for a minimum of two 

weeks prior to experimentation.  The nutrient solution was changed every 7-10 days to 

maintain nutrient concentrations, regulate pH, and minimize salt accumulation. 

Experiments were conducted from October to March under natural short day photoperiod, 

and supplemented by high pressure sodium lights (1000-W) up to 14 hrs per day.  No 

pesticides were used on the plants during experimentation. 
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Figure 1.  Schematic representation of hydroponic system design with 10 trays containing 3 

plants each (30 total).  The 55 l container with pump is located at one end of the system and the 

valve which controls flow rate at the opposite end.  Arrows indicate the nutrient flow direction.  

The relative position of each tray from the pump (0.49, 1.04, 1.6, 2.17, and 2.73 m), position of 

individual plants from the central nutrient delivery pipe (0.46, 0.81, and 1.14 m), and position of 

drip tape over each pot is depicted (white-on-black plastic mulch covers tray and drip tape, and is 

placed around plants).  The plants studied for distance from delivery pipe represented 10 plants (5 

plants each side of system) and the plants studied for distance from pump represented 6 plants (3 

plants each side of system) for the average ethylene production for the respective distances which 

are depicted by the red boxes. 
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Figure 2.  Hydroponic system within Marshall University’s greenhouse. 
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Ethylene Measurements 

 

Ethylene measurements were obtained from a single excised leaflet of each plant 

that was folded down the midrib, and rolled to fit into a 2 ml shell vial.  Vials were 

capped with a rubber septum and kept at room temperature for 30 min to allow 

accumulation of ethylene prior to the onset of wound-induced ethylene.  Wound-induced 

ethylene due to excision was found to begin 40-60 min after leaflet excision, thus, the 30 

min incubation time was adequate to measure the stress-induced ethylene (data not 

shown).  To measure the amount of ethylene released by the strawberry leaf within the 

vial, a 1.0 ml headspace sample was extracted from the vial with a syringe and injected 

onto an alumina F1 column (0.635 cm X 0.91 m) in a gas chromatograph (Varian 3700, 

Varian Instrument Division, Walnut Creek, CA, USA) equipped with a flame ionization 

detector according to the procedure described by Harrison (1997).  The nitrogen carrier 

gas flow rate was 40 ml·min
-1

 and the oven temperature was maintained at 100ºC.  

Hydrogen and air flow rates to the detector were 40 ml·min
-1

 and 300-400 ml·min
-1

 

respectively, and the detector temperature was set at 150°C.  Known amounts of an 

ethylene standard gas (Scott Specialty Gases, Plumsteadville, PA, USA) were analyzed to 

produce a standard curve for ethylene quantification.   
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System Analyses 

 

Experiment 1 (Analysis of ethylene production):  In 2002, system-wide analyses of three 

hydroponic systems were conducted to evaluate the effect of daily fluctuations in light 

intensity and temperature associated with greenhouse growth conditions on ethylene 

production.  Also, ethylene production relative to the central delivery pipe and pump was 

determined from excised leaflets, along with identification of potential stress-induced 

ethylene production.  For all systems, light was measured using a Basic Quantum Meter 

(Apogee Instruments Inc., Logan, UT, USA), which measured photosynthetic active 

radiation (PAR) in µmol (photons)·m
-2

·s
-1

.  Temperature was measured using a 

thermometer and readings from both instruments were placed beside the plant at the time 

of excision. 

Plant Set 1: A set of system-wide ethylene measurements containing different 

cultivars was recorded on February 5, 7, 14, and 15, 2002.  This system consisted 

of 5 cultivars, with each cultivar contained in two trays (6 plants/cultivar).  The 

trays of each cultivar were located across from each other corresponding with the 

distances from the pump.  The cultivars were Fern, Honeyoye, Fort Laramie, 

Tribute, and Quinault located at 0.49 m, 1.04 m, 1.6 m, 2.17 m, and 2.73 m. 

Plant Set 2: A set of system-wide ethylene measurements of Chandler leaflets was 

recorded on February 22, 28, and March 1, 2002.  A second set of system-wide 

measurements of Chandler leaflets was recorded on March 28, 2002. 

Plant Set 3:  A set of system-wide ethylene measurements of Chandler leaflets 

was recorded on March 5, 12, and 14, 2002.  A second set of system-wide 

measurements of Chandler leaflets was recorded on March 27 and 28, 2002. 
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Experiment 2 (Analysis of growth and yield):  In 2003, two system-wide evaluations 

were conducted to determine the ethylene production and the growth and yield of 

strawberry plants grown under ambient greenhouse conditions.  Ethylene production 

relative to the location of the central delivery pipe and pump was determined from 

excised leaflets.  The system consisted of the cultivar Chandler, with trays located across 

from each other corresponding with the distances from the pump (0.49 m, 1.04 m, 1.6 m, 

2.17 m, and 2.73 m).  The ethylene measurements were accompanied by measurements 

of: flower bud number, inflorescence number, crown number, and plant radius (Fig. 3). 

Plant Set 4:  A set of system-wide ethylene measurements of Chandler leaflets for 

plant distance was recorded on February 10 and 13, 2003.   

Plant Set 5:  Growth and yield measurements of Chandler strawberries were 

recorded on February 3, March 10, and April 7, 2003. 
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Figure 3.  (A) Diagram of strawberry plant showing a single crown along with an 

inflorescence with fruit.  (B) Inflorescence of a strawberry plant with a flower bud and 4 

fruit. 
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Experiment 3 (Effect of flooding on ethylene production and growth and yield):  In 2003, 

plant set 6 was used to evaluate the effect of flooding on ethylene production.  Two trays 

were flooded from April 7-April 10 (72 hours).  To establish the effect of flooding on 

ethylene production, measurements were taken before flooding, 24, 48, and 72 hrs while 

flooded, and 24 hrs after the water was allowed to drain.  The trays were flooded by 

blocking the drainage hole and filling the trays to the top with tap water.   

A separate system, plant set 7, was used to evaluate the effect of flooding on 

flower bud number, inflorescence number, crown number, and plant radius.  For this 

experiment, five trays, on the same side of the system, were allowed to drain at a normal 

rate, while five trays on the other side of the system were flooded (February 3) with tap 

water.  The trays were filled to the top by blocking the drainage holes.  Water was 

allowed to drain after the 24 hr flooding treatment (February 4). 

Plant Set 6:  Ethylene measurements from two trays of Chandler plants that were 

flooded for 72 hrs were recorded on April 7-11, 2003. 

Plant Set 7: Growth and yield measurements of Chandler strawberries comparing 

the flooded to the normal drainage control trays (15 plants/treatment) were 

recorded on February 3, March 10, and April 7, 2003. 
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Gene Expression Analysis 

 

Total RNA Isolation (Determination of ACS levels): Once the effect of flooding on 

ethylene production and growth and yield data was determined, potential gene expression 

changes of the ACS gene in strawberry leaves was examined.  Total RNA was isolated 

using three different protocols to determine which would produce adequate yield and 

purity.  For each protocol, excised strawberry leaflets (100 mg) were first frozen in liquid 

nitrogen and ground to a powder.  The Purescript RNA Isolation Kit™ (Gentra Systems, 

Minneapolis, MN, USA) protocol was followed according to the manufacturer’s 

recommendation except that the Cell Lysis Solution was first added to the mortar for 

continued grinding of the powdered tissue instead of being placed directly into a tube 

pestle for grinding.  Also, Arabidopsis was used with this protocol for a control.  The 

RNEasy Plant Mini Kit (Qiagen, Valencia, CA, USA) protocol was followed according 

to the manufacturer’s recommendation.  The TRI REAGENT (Sigma, St. Louis, MO, 

USA) protocol was followed according to the manufacturer’s recommendation except 

that liquid nitrogen was used to homogenize the leaflets prior to adding the tissue to the 

TRI REAGENT as opposed to just directly homogenizing the leaflets in TRI REAGENT.    

