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ORIGINAL INVESTIGATION Open Access

Dysglycemia induces abnormal circadian blood
pressure variability
Sivarajan Kumarasamy2†, Kathirvel Gopalakrishnan2†, Dong Hyun Kim2, Nader G Abraham2, William D Johnson1,
Bina Joe2 and Alok K Gupta1*

Abstract

Background: Prediabetes (PreDM) in asymptomatic adults is associated with abnormal circadian blood pressure
variability (abnormal CBPV).

Hypothesis: Systemic inflammation and glycemia influence circadian blood pressure variability.

Methods: Dahl salt-sensitive (S) rats (n = 19) after weaning were fed either an American (AD) or a standard (SD)
diet. The AD (high-glycemic-index, high-fat) simulated customary human diet, provided daily overabundant
calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat) mirrored desirable
balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose
(FG), adipokines (leptin and adiponectin), and proinflammatory cytokines [monocyte chemoattractant protein-1
(MCP-1) and tumor necrosis factor-a (TNF-a)] were measured. Rats were surgically implanted with C40
transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP) and heart rate (HR) were recorded by
telemetry every 5 minutes during both sleep (day) and active (night) periods. Pulse pressure (PP) was calculated
(PP = SBP-DBP).

Results: [mean(SEM)]: The AD fed group displayed significant increase in body weight (after 90 days; p < 0.01).
Fasting glucose, adipokine (leptin and adiponectin) concentrations significantly increased (at 90 and 172 days; all p
< 0.05), along with a trend for increased concentrations of systemic pro-inflammatory cytokines (MCP-1 and TNF-a)
on day 90. The AD fed group, with significantly higher FG, also exhibited significantly elevated circadian (24-hour)
overall mean SBP, DBP, PP and HR (all p < 0.05).

Conclusion: These data validate our stated hypothesis that systemic inflammation and glycemia influence
circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship
between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and
abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia
and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic
inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin
system) which generate abnormal CBPV.

Keywords: caloric excess, adipose tissue dysfunction, insulin resistance, renin-aldosterone-angiotensin system, circa-
dian blood pressure variability, adipokines, leptin, adiponectin, pro-inflammatory cytokines, MCP-1, TNF-α, early CVD
risk
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Background
Obesity is universally associated with excess adipose tis-
sue distribution [1,2]. Excess adipose tissue in ectopic
locations: especially in the visceral compartment, liver
and muscle, is dysfunctional. The secreted adipokines
(including cytokines and chemokines) mediating auto,
para and endocrine actions, alter the dynamic homeo-
static milieu to enhance systemic inflammation, which
results in dysglycemia, dyslipidemia, and/or a loss of
control of blood pressure [3-6]. These early changes are
clinically manifest as prediabetes and prehypertension,
in advance of the chronic changes that subsequently (at
times10-15 years later) lead to a diagnosis of diabetes
mellitus and hypertension [4,7]. The early increase in
pro-inflammatory and pro-coagulant factors, reactive
oxygen species, dysglycemia, dyslipidemia, and loss of
blood pressure control, are functionally detectable as
abnormal circadian blood pressure variability and
endothelial dysfunction [8].
Asymptomatic overweight adults with prediabetes,

when compared to overweight adults with normal glu-
cose, were observed to have abnormal circadian blood
pressure variability [9]. In a separate study involving
asymptomatic obese adults, only those with prediabetes
and a highly potentiated systemic inflammation, (in
comparison to a matched obese group with normal
fasting glucose and marginally elevated systemic
inflammation), displayed not only abnormal circadian
blood pressure variability, but also demonstrated
endothelial dysfunction [8]. Prediabetes and prehyper-
tension in otherwise healthy adults singly, or together
(co-existing prediabetes and prehypertension) place the
individual on a pathway with potential for accelerated
cardiovascular adverse events, including sudden death
[10-13].
These results led us to formulate our overall hypoth-

esis that short term caloric excess results in adipose
tissue deposition. The excess ectopic adipose tissue
alters its adipokine secretion menu tipping the pro-
inflammatory and anti-inflammatory balance in favor
of inflammation (leading to altered glycemia and lipi-
demia) and potentiating the elements of the renin-
angiotensin-aldosterone system (resulting in a loss of
blood pressure control). This latent high cardiovascu-
lar risk is clinically manifest as prediabetes and/or
prehypertension and functionally as abnormal circa-
dian blood pressure variability and/or endothelial
dysfunction.
Using an animal model with a permissive genetic

background we tested the hypothesis that systemic
inflammation and glycemia influence circadian blood
pressure variability.

