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Abstract 
 

Synthesis, Characterization and  

Computational Study of  

[4]Ferrocenophane 

by Benjamin Mark Wilson 

 

 

This thesis reports the synthesis of an organic molecule, 1,4-bis(2,3,4,5-

tetramethylcyclopentadienyl)butane by two different methods, in about 75% and 85% crude 

yield.  Deprotonation of this molecule followed by reaction with FeCl2 generated the tethered 

ferrocene, [4]octamethylferrocenophane.  Although the yield was low in the first attempt (2%), 

this molecule has been characterized through NMR spectroscopy, X-ray crystallography, 

electronic spectroscopy, elemental analysis, and decomposition temperature.  A computational 

study was performed to determine the energy gap between each minimum energy structure.  It 

was found that the energy barrier was not high enough to prevent a rapid interconversion 

between the two structures of minimum energy on the NMR time scale.  The attempted 

syntheses of both 1,1’-(tetramethylene)ferrocenium tetracyanoethanide and 1,1’-

(tetramethylene)cobaltocenium hexafluorophosphate are also reported although the identity of 

neither compound has been confirmed. 
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Introduction 

Discovery of Metallocenes: 

 Metallocenes are defined as metals coordinated to two, parallel cyclopentadienyl rings 

(Figure 1).  The first metallocene, ferrocene, was discovered serendipitously in 1951 by Kealy  

M

 

Figure 1: Metallocene Structure 

and Pauson1 who were attempting to synthesize fulvalene by using cyclopentadienyl Grignard 

with iron(III) chloride in a benzene/ether solvent mixture (eq 1). 

 (1) 

Miller, Tebboth, and Tremaine2 synthesized ferrocene before Kealy and Pauson although their 

paper was published at a later date.  Their synthesis proceeded by passing a stream of nitrogen 

containing cyclopentadiene vapor over the iron to oxidize it in the presence of aluminum oxide 

at 300 °C (eq 2).  Both groups proposed an incorrect structure in which the iron atom was only  

 (2) 

 coordinated to the cyclopentadienyl ligand in a sigma (η1) bond configuration (Figure 2).  Both  

Fe

H

H

 

Figure 2: Ferrocene in a Sigma (η1) Configuration 

groups did note the equivalence of the carbon and hydrogen atoms in the cyclopentadienyl rings 

in the infrared spectrum.  Their explanation was that the fluxional nature of the metal-

cyclopentadienyl ligand allowed a 1,2-sigmatropic shift.3 

FeCl3 + 3 (C5H5)MgBr
benzene/ether

(C5H5)2Fe + 1/2 C10H10

Fe + Al2O3

300°C
(C5H5)2Fe+ 2 C5H6
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 In a series of communications, Wilkinson and Woodward4,5 proposed the actual structure 

for (C5H5)2Fe and subsequent metallocenes.  They considered that the proposed structure 

(Figure 2) did not seem reasonable because of the high stability of the product toward acids and 

bases.  The magnetic susceptibility indicated that the molecule was diamagnetic.  The infrared 

spectrum contained only one sharp band in the 3300-2500 cm-1 region which indicated that only 

one type of C-H bond was present.  The infrared and magnetic susceptibility tests on ferrocene 

confirmed that the cyclopentadienyl rings should be parallel to each other with the iron atom in 

the middle.4  In subsequent papers, they discussed the aromaticity of the compound and 

suggested the name ferrocene because of its benzene-like properties.5  At the same time, E.O. 

Fischer used (C5H5)Mn(CO)3 to demonstrate the η5 bonding by subjecting the cyclopentadienyl 

ring to a Friedel-Crafts reaction.
6
  X-ray crystal structures soon confirmed the predictions of 

Wilkinson, Woodward, and Fischer.7 

 Because the rings were determined to be parallel to each other, the rotational orientation 

of the rings relative to each other was questioned.  Ferrocene can have two high symmetry 

conformers: an eclipsed structure with D5h symmetry (Figure 3) or a staggered structure with D5d 

symmetry (Figure 4).   

 

Fe Fe

 

Figure 3: Ferrocene Eclipsed      Figure 4: Ferrocene Staggered 

A gas phase study of ferrocene showed that the eclipsed form is 4 kJ/mol more stable 

than the staggered.8  The X-ray crystal structure, however, showed that ferrocene existed in a 

staggered conformation in the solid state.7  The different structure at higher energy is a result of 

either intermolecular packing forces or electronic factors.  Most substituted metallocenes are 
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more stable in the staggered conformation because of the steric interactions between the 

substituents. 

Bonding in Ferrocene: 

 Bonding for the eclipsed (D5h) structure of ferrocene can be explained qualitatively using 

two approaches, both of which yield the same result.  Woodward and Rosenblum first assumed 

that the iron center and the cyclopentadienyl ligands were electrically neutral.5  Using this 

method, each of the cyclopentadienyl ligands contributes five bonding electrons and each ring is 

a radical.  The neutral iron atom adds 8 electrons, yielding a total of 18 electrons in the valence 

shell of the iron.  In this model, one views the bonding as purely covalent.  The other approach 

is to consider the cyclopentadienyl ligands as monoanions and the iron as a dication.  Here 

each ligand would use six electrons to chelate to an iron(II) ion to make an eighteen-electron 

complex.  An advantage of using this approach is that the cyclopentadienyl ligands are able to 

fulfill Hückel’s rule for aromatic compounds.  

 Each of the cyclopentadienyl ligands combines five π molecular orbitals with the nine 

atomic orbitals of iron to form nineteen molecular orbitals.  The highest occupied molecular 

orbital for ferrocene in the staggered (D5d) conformation is the nonbonding a1g orbital composed 

of the dz2 and the corresponding π molecular orbital from the ligand.  Similarly, the highest 

occupied molecular orbital for the eclipsed (D5h) conformation is the a’
1 molecular orbital 

composed of the dz2 and the corresponding π molecular orbital from the ligand.8,9,10 

Metallocenophanes: 

Metallocenes in which the cyclopentadienyl ligands are connected are called 

metallocenophanes.  Figure 5 shows a system with a single iron atom, whereas Figures 6 and 7 

show multi-metallic systems.  The rings in a monometallic system may be connected by one or 

more tethers (Figure 5).11  To date, several different metallocenophanes have been synthesized 
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Figure 5: Metallocenophane Structure 

ranging from a single dimethylene tether to having five tetramethylene tethers.12,13  The 

ferrocenes containing two and three tetramethylene tethers have also been prepared.14  One 

interesting fact about these ferrocenes is that all of the methylene tethers have expanded bond 

angles.15  The C-C-C bond angles are closer to those of sp2 (116°) rather than of sp3 (109°).  

This expansion of the bond angle also occurs in a three pentamethylene tether ferrocene as 

well.14  Thus far, no explanation has been offered as to why this occurs. 

Another way that the ligands can be attached is in an intramolecular fashion in a metallic 

system.  These could be as small as a binuclear system or expanded to include a polymer-like 

 

M M

n

M M

 

               Figure 6: Polymer-like Metallocenophane Structures   

system.  A combination of these two structures (Figures 5 and 6) has also been reported by 

Hillman (Figure 7).16 
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Fe Fe

 

Figure 7: Multinuclear Metallocenophane Structure  

Magnetism:17 

 Magnetism is a very broad subject, so for the purpose of this thesis, four types of 

magnetism will be discussed: paramagnetism, ferromagnetism, antiferromagnetism, and 

ferrimagnetism.  A paramagnetic material has at least one unpaired electron in either an atomic 

or molecular orbital.  When an external magnetic field is applied to a paramagnetic material, the 

unpaired electrons align with the field to produce a rather weak magnetic moment.  

Paramagnets do not retain magnetization once the magnetic field is removed because thermal 

jostling causes the molecular dipoles to be randomly oriented, which causes its magnetic 

properties to vary depending on the temperature.18 

 Ferromagnetism is the type of magnetism that is exhibited by permanent magnets.  A 

ferromagnet has unpaired electrons that will align parallel with an external magnetic field like a 

paramagnet, but unlike the paramagnet, the spins also will align parallel with each other (Figure 

8).  Because the spins are aligned when the external field is removed, the magnetism is 

 

Figure 8: Ferromagnetic ordering of electron spins 

retained.  All of the spin alignment effects only occur at temperatures below the Curie 

temperature.  Above the Curie temperature, a ferromagnetic substance loses its ferromagnetic 

properties; however, when it is cooled below the Curie temperature, the spins will once again 

align.19 
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 In antiferromagnetism, the spins of the unpaired electrons are aligned but in opposing 

directions (Figure 9).  Because of the opposing spins, substances exhibiting antiferromagnetism  

 

Figure 9: Antiferromagnetic ordering of electron spins 

have no net magnetic moment.  Substances that exhibit this type of magnetism only do so 

below the Néel temperature.  Above the Néel temperature, these substances are usually 

paramagnetic. 