RNA was quantified by O.D. 260 and purity was evaluated by O.D. 260/280 ratio 

using a ND-1000 spectrophotmeter (NanoDrop Technologies, Wilmington, DE, USA).  

RNA quality from the Purescript and RNEasy protocols was also evaluated using RT-

PCR with the various primers from Table 1.  Reaction mixtures of 10 µl using the 

AccessQuick RT-PCR System (Promega Corp., Madison, WI, USA) protocol was used 

according to the manufacturer’s recommendation with the following mixture: 5 μl 2X 

master mix, 0.2 μl AMV RT (Avian Myeloblastosis Virus Reverse Transciptase), 0.5 μl 
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left primer, 0.5 μl right primer, and 3.8 μl RNA.  Amplifications were carried out using 

an iCycler (Bio-Rad, Hercules, CA, USA) with the following temperature parameters: 45 

min at 48°C and 2 min at 94°C (to terminate the reverse transcription reaction) followed 

by 40 cycles (for PCR): 30 sec at 94°C, 1 min at 60°C, 2 min at 68°C.  After the 40 

cycles, an optional final 7 min extension at 68°C was performed and a final soak at 4°C 

for 1 hr to overnight.  RNA isolation from the RNEasy Plant Mini Kit and TRI 

REAGENT procedures were separated by electrophoresis on a 2.5% (w/v) NuSieve 3:1 

agarose gel (Cambrex BioScience, Rockland, ME, USA).  DNA obtained from RT-PCR 

by the Purescipt procedure was separated on a 4% agarose gel.  Both types of gels were 

run in 1X TAE (Tris-Acetate-EDTA) from a 50X stock solution of TAE (Bio-Rad, 

Hercules, CA, USA) and stained with ethidium bromide.  Gels were imaged on a GelDoc 

(Bio-Rad, Hercules, CA, USA).  

 

 

Table 1. Primer pairs for RT-PCR analysis of genes in Arabidopsis (At-) and Strawberry 

(Fa-).  Accession numbers are to denote the reference within GenBank.  

ACS genes Acc. # 

 

Primer pairs 

(location) 

Product 

size (bp)   

Anneal. 

Temp (°C) 

At-S18 

rRNA 

 

X16077 5’GTGCATGGCCGTTCTTAGTT 

3’(1359-1378) 

5’ACCGGATCATTCAATCGGTA 

3’(1739-1758) 

400  60.14 

60.16 

Fa-RP U19940 5’ GCCATTTGCTGGATCTTCTC 3’ 

(143-162) 

5’ AACCCAGCAATCAACACCTC 3’ 

(321-340) 

198 59.78 

59.97 

Fa-S18 

rRNA 

(At primers) 

X15590 

 

5’GTGCATGGCCGTTCTTAGTT 3’ 

(1272-1291) 

5’ACCGGACCATTCAATCGGTA 3’ 

(1648-1667) 

396 60.14 

62.41 
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Northern Analysis of ACS Expression (Determine presence of ACS):  Because no 

sequence exists for any strawberry ACS genes, BLAST was used with the At-ACS9 

(GenBank accession no. AF332391) sequence, a known hypoxia regulated ACS form, to 

identify similar sequences of plant species within the same order (Rosales) as strawberry.  

From the BLAST analysis, ClustalW software was used to develop a phylogentic tree 

(Fig. 4).  These sequences were used to locate a highly conserved region from the various 

ACS sequences to determine a possible probe sequence that could be used with northern 

blotting.  A conserved sequence was identified at position 859 to 919 of At-ACS5 (Fig. 5). 

Although a strawberry probe was not ordered, RNA was extracted using the 

CelLytic™ PN protocol (Sigma, St. Louis, MO, USA) followed by the North2South 

Direct HRP Labeling and Detection Kit (Pierce, Rockford, IL, USA) protocol which were 

both used according to the manufacturer’s recommendations with a probe sequence for 

18S Arabidopsis rRNA of 5’-AATGAGTACAATCTAAATCCCTTAACGAGGATCC 

ATTGGAGGGCAAGTCTGGTGC-3’.  This probe was used on both strawberry and 

Arabidopsis (control) to determine if strawberry would show results since this region is 

highly conserved.  
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Figure 4. Sequence alignment of Arabidopsis and selected cDNA sequences of ACC 

synthase was performed using ClustalW.   Arabidopsis thaliana: At-ACS1, U26543; At-

ACS2, AF334719; At-ACS4, AF332404; At-ACS5, L29261; At-ACS6, AF361097; At-

ACS7, AF332390; At-ACS8, AF334712; At-ACS9, AF332391; At-ACS10, AF348575; At-

ACS11, AF332405; At-ACS12, AF336920. Cucumis melo: CMe-ACS1, AB025906. 

Lycopersicon esculentum: Le-ACS3, L34171; Le-ACS4, M88487; Le-ACS7, AF179248. 

Pisum sativum: Ps-ACS1, AF016460; Ps-ACS2, AF016459; Ps-ACS3, AB049725. Pyrus 

pyrifolia: Pp-ACS1, AB015624. Pyrus communis: Pc-ACS1, X87112; Pc-ACS3, 

AF386519; Pc-ACS4, AF386518; Pc-ACS5, AF386523. Vigna radiata: Vr-ACS6, 

AB018355; Vr-ACS7, AF151961.  Yellow box indicates the subgroup composed of 

primarily hormone and chilling-inducible forms.  Red box indicates target genes for 

sequence comparison. 
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PpACS1    ACGACGACATGGTTGTGGCCGCCGCTACAAAAATGTCAAGCTTTGGTCTTGTTTCTTCTC 1008 

PcACS1    ACGACGACATGGTTGTGGCCGCCGCTACAAAAATGTCAAGCTTTGGTCTTGTTTCTTCTC 1020 

AtACS5    ACGACGAAATGATCGTTTCAGCAGCTACAAAAATGTCAAGTTTTGGTCTTGTTTCTTCTC 919 

AtACS9    ACGACGAAATGGTTGTTTCCGCTGCAACAAAAATGTCAAGTTTCGGTCTCGTGTCTTCTC 919 

          ******* *** * **  * ** ** ************** ** ***** ** ******* 

 

Figure 5. Nucleotide sequence comparison using ClustalW of four ACS genes from Fig. 

4: Arabidopsis (At-ACS5 and At-ACS9), Pear (Pc-ACS1), and Japanese Pear (Pp-ACS1).  