Subjects & Methods
Ethics Statement
All animal procedures and protocols used in this report
were approved by the University of Toledo Health
Science Campus Institutional Animal Care and Use
Committee (IACUC protocol numbers 105276, 104573
and 104045).

Animals
The animal experiments were performed at the Physio-
logical Genomics Laboratory, Department of Physiology
and Pharmacology, University of Toledo College of
Medicine. Dahl salt-sensitive (S) rats (n = 19) from the
colony maintained at the University of Toledo College
of Medicine and Life Sciences, Toledo, Ohio were used.
These rats with a genetically permissive background
allowed us to simulate the changes that occur with the
feeding of an American diet and compare them to a
standard diet. We were able to demonstrate the early
effects of caloric excess, the metabolic changes and their
physiologic consequences. The rats were weaned at 30
days and fed either an American diet (AD) or a standard
diet (SD) for the duration of the study (six months).

Diets
American diet (AD; Teklad Custom TD.08811; high-gly-
cemic-index, high-fat) was designed to simulate the cus-
tomary every day human diet which due to its
overabundant calories on a daily basis, over time, leads
to body weight gain. The standard diet (SD; TD.08810;
low-glycemic-index, low-fat) was designed to mirror the
desirable balanced human diet which would sustain
growth and maintain body weight.

Body weight
Individual body weight of rats in the AD and SD fed
groups was measured at 90,120,135, 160 and 172 days
of age. A group mean(SEM) body weight was reported
at these time points.

Biochemical analysis
Fasting blood glucose
The blood glucose concentrations were measured using
a commercially available ‘One Touch Ultra Smart’ kit
according to the manufacturer’s instructions. Rats were
fasted overnight and individual blood samples were col-
lected at age 90 and 172 days. The group (AD or SD)
mean(SEM) fasting glucose were calculated from indivi-
dual measurements and were reported.
Cytokine analyses
All the cytokine analysis (leptin, adiponectin, monocyte
chemoattractant protein-1 and tumor necrosis factor)
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were performed using a Multiplex Adipokine/Adipocyte
Panels (Assay Gate, Inc, Ijamsville, MD, USA) according
to the manufacturer’s instructions. The blood samples
were collected for cytokine analysis from individual rats
included in the AD and SD fed groups. The individual
mean of duplicate measures from each individual rat
were used to report the group mean(SEM) concentra-
tion. At the end of study all the animals were eutha-
nized. Individual body weights, heart and kidney weights
were recorded. A group mean(SEM) heart and kidney
weight was reported as a surrogate measure for ectopic
fat deposition.

Blood pressure measurement
Systolic blood pressure, diastolic blood pressure and
heart rate were obtained by using a telemetry system
(Data Sciences International, St. Paul, MN) as previously
detailed [14]. Pulse pressure was calculated (PP = SBP-
DBP). In brief, 30 day old rats were weaned and fed
either an AD or a SD. When the rats were 80 days old,
C40 telemetry probes were surgically implanted through
their femoral arteries and advanced into their lower
abdominal aorta. The rats were then allowed to recover
from surgery for 4 days, before the transmitters were
switched on for recording BP and HR. All statistical
analyses were conducted as previously reported [14].

Statistical Analysis
Data were analyzed using the student’s t-test to assess
statistical significance. Data are presented as the mean
(standard error of mean). Statistical significance was
reported as p ≤ 0.001, ≤ 0.01 or ≤ 0.05.