Ferrimagnetism is similar to that of antiferromagnetism in that the unpaired electrons are 

aligned in opposing directions, although more electrons are aligned in one direction than the 

other, which are shown by the larger blue arrows in Figure 10.  Because more of the electrons 

are aligned together, the substance will have a magnetic moment.  Substances that exhibit 

 

Figure 10: Ferrimagnetic ordering of electron spins 

ferrimagnetism only do so below the Curie temperature.  Because of the opposing spins, there 

is a temperature at which the magnetic moments will be equal.  This temperature is called the 

magnetization compensation point. 

Foundations for the Work Done on This Project: 

 In the late 1980s, Miller and Epstein found that the ionic compound [(C5Me5)2Fe][TCNE] 

(TCNE = tetracyanoethylene), once magnetized, retains externally induced magnetism for a 

short time.20  This salt belongs to a class of substances, called ionic-charge transfer complexes, 



7 

that show magnetic behavior on the molecular scale.  Miller and Epstein synthesized this 

compound to try to create a molecule with magnetism similar to that of iron.20   

 One question that arose after Miller and Epstein’s discovery of [(C5Me5)2Fe][TCNE] 

ferromagnetism is what would happen to the magnetism if the symmetry was lowered but the 

electron density remained approximately constant.20  Decamethylferrocene contains several 

degenerate orbitals because of its D5d symmetry.  If symmetry was reduced to a point group 

such as Cs, no degenerate orbitals would be present in the cation.  Miller and Epstein did 

synthesize [Fe(C5Me4H)2]
+[A]- (A = TCNE, TCNQ) (TCNQ = 7,7,8,8-tetracyano-p-

quinodimethane).21  Although this compound did lower the symmetry, it also greatly changed the 

electron density in the cation.  Castellani and Yee synthesized [Fe(C5EtMe4)2]
+[TCNE]-,  which 

keeps the electron density similar to the C5Me5 compound.22  However, because the ethyl 

groups lie out of the plane of the cyclopentadienyl rings, the TCNE molecules are not parallel to 

the C5 rings.  This disruption in the crystal structure causes a major change in the magnetism.  

It is proposed to use [4]octamethylferrocene to form a charge-transfer salt with TCNE in an 

attempt to solve this problem.  

Experimental Section 

General Data.  All air- and water-sensitive materials were handled under a nitrogen atmosphere 

using standard Schlenk techniques.  Air-sensitive solids were handled under argon in a Vacuum 

Atmospheres glovebox equipped with a HE-493 dri-train.  Diethyl ether was distilled from 

sodium/benzophenone ketyl under nitrogen.  Hexane was purified by bubbling nitrogen through 

it to remove dissolved oxygen.  Tetrahydrofuran was distilled from potassium/benzophenone 

ketyl under nitrogen.  2-Bromo-2-butene (Acros) was purified by passing it down a 1″ x 3″ 80-

100 mesh basic alumina column.  Dichloromethane was distilled from calcium hydride under 

nitrogen.  n-Butyllithium (Aldrich), high sodium lithium wire (Aldrich), dimethyl adipate (Aldrich), 
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p-toluenesulfonic acid (Fischer), tetramethylcyclopentadiene (Norquay), and anhydrous iron(II) 

chloride (Strem) were used as received. 

Preparation of (C5Me4H)(CH2)4(C5Me4H). 

 Method 1  

Preparation of Li(C5Me4H).  Diethyl ether (400 mL) was added to a Schlenk flask 

containing tetramethylcyclopentadiene (20.2 g, 165 mmol).  The resulting solution was cooled in 

an acetone/liquid nitrogen bath to approximately -20 °C.  n-Butyllithium (66 mL, 2.5 M in 

hexanes) was added over ca. 5 min with stirring and an off-white solid immediately began to 

form.  The mixture was stirred overnight.  The reaction mixture developed the consistency of a 

paste and more diethyl ether (100-200 mL) was added to make it fluid again.  The solid was 

collected by filtration via a fritted funnel and dried in vacuo, yielding Li(C5Me4H) as a white 

solid.23  This material was used without further purification. 

 Preparation of (C5Me4H)(CH2)4(C5Me4H).  Diethyl ether (ca. 275 mL) was added to a 

Schlenk flask containing Li(C5Me4H) (10.0 g, 77.6 mmol).  The mixture was cooled in an ice 

bath and 1,4-dibromobutane (7.96 g, 37.0 mmol) was quickly added.  A white solid rapidly 

formed, and the solution turned yellow.  The mixture was stirred for three days.  On the second 

day, an 1H NMR spectrum showed a significant amount of remaining 1,4-dibromobutane.  A 1H 

NMR spectrum on the third day showed that 1,4-dibromobutane resonances were still present, 

but with much less intensity (ca. 10%).  At this point, the solution was vacuum filtered to remove 

the solid, and the solvent was then removed from the filtrate in vacuo to yield a thick, opaque, 

yellow oil (8.15 g).  This material was used without further purification. To estimate the purity of 

the salt, the solid by-product was treated with a silver nitrate solution, and the resulting silver 

bromide was weighed.  It suggested a purity of ca. 50% 

Method 2 

Preparation of (C5Me4H)(CH2)4(C5Me4H).24  Diethyl ether (ca. 25 mL) was added to a 3-neck 

flask (equipped with a pressure-equalized dropping funnel and water condenser) containing 
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lithium (5.6 g, 810 mmol) that had been cut into 1/8 inch pieces.  2-Bromo-2-butene (50.2 g, 372 

mmol) was placed into the addition funnel.  A small amount (ca. 1-2 mL) of 2-bromo-2-butene 

was added to the flask to initiate the reaction.  Once the reaction started, diethyl ether (225 mL) 

was added through the reflux condenser.  The 2-bromo-2-butene was added dropwise to 

maintain a gentle reflux.  The mixture was stirred for 2 hr and turned orange.  Dimethyl adipate 

(DBE-6 dibasic ester, 17 g, 97 mmol) was placed into the addition funnel and added dropwise to 

the reaction mixture while maintaining a gentle reflux.  The reaction mixture turned yellowish-

orange during the addition, but after it was stirred for 2 hr, it had turned back to orange.  A 

saturated ammonium chloride solution (150 mL) was placed into the dropping funnel and slowly 

added to maintain a gentle reflux.  The mixture was stirred for 1.5 hr, then poured into a 

separatory funnel containing a saturated ammonium chloride solution (ca. 250 mL).  The 

aqueous layer was removed and adjusted to pH 9 with concentrated hydrochloric acid and then 

extracted twice with diethyl ether.  The ether layers were combined and dried overnight over 

anhydrous magnesium sulfate.  The mixture was filtered, and the volume was reduced in vacuo 

to 50 -100 mL.  Diethyl ether (70 mL) was added to a 3-neck flask (equipped with a pressure-

equalized dropping funnel and water condenser) containing p-toluenesulfonic acid (3.8 g, 20 

mmol) that had been ground in a mortar and pestle.  The solution that was reduced was then 

placed into the dropping funnel and quickly added to the acid to maintain a reflux.  Two layers 

formed: the ether layer was orange and the aqueous layer was black.  The mixture was stirred 

for 2 h.  The mixture was washed twice with a saturated sodium bicarbonate solution.  The 

aqueous layers were combined and extracted twice with diethyl ether.  The ether layers were 

combined and dried over anhydrous magnesium sulfate.  The mixture was filtered, and the 

solvent was removed in vacuo leaving an orange oil (22.9 g). 