A possible probe could be used with strawberry from this segment since a long conserved 

strand is present (indicated by * which represents a match for all four of the nucleotides 

at their respective positions). 
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Statistical Analyses 

Significance between the means was determined by one-way ANOVA (Microsoft 

Excel) to evaluate differences in groups of plants.  Levels of significance are represented 

by P≤0.05.  Regression analysis was used to determine significant correlation between 

light intensity or temperature and ethylene production and different positions in regards 

to distance from the delivery pipe or pump (Microsoft Excel). 
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CHAPTER IV 

 

Results 

 

System Analysis 

 

Experiment 1: Evaluation of Strawberry Ethylene Production within the Hydroponic 

Systems  

 

System-wide analyses were conducted to determine whether temperature or light 

variations would have an impact on the ethylene production in strawberry leaves under 

ambient greenhouse conditions.  Along with the temperature and light impact, potentially 

stress-induced plants and positions were identified.  We defined “potentially stress-

induced” plants as plants producing more than twice the system average of ethylene.  To 

determine potentially stress-induced positions within the system, the average ethylene 

production from plants located at the same distance from the central delivery pipe (10 

plants/position) or pump (6 plants/position) was determined for all plant sets. 

 

Compiled Light and Temperature Measurements:      

Plant set 1:  Temperatures ranged from 15-37°C and a maximum light intensity of 

740 µmol photons ·m
-2

·s
-1

 (PAR).  The average ethylene production for the entire system 

was 27.16 pl·g
-1

·min
-1

 with ethylene production ranging from 5.84 to 180.90 pl·g
-1

·min
-1

 

(Table 2 and 3).   

Plant set 2:  For analysis 1, temperatures ranged from 15-35°C and a maximum 

light intensity of 1508 µmol photons·m
-2

·s
-1

 (PAR).  The average ethylene production for 

the entire system was 28.54 pl·g
-1

·min
-1 

with ethylene production ranging from 9.52 to 

72.19 pl·g
-1

·min
-1

 (Table 2 and 3).  For analysis 2, temperatures ranged from 20-26°C and 
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a maximum light intensity of 582 µmol photons·m
-2

·s
-1

 (PAR).  The average ethylene 

production for the entire system was 28.67 pl·g
-1

·min
-1

 with ethylene production ranging 

from 8.38 to 165.32 pl·g
-1

·min
-1

 (Table 2 and 3).     

Plant set 3:  For analysis 1, temperatures ranged from 18-30°C and a maximum 

light intensity of 1075 µmol photon·m
-2

·s
-1

 (PAR).  The average ethylene production for 

the entire system was 20.25 pl·g
-1

·min
-1

 with ethylene production ranging from 10.36 to 

89.46 pl·g
-1

·min
-1 

(Table 2 and 3).  For analysis 2, temperatures ranged from 20-29°C and 

a maximum light intensity of 1467 µmol photon·m
-2

·s
-1

 (PAR).  The average ethylene 

production for the entire system was 42.06 pl·g
-1

·min
-1

 with ethylene production ranging 

from 9.23 to 155.16 pl·g
-1

·min
-1

 (Table 2 and 3).   

After the five plant sets’ data was compiled, one measurement was found to have 

a statistical significance, Plant Set 2, analysis 2 between ethylene production and light 

(P=0.01, Table 3).  The whole analysis included potentially stress induced measurements 

which could have contributed to the measurement being significant because after the 

potentially stress-induced values were removed, most P-values increased, indicating less 

correlation (Table 3).  One P-value did decrease to a statistical significance of P=0.05 

(Plant Set 3, analysis 2) between ethylene production and light.  However, for this 

measurement the light intensity range was 165-1467 µmol photon·m
-2

·s
-1

 (PAR), which 

indicates an extremely high consistent light intensity (Table 3).  From the compiled 

temperature and light intensity data we concluded neither temperature nor light had an 

effect on the plants that would lead to potentially stress-induced ethylene production from 

the strawberry plants (Table 2 and 3).  Since temperature and light did not have a 

significant effect on the plants, the ambient greenhouse conditions could be ignored, and 
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the effect of the systems from different locations could be measured to determine the 

effect on the plant’s ethylene production. 
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Table 2.  Compiled results for Experiment 1 depicting the correlation between temperature (°C) and ethylene production for individual 

plants in systems built in 2002.  For both the ethylene and temperature ranges, “With Stress” indicates measurements with potentially 

stress-induced plants included and “Without Stress” indicates measurements without potentially stress-induced plants.   

* P≤ 0.05. 

__________________________________________________________________________________________________________ 

Plant Set Number                Ethylene Range                                                                   Temperature (°C)  

(dates measured in 2002)                       (pl·g
-1

·min
-1

)                     Range                P-value                      P-value 

                                                   (With Stress)         (Without Stress)                                             (With Stress)           (Without Stress)
 

__________________________________________________________________________________________________________ 

1    5.84 – 180.90          5.84 – 50.54                            15 – 37                  0.64                           0.97 

2, analysis 1    9.52 – 72.19            9.52 – 45.58                            15 – 35                  0.12                           0.21  

2, analysis 2   11.54 – 165.32         8.38 – 50.70                            20 – 26                  0.18                           0.32 

3, analysis 1   10.36 – 89.46         10.36 – 29.91                            18 – 30                  0.40                           0.31 

3, analysis 2   9.23 – 155.16           9.23 – 75.16                            20 – 29                  0.50                           0.78 

___________________________________________________________________________________________________________ 
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Table 3.  Compiled results for Experiment 1 depicting the correlation between light (µmol photon·m
-2

·s
-1

 (PAR)) and ethylene 

production for individual plants in systems built in 2002.  For both the ethylene and light ranges, “With Stress” indicates 

measurements with potentially stress-induced plants included and “Without Stress” indicates measurements without potentially stress-

induced plants.  * P≤ 0.05. 

__________________________________________________________________________________________________________ 

Plant Set Number                Ethylene Range                                                      Light (µmol photons·m
-2

·s
-1 

(PAR))  

(dates measured in 2002)                       (pl·g
-1

·min
-1

)                     Range                P-value                      P-value 

                                                  (With Stress)         (Without Stress)                                               (With Stress)           (Without Stress)
 

__________________________________________________________________________________________________________ 

1    5.84 - 92.46             5.84 – 50.54                          0.2 – 740                  0.17                           0.55 

2, analysis 1    9.52 – 72.19            9.52 – 36.11                          420 – 1508                0.57                           0.36  

2, analysis 2    11.54 – 165.32       11.54 – 50.70                            40 – 582                  0.01 *                        0.32  

3, analysis 1   10.36 – 89.46         10.36 – 29.91                            63 – 1075                0.19                           0.31  

3, analysis 2   9.23 – 155.16           9.23 – 75.16                          165 – 1467                0.12                           0.05 *    

___________________________________________________________________________________________________________ 
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Position from the Pipe or Pump Measurements: 

Plant Set 1:  Three plants within the system were found to have produced 

potentially stress-induced ethylene (twice the system average of 27.16 pl·g
-1

·min
-1

).  The 

average ethylene production for plant positions relative to the central delivery pipe (0.46, 

0.81, and 1.14 m) showed no statistical significance between the three positions (when 

compared to each other) with P-values ranging from 0.14 to 0.44 (Fig. 6C).  However, 

there was a small increase in average ethylene production for the plants at the 0.81 m 

position (with average of 41.84 pl·g
-1

·min
-1

) compared to the other two positions (0.46 m 

with an average of 23.33 pl·g
-1

·min
-1

 or 1.14 m with an average of 16.30 pl·g
-1

·min
-1

).       