Results
Body weight
Dahl salt-sensitive (S) rats (n = 19) were weaned and fed
either an American diet (AD: designed to promote
weight gain; n = 10) or a standard diet (SD: designed to
maintain normal growth weight; n = 9) for six months.
There were no significant differences in the mean body
weight of the group fed with the AD in comparison
with the group fed SD at 90 days. A significant differen-
tial increase in mean body weight (p < 0.01 at 120 days,
p < 0.001 at 135 days, p < 0.001 at 160 days) then
ensued in the AD fed group, which persisted until the
end of the experiment (172 days; p < 0.001). Figure 1
details the body weight changes.

Glycemia
Fasting glucose assessments were obtained with a One
Touch Ultra Smart kit at two different time points: 90
and 172 days of age. At the age of 90 days the AD fed
group displayed significantly increased fasting blood glu-
cose (FBG) 90.1(5.38) mg/dL compared to SD fed group

63.7(1.98) mg/dL, (p < 0.001). The AD fed group at the
age of 172 days exhibited an even higher mean FBG 102
(5.4) mg/dL (compared to SD fed group 87(2.33) mg/dL,
p < 0.05). Fasting serum glucose concentrations above
100 mg/dL in humans are associated with a diagnosis of
prediabetes, a recognized pre-disease state with high
covert risk of cardiovascular disease, and the potential
for conversion to diabetes mellitus. Figure 2 demon-
strates fasting blood glucose in the AD and SD fed rats.

Adipokines
All the cytokine analysis (leptin, adiponectin, monocyte
chemoattractant protein-1 and tumor necrosis factor)
were performed using a Multiplex Adipokine/Adipocyte
Panels (Assay Gate, Inc, Ijamsville, MD, USA). A signifi-
cant increase in serum leptin (an index of AD induced
escalation in adiposity) in the group fed with AD (in
comparison to the group fed SD) was seen at both 90 (p
< 0.01) and 172 days of age (p < 0.001). This figure also
demonstrates the beginning of an increase in serum adi-
ponectin with AD at three months, which attained sig-
nificance (p < 0.01) at the end of the study. This is
indicative of a functional adipose tissue increasing the
secretion of its major adopokine, adiponectin with the
increase in adipose tissue mass. Figure 3 depicts the adi-
pocyte secreted adipokines: leptin and adiponectin.

Figure 1 Body weight in AD and SD fed rats: Mean(SEM)
change with time.

Figure 2 Glycemia in AD and SD fed rats: Mean(SEM) fasting
blood glucose change.

Kumarasamy et al. Cardiovascular Diabetology 2011, 10:104
http://www.cardiab.com/content/10/1/104

Page 3 of 10



Systemic inflammation
An initial increase in the systemic pro-inflammatory
cytokines, MCP-1 and TNF-a in the AD fed group (in
comparison to the group fed SD) at three months, sub-
sequently declined at end of the study. Although the
means from the groups did not reach significance at
either time point, this increase is indicative of ectopic
adipose tissue deposition, adipose tissue dysfunction and
an augmented systemic pro-inflammatory secretory
activity. Figure 4 details the proinflammatory cytokines:
MCP-1 and TNF-a

Organ mass
After being euthanized at the end of the experiment,
total body and organ (heart and kidney) weights were
obtained. AD fed group showed significantly (p < 0.001
and p < 0.05) increased heart and kidney weights, when
compared with SD fed rats. The higher organ weights
denote ectopic fat deposition and the likely consequent
organ dysfunction. Figure 5 shows the heart and kidney
weight of the AD and SD fed rats.