Preparation of Li2[(C5Me4)(CH2)4(C5Me4)].  Tetrahydrofuran (ca. 600 mL) was placed 

into a Schlenk flask with the 1,4-bis(2,3,4,5-tetramethylcyclopentadienyl)butane (22.9 g, 76.9 

mmol) obtained in the previous preparation and cooled to -20 °C in an acetone/liquid nitrogen 
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bath.  n-Butyllithium (100 mL, 1.6 M in hexane, 160 mmol) was added .  An orange solid formed 

quickly and the mixture was stirred for 1.5 hr.  The solid was filtered via a fritted funnel and dried 

in vacuo leaving lithium [m-[(1,4-butanediyl)tetramethyldi-2,4-cyclopentadien-1-ylidene]] as a 

white solid (20.3 g).  

Preparation of [(C5Me4)(CH2)4(C5Me4)]Fe.  Lithium [m-[(1,4-butanediyl)tetramethyldi-

2,4-cyclopentadien-1-ylidene]] (3.06 g, 10.1 mmol) was placed into a Schlenk flask with 

anhydrous ferrous chloride (1.28 g, 10.1 mmol) and cooled to approximately -80 °C in an 

acetone/liquid nitrogen bath.  Tetrahydrofuran (50 mL) was added quickly, yielding a light brown 

mixture that was stirred overnight and while being allowed to warm to room temperature.  The 

solvent was removed in vacuo leaving a sticky black solid.  Hexane (ca. 25 mL) was added to 

extract the product, and the resulting mixture was stirred for ca. 30 min.  The mixture was 

filtered via cannula, and the solvent was removed in vacuo leaving a yellow oil.  Hexane (10 mL) 

was added to the flask and then cooled in an acetone/dry ice bath for 9 h yielding a yellow-

orange solid.  The mixture was filtered via cannula and the solid was dried in vacuo overnight.  

The solid was sublimed with a 100 ºC bath twice, once for 15 h and again for 3 h.  The materials 

on the cold-finger were dried separately in vacuo overnight.  Each sublimation yielded 0.04 g of 

product (0.1 mmol) that were separately recrystallized in pentane (1 mL each) at -40 °C.  The 

orange crystals (0.07 g, 2% yield) recovered were then combined: Mp: 254-255 °C (dec.), UV-

vis max (CH2Cl2) 420 nm, 300 (sh), NMR (CD2Cl2) 
1H: δ 1.59 (s, CH3), 1.67 (s, CH3), 1.72 (br s, 

CH2), 2.18 (br s, CH2); 
13C: δ 9.5 (CH3), 9.6 (CH3), 27.57 (CH2), 27.65 (CH2), 78.8 (Cp), 83.9 

(Cp).  Anal. Calcd for C22H32Fe: C, 75.00; H, 9.15; Fe, 15.85.  Found: C, 74.83; H, 9.28.  

Crystals suitable for X-ray diffraction were grown in pentane at -40 °C. 

Preparation of [[(C5Me4)(CH2)4(C5Me4)]Fe][TCNE].  Dichloromethane (1.5 mL) was 

placed into a crystallization tube with [4]octamethylferrocenophane (0.213 g, 0.605 mmol).  In a 

separate crystallization tube, tetracyanoethylene (0.086 g, 0.671 mmol) was dissolved in 

dichloromethane (6 mL).  The TCNE solution was added via cannula to the ferrocene solution 
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and stirred for 30 min, forming an olive green solution.  The solution was reduced in volume to 

ca. 4 mL in vacuo, then layered with hexane (4 mL), and left to crystallize for 1 week.  The 

mixture was filtered via cannula and dried in vacuo to yield a black solid .  The mother liquor 

was evaporated to half its original volume.  The solution was layered with hexane (5 mL) and 

left to crystallize for one week.  The mixture was filtered via cannula, and the solid was dried in 

vacuo.  The black solids (0.103 g, 35% yield) recovered were then combined.  The 

microcrystalline product was not suitable for crystallographic analysis. 

Preparation of [[(C5Me4)(CH2)4(C5Me4)]Co][PF6].
25  Lithium[m-[(1,4-

butanediyl)tetramethyldi-2,4-cyclopentadien-1-ylidene]] (1.01 g, 3.25 mmol) was placed into a 

Schlenk flask with anhydrous cobalt(II) chloride (0.432 g, 3.33 mmol).  Tetrahydrofuran (25 mL) 

was added quickly yielding a dark blue solution that was stirred overnight.  Ammonium 

hexafluorophosphate (0.575 g, 3.53 mmol) was placed into a separate Schlenk flask.  The 

cobalt solution was transferred via cannula onto the ammonium hexafluorophosphate.  Gas was 

produced, yielding a purple solution that was stirred overnight.  The solvent was removed in 

vacuo leaving a purple solid.  The solid was extracted with dichloromethane (ca. 25 mL) and 

vacuum filtered.  The volume was reduced ca. 5-10 mL and layered with hexane.  The mixture 

was left to crystallize for one week.  The solid was vacuum filtered and dried in vacuo to yield a 

purple solid. 

Computational Method 

All calculations were done using the B971 density functional method with a 6-31G basis 

set with polarization on the d orbitals  The initial coordinates for both the [4]ferrocenophane and 

the [4]octamethylferrocenophane minimal structures were optimized by a member of Dr. Burcl’s 

group, Ms. Candice Dotson, using the method and basis set described above. 

Results and Discussion 

Initially, a modified Bercaw et al.24 synthesis was used, but because of frequent failure of 

this synthetic method and low yields on the few attempts that did yield product, another pathway 



12 

to 1,4-bis(2,3,4,5-tetramethylcyclopentadienyl)butane was developed based on the method of 

Lüttringhaus and co-workers.12,22 It proceeded by the following two reactions (eq. 3 and 4) in an 

maximum 75% overall yield.  The actual yield is lower because no purification was attempted in 

either reaction. 

 

  (3) 

 

 (4) 

 

The 1H and 13C NMR spectra confirmed the preparation of the 1,4-bis(2,3,4,5-

tetramethylcyclopentadienyl)butane (see Figures 21-23 in the Appendix).  The 1H and 13C NMR 

spectra of 1,4-bis(2,3,4,5-tetramethylcyclopentadienyl)butane showed significant amounts of 

impurities.  Some of these impurities were probably isomeric products that arose from reactions 

in eq 3 and 4.  The impurities that were just upfield of 1 ppm probably resulted from the 

hydrocarbon grease that was used on the reaction flask.  To further investigate the problem with 

the impurities, some of the lithium [m-[(1,4-butanediyl)tetramethyldi-2,4-cyclopentadien-1-

ylidene]] was washed with a 1% solution of silver nitrate, a white solid was formed.  When the 

solid was weighed, it was determined that approximately half of the lithium salt was lithium 

bromide.  The lithium bromide formed because the lithium tetramethylcyclopentadienide only 

added to one side of the 1,4-dibromobutane instead of both sides.  This meant that when the n-

butyllithium was added, that a butyl group was added and lithium bromide formed.  From this 

data, it was concluded that the impurities that occurred in the spectra of 1,4-bis(2,3,4,5-

tetramethylcyclopentadienyl)butane accounted for roughly half of the yield, thereby lowering the 

yield to ca. 35%.   

+ n-BuLi Li
+

+ n-BuH

2Li+ +
Br

Br



13 

 When the poor yield and difficult separation of the above method were realized, another 

route to synthesize 1,4-bis(2,3,4,5-tetramethylcyclopentadienyl)butane was attempted which 

involved modifying a sequence of reactions similar to that employed by Bercaw, et al. (eq 5-7).21 

   

 (5) 

         

 

 

 

  (7) 

 

 

Tobita and coworkers26 successfully employed this method in the synthesis of 1,3-bis(2,3,4,5-

tetramethylcyclopentadienyl)propane.  After several attempts, this yielded the desired product.   