The average ethylene production for plant positions relative to the pump (0.49, 

1.04, 1.6, 2.17, and 2.73 m) showed no statistical significance between the five positions 

(when compared to each other) with P-values ranging from 0.07 to 0.85 (Fig. 6D).  

However, there was an increase in average ethylene production for the plants at the 1.04, 

1.6, and 2.17 m positions (with averages of 30.89, 34.00, and 40.80 pl·g
-1

·min
-1

) 

compared to the other positions of 0.49 and 2.73 m (with averages of 18.10 and 11.98 

pl·g
-1

·min
-1

).   

Additionally, Plant Set 1 contained five different cultivars with the following 

plant positions relative to the pump: Fern 0.49 m, Honeyoye 1.04 m, Fort Laramie 1.60 

m, Tribute 2.17 m, and Quinault 2.73 m.  Since no statistical significance was found for 

these position averages with regard to their distance from the pump (Fig. 6D), we 

concluded that cultivar type had no effect on average ethylene production. 
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Figure 6.  Ethylene measurements from Plant Set 1 that consisted of various cultivar 

leaflets.  (A)  Evaluation of temperature effect on plants exhibiting foliar ethylene 

production.  Potentially stress-induced ethylene production is indicated by filled symbols.  

(B)  Evaluation of light intensity effect on plants exhibiting foliar ethylene production.  

Potentially stress-induced ethylene is indicated by filled symbols.  (C)  Evaluation of 

average ethylene production produced by plants at different positions from the central 

delivery pipe.  (D)  Evaluation of average ethylene production produced by plants at 

different distances from the pump (Fern 0.49 m, Honeyoye 1.04 m, Fort Laramie 1.6 m, 

Tribute 2.17 m, and Quinault 2.73 m).  n=30.  Means ±SE.  No statistical significance 

was found for any of the evaluations. 
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Plant Set 2:  Two plants for the first and four plants for the second system 

analyses were found to have produced potentially stress-induced ethylene (twice the 

system average of 28.54 and 28.67 pl·g
-1

·min
-1

).  The average ethylene production for 

plant positions relative to the central delivery pipe (0.46, 0.81, and 1.14 m) for the first 

analysis showed no statistical significance between the three positions (when compared 

to each other) with P-values ranging from 0.07 to 0.93 (Fig. 7C).  However, there was a 

small increase in average ethylene production for the plants at the 0.81 m position (with 

average of 34.91 pl·g
-1

·min
-1

) compared to the other two positions (0.46 m with an 

average of 25.10 pl·g
-1

·min
-1

 or 1.14 m with an average of 25.61 pl·g
-1

·min
-1

).  For the 

second analysis, no statistical significance between the three positions (when compared to 

each other) was shown with P-values ranging from 0.44 to 0.85 (Fig. 8C).  However, 

there was a small increase in average ethylene production for the plants at the 1.14 m 

position (with average of 33.05 pl·g
-1

·min
-1

) compared to the other two positions (0.46 m 

with an average of 28.10 pl·g
-1

·min
-1 

or 0.81 m with an average of 24.86 pl·g
-1

·min
-1

).   

The average ethylene production for plant positions relative to the pump (0.49, 

1.04, 1.6, 2.17, and 2.73 m) for the first analysis found a statistical significance between 

the 2.17 and 2.73 m positions (P=0.05).  No other position comparison had a statistical 

significance, with P-values ranging from 0.10 to 0.98 (Fig. 7D).  However, there was an 

increase in average ethylene production for the plants at the 0.49, 1.6, and 2.17 m 

positions (with averages of 35.21, 34.97, and 28.83 pl·g
-1

·min
-1

) compared to the other 

positions of 1.04 and 2.73 m (with averages of 23.10 and 20.60 pl·g
-1

·min
-1

).  For the 

second analysis, no statistical significance between the five positions (when compared to 

each other) was shown with P-values ranging from 0.13 to 0.74 (Fig. 8D).  However, 
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there was an increase in average ethylene production for the plants at the 0.49, 1.6, and 

2.73 m positions (with averages of 43.58, 34.24, and 28.44 pl·g
-1

·min
-1

) compared to the 

other positions of 1.04 and 2.17 m (with averages of 22.38 and 14.71 pl·g
-1

·min
-1

).  
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Figure 7.  Ethylene measurements from Plant Set 2, analysis 1.  (A)  Evaluation of 

temperature effect on plants exhibiting foliar ethylene production.  Potentially stress-

induced ethylene production is indicated by filled symbols.  (B)  Evaluation of light 

intensity effect on plants exhibiting foliar ethylene production.  Potentially stress-induced 

ethylene is indicated by filled symbols.  (C)  Evaluation of average ethylene production 

produced by plants at different positions from the central delivery pipe.  (D)  Evaluation 

of average ethylene production produced by plants at different positions from the pump.  

n=30.  Means ±SE.  * P≤0.05 between 2.17 and 2.73 m positions.  
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Figure 8.  Ethylene measurements from Plant Set 2, analysis 2.  (A)  Evaluation of 

temperature effect on plants exhibiting foliar ethylene production.  Potentially stress-

induced ethylene production is indicated by filled symbols.  (B)  Evaluation of light 

intensity effect on plants exhibiting foliar ethylene production.  Potentially stress-induced 

ethylene is indicated by filled symbols.  (C)  Evaluation of average ethylene production 

produced by plants at different positions from the central delivery pipe.  (D)  Evaluation 

of average ethylene production produced by plants at different positions from the pump.  

n=30.  Means ±SE.  No statistical significance was found for any of the evaluations.  
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Plant Set 3:  Two plants for both the first and second system analyses were found 

to have produced potentially stress-induced ethylene (twice the system average of 20.25 

and 42.06 pl·g
-1

·min
-1

).  The average ethylene production for plants relative to the central 

delivery pipe (0.46, 0.81, and 1.14 m) for the first analysis showed no statistical 

significance between the three positions (when compared to each other) with P-values 

ranging from 0.11 to 0.41 (Fig. 9C).  However, there was a small increase in average 

ethylene production for the plants at the 1.14 m position (with average of 28.13 pl·g
-

1
·min

-1
) compared to the other two positions (0.46 m with an average of 15.54 pl·g

-1
·min

-1
 

or 0.81 m with an average of 17.08 pl·g
-1

·min
-1

).  For the second analysis, no statistical 

significance between the three positions (when compared to each other) was shown with 

P-values ranging from 0.18 to 0.57 (Fig. 10C).  However, there was a small increase in 

average ethylene production for the plants at the 1.14 m plants (with average of 53.72 

pl·g
-1

·min
-1

) compared to the other two positions (0.46 m with an average of 39.91 pl·g
-

1
·min

-1
 or 0.81 m with an average of 32.79 pl·g

-1
·min

-1
).      

