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ABSTRACT 

 

EVALUATION OF THE ROLE OF OXIDATIVE STRESS, INFLAMMATION AND APOPTOSIS IN THE 

PULMONARY AND THE HEPATIC TOXICITY INDUCED BY CERIUM OXIDE NANOPARTICLES 

FOLLOWING INTRATRACHEAL INSTILLATION IN MALE SPRAGUE-DAWLEY RATS 

By 

Siva Krishna Nalabotu 

The field of nanotechnology is rapidly progressing with potential applications in the 

automobile, healthcare, electronics, cosmetics, textiles, information technology, and 

environmental sectors. Nanomaterials are engineered structures with at least one dimension of 

100 nanometers or less.  With increased applications of nanotechnology, there are increased 

chances of exposure to manufactured nanomaterials. Recent reports on the toxicity of 

engineered nanomaterials have given scientific and regulatory agencies concerns over the 

safety of nanomaterials. Specifically, the Organization for Economic Co-operation and 

Development (OECD) has identified fourteen high priority nanomaterials for study. Cerium 

oxide (CeO2) nanoparticles are one among the high priority group. Recent data suggest that 

CeO2 nanoparticles may be toxic to lung cell lines in vitro and lung tissues in vivo. Other work 

has proposed that oxidative stress may play an important role in the toxicity; however, the 

exact mechanism of the toxicity, has to our knowledge, not been investigated. Similarly, it is not 

clear whether CeO2 nanoparticles exhibit systemic toxicity. Here, we investigate whether 

pulmonary exposure to CeO2 nanoparticles is associated with oxidative stress, inflammation 

and apoptosis in the lungs and liver of adult male Sprague-Dawley rats. 
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Our data suggest that the intratracheal instillation of CeO2 nanoparticles can cause an 

increased lung weight to body weight ratio. Changes in lung weights were associated with the 

accumulation of cerium in the lungs, elevations in serum inflammatory markers, an increased 

Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased phosphorylation of p38-MAPK 

and diminished phosphorylation of ERK1/2-MAPK.   

Our findings from the study evaluating the possible translocation of CeO2 nanoparticles 

from the lungs to the liver suggest that CeO2 nanoparticle exposure was associated with 

increased liver ceria levels, elevations in serum alanine transaminase levels, reduced albumin 

levels, a diminished sodium-potassium ratio and decreased serum triglyceride levels. Consistent 

with these data, rats exposed to CeO2 nanoparticles also exhibited reductions in liver weight 

and dose dependent hydropic degeneration, hepatocyte enlargement, sinusoidal dilatation and 

the accumulation of granular material in the hepatocytes.  

In a follow-up study, we next examined if CeO2 deposition in the liver is characterized by 

increased oxidative stress and apoptosis. Our data demonstrate that increased cerium in the 

liver is associated with increased oxidative stress and apoptosis as assessed from 

hydroethidium staining, the analysis of lipid peroxidation, and TUNEL staining. In addition, 

increased cerium concentration in the liver was associated with an increased Bax to Bcl-2 ratio, 

elevated caspase-9 and elevated caspase-3 protein levels.  

Taken together, these data suggest that exposure to CeO2 nanoparticles is associated 

with increased oxidative stress and cellular apoptosis in the lungs. It is also evident that CeO2 

nanoparticles can translocate to liver and induce hepatic damage. The hepatic damage induced 

by CeO2 nanoparticles is associated with increased oxidative stress and apoptosis in the liver.
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Chapter 1  

Introduction 

Nanotechnology can be defined as the design, synthesis, and application of materials 

and devices whose size and shape have been engineered at the nanoscale (1-100 nm). Particles 

with at least one dimension smaller than 100 nm and potentially as small as atomic and 

molecular length scales (~0.2 nm) are termed nanoparticles [1, 2]. Given a very high surface 

area to volume ratio, nanomaterials have different physical and chemical properties when 

compared with their bulk counterparts and have been proposed to exhibit tremendous 

applications in several sectors [2]. At the nanoscale, quantum effects start to dominate which 

can result in different electric, magnetic and conductive properties than that observed in 

traditional materials [3]. Because of these special properties, nanomaterials have been 

proposed to be of use in the biomedical sector for applications in imaging, diagnosis and as 

therapeutic agents [4]. It is estimated that there are almost 800 nanoproducts available in the 

market that have been manufactured by 322 companies across the world [5].   

With the growing incorporation of nanomaterials into our day to day life, the potential 

for exposure is increasing daily. Whether or not nanomaterials exhibit deleterious effects to 

human life and the ecosystems is not well understood. As such, an evaluation of interaction of 

nanomaterials with biological systems is highly warranted. Of the various types of 

nanomaterials available, the toxicity evaluation of the engineered (manufactured) 

nanoparticles is perhaps the most important as the industrial production of manufactured 

nanomaterials is progressing rapidly. Recent studies reporting the toxicity of engineered 
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nanomaterials have led to concerns by scientific and regulatory agencies about the toxicity of 

engineered nanomaterials. The Organization for Economic Cooperation and Development 

Working Party on Manufactured Nanomaterials (OECD MPMN) has identified fourteen 

manufactured nanomaterials for evaluation. Materials identified include fullerenes, carbon 

nanotubes, metal oxides, nanoclays and CeO2 nanoparticles [6]. At present, data regarding the 

potential toxicity of CeO2 nanoparticles are limited.   

     Cerium is a rare earth metal and is the most reactive lanthanide metal. Cerium can 

exist in Ce3+ and Ce4+ states with Ce4+ being the most stable form. Nanoparticles made from 

cerium oxide (CeO2) have been widely used in fuel cells, solar cells, for polishing of materials, in 

UV blockers and in the automobile industries as well for catalysts [7]. Cerium exhibits a fluorite 

like chemical structure that enables it to donate or receive the oxygen atoms depending on the 

partial pressure of oxygen in the surrounding environment [8]. This property of redox cycling 

makes cerium an efficient agent for reduction and oxidation reactions. At the nanoscale, CeO2 

nanoparticles have increased surface area, expansion of lattice [8], and a higher melting point 

when compared to their bulk counterparts. It is thought that these properties allow CeO2 

nanoparticles to exhibit anti-oxidant activity [9]. Recent studies have shown that CeO2 

nanoparticles can be used to scavenge reactive oxygen species (ROS) and this activity can 

protect against cardiomyopathy [10], oxidative neuronal toxicity [11], and radiation-induced 

tissue damage [12]. It has been proposed that CeO2 nanoparticles may mimic the action of the 

superoxide dismutase (SOD) and catalase enzymes where they function to scavenge reactive 

oxygen species that are generated in the cell [13]. Whether CeO2 nanoparticles exhibit toxic 

effects to cellular function is not well understood. 
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The most common route of exposure to CeO2 nanoparticles is likely to be through 

inhalation or ingestion. The inhalation route is the most worrisome route of the exposure as the 

absorption of CeO2 nanoparticles through ingestion is typically minimal [7]. Although there are 

limited studies on the toxicity of CeO2 nanoparticles, most of these studies are centered on the 

toxicological evaluation on lung cells and lung tissues.  

Studies on microorganisms such as E. coli have shown that CeO2 nanoparticles (7nm) 

can induce cell death and the oxidative stress might be the possible mechanism of toxicity[14]. 

In vitro studies using human bronchoalveolar carcinoma cell line (BEAS-2B) and lung epithelial 

cell lines (A549) demonstrated that exposure to CeO2 nanoparticles (20 nm) is associated with 

reduced cell viability and increased oxidative stress[15]. Conversely, CeO2 nanoparticles were 

not shown to be toxic to T98G (glioblastoma cell line) and H9C2 (cardiomyoblast) cell lines [16] . 

In vivo studies on male Sprague- Dawley rats showed that exposure to CeO2 nanoparticles 

(20nm) can cause lung damage and fibrosis [17]. These changes in the lung structure were 

associated with increased infiltration of inflammatory cells and increased accumulation of 

nanoparticles in the alveolar spaces. This work also demonstrated that CeO2 nanoparticles can 

cause lung damage by increasing oxidative stress causing apoptosis of the lung macrophages. 

Nonetheless, it is not yet mechanistically clear how exposure to CeO2 nanoparticles may induce 

oxidative stress in the intact animal.  

Some studies have proposed that CeO2 nanoparticles can catalyze Fenton-like reactions 

that result in the production of reactive radicals [9]. Other in vitro studies have suggested that 

exposure to CeO2 nanoparticles can diminish the amounts of glutathione and -tocopherol [16] 

while other work has demonstrated that CeO2 nanoparticles can generate ROS in cells[18]. 



4 
 

Recent in vitro studies have suggested that the oxidative stress induced by CeO2 nanoparticles 

is mediated through the p38-Nrf-2 signaling pathway [19]. Whether similar cell signaling events 

occur in vivo subsequent to CeO2 nanoparticle exposure has, to our knowledge, not been 

investigated.  