 [4]Ferrocenophane was then synthesized by the following reaction, which was similar to 

a synthesis employed by Lüttringhaus, et al.:12 

 

  (8) 

 

This reaction produced an orange crystalline solid in about 2% yield.  This was a low yield even 

when compared to other methods of synthesizing tethered ferrocenes, where yields varied 

anywhere from 12 to 34%.27  This low yield may arise, in part, from side reactions because the 

ferrocene product was initially mixed in an orange oil.  Attempts to sublime and to crystallize the 

ferrocene out of the oil were unsuccessful.  A stream of air was drawn over damp crystals 
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overnight caused oxidation of the ferrocene, suggesting that it is slightly air-sensitive.  The 

ferrocenophanes tend to be more air-sensitive depending on the dihedral angle of the 

cyclopentadienyl rings, with the larger the angle, the more air-sensitive the compound.11  When 

the dihedral angle of the rings is close to zero, as in ferrocene, is when the bonds are the 

strongest.  As this angle increases, the bond energy decreases and destabilizes the product 

thereby increasing the air-sensitivity.  1H and 13C NMR spectra (Figures 24 and 25), as well as 

X-ray crystallography (Figure 26 and Table I) are reported here.  The dihedral angle between 

the cyclopentadienyl rings is 1°.  The C-C-C angles in the tether are all expanded and approach 

that of an sp2 carbon.  An electronic spectrum, elemental analysis, and the decomposition 

temperature were obtained for the ferrocene and reported in the Experimental Section (vide 

supra).  In the 1H spectrum of [4]ferrocenophane, the resonances that correspond to the 

methylene groups are broad.  Hillman and coworkers14 suggested this occurs because in the 

non-methylated, four-methylene tether ferrocene, the tether twists rapidly.  According to Hillman, 

when the bridges flip rapidly, two groups of peaks occur in the spectrum.  Hillman et al. also 

reported that the disorder in the backbone had not fully been investigated.  For more information 

about this, see the computational section (vide infra).   

 Suitable crystals for cystallgraphy have not been grown for either 1,1’-

(tetramethylene)octamethylferrocenium tetracyanoethanide or the  

1,1’-(tetramethylene)octamethylcobaltocenium hexafluorophosphate.  The synthesis that has 

been reported (vide supra) is still in progress.  

 Computational Results 

One question that came from this research was whether or not the carbon tether would 

flip rapidly on the NMR time scale.  To answer this question, the energy for the transition and 

intermediate states had to be calculated.  For the [4]ferrocenophane, there are three transition 

states, two intermediates and two structures of minimum energy; however, two of the transition 

states have the same energy because they are equivalent relative to a plane of symmetry.  The 
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minimum energy structures were taken to be zero energy and all of the transition state energies 

are reported relative to that.  The ∆G’s are given in kcal/mol at 25 °C.  For a full listing of 

thermodynamic data, refer to the corresponding table in the Appendix. 

 

Figure 11: Minimum energy structure for [4]Ferrocenophane 

∆G=6.21 kcal/mol for the first activation barrier. 

 

 

Figure 12: 1st Transition state for [4]Ferrocenophane 

∆G=4.85 kcal/mol to get down to the intermediate. 
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Figure 13: Intermediate state for [4]Ferrocenophane 

∆G=2.56 kcal/mol to go from the intermediate to the middle transition state 

 

Figure 14: middle transition state for [4]Ferrocenophane 
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Figure 15: The Potential Energy Curve for [4]Ferrocenophane 

 

 

Figure 16: Methylated minimum energy structue for [4]OctamethylFerrocenophane 

∆G=6.64 kcal/mol for the first activation barrier. 

0 kcal/mol 

6.21 kcal/mol  

1.36 kcal/mol 

3.92 kcal/mol 
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Figure 17: methylated 1st transition state for [4]OctamethylFerrocenophane 

∆G=2.33 kcal/mol to go from the transition state to the intermediate 

 

Figure 18: methylated intermediate for [4]OctamethylFerrocenophane 

∆G=3.60 kcal/mol to go from the intermediate to the middle transition state 
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Figure 19: methylated middle transition state for [4]OctamethylFerrocenophane 

 

Figure 20: Potential Energy Curve [4]Octamethylferrocenophane 

7.91 kcal/mol 

4.31 kcal/mol 

6.64 kcal/mol  

0 kcal/mol 
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 For the [4] ferrocenophane, the energy of the middle transition state (Figure 14) is 

considerably lower than that of the first transition state (Figure 12) and because of this it is 

unlikely that either of the intermediates would be observed.  The only way that these 

intermediates would, in principle, be observed is if the molecule lost or transferred some energy 

by colliding with another molecule once it had reached the transition state.  The potential energy 

curve of [4]octamethylferrocenophane (Figure 20) has some differences when compared to that 

of [4]ferrocenophane (Figure 15).  By adding methyl groups to the cyclopentadienyl ring, the 

middle transition state increases in energy to be larger than that of the first transition state.  This 

occurs because the electron densities of the methyl groups start to overlap the electron density 

of the methylene groups of the tether. 

 The low activation energy for the transition between minimum structures, 6.21 kcal/mole 

for [4]Ferrocenephane and 7.91 kcal/mole for [4]Octamethylferrocenephane, suggests that the 

energy barrier is low enough for the tethers on both of the compounds reported here to flip 

rapidly on the NMR time scale and should be observed as a broad singlet in the NMR. 

Conclusions 

 In conclusion, 1,4-bis-(2,3,4,5-tetramethylcyclopentadienyl)butane has been synthesized 

by two methods.  This molecule was deprotonated and reacted with ferrous chloride to make 

[4]octamethylferrocenophane, which was characterized using NMR, electronic spectroscopy, 

elemental analysis, and X-ray crystallography.  The cyclopentadienyl rings are 1° from parallel 

planar, which suggests that this compound should have the proper stacking to form the desired 

charge-transfer salt, 1,1’-(tetrametylene)octamethylferrocenium tetracyanoethanide.  An attempt 

to synthesize this charge-transfer salt yielded no suitable crystals for crystallographic analysis.  

A computational study was done on both [4]ferrocenophane and [4]octamethylferrocenophane 

to determine what the potential energy surface is for both molecules going between their 

minimum energy structures.  From these surfaces, it was determined that the carbon tether in 

both structures would flip rapidly on the NMR time scale. 
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Appendix 

 

Figure 21: 13C spectrum of 1,4-bis(2,3,4,5-tetramethylcyclopentadienyl)butane in d6-

benzene from 130-140 ppm 

 

Figure 22: 13C spectrum of 1,4-bis(2,3,4,5-tetramethylcyclopentadienyl)butane in d6-

benzene from 0-60 ppm 
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Figure 23: 1H spectrum of 1,4-bis(2,3,4,5-tetramethylcyclopentadienyl)butane in d6-

benzene from 0-4 ppm 

 

Figure 24: H1 spectrum of [4] ferrocenophane in CD2Cl2 from 0-3 ppm 
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Figure 25: C13 spectrum of [4] ferrocenophane in CD2Cl2 from 0-90 ppm 

 

 

Figure 26: Crystal Structure of [4]Ferrocenophane 
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Bond Angles 

C1-C10-C11 117.4 

C10-C11-C12 116.4 

C11-C12-C13 114.2 

C12-C13-C14 116.6 

Cp rings 

(dihedral) 1.0 

Table I: Bond Angles for [4]Octamethylferrocenophane 

 

  [4]ferrocenophane   

Zeropoint 
kJ/mol 660.57   

  
S 
J/mol*K 

Cp 
J/mol*K 

ddH 
kJ/mol SCF 

dG 
kJ/mol 

dG 
kcal/mol 

100 296.29 75.6 4.92 -4738415.04 24.92 5.96 

200 370.64 150.75 16.07  25.29 6.05 

298.15 446.8 237.12 35.08  25.96 6.21 

300 448.28 238.75 35.52  25.98 6.21 

400 528.58 321.41 63.63  26.92 6.44 

500 607.89 389.36 99.3  28.06 6.71 

600 683.83 443.23 141.03  29.35 7.02 

700 755.5 486.31 187.59  30.77 7.36 

800 822.81 521.49 238.03  32.33 7.73 

900 885.98 550.73 291.69  33.99 8.13 

1000 945.31 575.33 348.02  35.73 8.55 

Table II: ∆G for Minimum Structure 
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 transition1 for [4]ferrocenophane  

Zeropoint 
kJ/mol 659.6  

 S Cp ddH SCF dG dG kcal/mol 

100 294.61 71.37 4.76 -4738389 18.78 4.49 

200 365.23 144.2 15.36  19.33 4.62 

298.15 438.58 229.7 33.67  20.27 4.85 

300 440.01 231.32 34.1  20.29 4.85 

400 518.12 313.64 61.45  21.54 5.15 

500 595.67 381.42 96.33  23.00 5.50 

600 670.15 435.15 137.26  24.63 5.89 

700 740.58 478.14 183  26.41 6.32 

800 806.79 513.25 232.63  28.33 6.78 

900 868.98 542.43 285.46  30.34 7.26 

1000 927.44 566.99 340.96  32.44 7.76 

Table III: ∆G for 1st Transition State 

 