The average ethylene production for plant positions relative to the pump (0.49, 

1.04, 1.6, 2.17, and 2.73 m) for the first analysis showed no statistical significance 

between the five positions (when compared to each other) with P-values ranging from 

0.26 to 0.80 (Fig. 9D).  However, there was an increase in average ethylene production 

for plants at the 0.49 m position (with average of 28.80 pl·g
-1

·min
-1

) compared to the 

other positions of 1.04, 1.6, 2.17, and 2.73 m (with averages of 16.51, 21.54, 18.78, and 

15.61 pl·g
-1

·min
-1

).  For the second analysis, a statistical significance was shown between 

the 1.04 and 2.73 m positions (P=0.04, Fig. 10D) and the 1.6 and 2.73 m positions 

(P=0.01, Fig. 10D).  No other position comparison had a statistical significance, with P-
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values ranging from 0.10 to 0.87 (Fig. 10D).  However, there was an increase in average 

ethylene production for the plants at the 0.49, 1.04, 1.6, and 2.17 m positions (with 

averages of 49.71, 45.52, 37.43, and 58.55 pl·g
-1

·min
-1

) compared to the 2.73 m position 

(with average of 20.93 pl·g
-1

·min
-1

).    
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Figure 9.  Ethylene measurements from Plant Set 3, analysis 1.  (A)  Evaluation of 

temperature effect on plants exhibiting foliar ethylene production.  Potentially stress-

induced ethylene production is indicated by filled symbols. (B)  Evaluation of light 

intensity effect on plants exhibiting foliar ethylene production.  Potentially stress-induced 

ethylene is indicated by filled symbols. (C)  Evaluation of average ethylene production 

produced by plants at different positions from the central delivery pipe.  (D)  Evaluation 

of average ethylene production produced by plants at different positions from the pump.  

n=30.  Means ±SE.  No statistical significance was found for any of the evaluations. 
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Figure 10.  Ethylene measurements from Plant Set 3, analysis 2.  (A)  Evaluation of 

temperature effect on plants exhibiting foliar ethylene production.  Potentially stress-

induced ethylene production is indicated by filled symbols. (B)  Evaluation of light 

intensity effect on plants exhibiting foliar ethylene production.  Potentially stress-induced 

ethylene is indicated by filled symbols. (C)  Evaluation of average ethylene production 

produced by plants at different positions from the central delivery pipe.  (D)  Evaluation 

of average ethylene production produced by plants at different positions from the pump.  

n=30.  Means ±SE.  * P≤0.05 between 1.04 and 2.73 m positions, and + P≤0.05 between 

1.6 and 2.73 m positions. 
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 Once the average ethylene production measurements were determined for the 

systems, we concluded that the position from the pipe or pump could be used to indicate 

potentially stress-induced ethylene plants.  Our results showed that the position from the 

pipe or pump was about the same for all systems in their average ethylene production.  

From the average ethylene production at different positions, the change in average 

ethylene production at different positions could be explained by the plants that produced 

twice the average production (potentially stress-induced).  Without these potential stress-

induced results, all the systems would have been about the same.  This leads to the 

conclusion that plants with elevated ethylene can be identified and can be measured 

within a system.   

For the statistical significance found in Plant Set 2, analysis 1 (P=0.05), the 2.73 

m position produced the least amount of average ethylene with a large standard deviation.  

The 2.17 m position did not have a large standard deviation, but the average ethylene 

production was more consistent than the 2.73 m position when compared to all other 

positions.  The statistical significance can be attributed to the 2.73 m position having a 

lower average ethylene production than all the other positions.  For Plant Set 3, analysis 

2, there were 2 statistical significances found, both involving the 2.73 m position with 

positions 1.04 and 1.60 m.  Potentially stress-induced plants were not involved with any 

of the 3 positions for this analysis leading to the conclusion that something is affecting 

the 2.73 m position.  This result can also be correlated back Plant Set 2, analysis 1 where 

the 2.73 m position had a statistical significance to the light measurement for this 

particular analysis (Table 3) in which once the potentially stress-induced ethylene 

measurements were taken out, a significance was found.  The overall results from 
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Experiment 1 show that measurements of ethylene production can help pin-point plants 

that are being affected by the hydroponic systems. 
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Experiment 2: Ethylene and Growth and Yield Production of Strawberry Plants Grown in 

a Hydroponic System with Normal Drainage 

 

      Once the system-wide analyses were done to determine the ethylene 

production of strawberry plants within the hydroponic systems, we turned our attention to 

the growth and yield of the plants.  Since these measurements were done a year later, a 

system-wide analysis was done to determine potentially stress-induced positions within 

the system and to make sure that the system was acting the same way as the previous 

year.  The average ethylene production from plants located at the same distance from the 

central delivery pipe (10 plants/position) or pump (6 plants/position) was determined. 

To determine whether the hydroponic system had an effect on growth and yield 

production of the strawberry plants under normal drainage, average base-line 

measurements were taken of flower bud number, inflorescence number, crown number, 

and radius of the strawberry plants (cm). 

Plant Set 4: The average ethylene production for the entire system was 17.98 pl·g
-

1
·min

-1
 with ethylene production ranging from 4.86 to 64.84 pl·g

-1
·min

-1
.  Three plants 

within the system were found to have produced potentially stress-induced ethylene (twice 

the system average).  The average ethylene production for plant positions relative to the 

central delivery pipe (0.46, 0.81, and 2.73 m) showed no statistical significance between 

the three positions (when compared to each other) with P-values ranging from 0.43 to 

0.67 (Fig. 11A).  However, there was a small increase in average ethylene production for 

the plants at the 0.46 m position (with average of 20.96 pl·g
-1

·min
-1

) compared to the 

other two positions (0.81 m with an average of 17.29 pl·g
-1

·min
-1

 or 1.14 m with an 

average of 15.70 pl·g
-1

·min
-1

). 
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The average ethylene production for plant positions relative to the pump (0.49, 

1.04, 1.6, 2.17, and 2.73 m) was found to have a statistical significance between the 1.04 

and 2.73 m positions (P=0.04).  No other position comparison had a statistical 

significance, with P-values ranging from 0.06 to 0.63 (Fig. 11B).  However, there was an 

increase in average ethylene production for the plants at the 2.73 m position (average of 

31.20 pl·g
-1

·min
-1

) compared to the other positions of 0.49, 1.04, 1.6, and 2.17 m (with 

averages of 13.27, 10.26, 15.97, and 18.14 pl·g
-1

·min
-1

).   

Plant Set 5:  The average flower bud number was 2.0 for the first month, 

increased to 4.0 for the second month, and decreased to 1.6 for the third month.  The 

average inflorescence number increased throughout the months going from 1.7 for the 

first month, 3.8 for the second month, and 10.3 for the third month.  The average crown 

number increased throughout the months going from 1.1 for the first month, 1.3 for the 

second month, and 1.5 for the third month.  The average plant radius decreased from 10.8 

for the first month to 10.4 for both the second and third month.   
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Figure 11.  Ethylene measurements from from Plant Set 4.  (A)  Evaluation of average 

ethylene production produced by plants at different positions from the central delivery 

pipe. (B)  Evaluation of average ethylene production produced by plants at different 

positions from the pump.  n=33.  Means ±SE.  * P≤0.05 between 1.04 and 2.73 m 

positions 
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Table 4.  Average measurements of different growth variables from strawberry plants 

grown in a hydroponic system during the Spring of 2003 (Flower bud, inflorescence, 

crown, and plant radius).  n=30. Means ±SE.  