Circadian blood pressure variability
The blood pressure was recorded by radio-telemetry
every five minutes for several days and nights at two
different time points (TP-1: age 85-94 days and TP-2:
106-116 days). The daily average for each day for TP-1
(days 85-94) and TP-2 (days 106-116) in each AD fed
rat was significantly higher (p < 0.001) than each SD
fed rat. The overall mean(SEM) of 2318 and 2782 indi-
vidual measures obtained during the TP-1 and TP-2
from each member rat in the AD and the SD fed
groups, respectively, were used to report the results
below.
The American diet fed rats exhibited significantly

increased overall mean systolic and diastolic blood pres-
sures compared with standard diet fed for all the time
points: TP-1 SBP 165.05(0.17) vs. 148.23(0.14) mm Hg, p
= 0.02; DBP 124.89(0.14) vs. 111.87(0.13) mm Hg, p =
0.02; TP-2 SBP 174.78(0.15) vs. 153.14(0.12) mm Hg, p =
0.01; DBP 132.34(0.13) vs. 116.63(0.11) mm Hg, p = 0.03.
The mean night time (active period) systolic and dia-

stolic pressures in the AD fed group were significantly
higher when compared with SD fed group: TP-1 SBP
168.91(1.07) vs. 151.40(0.96) mm Hg, p = 0.02; DBP
128.06(0.78) vs. 114.78(0.86), p = 0.03; TP-2 SBP 173.86
(1.69) vs. 152.58(1.06) mm Hg, p = 0.02; DBP 131.56
(1.40) vs. 116.45(0.76) mm Hg, p = 0.04.
The mean day time (sleep period) systolic and diasto-

lic pressures in the AD fed group were significantly
higher when compared with SD fed group: TP-1 SBP
160.94(1.01) vs. 145.23(0.95) mm Hg, p = 0.02; DBP
121.57(0.89) vs. 109.1(0.91) mm Hg, p = 0.03; T2 SBP
175.42(0.66) vs. 153.57(0.38) mm Hg, p = 0.02; DBP
132.83(0.54) vs. 116.62(0.35) mm Hg, p = 0.03.
The night time increase in mean SBP (17.51 mm Hg)

and DBP (13.28 mm Hg) in AD fed rats during TP-1
not only persisted, but was higher during TP-2 SBP
(21.28 mm Hg) DBP(15.11 mm Hg).

Figure 3 Adipokines in AD and SD fed rats: Mean(SEM) Leptin
and Adiponectin change.

Figure 4 Pro-inflammatory cytokines in AD and SD fed rats:
Mean(SEM) MCP-1 and TNF-a change.

Figure 5 Organ weights in AD and SD fed rats: Heart and
Kidney.
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Systemic inflammation and fasting glucose influence
circadian blood pressure variability
Figures 6, 7 and 8 detail circadian blood pressure on day
90 when enhanced systemic inflammation and increased
fasting blood glucose was demonstrated in the AD fed
rats.
Figure 6 compares SBP in the AD fed group with the

SD fed group during one 24 hour period (day 90). Each
one of the 288 SBP measurements in the AD fed group
was higher than the SD fed group over the course of day
90, p = 0.02. The mean MCP-1 (944.6 pg/ml vs. 848 pg/
ml) and TNF-a (45.1 vs. 38.5 pg/ml) were higher in the
AD fed group when compared with the SD fed group on
day 90, but did not reach significance (as shown in Figure
4). A fasting glucose measure performed on day 90

showed significantly higher concentrations in the AD fed
group 90.1(5.38) vs. 63.7(1.98) mg/dL in the SD fed
group, (p < 0.001) (as shown in Figure 2).
Figure 7 depicts the DBP in the AD fed group with

the SD fed group during one 24 hour period (day 90).
Each one of the 288 DBP measurements in the AD fed
group was higher than the SD fed group over the course
of day 90, (p = 0.02), the time period when the fasting
glucose was also significantly (p < 0.001) higher.
Figure 8 is a graphic demonstration of the mean

hourly systolic and diastolic blood pressures every hour
over the course of day 90. Every one of the 24 measures
of the systolic and diastolic blood pressure in the AD
fed group was significantly higher, p < 0.05 when com-
pared to the SD fed group.

Figure 6 SBP in AD and SD fed group: Day 90.

Figure 7 DBP in AD and SD fed group: Day 90.
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American diet promotes abnormal circadian blood
pressure variability
Figures 9, 10 and 11 show the aggregate day and night 4
hour means(SEM) of SBP, DBP, PP and HR in the AD
fed group compared SD fed group over the course of
TP-1 and TP-2.