 It is thought that inhaled nanoparticles can translocate to various other organs in the 

body including the liver, kidney, spleen, brain and heart through the systemic circulation[20]. 

Once reaching the cells, other work has demonstrated that nanomaterials can enter the 

nucleus, mitochondria, lipid vesicles and cell membranes and induce toxic effects [21-23]. One 

of the most studied pathways of the nanoparticle mediated toxicity is oxidative stress and 

apoptosis. Nanoparticles have been shown to induce oxidative stress by the production of ROS 

or by decreasing the antioxidant levels in the cell [24].  The oxidative stress is mediated through 

various stress responsive cell signaling events such as activation of the mitogen activated 

protein kinase (MAPK) signaling or through the activation of inflammatory mediators [24]. 

Depending on the magnitude of oxidative stress increase, either apoptosis or necrosis of the 

cell can result. 

CeO2 nanoparticles have shown to translocate to various other organs in the body 

through the systemic circulation [25]. Nonetheless, it is not clear if they induce any toxic effects 

on the liver. Studies on various other metal nanoparticles such as iron oxide, silver, copper and 

gold nanoparticles have shown that they can induce liver toxicity after intratracheal instillation 

[26-28]. As the liver is the major metabolizing organ of the body and a primary source of 

xenobiotic elimination, an examination of the toxicological effects of the CeO2 nanoparticles on 

the liver is warranted. Herein, we propose to evaluate the role of MAPK signaling and caspases 
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in the oxidative stress and apoptosis induced by CeO2 nanoparticles in lungs as well as we 

evaluate if CeO2 nanoparticles exhibit toxic effects on the liver following intratracheal 

instillation.  
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Objectives and Specific Aims 

 Our long-term goal is to evaluate whether CeO2 nanoparticles are toxic to the lungs and 

the liver.  Based on previous studies from the literature using other nanoparticles [2, 17, 24], 

we hypothesize that:  

i. CeO2 nanoparticle accumulation in the lungs will be associated with oxidative stress. The 

oxidative stress induced by CeO2 nanoparticles will activate stress responsive MAPK 

protein signaling and inflammatory protein signaling. Finally, CeO2 nanoparticle- induced 

increases in oxidative stress and inflammation in the lungs will be associated with 

increases in apoptosis. 

ii. Inhaled CeO2 nanoparticles will translocate to liver. 

iii. CeO2 nanoparticle toxicity in the liver will be mediated through oxidative stress and 

apoptosis and will increase with the duration of the exposure to CeO2 nanoparticles. 

Specific Aims 

i. Specific Aim I: To investigate the role of MAPK signaling and inflammatory protein 

signaling in the oxidative stress and apoptosis induced by CeO2 nanoparticles in the 

lungs (Figure 1.1). 

ii. Specific Aim II: To investigate if intratracheal instillation of CeO2 nanoparticles is 

associated with the deposition of ceria in the liver, kidney, spleen and heart of rats. 

iii. Specific Aim III: To investigate if the intratracheal instillation of CeO2 nanoparticles is 

associated with increased hepatic oxidative stress and apoptosis (Figure 1.2) 
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Layouts for the toxicological evaluation studies (Figures 1.1 and 1.2) 

Figure 1-1: Layout of study design for Specific Aim 1 

 

Figure 1-2: Layout of study design for specific aims 2 and 3 
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Chapter 2  
 

2.1 Review of the literature 

The following chapter presents a review of the literature concerning nanotechnology 

and the toxicity of CeO2 nanoparticles. Specifically, we will address the current literature on 

nanotechnology, the unique properties and applications of the nanomaterials, the toxicity of 

the nanomaterials, factors responsible for the nanomaterial toxicity, routes of exposure to 

nanomaterials, cellular uptake and the effects of the nanomaterials on the cell, role of the 

oxidative stress and apoptosis in the toxicity induced by nanoparticles, the structure and unique 

properties of CeO2 nanoparticles and the potential toxicity of CeO2 nanoparticles.   

 

2.2 Introduction to nanotechnology  

The use of nanotechnology is rapidly increasing as industry strives to develop new 

products that are cheaper, better, and less harmful to the environment. It is estimated that 

investments in the nanotechnology industry grew from $13 billion in 2004 to $50 billion in 2006 

and recent data has suggested that this growth will reach $2.6 trillion dollars by 2014 [29, 30]. 

The National Science Foundation has proposed that the worldwide market for nanomaterials 

will reach $1 trillion between 2010 and 2015 [30] with the pharmaceutical industry alone 

contributing approximately $180 billion [31].  

Nanotechnology can be defined as the design, synthesis, and application of materials 

and devices whose size and shape have been engineered at the nanoscale (1-100 nm). 

Materials that have structural components smaller than 100 nm in at least one dimension are 
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referred to as nanomaterials. Particles with at least one dimension smaller than 100 nm and 

potentially as small as atomic and molecular length scales (~0.2 nm) are termed nanoparticles 

[1, 2]. (Figure 2.1: How big are nanomaterials?). There are two types of nanoparticles (NPs): (1) 

naturally occurring NPs (e.g., produced naturally in volcanoes, forest fires or as combustion by-

products) and (2) engineered nanoparticles (ENPs) which have been deliberately developed to 

exhibit some specific property or composition [e.g., carbon black, fumed silica, titanium dioxide 

(TiO2), iron oxide (FeOx), quantum dots (QDs), fullerenes, and carbon nanotubes (CNTs)][1, 2]. 

Figure 2-1: How big are nanomaterials? 

 

Source: http://www.sustainpack.com/nanotechnology.html 
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Recently the Organization for Economic Co-operation and Development (OECD) has 

formed a committee called the Working Party on Manufactured Nanomaterials (WPMN) to 

evaluate more than hundred different types of ENPs available as of today. Work from this effort 

has identified fourteen different ENPs for further evaluation due to their widespread use or 

unusual chemical or physical properties [32, 33] (Table 1).  

Table 1: Engineered nanoparticles chosen by the WPMN for evaluation  

 Fullerenes (C60) 

 Single-walled carbon nanotubes (SWCNTs) 

 Multi-walled carbon nanotubes (MWCNTs) 

 Silver nanoparticles 

 Iron nanoparticles 

 Carbon black 

 Titanium dioxide 

 Aluminium oxide  

 Cerium oxide 

 Zinc oxide 

 Silicon dioxide 

 Polystyrene Dendrimers 

 Nano clays 
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2.3 Unique properties and applications of nanomaterials 

Nanomaterials exhibit unique chemical and physical properties due to their small size 

and increased surface area to volume ratio which allow them to behave differently from their 

bulk counterparts [1, 34]. These unique properties can give rise to increased chemical reactivity 

as well as different optical, electrical and magnetic properties [35]. For example, in its bulk form 

gold is yellow in color; however, gold nanoparticles can be different combinations of red, blue 

or green depending on their size [36, 37] (Figure 2.2).  

Figure 2-2: Effect of size on the optical properties of gold 

 

Source: http://www.ansci.wisc.edu/facstaff/Faculty/pages/albrecht/albrecht_web/Programs/microscopy/colloid.html 

It is estimated that more than 800 products containing some form of nanomaterials are 

being manufactured by 322 companies the world over [38]. Industries utilizing nanomaterials 

include electronics manufacturers (chips, screens), energy (production, catalysis, and storage), 

materials (lubricants, abrasives, paints, tires and sportswear), consumer products (clothes, 

goggles, skin lotions and sun screens), automotive, soil/water remediation (pollution 

absorption, water filtering, and disinfection), pesticides, chemicals and the pharmaceutical 
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sector [1, 2, 30, 39, 40]. Other work is centered on utilizing nanomaterials in food products 

(additives, packaging), medical imaging and as drug delivery systems [41-44]. This development, 

in turn, has led to increasing concerns over the potential ramification of nanomaterial exposure 

to humans and the environment.  

 

2.4 Toxicity of nanomaterials 

 It is thought that the ENPs pose the greatest threat to man and the environment given 

their widespread use and growing importance. Even with the proper precautions it is possible 

for exposure to occur during each phase of the material lifecycle (production, utilization, 

disposal, and recycling) [45]. Potential routes of exposure include inhalation, ingestion, 

absorption through the skin and via the food chain through contamination of food and water 

(Figure 2.3) [7, 46-48].  

 Exposure to nanomaterials is a growing concern. A recent clinical report [49], which was 

the first of its kind, examined seven Chinese women who worked in the paint industry and 

detailed how industrial exposure led to severe respiratory stress and shortness of breath. 