     

 

 

 

2/3 

 

3/10 

 

4/7 

 

Flower bud # 

 

2 ± 0.40 

 

4.0 ± 0.33 

 

1.6 ± 0.31 

 

Inflorescence # 

 

1.7 ± 0.28 

 

3.8 ± 0.25 

 

10.3 ± 0.56 

 

Crown # 

 

1.1 ± 0.06 

 

1.3 ± 0.09 

 

1.5 ± 0.10 

 

Plant Radius (cm) 

 

10.8 ± 0.26 

 

 

10.4 ± 0.22 

 

10.4 ± 0.33 
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 Once the system-wide analysis was completed for Plant Set 4, the results were 

consistent with our previous findings from Experiment 1.  The distance from the pipe had 

comparable average ethylene production for the three positions, but the 0.46 and 0.81 m 

positions were higher due to each having a potentially stress-induced plant.  The distance 

from the pipe measurements did have a statistical significance between the 1.04 (which 

produced the least amount of average ethylene) and 2.73 m position.  The significance 

was probably due to to the 2.73 m position having both of the potentially stress-induced 

plants at this position.  Without these potentially stress-induced plants, a statistical 

significance would not have occurred.  We concluded the system was affecting the 

plants’ average ethylene production as the previous results (Experiment 1) indicated. 

 Since the system was affecting the plants as before, the base-line levels of bud 

number, inflorescence number, crown number, and plant radius was determined.  From 

our results measured over two months, the results were what we would have expected.  

The flower bud number increased and then decreased, due to the flower bud developing 

into fruit.  This can be seen by the inflorescence number where it continually rose and 

had a much higher number from the last measurement.  The plants went from blooming 

with flower bud to producing fruit which would be indicative of the yield increasing.  The 

crown number remained fairly constant because the time range for the measurements 

would not be enough for the plants to grow and produce extra crowns.  Finally, the plant 

radius stayed constant.  This result is somewhat surprising because the plants would be 

growing with time, but it could be that the plants had already grown to their maximum 

width when we first began to measure the plants and would not increase further.  From 

these base-line results we could then evaluate the effect of flooded plants.  
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Experiment 3: Ethylene and Growth and Yield Production of Strawberry Plants Grown in 

a Hydroponic System with Flooding 

 

Once the system-wide analyses and base-line levels of ethylene and growth and 

yield production were determined, we next looked at the effect of purposefully flooding 

the strawberry plants and how that would change their average ethylene and growth and 

yield production.  To evaluate the effect of flooding on the plants’ average ethylene 

production, two trays were flooded for 72 hrs and ethylene was measured at 24 hr 

intervals with a final measurement 24 hrs after the plants were allowed to have normal 

drainage.  To determine if a flooding event would have an effect on the growth and yield 

of the strawberry plants, half of a system was flooded and measurements for both the 

control (normal drainage) and flooded plants were taken on three separate dates. 

Plant Set 6:  The average ethylene production at the 0 time point was 30.84 pl·g
-

1
·min

-1
.  The average ethylene production decreased to 10.82 pl·g

-1
·min

-1
 after 24 hrs of 

flooding and then increased to 26.70 pl·g
-1

·min
-1

 and 57.56 pl·g
-1

·min
-1

 after 48 and 72 hrs 

of flooding.  The final measurement, 24 hrs after the plants returned to normal drainage, 

produced a decrease in ethylene production from the 72 hr time point to 44.33 pl·g
-1

·min
-1

 

(Fig. 12).   

  Plant Set 7:  For the growth and yield measurements, the flower bud number, 

crown number, and radius produced a statistical significance when the control was 

compared to the flooded for the February 3
rd

 measurements (P=0.01, P=0.03, and 

P=0.008, respectively) with no other statistical significance found.  For the March 10
th

 

measurements, the flower bud number and radius produced a statistical significance when 

the control was compared to the flooded (P=0.01 and P=0.03, respectively) with no other 
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statistical significance found.  For the April 7
th

 measurements, none of the measurements 

had a statistical significance between the control and flooded plants (Table 5). 
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Figure 12.  Average ethylene measurements of flooded leaflets from Plant Set 6.  Plants 

had an initial reading before flooding (0 time point), then 24, 48, and 72 hrs while 

flooded, and a final reading 24 hrs after water was allowed to drain (96 hr time point).  

All measurements were compared to the 0 time point.  n=6.  Means ±SE.   

* P≤0.05  
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Table 5.  Average measurements of different growth variables from control and flooded 

strawberry plants grown in a hydroponic system during the Spring of 2003 (Flower bud, 

inflorescence, crown, and plant radius).  Half the system was flooded on February 3
rd

 (5 

trays on the same side of the system) for 24 hrs.  All measurements were compared 

flooded to control.  n=15.  Means ±SE.  * P≤0.05   

    

 

 

 

Control 

 

Flooded 

 

Date 

 

2/3 

 

3/10 

 

4/7 

 

2/3 

 

3/10 

 

4/7 

 

Flower bud # 

 

3.7 ± 0.48 

 

6.5 ± 0.76 

 

3.0 ± 0.51 

 

5.9 ± 0.66* 

 

4.2 ± 0.45* 

 

2.4 ± 0.41 

 

Inflorescence # 

 

3.9 ± 0.35 

 

3.0 ± 0.26 

 

6.3 ± 0.73 

 

2.9 ± 0.42 

 

2.7 ± 0.19 

 

5.9 ± 0.52 

 

Crown # 

 

1.4 ± 0.13 

 

1.4 ± 0.16 

 

1.9 ± 0.17 

 

1.1 ± 0.07* 

 

1.3 ± 0.12 

 

1.7 ± 0.16 

 

Radius (cm) 

 

8.7 ± 0.42 

 

13.7 ± 0.51 

 

10.8 ± 0.56 

 

10.2 ± 0.33* 

 

11.3 ± 0.51* 

 

10.9 ± 0.71 
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 Once the base-line levels were determined for the hydroponic system (Experiment 

2), we looked at the effect of flooding the plants on ethylene production and growth and 

yield production.  The results for the average ethylene production showed that the initial 

reading (0 time point) had a similar average ethylene production as compared to all other 

experiments previously performed (approximately 30 pl·g
-1

·min
-1

).  After 24 hrs of 

flooding, the ethylene production decreased significantly (P=0.05).  The reason for the 

decrease is unknown.  At the 48 hr time point, the ethylene production increased to about 

the base-line level and at 72 hrs increased to almost twice the average ethylene base-line 

level.  The expected results would have been for the ethylene production to increase at 

the 24 hr time point and continue to increase up to the 72 hr time point.  The 96 hr time 

point decreased from the 72 hr time as would be expected because the water was allowed 

to drain and the plants could return to ambient conditions.   

Taking the flooding results and comparing back to previous findings (Experiment 

2), the only statistical significances that were found involved the 2.73 m position, and this 

position had lower average ethylene production compared to the other positions.  By 

combining the results from this experiment and previous experiments, the reason the 2.73 

m position produced significant differences when having a lower average ethylene 

production was because those plants were being flooded and our recording of the 

measurements were done at the beginning of the flooding. 