Figure 9 shows a graphic depiction of the significantly
higher (p < 0.001) mean(SEM) day and night time systo-
lic and diastolic blood pressures in the AD and SD fed
rats, throughout the course of TP-1 and TP-2.
Figure 10 graphically depicts mean(SEM) pulse pres-

sure in the AD fed and SD fed rats. The pulse pressure

Figure 8 Hourly SBP and DBP: Day 90.

Figure 9 Blood Pressure in AD and SD fed rats: Circadian systolic and diastolic blood pressure variability.
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Figure 10 Pulse pressure in AD and SD fed rats: Circadian pulse pressure variability.

Figure 11 Heart rate in AD and SD fed rats: Circadian heart rate variability.
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(calculated from the systolic and the diastolic blood
pressure) of AD fed rats over the course of TP-1 and
TP-2 was significantly (p < 0.001) higher than that of
SD fed rats.
Figure 11 displays the mean(SEM) heart rate in the

AD fed and SD fed rats. The AD fed rats show a signifi-
cantly (p < 0.05) increased heart rate when compared
with the SD fed rats over the course of TP-1 and TP-2.

Discussion
This study illustrates the early relationship between calo-
ric over-loading (modeled after the usual American diet),
an increased systemic inflammation, fasting serum glu-
cose and loss of blood pressure control. The biphasic
response (possibly T-cell mediated) of the pro-inflamma-
tory cytokines (MCP-1, and TNF-a) is evident with the
increased serum concentrations at three months, fol-
lowed by a decrease at six months (Figure 4). This change
was accompanied with a significant linear increase with
time in serum adipokines, leptin (indicative of escalating
adiposity) and adiponectin (reflective of an increased
functional adipose tissue mass) (Figure 3). We were able
to demonstrate the early onset of insulin resistance by
showing a differentially significant increase in fasting
blood glucose at three months in rats fed with AD diet,
without a differential increase in body weight (Figure 2).
This significant increase in fasting glucose, driven by the
dysfunctional, excess adipose tissue in ectopic locations,
was also accompanied by abnormal circadian blood pres-
sure variability. Prediabetes in healthy human subjects
has been demonstrated to be positively associated with
an increased arterial stiffness: independent of the con-
founding variables (including age, gender, BMI, blood
pressure, resting heart rate, hs-CRP, lipid profile, and
behavioral habits) [15].
In conjunction with the persistently high and escalat-

ing fasting glucose, at both three and six months, (with-
out and with weight gain, respectively), we elucidate
abnormalities of circadian blood pressure variability. We
demonstrate an increase in each of the 2318 and 2782
individual blood pressure measures, obtained during the
reference days (TP-1: 85-89 and TP-2: 106-114 days,
respectively) from each American diet fed rat, compared
with a standard diet fed rat. We report that all the iso-
lated 288 blood pressure measures on day 90, during
demonstrated increased systemic inflammation (Figure
4) and significantly increased fasting glucose (Figure 2),
were significantly higher (Figures 6 and 7). The hourly
mean SBP and DBP in presence of exacerbated systemic
inflammation (TNF-a, MCP-1: Figure 4) and signifi-
cantly elevated fasting glucose (Figure 2) on day 90,
were all significantly higher (Figure 8). The significantly
elevated mean SBP, DBP, PP and HR in the American
diet fed group remained evident and persisted until the

end of the experiment (four hour mean(SEM) SBP,
DBP, PP and HR are shown in Figures 9, 10 and 11).
The weight of the heart and the kidneys, indicative of
ectopic adipose tissue deposition, was significantly
higher in the group subject to caloric excess at the end
of the experiment (Figure 5).
The association of obesity with diabetes mellitus and