Pathological examination of the worker’s lungs found nonspecific pulmonary inflammation, 

pulmonary fibrosis and foreign-body granulomas of the pleura. Additional transmission electron 

microscopy (TEM) studies confirmed the presence of round polyacrylate nanoparticles ∼30 nm 

in diameter in the cytoplasm, karyoplasm of pulmonary epithelium, mesothelial cells, and in 

chest fluid. Based on these observations, the authors concluded that the long-term exposure to 

polyacrylate nanoparticles could result in serious damage to human lungs.  
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2.5 Factors responsible for the nanomaterial toxicity 

 Nanomaterials display different chemical and electronic properties/reactivity than their 

bulk counterparts [2, 50]. In addition, because of their small size, nanomaterials can easily 

penetrate into subcellular components of the cells where they can cause toxicological effects 

[2, 51, 52]. The shape of the nanomaterials may also play a role in governing potential toxicity 

[53]. In general, nanomaterials with a rod or needle shape are more toxic than the ones with 

round shape. Indeed, recent data has suggested that single walled carbon nanotubes (rods) are 

more toxic than fullerenes (cylindrical) of comparable size. Why shape may influence toxicity is 

not well understood; however, it is likely that shape may mediate, at least in part, particle 

absorption and deposition [54-56]. In addition to size and shape, other work has demonstrated 

that chemical composition along with other physicochemical properties (agglomeration state, 

crystal structure, chemical composition, surface area, and surface chemistry, surface charge, 

etc.) may also influence toxicity [35, 57]. Other studies have shown that the surface properties 

of nanoparticles can influence how they interact with proteins, leading to different types of 

corona and biological effects[58]. 

 

2.6 Respiratory Route of Exposure 

Although nanoparticle exposure can occur via several different routes (respiratory, 

ingestion, dermal and drug delivery), it is thought that the uptake of nanoparticles into the 

body is most likely to occur via the respiratory system [1, 2]. If inhaled, nanomaterials can 

become phagocytized by alveolar macrophages or lodged in the lungs after diffusion through 
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the epithelial cell layer [2]. Upon becoming lodged in the lungs, it is possible for nanomaterials 

to pass across the epithelia of the respiratory track by transcytosis into the interstitium where 

they can enter into the blood either directly or via the lymphatic system [1, 2]. Once within the 

blood, the nanomaterials can then travel to the liver, kidney, spleen heart, brain and bone 

marrow (Figure 2.3) [2, 20, 59, 60]. Research using copper, nickel, gold and manganese oxide 

nanoparticles has shown that nanoparticles can enter into the nervous system through the 

sensory nerve fibers endings that are embedded in the airway epithelia [61-65]. If small 

enough, ENPs can also cross the blood brain barrier [63]. Clearance of the nanoparticles from 

the respiratory system can occur by either physical or chemical processes [1, 2, 66]. The 

physical process of elimination involves mucociliary movement, phagocytosis by macrophages, 

endocytosis into epithelial cells, interstitial translocation and eventual clearance into the blood 

and lymphatic circulation [66]. The chemical process of elimination can occur by protein binding 

or leaching or through the dissolution of the particles or components of the particles that are 

either lipid soluble or soluble in intracellular and extracellular fluids [2]. It is thought that the 

chemical process of elimination appears to be largely dependent upon local extracellular and 

intracellular conditions [67, 68] 

Evaluation of the toxicity of nanomaterials through the respiratory route of exposure in 

animals involves either inhalation of the materials or intratracheal instillation into the lungs. 

Although, the inhalation route provides natural route of entry of the material into the lungs, it 

has several limitations. For example, the inhalation route of exposure needs special facilities, 

while it is also difficult to know with certainty how much of the inhaled material that enters the 
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lungs. As such, it is thought that the intratracheal instillation route is the most preferable 

method to study inhalation toxicity [69].  

Figure 2-3: Potential routes of nanomaterial exposure 

  

Modified from “Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine 

Particles G. Oberdörster et al., Environmental Health Perspectives Volume 113, Number 7, 

2005” 

 

2.7 Cellular effects of engineered nanoparticles  

2.7.1 Cellular uptake of engineered nanoparticles 

Once in the circulation, nanomaterials are taken up into cells by endocytosis 

(phagocytosis or pinocytosis), membrane penetration or passive diffusion through 
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transmembrane channels [2]. The transmembrane passage of nanomaterials is dependent, on 

many factors including the physicochemical properties of the particles (chemical composition, 

size, shape and agglomeration status), cell type (professional phagocytes such as macrophages 

vs. non-professional phagocytes), serum components, and surfactant [1]. After internalization, 

nanomaterials can travel to several different locations within the cell including the outer-cell 

membrane [70], cytoplasm [70], mitochondria [21], lipid vesicles [22], nuclear membrane [71], 

or become lodged within the nucleus itself [23, 72]. If the concentration is high enough, 

nanomaterials can damage cellular organelles and DNA which can result in cell death and, at 

times, disease development (Figure 2.4).   

 

2.8 Mechanisms of nanoparticle toxicity 

Mechanisms of nanoparticle toxicity include oxidative stress, inflammation, genetic 

damage, the inhibition of cell division and cell death [3, 24, 73, 74]. Most work to date has 

suggested that oxidative stress and consequent generation of ROS is a common mechanism of 

nanomaterial toxicity [24, 75]. In vitro studies have shown that TiO2[76] and carbon nanotubes 

[77] all cause toxicity by the generation of ROS. Other work has shown that some nanomaterials 

(e.g. ZnO, SiO2, fullerenes) can generate excited electrons when exposed to light which, in the 

presence of oxygen, can form superoxide radicals by direct electron transfer [78].  
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Figure 2-4: Various effects of the nanomaterials after cellular internalization[1]. 

 

Source: Buzea, Pacheco, and Robbie: Nanomaterials and nanoparticles: Sources and toxicity 

Biointerphases, Vol. 2, No. 4, December 2007 

 

Oxidative stress can be caused either by the depletion of antioxidants or increased 

production of ROS or reactive nitrogen species (RNS). Potential ROS include superoxide anion 

(O2-·), peroxide (O2
-2·), hydroxyl radical (·OH), and singlet oxygen (1O2), an excited form of 

oxygen. Oxygen-derived radicals are generated constantly as part of normal aerobic life. A 

prominent feature of ROS is that they have extremely high chemical reactivity which may help 
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to explain their damaging effects on cells. When produced in excess, ROS can damage proteins, 

lipids and DNA. If the damage is excessive cell death can be induced.  

 

2.8.2 Role of MAP kinases in the nanoparticle induced oxidative stress 

Oxidative stress has been shown to activate stress responsive mitogen-activated protein 

kinases (MAPKs), which are thought to regulate, at least in part, the fate of the cell to go 

through proliferation, differentiation, or cell death [79, 80]. Different studies have shown that 

the suppression of extracellular signal-regulated kinase (ERK1/2-MAPK) and activation of c-Jun 

N-terminal kinase (JNK) and p38 MAPKs play a role in apoptosis in different cell lines [80, 81]. It 

has been revealed that ERK1/2-MAPKs are activated in response to growth factor stimulation 

where they play a very important role in the processes of cellular proliferation and 

differentiation [82, 83]. Conversely, the JNK and p38 MAPKs have been shown to be activated in 

response to cellular stresses such as UV light, osmotic stress, DNA damaging agents and 

proinflammatory cytokines [84, 85] (Figure 2.5). An increased expression of JNK and p38-MAPKs 

has been proposed to cause apoptosis in various cell lines [86]. It has been observed that silver 

nanoparticles can activate JNK protein signaling and apoptosis in a variety of cells [87]. 

Similarly, in vitro studies with CeO2 nanoparticles have shown that they can activate p38 MAPK 

signaling in bronchoalveolar cells [16]. However, the role of MAPKs signaling in nanoparticles 

induced oxidative stress remains largely unknown. 
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Figure 2-5: Modulation of various MAP kinases by stresses to induce varied cellular effects 

 

 

2.8.3 Mechanisms of ROS production and apoptosis 

ROS can be generated directly when both oxidants and free radicals are present on the 

surface of the particles [88-90]. Some nanoparticles have been shown to activate inflammatory 

cells such as the alveolar macrophages and neutrophils which can result in the increased 

production of ROS [90-92]. Other nanomaterials such as TiO2, ZnO, CeO2 and silver 

nanoparticles have been shown to deposit on the cellular surface or inside the subcellular 

organelles and induce oxidative stress signaling cascades that eventually results in the oxidative 

stress to the cell [1]. It appears that the mitochondria are one of the major target organelles for 

nanoparticle-induced oxidative stress [21]. Upon entry into the mitochondria, nanomaterials 

appear to be capable of inducing structural damage which can lead to the impairment of 
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mitochondrial function [93]. It is well known that high levels of ROS in the mitochondria can 

result in damage to membrane phospholipids which can lead to mitochondrial membrane 

depolarization. In addition, the deposition of nanomaterials in mitochondria can alter normal 

functioning of mitochondria by disrupting the electron transport chain, ultimately resulting in 

the production of ROS. During oxidative phosphorylation, electrons occasionally escape from 

the electron transport chain where they can be accepted by molecular oxygen to form the 

extremely reactive superoxide anion radical (O2-●) which can get further converted to hydrogen 

peroxide (H2O2) or partially reduced to hydroxyl radical (OH●), one of the strongest oxidants in 

nature [93]. Nanomaterials can increase the rate of superoxide anion production, either by 

blocking the electron transport or by accepting an electron from a respiratory carrier and 

transferring it to molecular oxygen [88, 94]. Mitochondrial damage, if extensive, can trigger 

activation of caspases and cellular apoptosis. 