  Intermediate for [4]ferrocenophane   

Zeropoint 
kJ/mol 659.66   

  S Cp ddH SCF dG dG kcal/mol 

100 297.34 77.97 5.02 -4738408 7.62 1.82 

200 373.05 152.15 16.36   8.94 2.14 

298.15 449.68 238.15 35.48  10.69 2.56 

300 451.16 239.78 35.92  10.72 2.57 

400 531.74 322.29 64.13  12.81 3.06 

500 611.23 390.12 99.88  15.12 3.62 

600 687.29 443.84 141.68  17.59 4.21 

700 759.06 486.81 188.29  20.22 4.84 

800 826.43 521.88 238.78  22.97 5.50 

900 889.63 551.03 292.47  25.82 6.18 

1000 948.99 575.56 348.84  28.76 6.88 

Table IV: ∆G for Intermediate 
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  Midtransition for [4]ferrocenophane 

Zeropoint 
kJ/mol 660.02 

  S Cp ddH SCF 

100 287.47 69.52 4.48 -4738401 

200 357.13 143.3 14.95   

298.15 430.23 229.33 33.2  

300 431.65 230.96 33.62  

400 509.7 313.52 60.95  

500 587.24 381.41 95.83  

600 661.72 435.19 136.76  

700 732.16 478.2 182.51  

800 798.38 513.3 232.14  

900 860.57 542.49 284.97  

1000 919.04 567.04 340.48  

Table V: ∆G for the Middle Transition State 

 

 [4]octamethylferrocenophane   

Zeropoint 
kJ/mol 1215.23   

  S J/mol*K Cp J/mol*K ddH kJ/mol SCF dG dG kcal/mol 

100 375.43 179.98 9.17 -5563211.71 25.45 6.09 

200 545.91 321.51 34.57   26.44 6.32 

298.15 697.45 445.76 72.23  27.77 6.64 

300 700.21 448.1 73.05  27.81 6.65 

400 846.15 570.67 124.07  29.44 7.04 

500 985.42 678.75 186.69  31.27 7.48 

600 1117.45 769.54 259.24  33.29 7.96 

700 1241.94 845.38 340.1  35.43 8.48 

800 1359.11 909.22 427.92  37.71 9.02 

900 1469.42 963.36 521.62  40.09 9.59 

1000 1573.37 1009.52 620.33  42.56 10.18 

Table VI: ∆G for the Minimum Structure 
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  transition1 for [4]octamethylferrocenophane   

Zeropoint 
kJ/mol 1214.64   

  S Cp ddH SCF dG dG kcal/mol 

100 368.08 174.2 8.8 -5563186 7.25 1.74 

200 533.93 314.05 33.52   8.30 1.98 

298.15 682.37 437.79 70.41  9.72 2.33 

300 685.09 440.12 71.23  9.76 2.33 

400 828.69 562.42 121.44  11.51 2.75 

500 966.11 670.36 183.22  13.46 3.22 

600 1096.6 761.11 254.93  15.59 3.73 

700 1219.79 836.95 334.94  17.85 4.27 

800 1335.84 900.8 421.92  20.25 4.85 

900 1445.15 954.95 514.78  22.76 5.45 

1000 1548.22 1001.13 612.65  25.35 6.06 

Table VII: ∆G for the 1st Transition State 

 

  Intermediate for [4]octamethylferrocenophane   

Zeropoint 
kJ/mol 1214.92   

  S Cp ddH SCF dG dG kcal/mol 

100 375.73 181.21 9.23 -5563193 13.80 3.30 

200 546.82 322.05 34.72   14.16 3.39 

298.15 698.52 446.08 72.42  15.05 3.60 

300 701.29 448.41 73.25  15.07 3.60 

400 847.29 570.85 124.29  16.31 3.90 

500 986.6 678.85 186.92  17.79 4.26 

600 1118.64 769.61 259.48  19.44 4.65 

700 1243.14 845.43 340.35  21.24 5.08 

800 1360.32 909.26 428.17  23.18 5.55 

900 1470.63 963.39 521.87  25.24 6.04 

1000 1574.58 1009.55 620.58  27.36 6.55 

Table VIII: ∆G for the Intermediate Structure 
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Midtransition for 

[4]octamethylferrocenophane 

Zeropoint 
kJ/mol 1216.06 

  S Cp ddH SCF 

100 376.34 170.54 8.89 -5563180 

200 539.87 311.59 33.29   

298.15 687.58 436.47 70.01  

300 690.29 438.82 70.82  

400 833.59 561.66 120.92  

500 970.87 669.87 182.65  

600 1101.29 760.73 254.31  

700 1224.43 836.62 334.29  

800 1340.43 900.49 421.24  

900 1449.7 954.65 514.07  

1000 1552.74 1000.83 611.9  

Table IX: ∆G for the Middle Transition State 
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Minima 1 with no methyls 

Fe -0.25076451 0.756285871 -0.06374137 

C 1.78858606 0.727041062 -0.08162706 

C 1.31349087 2.077764774 -0.09786255 

C 0.5186718 2.279767773 1.073824254 

C 0.50498799 1.052706343 1.808367386 

C 1.2801829 0.076476383 1.093858287 

H 2.40348347 0.267767445 -0.84641367 

H 1.50731351 2.810466227 -0.87175962 

H 0.00360794 3.192656382 1.346714657 

H -0.02532445 0.8717445 2.736396597 

H 0.83605384 -1.59705995 2.340144572 

C -1.87258301 -0.4744499 0.060049683 

C -1.0190636 -0.86450292 -1.02751051 

C -0.93967734 0.259487714 -1.91904519 

C -1.71573572 1.332357394 -1.3785598 

C -2.2932451 0.877828961 -0.15163137 

H -2.13220143 -1.08692356 0.915272338 

H -1.15551103 -2.8709468 -1.7041355 

H -0.35947994 0.291048693 -2.83424417 

H -1.82999594 2.318621418 -1.81139164 

H -2.92268496 1.458834889 0.51136059 

C -0.3888719 -2.21561563 -1.26188643 

H 0.39375428 -2.11197073 -2.02699949 

H 2.08835956 -3.30414355 0.938637314 

C 0.20711294 -2.94024052 -0.03445784 

H -0.52123963 -2.94415255 0.789696285 

H 0.33017736 -3.99317862 -0.32276718 

C 1.57693155 -2.44220428 0.488692529 

H 2.20567949 -2.13771725 -0.36084346 

H 2.54708813 -1.32623704 2.058017036 

C 1.56434539 -1.33012419 1.561053761 

Table X: Coordinates of the 1st Minimum Structure 
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Minima 2 with no methyls 

Fe -0.250626071 0.756218408 0.063831674 

C 0.504787536 1.052700567 -1.808334832 

C 0.518513518 2.279760048 -1.073787129 

C 1.313534541 2.077815433 0.097769255 

C 1.788721991 0.727134525 0.081458661 

C 1.280172089 0.076520348 -1.093947008 

H -0.025633609 0.871688046 -2.736292143 

H 0.003305454 3.192599802 -1.346573055 

H 1.507435134 2.810539252 0.871626892 

H 2.403868923 0.267929101 0.846086545 

H 2.547069115 -1.326266875 -2.058041184 

C -0.939818298 0.259429741 1.919102275 

C -1.019156131 -0.864536234 1.027545705 

C -1.872523541 -0.474412927 -0.060102424 

C -2.29311848 0.877888686 0.151540721 

C -1.715738084 1.332348772 1.378538791 

H -0.359759682 0.290948244 2.834391211 

H 0.393558928 -2.112096425 2.027067829 

H -2.132085356 -1.086857878 -0.915363122 

H -2.922408538 1.458949281 -0.511545828 

H -1.830010865 2.318601326 1.811394345 

C -0.389011812 -2.215677778 1.261888417 

H -1.155684414 -2.871044257 1.704029519 

H 2.205553049 -2.137534762 0.360920974 

C 0.207056277 -2.940208777 0.034442087 

H 0.330134378 -3.993160766 0.322696412 

H -0.521267201 -2.944103119 -0.789738978 

C 1.576884203 -2.44211535 -0.488640576 

H 2.088400765 -3.304055043 -0.938485165 

H 0.836032625 -1.597076022 -2.340159581 

C 1.564324382 -1.330103476 -1.56108031 

Table XI: Coordinates of the 2nd Minimum Structure 
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Transition 1 with no methyls 