 The growth and yield data showed that flooding had an adverse effect on the 

plants.  From our results, the flower bud number for the control group acted as our base-

line results (Table 4), but the flooded plants had less flower buds over time with a 

statistical significance when control to flooded was compared (Table 5).  The 
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inflorescence number acted the same when the control and flooded were compared with 

no statistical significance between them.  Also, the inflorescence number was consistent 

with the base-line levels (Table 4).  The crown number produced a statistical significance 

on the first date measured, but this was due to a large range for the control group as 

compared to the flooded because the control and flooded plants acted the same as our 

base-line levels (Table 4).  However, the radius of the plants produced a statistical 

significance.  Even though the plants from both the control and flooded acted like our 

base-line plants (Table 4), the control group grew larger than the flooded group.  From 

these results, we concluded that the flooding especially affected the flower bud number 

and radius of the plants.  This can be seen from the flooded plants being on average larger 

in flower bud number and radius during the first measurement, and being smaller after 

the last measurement.  Because the plants were flooded for only a short time, long term 

affects on the plants won’t be seen in this experiment, but even with short term flooding, 

the state of the plant can be affected, especially for the yield of the plant which was 

shown in flower bud number decreasing, which turns into yield, and the robustness of the 

plant decreasing, which is shown through the radius of the plant or the smaller the plant, 

the less yield that can be produced. 

 

 

 

 

 

 

 

 

 

 

 

 



58 

Gene Expression Analysis 

 

RNA Isolation:  After determining ethylene levels physiologically, attempts to acquire 

good quality RNA for ACS isolation failed in this investigation.  Total RNA isolation was 

attempted by three different protocols: Purescript RNA Isolation Kit by Gentra Systems, 

RNEasy Plant Mini Kit by Qiagen, and TRI REAGENT by Sigma.  After each kit was 

used, the quantity and purity was determined using a ND-1000 spectrophotmeter.  Each 

kit produced little to no yield from the strawberry leaflets (confirmed by low O.D. 260 

and O.D. 260/280 measurements).  After the Purescript protocol was performed and RNA 

products obtained, RT-PCR was performed using the Fa-RP primers (Table 1) for the 

strawberry sample and no bands were present (Fig. 13A).  However, bands were present 

with the Arabidopsis sample (Fig. 13A) using the Fa-S18 rRNA primers (Table 1).  The 

RNEasy protocol showed faint bands of RNA (Fig. 13B), but when RT-PCR was 

performed with the products using the Fa-RP primers (Table 1), no bands were present 

(data not shown).  The TRI REAGENT protocol did not show any bands after the kit was 

used (Fig. 13C) and RT-PCR was not performed.   
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A)   1         2        3        4                        B)         1    2                           C)     1    2 

                                                                                    

 

 

Figure 13.  Analysis of RNA isolation using: (A) DNA from first using the Purescript 

RNA Isolation Kit and then RT-PCR.  Lane 1-Strawberry, Lane 2-Ladder (100 bp DNA 

Step Ladder, Promega Corp., Madison, WI, USA), Lanes 3 and 4-Arabidopsis.  Red 

arrow indicates the 500 kb band of the ladder, with the Arabidopsis bands approximately 

at the 396 bp position.  (B) RNA from the RNEasy Plant Mini Kit.  Lane 1 and 2-

Genomic RNA. Bands are shown by red arrow.  (C) RNA from the TRI REAGENT 

protocol.  Lanes 1 and 2-Genomic RNA.  For both (B) and (C), a ladder was not used 

because our goal was to determine if any bands would be present with further extractions 

to be done if bands were present that looked correct. 
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Northern Dot Blot:  A Northern Dot Blot procedure was conducted using RNA from the 

RNEasy sample with the 18S ribosomal RNA protein probe.  Both Arabidopsis and 

strawberry had two blots each that were probed on the same blot paper.  Since no 

sequence exists for a strawberry ACS sequence, this was a preliminary experimental 

procedure to determine if northern blotting would work to evaluate gene expression in 

strawberry using a probe based on the conserved region of the ACS gene.    

 

 

 

 
 

 

Figure 14.  Northern dot blot using the North2South procedure.  Total RNA was 

extracted using the CelLytic™ PN protocol (Sigma, St. Louis, MO, USA) followed by 

the North2South Direct HRP Labeling and Detection Kit (Pierce, Rockford, IL, USA) 

protocol and probed with a probe sequence for 18S Arabidopsis rRNA of 5’-AATGAG 

TACAATCTAAATCCCTTAACGAGGATCCATTGGAGGGCAAGTCTGGTGC-3’.  

The two blots at the top of the paper were of Arabidopsis and the two blots at the bottom 

were of strawberry.  

 

 

 

 

 

 

 

Arabidopsis 

Strawberry 
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From the results, attempts to isolate RNA using various protocols were 

unsuccessful.  Even though the spectrophotometric measurements showed RNA was 

present within our samples, actual visualization confirmation was not able to be achieved.  

We performed RT-PCR for the ACS gene with the Purescript protocol and the positive 

controls showed that the protocol worked, but our sample for the strawberry ACS gene 

showed no bands (Fig. 13A).  The RNEasy Plant Mini Kit protocol produced faint bands 

for genomic RNA (Fig. 13B), but RT-PCR was unsuccessful (data not shown).  The TRI 

REAGENT protocol did not isolate any genomic RNA and RT-PCR was not performed 

(Fig. 13C). 

 We also evaluated a northern dot blot procedure to see if the 18S probe would be 

able to visualize strawberry RNA.  Our probe showed that 18S-RNA was present, as the 

intensity of the blot was about the same as our control with Arabidopsis.  However, given 

the quality of the strawberry RNA, this experiment did not progress further and the 

protocol to isolate a better quantity of RNA needs to be refined (Fig. 14). 
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CHAPTER V 

 

Discussion 

 

With the worldwide phaseout of methyl bromide as a soil fumigate, the use of 

hydroponic systems has rapidly increased as an economic alternative for the growth of 

many horticulturally-important crops (Environmental Protection Agency, 1997; 

Carpenter et al., 2000; VanSickle et al., 2000; Federal Register, 2004), especially 

strawberry, a crop that has been particularly dependent upon methyl bromide fumigation 

(Stanley, 1998).  With the phase out of methyl bromide and an increase in the use of 

hydroponic systems, along with little information on the affect of hydroponics on plants, 

this study was undertaken to demonstrate that measurements of ethylene production from 

leaves of hydroponically-grown strawberry plants could be used as an early indicator of 

plant stress.  