 

2.8.4 Mitochondrial pathway of apoptosis 

Apart from affecting the cellular proteins, lipids and DNA, ROS have a very crucial role in 

inducing apoptosis in the mitochondria. Conditions of excessive oxidative stress can result in 

the cellular apoptosis or necrosis. Apoptosis has been implicated as a major mechanism of 

cellular death due to nanomaterial-induced toxicity [57, 87, 95, 96]. Among the different 

apoptotic pathways, the mitochondrial pathway seems to play a predominant role. In this 

process, the generation of excessive ROS leads to changes in mitochondrial membrane 
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potential, an increase in cytochrome C release from the damaged mitochondria and the 

activation of caspase-3.  

The decision to proceed to apoptosis is regulated by the Bcl-2 family of proteins. Bcl-2 

family members can interact with each other or exert function independently and are 

comprised of several different members including those that inhibit (Bcl-2, Bcl-xL, etc.,) or favor 

(Bax, Bak, Bad, etc) apoptosis. Bcl-2 is an anti-apoptotic protein which is predominately present 

in mitochondria. The Bcl-2 protein prevents apoptosis by suppressing oxyradical mediated 

membrane damage and stabilizing mitochondria membrane potential. Conversely, the 

proapoptotic protein Bax can trigger the release of cytochrome C into the cytosol. Once 

released, cytochrome C interacts with APAF-1 and procaspse-9 which results in the formation of 

the apoptosome. The apoptosome then cleaves procaspase-9 into its active form which causes 

the cleavage and activation of the effector caspase, procaspase-3. Once active, caspase-3 then 

initiates cleavage of nuclear and cytosolic proteins resulting in the apoptotic death of the cell 

[94, 97-99]. 

 

2.8.5 Engineered nanoparticles induced inflammation 

Inflammation is the protective mechanism of the organism against adverse reactions 

induced by foreign chemicals or organisms. If limited, inflammation is often times protective in 

nature, but if excessive, inflammation can cause cellular dysfunction. Fullerenes, carbon 

nanotubes, silver nanoparticles and TiO2 nanoparticles have been shown to increase the level of 

inflammatory mediators or cytokines in the circulation which can result in the generation of 
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ROS, hypersensitive reactions, allergic response or granulomas in the target organs [52, 73, 100, 

101]. Nanomaterials have also been shown to activate the nuclear factor kappa B (NF-Kβ) 

transcription factor, which when active, translocates to the nucleus. Once in the nucleus, NF-Kβ 

can induce transcription of the several pro-inflammatory mediators including TNF-alpha, IL-8, 

IL-2 and IL-6 which can lead to increased inflammation and oxidative stress [102, 103].  

Increased production of cytokines can transduce various cell signaling mechanisms. The 

Janus kinase/ signal transducers and activators of transcription (Jak/STAT) pathway is one 

important signaling mechanism that can be transduced by various cytokines [104]. After binding 

of cytokines, the activation of the receptor-associated tyrosine kinases Jak1 and Tyk2 induces 

tyrosine phosphorylation of the receptor subunits and several STAT proteins, which form 

homodimers and/or heterodimers that translocate to the nucleus and regulate the 

transcription of specific target genes that are involved in inflammation [105]. It has been shown 

that STAT proteins can activate p38 MAPK which may play an important role in inflammation 

and apoptosis of the cells [106]. 

 

2.9 Literature review on cerium oxide nanoparticles 

2.9.1 Cerium oxide nanoparticles structure and applications 

Cerium is a lanthanide metal that is also the most reactive rare earth metal. Cerium 

exists in either the Ce4+ or Ce3+ state with the Ce4+ state being the most stable structure. Cerium 

oxide (CeO2) is one of the most stable forms of cerium. There are several synonyms for CeO2 

including cerium oxide, cerium dioxide, ceric oxide and ceria. The fluorite structure, with its 
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large crystal lattice energy, provides an exceptionally strong stabilizing influence on the CeO2 

[8] (Figure 2.5: Lattice structure of CeO2).  

Figure 2-6: The cubic structure of the cerium dioxide[8] 

 

CeO2 is used in a number of different materials and industrial applications including 

petroleum refineries, solid cell fuel cells, and as polishing materials [7]. CeO2 nanoparticles are 

somewhat unique in that they have the ability to undergo reversible oxygenation / 

deoxygenation cycles based on the partial pressure of the oxygen in the surrounding 

environment [107]. At the nanoscale, CeO2 particles exhibit increased electrical conductivity 

and increased catalytic properties [8].  

CeO2 is widely used as a catalyst and has been incorporated into automobile mufflers to 

reduce toxic engine emissions [108]. CeO2 nanoparticles have been used as an additive to diesel 

fuel since 1999 where they function to reduce particulate emissions as well as to increase fuel 

efficiency [7]. Commercially available cerium based fuel additives include Envirox™ [109], 

Platinum Plus produced by Clean Diesel Technologies Inc. and Eoly DPX-9 (Rhodia) [7]. CeO2 

nanoparticles have also been used in sunscreens as they can absorb UV radiation [110].  



24 
 

In addition to their use in industry, CeO2 nanoparticles may also have biomedical 

applications. CeO2 nanoparticles have been shown to be able to scavenge ROS generated in the 

cell and have demonstrated potential application for the treatment of cardiovascular disease, 

neuronal injury and radiation-induced tissue damage in animals [10-12]. How CeO2 

nanoparticles may function to scavenge ROS is not fully understood. Recent work has proposed 

that scavenging of ROS by CeO2 nanoparticles may be due to the ability of CeO2 to cycle back 

and forth between its Ce3+ and Ce4+ states [9, 111]. 

Ce4+ + e-                    Ce3+ 

Ce3+ + OH
. -

              Ce4+ + OH– 

Ce4+ + O2. -
                   Ce3+ + O2 

Other work has suggested that CeO2 nanoparticles can mimic superoxide dismutase 

(SOD) and catalase [111]. It has also been demonstrated that there is a positive correlation 

between the trivalent oxidation state of CeO2 nanoparticles and superoxide dismutase mimetic 

activity. Additional studies have proposed that surface oxygen vacancies in the CeO2 

nanoparticle may play an indirect role in the radical scavenging properties [112].  

 

2.9.2 Sources of exposure and bio distribution of cerium oxide nanoparticles 

 Potential sources of CeO2 nanoparticles include particles generated by the 

manufacturing industries and diesel exhaust. Recent studies have found that the use of ceria as 
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a diesel fuel additive can result in exhaust emissions containing CeO2 nanoparticles [109].  

Routes of CeO2 nanoparticle exposure include inhalation and ingestion [113].  

Recent work using radiolabeled CeO2 nanoparticles has shown that nearly 80% of the 

inhaled nanoparticles are still present in the lungs at 24 hours [113]. Previous studies with other 

nanomaterials have shown that nanoparticles can be internalized into epithelial cells or 

penetrate into the interstitial space where they can then be taken up into the circulation [2]. 

Studies with CeO2 nanoparticles have shown that the concentration of the cerium in the blood 

is elevated after inhalation and that cerium can accumulate in the liver, kidney, spleen and 

bone [113]. The half-life of cerium elimination has been shown to be 103 days. Approximately 

90% of ingested CeO2 nanoparticles are eliminated through the feces [113]. Thus far, little is 

known about the systemic toxicological effects of CeO2 nanoparticles.  

 

2.9.3 Cerium oxide nanoparticle toxicity 

Recent data suggest that CeO2 nanoparticles are toxic to microorganisms. Thill and 

coworkers demonstrated that large amounts of CeO2 nanoparticles can be adsorbed onto the 

surface of E. coli and that this adsorption can reduce bacterial viability through the generation 

of ROS [14].  