Fe 0.787966208 -0.029834688 0.008611214 

C 0.46548455 -1.773966442 -0.99659395 

C 1.803936909 -1.732755717 -0.491985282 

C 1.732976972 -1.594379377 0.930692014 

C 0.350086101 -1.554307567 1.298016051 

C -0.445180685 -1.654905515 0.108038574 

H 0.182494304 -1.861801118 -2.039422754 

H 2.709769397 -1.784001736 -1.083662243 

H 2.575553731 -1.521267234 1.607299887 

H -0.03919562 -1.442814265 2.303525081 

H -2.370264264 -1.768632825 1.031954765 

C 0.675327834 1.728333621 1.039168076 

C -0.423595471 1.617390942 0.117902624 

C 0.150119023 1.495254443 -1.194231937 

C 1.57688 1.513520464 -1.075966594 

C 1.902525149 1.659616663 0.309314417 

H 0.577146733 1.832419961 2.113820704 

H -1.908386303 1.993174812 1.570943995 

H -0.401159744 1.39720598 -2.121892023 

H 2.283582528 1.420012514 -1.891501847 

H 2.899471421 1.694955787 0.731149421 

C -1.877258111 1.80656753 0.490362135 

H -2.193446999 2.752210985 0.027576666 

H -3.586242188 -0.874105533 -1.111600035 

C -2.962089793 0.723113138 0.155455556 

H -3.37180149 0.343996697 1.102304893 

H -3.796741499 1.246490895 -0.328406593 

C -2.628090313 -0.508087288 -0.717349252 

H -2.029375146 -0.22485718 -1.59168631 

H -2.232458426 -2.624773976 -0.492875462 

C -1.952133111 -1.692480206 0.018607616 

Table XII: Coordinates of the 1st Transition State 
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Transition 2 with no methyls 

Fe 0.784806775 0.078217301 0.003473811 

C -0.074130586 1.502875674 1.191810126 

C 1.338396968 1.716008753 1.095175243 

C 1.66239413 1.903957338 -0.285406078 

C 0.448802038 1.803467946 -1.034033325 

C -0.638781958 1.544139042 -0.129288239 

H -0.62115233 1.331195782 2.111251834 

H 2.038525513 1.720836122 1.92165226 

H 2.651546524 2.074929294 -0.692152205 

H 0.353949241 1.892094399 -2.110370184 

H -2.138342174 1.711619288 -1.605869439 

C 0.579152278 -1.492908889 -1.287869631 

C -0.213126638 -1.700198729 -0.109739966 

C 0.688173605 -1.692788729 1.008869021 

C 2.016013724 -1.469577436 0.524415868 

C 1.948744722 -1.343345596 -0.899545302 

H 0.193797464 -1.436471885 -2.299471999 

H -2.090079986 -2.077046215 -1.062420006 

H 0.403790585 -1.817574145 2.047544526 

H 2.911149583 -1.396108734 1.129870334 

H 2.783727057 -1.156399888 -1.563573518 

C -1.701984173 -1.943457624 -0.043086298 

H -1.859982511 -2.904866405 0.466915742 

H -3.370264695 -0.121092788 -1.154057442 

C -2.544940626 -0.862127658 0.678933149 

H -3.450169112 -1.355456913 1.059268887 

H -2.004453877 -0.499174215 1.561703921 

C -3.030443664 0.311215095 -0.202348298 

H -3.935917316 0.716197366 0.26754694 

H -2.548322895 2.426372323 -0.069496986 

C -2.098732692 1.532290279 -0.524329895 

Table XIII: Coordinates of the 2nd Transtion State 
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Intermediate 1 with no methyls 

Fe -0.798741896 0.085370981 0.011083412 

C -0.577132006 -1.698989164 0.974931798 

C -1.944326849 -1.512919338 0.596774666 

C -1.989905417 -1.358209037 -0.824969506 

C -0.649240623 -1.45586327 -1.318595033 

C 0.238846175 -1.656223932 -0.209253087 

H -0.217163714 -1.833400638 1.988291699 

H -2.792309178 -1.482968034 1.269898128 

H -2.8781304 -1.188474963 -1.42089531 

H -0.346020332 -1.362071944 -2.355157582 

H 2.092725523 -1.642872581 -1.289193832 

C -0.496129012 1.789059862 -1.060699902 

C 0.631603918 1.512279519 -0.212393059 

C 0.145001399 1.506308183 1.138597286 

C -1.266082353 1.750895634 1.117933777 

C -1.662262556 1.930165048 -0.244770662 

H -0.465486529 1.849813938 -2.142568395 

H 1.964624864 0.775844213 -1.690378869 

H 0.736534237 1.31874747 2.026266248 

H -1.917632599 1.785542118 1.982425147 

H -2.667750737 2.123812629 -0.597602038 

C 2.035764837 1.271061917 -0.711766669 

H 2.516122318 2.241906231 -0.9094969 

H 3.413589949 -1.445189906 1.074106287 

C 2.986620008 0.464865511 0.200633821 

H 3.916002122 0.321369598 -0.368718826 

H 3.263305442 1.082780516 1.066768288 

C 2.516294587 -0.912461645 0.73170164 

H 1.896752075 -0.77200383 1.624975582 

H 1.980320187 -2.868178114 -0.041570465 

C 1.742915572 -1.817352989 -0.262344717 

Table XIV: Coordinates of the 1st Intermediate Structure 
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Intermediate 2 with no methyls 

Fe 0.796561688 0.09621361 -0.031445161 

C 0.165534944 -1.48774908 -1.160092904 

C 1.595551627 -1.409002849 -1.17753072 

C 2.058871185 -1.509897065 0.171972245 

C 0.913498789 -1.643836872 1.017977175 

C -0.270284201 -1.618237293 0.201904554 

H -0.476904031 -1.428297412 -2.030022291 

H 2.214447433 -1.286607724 -2.057899886 

H 3.091402639 -1.476406873 0.497169447 

H 0.926843615 -1.722235202 2.099061788 

H -1.693825366 -1.214917434 1.72327416 

C 0.341219478 1.549566675 1.327393362 

C -0.598441244 1.558148322 0.242738668 

C 0.155312792 1.79628191 -0.959335698 

C 1.53902451 1.917378521 -0.616533424 

C 1.656060524 1.760707384 0.800873442 

H 0.094379557 1.378540977 2.369036863 

H -2.372893204 1.117510048 1.365496626 

H -0.252303254 1.85807363 -1.961621722 

H 2.353824645 2.086006252 -1.309881794 

H 2.575300619 1.787822909 1.372834402 

C -2.098397966 1.37688159 0.333711 

H -2.571175103 2.349777607 0.135500707 

H -3.732576971 -1.196454839 0.456085967 

C -2.675135358 0.331956608 -0.656559722 

H -3.677882944 0.653019827 -0.968996519 

H -2.063814401 0.343960088 -1.56631672 

C -2.810220393 -1.121448302 -0.137315354 

H -2.964361944 -1.776328836 -1.006754192 

H -1.924077377 -2.759196592 0.932360634 

C -1.67875932 -1.703386265 0.738838493 

Table XV: Coordinates of the 2nd Intermediate Structure 
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Middle transition  with no methyls 