Since ethylene production is known to increase due to various factors within 

plants, we wanted to narrow down the scope of the exact cause of stress on plants within 

our hydroponic systems and to demonstrate that specific areas of the system can be 

measured to give an early warning for potentially stressed plants so that the problem can 

be rectified before yield is affected.  The reported data suggest that sampling time could 

be a significant factor when evaluating ethylene production of strawberry plants under 

our experimental conditions.  Circadian rhythms for ethylene production have been 

reported for sorghum (Finlayson et al., 1998), cotton (Jasoni et al., 2000), and 

Arabidopsis thaliana (Thain et al., 2004).  For these species, ethylene production peaks 

during midday and is lowest during the dark cycle, a rhythm that may reflect a midday 

temperature optimum for ethylene production.  A temperature optimum of 30°C has been 
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reported for ethylene production by apple fruit and mung bean hypocotyls (Yu et al., 

1980).  Temperatures above 35°C often represent heat-stress levels that inhibit ethylene 

production (Yu et al., 1980), however the temperature optimum and sensitivity to higher 

temperature is cultivar-dependent.  For example, Balota et al. (2004) found increased 

ethylene production at temperatures as high as 38°C for wheat seedlings.  In addition, 

Finlayson et al. (1998) found that while both light and temperature cycles were required 

to maintain circadian rhythm in sorghum, a SD plant, and temperature cycles can 

override the light signal in controlling circadian ethylene production.  Therefore, their 

results suggest a circadian rhythm and that fluctuation in temperature was likely the 

critical factor in regulating ethylene production.  Since the average ethylene production 

values attributed to sampling time were lower than the values used to indicate stress 

conditions, we conclude that the high values observed for some plants were caused by an 

inherent stress to the plant rather than by a circadian rhythm.  Also, the temperature range 

during the experimental time course did not reach heat-shock conditions, and no decline 

in ethylene production was observed at higher temperatures.  These data indicate that 

system-wide analysis should be conducted within a consistent time period to minimize 

differences due to a circadian effect even though with our results no correlation was 

found for light or temperature and ethylene production over an inconsistent time period.  

For our system design, higher ethylene levels occurred in plants within areas that 

may have had inconsistencies in nutrient delivery or drainage pattern (manifested as 

pump pressure or drainage control by the valve on the delivery pipe).  Higher flow rate 

may lead to excessive watering, which contributes to accumulation around the roots, 

especially for plants located at the lower end of the trays.  However, the observed pattern 
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of stress-induced ethylene production may represent an edge effect where plants along 

the perimeter receive more mechanical stimulation and show a wound-induced ethylene 

response.  In plant set 7, plants that averaged an increase in ethylene also showed a 

decrease in flower number and plant radius, demonstrating ethylene analysis as a method 

for predicting negative impacts on yield.  When plants were flooded over a period of 

time, ethylene production increased in a manner consistent with increased ethylene levels 

observed in flooded tomato plants (English et al. 1995).  Hypoxic conditions negatively 

affect the yield in horticulturally-important crops grown hydroponically (Urrestarazu and 

Mazuela, 2005).  Urrestarazu and Mazuela (2005) report than even small changes in 

oxygen can be limiting for crops such as sweet pepper and melon, and note that 

increasing oxygen content by supplying an oxygen generator (potassium peroxide) 

through fertigation increased yield in these plants.  They conclude that daily changes in 

oxygen content and watering level may be subtle, but could reflect a significant change in 

yield over the life of the plants.  Our results suggest that measurements that indicate 

increased ethylene production may reflect inconsistencies within the system, such as 

reduced oxygen to the roots that could then be evaluated and adjusted to increase overall 

crop yield.  

Besides trying to gain an understanding of how the hydroponic systems affected 

the strawberry plants physiologically by measuring ethylene, we also tried to determine 

how ethylene was regulated by the plant itself, specifically through the control of the ACS 

gene.  The pathway for ethylene has been studied extensively (Yang and Hoffman, 1984) 

and the level of ACS activity has been shown to closely parallel the level of ethylene, 

meaning if ACS increases, then ethylene increases (Chae et al., 2003).  But, these factors 
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have been studied mostly with Arabidopsis and not much work has been attempted with 

strawberry plants.  According to Manning (1994), little information is available to 

characterize the ripening (in which ethylene is a major contributor) of non-climacteric 

(lack of increased respiration and ethylene production as the fruit changes color) fruits, 

such as strawberry, at the molecular level because of difficulties encountered in obtaining 

suitably pure RNA (Manning, 1994).  This is consistent with our results in obtaining 

suitably pure strawberry RNA, even though our experiments dealt with the leaves and not 

with the fruit itself.  Using three different RNA isolation protocols with strawberry, we 

were unable to obtain any decent amount of RNA, if at all, and why this occurred is 

unknown.  According to Manning (1994), some possible explanations for the difficulties 

could be that strawberry fruits have been found to have temporary disappearance of 

mRNA in immature fruit and developing strawberry has more mRNA changes than any 

other fruit (Manning, 1994).  For our studies, we did not use the fruit, but, if the fruit has 

many RNA changes, then the other parts of the plant may also have an increased change 

in mRNA levels as compared to other fruit plants.   

Another possibility leading to difficulties in obtaining RNA could be RNase.  

Plants are known to alter the levels of RNase activities in response to a variety of 

endogenous and exogenous stimuli and so the induction of RNases specific for mRNA 

degradation can play a part in plant responses (Yen and Green, 1991).  Perhaps in our 

studies RNases contributed significantly to the results of not being able to obtain suitable 

RNA.  The exact reason for our difficulties in obtaining suitably pure RNA from 

strawberries needs to be investigated further so that the ACS role within strawberries can 

be determined more throughly.     
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Since a good quantity of total RNA was not able to be obtained through 

conventional kits, we then performed a northern dot blot.  Here we used a probe for 18S 

ribosomal protein (which should be highly conserved) from Arabidopsis and did produce 

a positive result for the strawberry blot.  This at least demonstrated that RNA was present 

within the leaves and further work is possible to determine the exact reason why RNA 

was not able to be obtained. 
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CHAPTER VI 

 

Summary and Conclusion 

 

 With the use of hydroponic systems as a rapidly increasing economic alternative 

for the growth of many horticulturally-important crops (Environmental Protection 

Agency, 1997; Carpenter et al., 2000; VanSickle et al., 2000; Federal Register, 2004), the 

need to understand the best way to utilize this technique has become more important.  

Strawberry has not been studied extensively and in this investigation several hydroponic 

systems that contained various cultivars of strawberries were constructed over several 

years to determine the effect of the hydroponic systems on the strawberry plants by 

measuring the average ethylene production from various positions within the systems.  

Light, temperature, position from the central delivery pipe, and position from the pump 

were the first variables that were considered for an overall assessment of the plants’ 

response while grown in the hydroponic systems.  Next, the mechanism of ethylene 

production by plants was attempted in strawberry plants because not much work has been 

conducted with this plant species. 

 The conclusion from this investigation was that measurements of ethylene 

production could be used as an early indicator to determine potentially stress-induced 

plants within a hydroponic systems  This was shown through the ambient conditions from 

light and temperature not producing an effect that would hamper the results of trying to 

determine where potentially stress-induced ethylene production occurred within the 

hydroponic systems.  On the other hand, the position from the pipe or pump was shown 

to be able to be used to indicate potentially stress-induced plants due to the variations 

within the systems.  How flooding affected the plants was then determined through actual 
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flooding of the plants and the plant’s internal mechanism of ethylene production was 

investigated.  The pathway of ethylene production is well understood, but the regulation 

of this pathway needs to be studied further.  Our results to understand this regulation 

better were inconclusive because RNA was not able to be obtained and why this occurred 

is not understood. 

 Overall, the findings from all the experiments showed that ethylene production 

measurements can be a technique used to pin-point unhealthy plants.  If these plants can 

be found early, then the cause of the potentially stress-induced ethylene can be 

determined and steps can be taken to fix the reason for the plants stress-induced ethylene.  

The techniques used in this investigation hopefully help to shed some light on the 

complex mechanisms that plants employ when not at optimal homeostasis and in turn 

allow hydroponics to become an even greater economic alternative to the existing 

techniques already in use. 
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