Studies conducted using murine macrophage cells have suggested that the major 

mechanism of CeO2 nanoparticle uptake into the cell is through phagocytosis and diffusion 

through the cell membrane. CeO2 nanoparticles have been shown to localize in cytosol and 

lysosomes [114]. Lin and colleagues studied the toxic effects of 20 nm CeO2 nanoparticles on 
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the lung cancer cell line A549. They demonstrated that exposure to CeO2 nanoparticles is 

associated with reduced cell viability, increased oxidative stress, reduced glutathione, increased 

lipid peroxidation and increased membrane damage [18]. Work by Park and coworkers using 

the human bronchial epithelial cell (BEAS-2B) line showed that exposure to 30 nm CeO2 

nanoparticles is characterized by nanoparticle internalization, increased oxidative stress and 

diminished cell viability in a concentration and time dependent fashion [16]. Additional data 

from their study also demonstrated that CeO2 nanoparticles can induce chromatin 

condensation and cellular apoptosis via the activation of caspase 3.  

 Eom and coworkers studied the possible molecular events associated with the CeO2 

nanoparticle-induced oxidative stress in BEAS-2B cells [19]. This work examined the effect of 

CeO2 nanoparticle exposure on mitogen activated protein kinases (MAPK) signaling and the 

regulation of redox sensitive transcription factors. They demonstrated that exposure to CeO2 

nanoparticles was associated with the activation of caspase 3 and p38 MAPK but not ERK1/2-

MAPK or JNK MAPK signaling. In addition, they also found that the CeO2 nanoparticles can 

induce the translocation of the redox sensitive transcription factor, Nrf-2 into the nucleus and 

the activation of heme oxygenase-1 but not superoxide dismutase or NF-KB. They proposed 

that the activation of HO-1 may be mediated through p38 MAPK signaling.  

 

2.9.4 In vivo toxicity of Cerium Oxide nanoparticles 

Work by Hirst and colleagues showed that the intravenous administration of CeO2 

nanoparticles is associated with increased kidney and liver weights that are dose and time 
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dependent [25]. These researchers also demonstrated the accumulation of cerium in various 

organs. Cerium concentrations were highest in spleen and elevated in the liver and brain. In the 

liver, they noted cerium oxide agglomerates in Kupffer cells and in the hepatocytes [6].  

In vivo studies conducted by Ma and coworkers using rats showed that the inhalation of  

CeO2 nanoparticles causes lung inflammation and alveolar macrophage apoptosis via increased 

oxidative stress [17]. These scientists also found that the CeO2 nanoparticles are taken up by 

alveolar macrophages and that exposure to CeO2 nanoparticles is associated with lung fibrosis. 

He and colleagues studied whether inhaled CeO2 nanoparticles can translocate to other organs 

in the body using rats as a model system [113]. They observed that cerium can undergo extra 

pulmonary translocation where it can accumulate in the liver, spleen, bone, kidney and blood. 

Whether the accumulation of CeO2 nanoparticles was associated with organ dysfunction was 

not addressed.  

 

2.9.5 Possible mechanisms of ROS production by cerium oxide nanoparticles 

CeO2 nanoparticles have been shown to gain entry into the cell through diffusion and 

phagocytosis. Asati and colleagues showed that CeO2 nanoparticles can become localized to the 

lysosome where they can induce cellular toxicity via the up regulation of oxidative stress 

signaling [115]. How CeO2 nanoparticles might cause elevations in oxidative stress is not very 

well understood. Lin and coworkers have proposed that the Ce3+ state produced by the 

reduction of Ce4+ can interact with oxygen molecules to generate superoxide anions [18]. The 

two superoxide anions formed can then interact with each other to form hydrogen peroxide, 
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which then can be converted to hydroxyl radicals (reactions 1-4 below).  It is also possible to 

produce alkoxyl radicals from lipid peroxide (LOOH) (reaction 5). In addition, they also proposed 

that physiologically relevant reductants such as ascorbate and thiol could interact with the CeO2 

nanoparticles and undergo oxidation to produce free radicals and reactive species. 

 
 

Ce4+ + A−
red  Ce3+ + Aox   (1) 

 
Ce3+ + O2  Ce4+ + O2

−   (2) 
 

O2
−+ O2

−+ 2H+   O2 + H2O2   (3) 
 

H2O2 + Ce3+   Ce4+ + OH− + OH
·
  (4) 

 

LOOH + Ce3+   Ce4+ + LO
·
 + OH−  (5) 

 

In reaction 1, A− red refer to physiologically relevant reductants, such as ascorbate and thiol 

compounds, whereas Aox are their oxidized states. 

 

3.0 Summary of the review of the literature  

The field of nanotechnology is growing tremendously with applications in various 

industrial sectors including electronics, energy, consumer products, automotive and 

pharmaceutical industries [1, 2, 39]. With the increased application of nanomaterials, there is 

an increased risk of exposure to humans and the ecosystem. The evaluation of nanomaterial 

toxicity is of growing importance. Due to their widespread industrial use, CeO2 nanoparticles 

have been chose by regulatory agencies for toxicology evaluation [7]. Studies conducted with 
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other metallic nanoparticles such as gold, silver, titanium and zinc have shown that the toxicity 

of nanoparticles is characterized by increased oxidative stress and cellular apoptosis [28, 116, 

117]. Whether exposure to CeO2 nanoparticles is associated with similar changes in the lung 

and liver is currently not clear.  
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Chapter 3  

The following chapter includes three different research papers describing in detail the research 

experiments conducted to test our hypotheses set forth for the specific aims I, II and III of this 

dissertation project 
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PAPER I 

Specific Aim 1: To investigate the role of stress responsive MAPKs and inflammatory protein 

signaling in the oxidative stress and apoptosis induced by CeO2 nanoparticles in the lungs 
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Exposure to cerium oxide nanoparticles is associated with activation of MAPK signaling and 

apoptosis in the rat lung  

 

Abstract 

Whether exposure to cerium oxide (CeO2) nanoparticles is associated with increased 

oxidative stress and apoptosis in rat lung has not been investigated. Specific pathogen free 

male Sprague-Dawley rats were instilled with either vehicle (saline) or CeO2 nanoparticles at 7.0 

mg/kg and euthanized 1, 3, 14, 28, 56 or 90 days post exposure. Lung tissues were collected 

and evaluated for evidence of oxidative stress and cellular apoptosis. Compared to age-

matched control animals, exposure to CeO2 nanoparticles increased lung weight to body weight 

ratio by ~8%, 34%, 15%, 36%, 80% and 69% at 1, 3, 14, 28, 56 and 90 days post exposure, 

respectively (P<0.05). Changes in lung weight were associated with the cerium accumulation in 

the lungs, elevations in serum inflammatory markers, an increased Bax to Bcl-2 ratio, elevated 

caspase-3 protein levels, increased phosphorylation of p38-MAPK and diminished 

phosphorylation of ERK1/2-MAPK (P<0.05).  Taken together, these data suggest that exposure 

to CeO2 nanoparticles is associated with lung remodeling, oxidative stress and cellular 

apoptosis.  

 

 

Keywords: Cerium Oxide nanoparticles, lung, accumulation, MAP kinases, oxidative stress and 

apoptosis. 

 



33 
 

Introduction 

Cerium is a lanthanide metal that can undergo redox cycling depending on the partial 

pressure of oxygen in the surrounding environment [9]. The industrial production and 

utilization of cerium oxide (CeO2) nanoparticles is increasing rapidly in the polishing, energy, 

electronic, automobile and biomedical industries [8]. Recently, CeO2 nanoparticles have been 

used as catalysts in combustion engines to reduce particulate emissions and increase fuel 

efficiency [118]. Other work has demonstrated that CeO2 nanoparticles may exhibit antioxidant 

activity [111] which has led to the suggestion that these particles may be useful for the 

treatment of cardiovascular disease [10], neuronal injury [11] and for the prevention of 

radiation-induced damage [12].  

In addition to investigating the beneficial applications of CeO2 nanoparticles, other 

research has begun to examine whether these materials may also be toxic.  In vitro studies 

using A549 lung cancer cells [18] and bronchial alveolar epithelial cells (BEAS2B) [19] has 

suggested that cellular exposure to CeO2 nanoparticles may be associated with increased 

production of reactive oxygen species (ROS) and the induction of cellular apoptosis. Other work 

using the intact rat has demonstrated that CeO2 nanoparticles exposure can cause lung 

inflammation and fibrosis [17]. How exposure to CeO2 nanoparticles may induce lung 

inflammation and remodeling has not been fully elucidated.  

The mitogen activated protein kinases (MAPKs) including the extracellular signal-

regulated kinase (ERK1/2-MAPK), p38-MAPK and c-Jun amino terminal kinase (JNK) are a family 

of serine / threonine specific kinases that transduce extracellular stimuli and are involved in the 

regulation of cell proliferation, gene expression and apoptosis [79, 80]. Previous work has 
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suggested that several metals, including arsenic, zinc and chromium can induce the 

phosphorylation of MAPK proteins [119]. Whether exposure to CeO2 nanoparticles can elicit 

similar activity in the intact lung, has to our knowledge, not been examined.  