Fe 0.809732561 0.078789663 -0.026142473 

C 0.324807155 -1.587156 -1.096113204 

C 1.745405833 -1.500361531 -0.940708772 

C 2.035688332 -1.490973666 0.460351793 

C 0.792140538 -1.572163405 1.164379639 

C -0.279774416 -1.618302281 0.207971565 

H -0.202866438 -1.596595081 -2.042330881 

H 2.470064637 -1.443090988 -1.743599398 

H 3.019282954 -1.423227894 0.908590762 

H 0.670331871 -1.567646849 2.241549004 

H -1.915746347 -1.355096915 1.557555008 

C 0.479915801 1.654691949 1.2192726 

C -0.584073365 1.526739026 0.261462657 

C 0.01102822 1.656003635 -1.04094716 

C 1.422424412 1.837900225 -0.883911086 

C 1.713675635 1.8371144 0.516979995 

H 0.36473417 1.590617386 2.295274092 

H -2.134871063 0.909557205 1.596062673 

H -0.511746752 1.596015349 -1.988028857 

H 2.142011279 1.947667315 -1.685902108 

H 2.693472493 1.944072554 0.965894514 

C -2.046074437 1.341278791 0.58985671 

H -2.510374974 2.337408867 0.654937147 

H -3.712284956 -1.476042422 -0.267356874 

C -2.871484173 0.515784429 -0.423118578 

H -3.927222243 0.745321752 -0.229564841 

H -2.673404485 0.912857976 -1.4267959 

C -2.72075047 -1.042019874 -0.449612381 

H -2.45349579 -1.359720393 -1.465443231 

H -2.013696227 -2.795920857 0.567646947 

C -1.74913485 -1.727653739 0.537672259 

Table XVI: Coordinates of the Middle Transition State 
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Methylated minima 1 

Fe 0.265066723 -0.021572721 0.012539256 

C -0.234889466 -1.483686175 1.362619925 

C 1.140370246 -1.097640761 1.53048779 

C 1.173169031 0.309419917 1.827692611 

C -0.182203483 0.792224564 1.846627573 

C -1.055692992 -0.316544083 1.560870108 

H -0.022910727 -3.498652762 0.59397941 

H 3.238278161 -1.509271383 1.185721515 

H 2.28909453 2.163733424 1.885217491 

H 0.138307546 2.932356024 1.94243497 

H -2.890456494 0.586763376 2.179503288 

C 0.136151842 1.491715167 -1.367260868 

C -0.83973893 0.470621325 -1.650564487 

C -0.13343633 -0.766551683 -1.861577702 

C 1.274197845 -0.508333775 -1.711902205 

C 1.440832026 0.887838363 -1.408311637 

H -0.137562854 3.471730076 -2.174844486 

H -2.436897872 1.594412904 -2.495434318 

H -0.154479002 -2.931036743 -1.943137497 

H 3.277281065 -1.260212606 -1.368809517 

H 2.673225845 2.476615905 -0.602983567 

C -2.322106646 0.704495669 -1.858512933 

H -2.729853769 -0.129843723 -2.44549719 

H -4.417290351 -0.482993146 0.560938879 

C -3.213056283 0.890829479 -0.610071162 

H -2.849313444 1.740512106 -0.016354017 

H -4.209368143 1.184234533 -0.969183611 

C -3.357481803 -0.356713828 0.299129822 

H -3.081323809 -1.258410149 -0.264299215 

H -2.885218499 -1.161732215 2.243597499 

C -2.569259315 -0.306849818 1.627038434 

C 2.397635929 1.112652481 2.175786107 

H 2.585629997 1.088421807 3.258810095 

H 3.294308623 0.726550231 1.678892646 

C -0.606623357 2.183884846 2.234352398 

H -1.554379006 2.468711779 1.765861829 

H -0.739544801 2.260956135 3.323235892 

C -0.736711503 -2.888623113 1.159125485 

H -0.898224217 -3.38767837 2.125786932 

H -1.686940601 -2.908907266 0.61584908 
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C 2.326608609 -2.023585861 1.509850277 

H 2.519085749 -2.434082698 2.511443679 

H 2.170587882 -2.870545155 0.832617839 

C 2.380326328 -1.501111958 -1.949704073 

H 2.077356012 -2.51852586 -1.677558871 

H 2.669766224 -1.516591053 -3.010295811 

C 2.75351658 1.610691026 -1.269358746 

H 3.536017149 0.958586358 -0.865412031 

H 3.102564152 1.977523053 -2.245238985 

C -0.149612331 2.960658158 -1.201067563 

H -1.130727279 3.137948892 -0.748878976 

H 0.597154182 3.452094539 -0.567140095 

C -0.738267522 -2.074547091 -2.298052768 

H -1.759307262 -2.199298167 -1.922858628 

H -0.778964661 -2.137536197 -3.395163206 

Table XVII: Coordinates of the 1st Minimum Structure 
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Methylated minima 2 

Fe -0.266257476 0.000321105 -0.002608134 

C 0.136103133 -1.770146015 0.961434667 

C -1.244039587 -1.720114044 0.557091342 

C -1.283370463 -1.561186464 -0.872098147 

C 0.071846927 -1.510150174 -1.350465473 

C 0.952485761 -1.641737816 -0.218088353 

H -0.061804734 -1.649055676 3.114807107 

H -3.324656281 -1.410587168 1.074992156 

H -2.382132998 -0.975551904 -2.643783203 

H -0.211991349 -0.903973118 -3.412095512 

C 0.153071554 1.770985913 -0.958755033 

C 0.952208082 1.639923394 0.232505863 

C 0.054977071 1.508431987 1.351663914 

C -1.293123371 1.562951392 0.853665162 

C -1.232825232 1.723185635 -0.574500475 

H 0.756746266 3.124897341 -2.524961291 

H -0.261351705 0.902726751 3.408716116 

H -3.400144434 1.156357222 1.148307166 

H -2.207759914 1.543530457 -2.499556672 

C 2.457051149 1.789162787 0.322146621 

C 3.300525327 0.523246874 0.592347706 

C 3.306900585 -0.528779276 -0.546499914 

C 2.458223805 -1.793257908 -0.286194413 

H 2.820332744 2.245818491 -0.608538255 

H 2.676768086 2.522247099 1.112932837 

H 4.331831653 0.858287061 0.770630716 

H 2.975599928 0.050429667 1.529217372 

H 2.99442238 -0.055386283 -1.487243185 

H 4.339963982 -0.865107384 -0.71172475 

H 2.688254757 -2.528216187 -1.072275051 

H 2.807810959 -2.24815757 0.650571107 

C -2.520464704 -1.562567026 -1.729072114 

H -2.784755882 -2.586019337 -2.031562914 

H -3.383585019 -1.144300483 -1.199231706 

C 0.492640171 -1.473928902 -2.795774768 

H 1.480388063 -1.019634458 -2.922384593 

H 0.54122202 -2.490850845 -3.211762962 

C 0.626279104 -2.043211093 2.35875221 

H 0.72087427 -3.124710205 2.533849957 

H 1.60655825 -1.592170628 2.544935739 
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C -2.4334618 -1.919828079 1.457605571 

H -2.67869556 -2.987643152 1.549443663 

H -2.246738851 -1.538189335 2.467715697 

C -2.542269786 1.566244616 1.692998064 

H -2.420553713 0.972938251 2.605984103 

H -2.804821039 2.589378649 1.998031354 

C -2.408508607 1.925590409 -1.492297159 

H -3.306391472 1.41834775 -1.122934392 

H -2.650081326 2.99394562 -1.587628089 

C 0.663555301 2.043425875 -2.348941961 

H 1.648124022 1.595496926 -2.519215903 

H -0.011399058 1.645055511 -3.11460605 

C 0.45421393 1.470433084 2.803019063 

H 1.438423679 1.012588121 2.944078469 

H 0.500126548 2.487109077 3.219848205 

Table XVIII: Coordinates of the 2nd Minimum Structure 
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Methylated transition 1 