hypertension is widely recognized. Given that obesity is
a low grade chronic inflammatory disease and that
inflammation plays an integral part in the pathogenesis
of diabetes and hypertension, it should be a simple mat-
ter to show that obesity causes inflammation, which
causes insulin resistance leading to diabetes, and loss of
blood pressure control, leading to hypertension. This
has, however, not been the case. The interrelationships
between obesity, diabetes and hypertension are, at best,
complex and are not yet clearly defined. In a recently
published study, although the obese with higher degree
of inflammation had a higher propensity to develop
hypertension over time, inflammation by itself statisti-
cally did not add to the risk of developing diabetes or
hypertension [16].
Since the efforts by investigators thus far have been to

elucidate the relationships between obesity, diabetes and
hypertension, after the diseases had reached an
advanced stage, we designed a study to illustrate the
process in an early, more acute setting. We chose to
elucidate the relationship between excess caloric intake,
systemic inflammation, dysglycemia (prediabetes), loss of
blood pressure control (prehypertension) and the altera-
tion in circadian blood pressure variability.
The conventional American diet (high-glycemic-index,

high fat) fed to rats after weaning, would lead to both
hyperplasia (increase in number) and hypertrophy
(increase in size) of adipose tissue cells [17]. This would
then result in altered secretion of adipokines, chemo-
kines and cytokines [18,19]. Elements of the renin-
angiotensin-aldosterone system (RAAS), which have also
been shown to be secreted by the adipose tissue, would
also be potentiated [20]. The resulting imbalance
between the pro-inflammatory and anti-inflammatory
adopokine secretions, and the augmentation of the
RAAS, would lead to dysglycemia, loss of blood pressure
control and an alteration of the normal circadian blood
pressure variability.
The earliest change in a hypertrophic and hyperplas-

tic adipose tissue is the infiltration of inflammatory
cells. While a significant increase in the number of
normal resident adipose tissue macrophages is widely
known to ensue with obesity [21], the first adipose tis-
sue infiltrators, as insulin resistance develops, are now
known to be the T-lymphocytes [22]. These T-cells,
with their activation and hyperpolarization into a pro-
inflammatory T-helper 1 phenotype, appear to play a
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pivotal role in initiating (as early as five weeks in high
fat fed mice) [23], and perpetuating adipose tissue
inflammation [24-26]. It is plausible that the early T-
cell infiltration results in the observed early spike in
the pro-inflammatory (increased MCP-1 and TNF-a)
response. This is followed by a decline in response,
before the activation and action of the infiltrated
macrophages: explaining the observed biphasic
response of the pro-inflammatory secretions. Adipose
tissue and the infiltrated cells produce several pro-
inflammatory, pro-coagulant, and acute-phase mole-
cules in direct proportion to the degree of adiposity
[21,27]. Among these molecules: adipokines are
directly secreted by the adipocytes (leptin, adiponectin,
visfatin, vaspin), while the other chemokines and cyto-
kines are produced in conjunction by the stromal vas-
cular components and the infiltrating cells (MCP-1,
TNF-a, interleukin-6 (IL-6), plasminogen activator
inhibitor-1 (PAI-1), nitric oxide (NO) and factor VII).
These have all been implicated in the development of
the co-morbidities associated with obesity [28]. It
appears that the balance between the classically and
alternatively activated macrophages, (MI and M2,
respectively), subsequently determines the overall dom-
inance of either the pro-inflammatory, or the anti-
inflammatory adipose tissue secretory milieu [29].
Limitations: This well designed experiment was done in

genetically permissible rats to allow us to elucidate the
early influence of caloric excess upon systemic inflamma-
tion and glycemia and their impact on circadian blood
pressure variability. Although these results cannot be
directly extrapolated to humans, the differences between
the control group on usual diet and the test group fed
with the American diet have validated our stated
hypothesis. We were able to show that both systemic
inflammation and glycemia influence circadian blood
pressure variability. We were further able to demonstrate
that dysglycemia induces abnormal circadian blood pres-
sure variability.

Conclusions
This study, for the first time, demonstrates a cause and
effect relationship between caloric excess, enhanced sys-
temic inflammation, dysglycemia, loss of blood pressure
control and abnormal circadian (24-hour) blood pres-
sure variability.
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