The primary goal of this study was to determine if exposure to CeO2 nanoparticles is 

associated with the activation of MAPK signaling and cellular apoptosis in the rat lung. Our data 

suggest that exposure to CeO2 nanoparticles is associated with an increased lung weight to 

body weight ratio, the accumulation of cerium in the lungs, elevations in serum inflammatory 

markers, an increased Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased 

phosphorylation of p38-MAPK and diminished phosphorylation of ERK1/2-MAPK (P<0.05).  

Taken together, these data suggest that exposure to CeO2 nanoparticles is associated with 

activation increased pulmonary ROS and cellular apoptosis.  

 

Materials and Methods 

Particle characterization  

CeO2 nanoparticles, average diameter at ~20 nm, were obtained from Sigma-Aldrich (St 

Louis, MO, USA) as previously outlined [17]. Normal saline was used to suspend the 

nanoparticles prior to instillation. Diluted particle suspensions were filtered, sputter coated, 

and examined with a Hitachi Model S-4800 Field Emission scanning electron microscope 

(Schaumburg, IL, USA) at 5 and 20 kV or placed on a formvar-coated copper grid to dry and 

imaged with a JEOL 1220 transmission electron microscope (Tokyo, Japan).  
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Animal handling and instillation of CeO2 nanoparticles 

All procedures were performed in accordance with the Marshall University Animal Care 

and Use Committee guidelines, using the criteria outlined by the Assessment and Accreditation 

of Laboratory Animal Care (AAALAC). Five week old (150-174 g) specific pathogen-free male 

Sprague-Dawley (Hla: SD-CVF) rats were purchased from Hilltop Lab Animals, Inc. (Scottdale, 

PA, USA). Rats were housed two per cage in an AAALAC approved vivarium with a 12-h light–

dark cycle and maintained at 22 ± 2° C. Animals were allowed access to food and water ad 

libitum. All animals were allowed to acclimatize for two weeks before initiation of the study. All 

animals were examined for precipitous weight loss, failure to thrive or unexpected gait. 

Periodic weight measurements were taken throughout the duration of the study. After 

acclimatization, animals were randomly divided into 12 groups (n=6 per group). Animals 

underwent instillation with 0.3 ml of saline suspension or CeO2 nanoparticles at a dosage of 7.0 

mg/kg as described elsewhere[17].  

 

Tissue collection 

Rats were anesthetized at 1, 3, 14, 28, 56 or 90 days post exposure with ketamine (40 

mg/kg) – xylazine (10 mg/kg) cocktail and supplemented as necessary for loss of reflexive 

response. After midline laparotomy, the lungs were removed and washed with oxygenated 

Krebs–Ringer bicarbonate buffer to remove any blood. After washing, lungs were trimmed of 

connective tissue, weighed and immediately snap frozen in liquid nitrogen. 
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Determination of cerium content in the lung 

Cerium content in the lung was estimated by induction coupled plasma-mass 

spectrometry (ICP-MS) at Elemental Analysis Inc. (Lexington, KY, USA) according to standard 

protocols. Cerium concentration was estimated for 1, 3, 14, 28 and 90 day post exposure 

groups. Briefly, lung samples (n=4 for each group) were prepared using EPA Method 3050B for 

the analysis of total cerium by ICP-MS.  A 1.0 g sample was weighed to the nearest 0.0001 g and 

digested with concentrated nitric acid, 30% hydrogen peroxide, and concentrated hydrochloric 

acid. A method blank, laboratory control sample, a laboratory duplicate, and a pre-digestion 

matrix spike were prepared for each sample.  After digestion, the extracts and the quality 

control samples were diluted to a final volume of 50 mL before analysis using an Agilent 7500cx 

ICP-MS. The instrument was calibrated for Ce-140 with 0, 0.1, 1.0, 10.0, and 100 μg/L standards 

prepared from a certified reference standard traceable to NIST reference materials. A second 

source calibration verification standard traceable to NIST reference materials was analyzed to 

verify the calibration standards. A continuing calibration verification standard and a continuing 

calibration blank were analyzed at the beginning of the run, after every ten samples, and at the 

conclusion of the run.  

 

Histopathological examination 

Tissues from lungs were embedded in paraffin wax, sectioned at 5-μm, mounted on 

glass slides and stained with hematoxylin-eosin using standard histopathological techniques. 

Sections were examined by light microscopy in a blinded fashion by a board certified 

pathologist. 
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Immunoblotting analysis  

Portions of individual lung tissues (100 - 150mg) were homogenized in buffer (T-PER, 8 

mL/g tissue; Pierce, Rockford, IL, USA) containing protease (P8340, Sigma-Aldrich, Inc., St. Louis, 

MO, USA) and phosphatase inhibitors (P5726, Sigma-Aldrich, Inc., St. Louis, MO, USA). Tissue 

homogenates were sonicated for three cycles for 30 sec at 150W. The supernatant protein was 

collected by centrifuging the tissue homogenate at 12,000 x g for 5 min at 4 °C. Protein 

concentration of homogenates was determined via the 660 nm assay method (Fisher Scientific, 

Rockford, IL, USA). Equal concentrations of the protein samples were prepared from individual 

animals by adding the equal quantities of Laemmli 2X sample buffer (Sigma- Aldrich, Inc., St. 

Louis, MO, USA) and adjusting the protein concentration with the T-PER lysis buffer. Samples 

were boiled in a Laemmli 2X sample buffer for 5 min. Thirty two µg of total protein for each 

sample was separated on a 10% PAGEr Gold Precast gel (Lonza, Rockland, ME, USA) and then 

transferred to nitrocellulose membranes. Gels were stained with a RAPID Stain protein stain 

reagent (G-Biosciences, St. Louis, MO, USA) to verify transfer efficiency to membrane. 

Membranes were stained with Ponceau S and the amount of protein quantified by 

densitometric analysis to confirm successful transfer of proteins and equal loading of lanes as 

detailed somewhere else[120]. Membranes were blocked with 5% milk in Tris Buffered Saline 

(TBS) containing 0.05% Tween-20 (TBST) for 1 h and then incubated with primary antibody 

overnight at 4°C. After washing with TBST, the membranes were incubated with the 

corresponding secondary antibodies conjugating with horseradish peroxidase (HRP) (anti-rabbit 

(#7074) or anti-mouse (#7076), Cell Signaling Technology, Danvers, MA, USA) for 1 h at room 

temperature. Protein bands were visualized following reaction with ECL reagent (Amersham 
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ECL Western Blotting reagent RPN 2106, GE Healthcare Bio-Sciences Corp., Piscataway, NJ, 

USA). Target protein levels were quantified by AlphaView image analysis software (Alpha 

Innotech, San Leandro, CA, USA). Primary antibodies against caspase-3 (#9662), cleaved 

caspase-3 (#9661S), Bax (#2772), Bcl2 (#2870S), caspase-9 (#9506), ERK1/2-MAPK Thr 

202/Tyr204 (#9106S), Phospho ERK1/2-MAPK Thr 202/Tyr204 (#4377S), JNK (#9252), Phospho 

JNK Thr 183/Tyr185 (#9251S), p38 MAPK (#9212), Phospho p38 MAPK Thr 180/ Tyr 182 

(#9216L), JAK2 (#3229), Phospho JAK2 Tyr1007/100 (#3776), STAT3 (#9132) and Phospho STAT3 

Tyr 705 (#9131S) were purchased from Cell Signaling  Technology (Beverly, MA, USA). 

 

Multiplexed serum protein immunoassays 

Pooled serum samples from six animals in 1, 3, 28 and 90 day exposure groups were 

shipped on dry ice to Rules Based Medicine (Austin, Texas) for Rodent MAP® version 2.0 

Antigen analysis using a Luminex 100 instrument as detailed elsewhere [121]. The antigen panel 

consisted of fifty-nine proteins, which included proteins involved in inflammation, cytokines, 

growth factors and tissue factors. Each analyte was quantified using 4 and 5 parameter, 

weighted and non-weighted curve fitting algorithms using proprietary data analysis software 

developed at Rules-Based Medicine. 

 

Data Analysis 

Results are presented as mean ± SEM. Data were analyzed using the Sigma Plot 11.0 

statistical program. One-way analysis of variance and two-way analysis of variance were 
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performed for overall comparisons, while the Student–Newman–Keuls post hoc test used to 

determine differences between groups. Values of P<0.05 were considered to be statistically 

significant. 