Fe -0.279123309 -0.014599587 -0.032783532 

C -0.051095492 -1.800972731 0.948364989 

C -1.360674936 -1.716420085 0.359653294 

C -1.200339044 -1.538105377 -1.059399871 

C 0.209261714 -1.511693219 -1.347519048 

C 0.922090628 -1.663845181 -0.10681265 

H -0.476687059 -1.601172312 3.064373667 

H -3.481138067 -1.347573646 0.59482536 

H -2.03117329 -0.894317612 -2.951942658 

H 0.193381254 -0.883987021 -3.41922657 

C -0.09420317 1.741308951 -1.057206072 

C 0.963590858 1.604229839 -0.079364413 

C 0.344882121 1.515938963 1.218062877 

C -1.08048331 1.549897279 1.03853283 

C -1.353898951 1.704924618 -0.363468046 

H 0.127173312 3.062568693 -2.7495669 

H 0.840371052 0.672704655 3.175972841 

H -3.050822468 1.12054177 1.830017366 

H -2.751445179 1.550895737 -2.014412299 

C 2.438932217 1.732615819 -0.396799864 

C 3.499730144 0.6668454 0.06487349 

C 3.114913067 -0.612198226 0.841293487 

C 2.423143943 -1.753353152 0.057838197 

H 2.522869996 1.830747379 -1.484724986 

H 2.764922603 2.707992549 -0.004822599 

H 4.064139081 0.349266536 -0.82402631 

H 4.232776464 1.192521524 0.691566877 

H 4.062507388 -1.015795215 1.227702718 

H 2.517968605 -0.358471764 1.721444551 

H 2.894318443 -1.843485809 -0.930293812 

H 2.646790949 -2.699186305 0.57451036 

C -2.309794241 -1.490615501 -2.07532768 

H -2.5591108 -2.500399972 -2.431728211 

H -3.223515579 -1.054336128 -1.657560317 

C 0.826034555 -1.43928559 -2.718825572 

H 1.804972899 -0.947111761 -2.700361325 

H 0.970743447 -2.446695533 -3.134940327 

C 0.229207078 -2.108886231 2.39593652 

H 0.138047991 -3.188048882 2.586543071 

H 1.239456031 -1.811084254 2.69329289 
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C -2.666311397 -1.889741923 1.088346491 

H -2.956066098 -2.949690301 1.129608522 

H -2.60632755 -1.525387296 2.119898211 

C -2.093306131 1.544248899 2.152196936 

H -1.744347915 0.956125145 3.009217482 

H -2.289230108 2.564883457 2.512288893 

C -2.714734863 1.90060876 -0.977097865 

H -3.491646371 1.362460856 -0.42125207 

H -2.992295284 2.964547274 -0.979359368 

C 0.072851743 1.985759503 -2.534020007 

H 0.983103919 1.524037545 -2.930576268 

H -0.770836702 1.580913186 -3.104940226 

C 1.029173171 1.562715728 2.562506607 

H 2.112880445 1.671804474 2.456651525 

H 0.671606418 2.430463034 3.133603961 

Table XIX: Coordinates of the 1st Transition State 
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Methylated intermediate 1 

Fe 0.169588749 -0.05407734 -0.228733908 

C -0.959912007 -1.774580637 -0.198154174 

C 0.164662791 -1.926521171 -1.081033293 

C 1.36470299 -1.724099513 -0.31576947 

C 0.982451984 -1.443622017 1.043356509 

C -0.456583244 -1.455732663 1.117686492 

H -2.668153805 -1.538657992 -1.521457555 

H 0.947526166 -1.957044357 -3.099503792 

H 3.480799407 -1.259990273 -0.270218393 

H 2.890289154 -0.852979828 1.876552468 

C 1.134264075 1.697390107 0.180232654 

C -0.230932482 1.727314427 0.662465099 

C -1.09558528 1.568292744 -0.481013613 

C -0.26764793 1.380626888 -1.642501786 

C 1.107212091 1.47494596 -1.239687554 

H 2.617489378 3.038133714 0.982445155 

H -3.088619578 0.831485957 -0.982997207 

H -0.064690023 0.695241529 -3.685978683 

H 3.195656197 1.071626688 -1.657791437 

C -0.561058452 1.900500928 2.132426513 

C -1.870039459 1.316563665 2.723291995 

C -2.328580711 -0.103199793 2.321673407 

C -1.283791539 -1.24763794 2.37198486 

H 0.276449883 1.465649487 2.693287537 

H -0.545728729 2.973610939 2.38291274 

H -1.749261217 1.346888889 3.816392564 

H -2.703936374 1.999786299 2.50990458 

H -3.15527237 -0.363277341 2.998518881 

H -2.764111014 -0.070348062 1.320071028 

H -0.614931907 -1.095715097 3.229618814 

H -1.817580266 -2.186584248 2.583511953 

C 2.772108364 -1.88638138 -0.824029575 

H 3.108424358 -2.928324205 -0.722660721 

H 2.853542351 -1.616904222 -1.882720921 

C 1.933440533 -1.277216922 2.198561418 

H 1.529233584 -0.620196359 2.97705248 

H 2.145840948 -2.248520116 2.66777381 

C -2.387077425 -2.056526677 -0.595506207 

H -2.525763147 -3.132567058 -0.772689888 

H -3.100930519 -1.762533856 0.178579664 
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C 0.091676362 -2.334730796 -2.528275481 

H 0.087991636 -3.429898092 -2.629414725 

H -0.817778586 -1.957849216 -3.009636148 

C -0.776397125 1.235279364 -3.051980163 

H -1.726548067 0.689405266 -3.084942747 

H -0.947497673 2.218954707 -3.513656298 

C 2.29859053 1.450343595 -2.159292565 

H 2.119179029 0.815456607 -3.034575498 

H 2.529249835 2.459902496 -2.528864964 

C 2.377029879 1.965175362 0.988230336 

H 2.268175482 1.662316941 2.034441593 

H 3.246019421 1.434104999 0.582386409 

C -2.595751125 1.719226507 -0.567183583 

H -3.047595388 1.92934675 0.403855236 

H -2.843472555 2.563029653 -1.226005248 

Table XX: Coordinates of the 1st Intermediate Structure 
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Methylated midtransition 

Fe 0.306700998 0.020097142 -0.014326945 

C -0.274393927 -1.656457975 -1.049341862 

C 1.162551513 -1.602248448 -0.948902802 

C 1.516700372 -1.582413399 0.443279947 

C 0.301015363 -1.617617445 1.209037439 

C -0.815659891 -1.638738907 0.291276594 

H -0.361362609 -1.688446262 -3.205538048 

H 3.081160647 -1.166975543 -1.844302246 

H 2.975899485 -1.106448558 1.969970678 

H 1.083240382 -1.24341058 3.191969848 

C 0.089483935 1.617192111 1.242963139 

C -1.020475886 1.51352703 0.322601169 

C -0.485646425 1.629011448 -1.015760575 

C 0.946256048 1.758617263 -0.912273974 

C 1.299709004 1.755302265 0.480208578 

H -0.117774733 2.734555435 3.071942838 

H -0.576578433 1.680450253 -3.17160658 

H 2.90494568 1.592938999 -1.811458078 

H 2.807959506 1.438870563 2.000610426 

C -2.462719026 1.407563138 0.775382366 

C -3.471363809 0.559002552 -0.035300732 

C -3.369600366 -1.003203391 -0.049865808 

C -2.2583041 -1.728394675 0.746124452 

H -2.469580754 1.05408951 1.814719299 

H -2.879299392 2.427446239 0.819008696 

H -4.458889207 0.816680174 0.370839658 

H -3.493258065 0.924986851 -1.066461038 

H -4.314891161 -1.394292455 0.350152079 

H -3.344794369 -1.349715416 -1.087656166 

H -2.30844278 -1.39696558 1.791531873 

H -2.539400222 -2.794203094 0.771604348 

C 2.913592531 -1.618214525 1.003232573 

H 3.25061343 -2.653518879 1.15598483 

H 3.631695503 -1.134248554 0.331890101 

C 0.231590367 -1.734480053 2.708733463 

H -0.67841903 -1.288071644 3.122709189 

H 0.24507673 -2.790686911 3.013817142 

C -1.021575024 -1.843865747 -2.346049897 

H -1.414895656 -2.867713038 -2.41832532 

H -1.867510757 -1.161319964 -2.463626041 
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C 2.135706761 -1.659720104 -2.096867159 

H 2.368580745 -2.699618651 -2.367450354 

H 1.744327817 -1.165459145 -2.992812138 

C 1.903976042 1.965409459 -2.056005168 

H 1.579294529 1.444459563 -2.963411027 

H 2.001197727 3.032206124 -2.303656577 

C 2.680201437 1.959089058 1.044873807 

H 3.454861337 1.586573057 0.365376639 

H 2.880622333 3.025703167 1.220762115 

C 0.005305666 1.692196047 2.744581801 

H -0.839503703 1.123279306 3.146361323 

H 0.913121752 1.304958517 3.219837741 

C -1.249926941 1.745687102 -2.310694263 

H -2.010232005 0.970565548 -2.438513158 

H -1.760532551 2.717348465 -2.369170023 

Table XXI: Coordinates of the Middle Transition State 
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