 

Results 

Nanoparticle characterization 

Similar to previous work[17], using the same batch of CeO2 nanoparticles, analysis of 

nanoparticle size by TEM and scanning electron microscopy (SEM) confirmed the presence of 

single and agglomerated CeO2 nanoparticles in the suspension as shown in early studies[17, 

121]. Field emission scanning electron microscopy showed that the CeO2 nanoparticles were 

generally dispersed into submicron groups with an average size of 9.26 ± 0.58 nm. The diameter 

of the primary CeO2 particles was determined to be 10.14 ± 0.76 nm by TEM (Figure 3.1). 

 

Exposure to CeO2 nanoparticles increases lung weight to body weight ratio 

Cerium oxide nanoparticles exposure had no effect on feed intake or body weight gain 

(data not shown). Compared to age-matched control animals, the lung weight to body weight 

ratio was higher for the CeO2 nanoparticles exposure group at each time point of exposure (Day 

1 control: 5.42± 0.66 vs. Day 1 CeO2 nanoparticles exposure: 5.84±0.24 (P<0.05), Day 3 control: 

4.97± 0.68 vs. Day 3 CeO2: 6.64±0.66 (P<0.05), Day 14 control: 5.55± 0.66 vs. Day 14 CeO2 

exposure: 6.40±0.89 (P<0.05), Day 28 control: 4.44± 0.38 vs. Day 28 CeO2 exposure: 6.03±0.69 



40 
 

(P<0.05), Day 56 control: 3.50± 0.57 vs. Day 56 CeO2 exposure: 6.30±1.19 (P<0.05), and Day 90 

control: 3.11± 0.27 vs. Day 90 CeO2 exposure: 5.27±0.64 (P<0.05) (Table 2). 

 

Accumulation of cerium in the lung with the days of post exposure 

The concentration of cerium in the lung was estimated with the elemental analysis 

technique ICP-MS (Elemental Analysis, Inc., Lexington, KY, USA). The concentration of cerium in 

the lung was decreased with increasing at 1- day post exposure (Post exposure Day 1: 250 ± 33 

ppm vs. Day 3: 223 ± 41 ppm vs. Day 14: 143 ± 12 ppm vs. Day28: 177 ± 38 ppm, and Day 90 

132 ± 31 ppm (P<0.05) (Figure 3.2). However, total cerium content in the lung tissue appears to 

increase post day 1 exposure that stays unaltered with the progression in the days of exposure 

(Data not shown). 

 

Exposure to CeO2 nanoparticles alters the gross histological appearance of the lung 

Alterations in appearance of the lungs following exposure to CeO2 nanoparticles 

included increased lung weight, the presence of black spots and white pustular nodules on the 

surface of the lungs that appeared to increase over time (Figure 3.3). Histological alterations 

included an increased number of alveolar macrophages, increased number of 

polymorphonuclear cells and the apparent accumulation of particulate material in the alveolar 

spaces (Figure 3.4). 
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CeO2 nanoparticles increase apoptotic protein signaling in the lung  

Compared to day 1 control animals, the Bax to Bcl-2 protein ratio in exposed animals 

was 16% higher at day 1 and 99% higher at day 3 post exposure (P<0.05) before  declining 

thereafter (Figure 3.5). Similarly, the Bax to Bcl-2 ratio was 37%, 23%, and 14% lower at days 

14, 28 and 56, respectively in CeO2 nanoparticles exposed animals. Conversely, the Bax to Bcl-2 

ratio was 22% higher for day 90 exposure animals compared to that observed in the day 1 

control animals. 

In an effort to extend these findings, we next examined the regulation of the initiator 

(caspase-9) and the executor caspases (caspase-3) [98]. Compared to day 1 control animals, 

total caspase-9 protein levels were reduced by 28%, 6%, 23%, 5%, 21%,  and 32% (P<0.05) in 

the day 1, 3, 14, 28, 56, and 90 exposure groups, respectively (P<0.05). Compared to saline day 

1 controls, the expression of the 38kDa and 40 kDa cleaved fragments of caspase-9 was 

increased 20%, 20%, and 20% for day3, day 14 and day 28 post exposure groups, respectively 

(P<0.05; Figure 3.6). 

Caspase-3 protein expression levels were increased by 56% (P<0.05) and 20% (P<0.05) 

for the day 3 and 14 exposure groups when compared to day 1 controls. Compared to saline 

day 1 control animals, the amount of cleaved caspase-3 (17kDa and 19 kDa) was increased by 

10%, 88%, 66%, 119%, 77%, and 39% higher for the day 1, 3, 14, 28, 56 and 90 exposure groups 

(P<0.05; Figure 3.7).  
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CeO2 nanoparticle exposure is associated with activation of MAPK signaling 

Compared to day 1 controls, the ratio of phosphorylated p38 MAPK (Thr180/Tyr182) to 

total p38 MAPK was 22% and 14% lower for day1 and day3 post exposure groups (P<0.05). 

Conversely, this ratio was elevated by 52%, 15%, and 10% for day 14, 28 and 56 exposure 

groups, before declining by 19% in the 90 day animals (P<0.05; Figure 3.8).  

The ratio of phosphorylated ERK1/2-MAPK (Thr202/Tyr204) to total ERK1/2-MAPK was 

reduced by 43%, 57%, 56%, 62%, 53% and 41% at day 1, 3, 14, 28, 56 and 90 post exposure 

groups when compared to day 1 saline controls (P<0.05; Figure 3.9). There were no significant 

differences in the expression of phosphorylated (Thr183/Tyr185) JNK to total JNK ratio with the 

nanoparticle exposure (Figure 3.10).   

 

CeO2 nanoparticles increase inflammatory protein signaling  

It is known that JAK2 and STAT3 play crucial roles in the inflammation[104]. When 

compared to saline control day1, phosphorylated (Tyr705) to total STAT3 protein levels were 

111%, 193%, 106%, 15% and 20% higher for day 3, 14, 28, 56 and 90 exposure groups (P<0.05; 

Figure 3.11). Phosphorylated (Tyr1007/1008) JAK2 to total JAK2 ratio was 25%, 23%, and 103% 

(P<0.05) higher for the day 1, 56, and 90 animals when compared to saline control animals 

(Figure 3.12). 

In order to determine the role of inflammatory mediators that are released into the 

circulation, we determined the expression of serum biomarkers that include inflammatory 

cytokines, interleukins, chemokines, tissue factors and growth factors. Among the 55 

parameters, we have included 12 parameters that are thought to play an important role in the 
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inflammation. Data are presented as percentage change in the expression when compared with 

the saline control day 1. Compared to saline control day 1, CeO2 nanoparticle exposure at day 1 

has increased the expression of all the parameters that are under the study (Figure 3.13 a). 

Compared to saline control day 1, post exposure day 3 group showed elevation of expression 

for 3 parameters, lowered expression for 8 parameters and no changes in the expression of 1 

parameter (Figure 3.13 b). Compared to saline control day1, day28 post exposure group 

showed an elevation of 4 parameters, a lowered expression for 7 parameters and no change in 

the expression of 2 parameters (Figure 3.13 c). Compared to saline control day 1, day 90 post 

exposure group showed lowered expression for 10 parameters and no change in the expression 

for 2 parameters (Figure 3.13 d). 

 

Discussion 

Previous in vitro and in vivo studies have suggested that exposure to CeO2 nanoparticles 

can elicit toxic effects; however the underlying mechanism(s) is not well understood [16-18, 

118]. The primary findings of the current work are that pulmonary exposure to CeO2 

nanoparticles is associated with increases in the lung to body weight ratio, histological evidence 

of lung inflammation, the activation of MAPK signaling, the phosphorylation of STAT-3, 

increases in caspase-3 cleavage, and inflammation.  

Our data demonstrated that exposure to CeO2 nanoparticles results in increased lung 

weight to body weight ratio (Table 2). To determine the potential mechanism of increased lung 

weight we next examined the lungs for the presence of CeO2 nanoparticles. As indicated by our 

ICP-MS data, the instillation of CeO2 nanoparticles leads to the deposition of cerium in the lungs 
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(Figure 3.2). Whether this cerium deposition is responsible for the increased lung to body 

weight ratio is currently unclear. With increased lung to body weight ratio we also observed 

that exposure to CeO2 nanoparticles was associated with the development of white nodular 

structures on the lung surface (Table 2, Figures 3.3 and 3.4). Recent work has shown that 

nanoparticles such as carbon nanotubes, TiO2 nanoparticles, and polyacrylate nanoparticles can 

induce granulomas on the lung surface [49, 122, 123]. It is possible that the white nodules we 

observed in the present study may be the byproduct of an ongoing inflammatory reaction, 

which could result in either the clearance of the nanoparticles or advance further to form 

granulomas on the surface of lungs [123, 124]. The aforementioned possibility is consistent 

with our histopathological analysis where we observed an increase in the number of alveolar 

macrophages and polymorph nuclear white blood cells in the lungs of animals that had been 

exposed to the CeO2 nanoparticles. It is thought that the toxic effects of most nanoparticles 

(silver, silica, titanium dioxide, zinc oxide and carbonaceous nanoparticles) are characterized by 

increased oxidative stress [24, 73, 125-127]. Whether these increases in oxidative stress are due 

to increased ROS generation or decreased ROS scavenging is currently unclear, however, many 

metallic oxide nanoparticles have been shown to increase ROS production [1, 102].  

Increase in the ROS may also induce apoptotic signaling. Here, we observed an increase 

in the proapoptotic Bax to Bcl-2 ratio after 3 days of the exposure before declining thereafter 

(Figure 3-5). Given that the Bax to Bcl-2 ratio is a primary determinant of whether a cell 

undergoes apoptosis or survival [97, 98] we next examined the possibility that CeO2 

nanoparticle exposure is associated with the activation of caspase-3. Consistent with the 

Bax/Bcl-2 data, we found that caspase-3 cleavage (activation) is elevated at days 3, 14, 28 and 
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56. Why caspase-3 cleavage may exist in the absence of elevation in the Bax/Bcl-2 ratio is 

currently unclear. Other signaling pathways (extrinsic or intrinsic pathway) that activate the 

apoptotic pathway may explain the possible activation of effector caspase 3 in the absence of 

elevated Bax/Bcl-2 ratio. It is thought that mild lung injury will result in repair of the damaged 

tissue whereas excessive apoptotic cell death may lead to the development of lung remodeling 

and fibrosis [128]. Bearing this in mind, the activation of caspase 3 we find in the current study 

may help to explain the findings of increased lung fibrosis following CeO2 nanoparticle exposure 

shown in previous work [17].  

The MAPKs are stress responsive proteins that can be activated by the growth factors, 

chemicals, ultraviolet radiation, heat, synthesis inhibitors, metals or foreign organisms [129]. 

The MAPKs pathway plays an important role in the nanoparticle and metal induced oxidative 

stress and inflammation [102, 119]. The primary members of the MAPKs signaling family 

include p38 MAPK, JNK-MAPK and ERK1/2-MAPK. MAPKs proteins are thought to 

phosphorylate (activate) transcription factors that are involved in regulating the cell survival or 

death. Here we observed that CeO2 nanoparticle exposure is associated with increased p38 

MAPK phosphorylation at days 14, 28 and 56 of exposure. Conversely, we found that ERK1/2-

MAPK activity appeared to be impaired by CeO2 nanoparticles (Figures 3.8 and 3.9). Given that 

ERK1/2- MAPK is thought to play an important role in cell survival and that p38 MAPK may play 

an important role in apoptosis [129], these differences in MAPK signaling may help to explain 

the discrepancies that we observed in the proapoptotic Bax to Bcl-2 ratio.  

It is well known that nanoparticle exposure is often associated with increased levels of 

inflammatory mediators such as cytokines, interleukins and other mediators of inflammation [1, 
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73, 102]. The Janus kinase / signal transducers and activators of transcription (JAK/STAT) 

pathway is a particularly important pathway in mediating inflammation [104]. Interestingly, 

JAK2 did not appear to have an important role in the toxicological response, as its 

phosphorylation (Tyr1007/1008) was elevated only at day 1 and day 90 of exposure (Figure 

3.12). Conversely the phosphorylation of STAT-3 (Tyr705) seemed to parallel p38 MAPK 

activation (Figure 3.11). Previous work has demonstrated that p38 MAPK can act as an 

upstream activator of STAT-3, which when activated, can induce apoptosis [106]. These data, 

considered together with our findings of an increased Bax/Bcl-2 ratio, are consistent with the 

possibility that CeO2 nanoparticles induced apoptosis is mediated through the activation of the 

p38 MAPK and STAT-3 signaling pathways.   

In addition to evidence for increased inflammatory signaling, we also noted increased 

levels of several inflammatory cytokines and chemokines (Figures 3.13a, b, c and d). Of 

particular note was the finding that CD40 Ligand (CD40L) was elevated at day1 and 3 post 

exposure. Previous studies using ultrafine particles present in the air pollutants and diesel 

exhausts showed activation of CD40L which can strongly activate CD40 bearing cells such as 

white blood cells, endothelial cells and platelets  and thereby can cause increased coagulation 

and inflammation [130]. It is also thought that CD40L plays an important role in activating 

macrophages where it causes macrophages to increase their phagocytic activity. Other work 

has shown that CD40L can induce the production of IL-4 by T-cells [130] (Figure-13a). Whether 

this activity is the cause of the increased levels of IL-4 seen in the current study, is currently 

unclear. Other studies have shown that CD40L can induce endothelial cells to produce ROS, 

chemokines and cytokines that can damage the cell [131]. In addition to CD40L, we also noted 
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the increased expression of several other serum chemokines and cytokines including IL-7, IL-1 

alpha, monocyte chemo attractant proteins (MCP) and Eotaxin; all of which are thought to play 

an important role in inflammation [73, 132, 133]. How these factors may work together to 

cause the inflammatory response we observe in the present study is unfortunately, beyond the 

scope of the current study and will require additional experimentation.  

In summary, our data suggest that exposure to CeO2 nanoparticles can increase lung to 

body weight ratio and the increased lung weights are associated with increased accumulation 

of cerium in the lungs. Our studies demonstrated that exposure to CeO2 nanoparticles can 

cause gross and histological alterations to lungs. CeO2 nanoparticles appear to activate 

oxidative stress, inflammation and apoptotic protein signaling in the lungs. Data from our 

studies demonstrate that the apoptosis induced by CeO2 nanoparticles appears to be mediated 

through activation of caspase protein signaling. Given these findings, additional research to 

evaluate the role of subcellular organelles in inducing the apoptosis is likely warranted. 
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Table 2: CeO2 nanoparticle exposure increases the lung weight to body weight ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

† Significantly different from the control in each day of exposure 

*Significantly different from the 1 Day exposure group in each condition 
α

 Significantly different from the 3 Day exposure group in each condition 

μ Significantly different from the 14 Day exposure group in each condition 

¶ Significantly different from the 28days exposure group 

# Significantly different from the 56days exposure group 
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Figure 3-1: Characterization of the cerium oxide nanoparticles by (a) TEM micrograph (scale bar 

= 200 nm) and (b) Field emission SEM of a dilute cerium oxide suspension. 
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Figure 3-2:  Cerium deposition in the lung appears to diminish over time.  

Con-1 represents saline control day1, CeO2-1, 3, 14, 28 and 90 represents animal groups post 

exposed to CeO2 nanoparticles at 1, 3, 14, 28 and 90 days respectively.    

 

 

 Significantly different from the saline control day-1 

† Significantly different from the CeO2-day-1 
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Figure 3-3: Gross alterations in the lungs with CeO2 nanoparticles instillation include increases 

in the lung weight, appearance of white nodules on the surface (Arrow) and appearance of 

black spots on lung surface 
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Figure 3-4: Alterations in histological appearance of lungs with CeO2 nanoparticle instillation 

include increases in the number of alveolar macrophages, increases in the polymorphonuclear 

white blood cells (Arrow head) and increased accumulation of particulate matter (Arrow) in the 

air spaces (400X) 
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Figure 3-5: CeO2 nanoparticles can increase the proapoptotic protein signaling in the lungs. 

Protein bands of the Bax and Bcl-2 proteins and corresponding GAPDH are represented in the 

figure. Bands corresponding to the X-axis labels are shown in the immunoblotting images. 

Protein levels were adjusted by GAPDH levels and compared with the control day-1. 

 

 Significantly different from the saline control day-1 
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Figure 3-6:  Increased expression of initiator caspase-9 with CeO2 nanoparticles instillation. 

Protein bands of the caspase-9 and cleaved caspase-9 proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 

 Significantly different from the saline control day-1 
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Figure 3-7: Increased expression of executor caspase-3 with CeO2 nanoparticles exposure. 

Protein bands of the caspase-3 and cleaved caspase-3 proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 

 Significantly different from the saline control day-1 
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Figure 3-8: Activation of p38 MAPK activity with the CeO2 nanoparticles instillation. 

Protein bands of the p38MAPk and Phospho p38 MAPK proteins and corresponding GAPDH are 

represented in the figure Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 

 Significantly different from the saline control day-1 
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Figure 3-9: Inhibition of ERK1/2-MAPK activity with the CeO2 nanoparticles instillation. 

Protein bands of the ERK1/2-MAPK and Phospho ERK1/2-MAPK proteins and corresponding 

GAPDH are represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 

 

 Significantly different from the saline control day-1 

 

 

 

 

 



58 
 

Figure 3-10: CeO2 nanoparticles do not appear to modulate the JNK activity. 

Protein bands of the JNK and Phospho JNK proteins and corresponding GAPDH are represented 

in the figure. Bands corresponding to the X-axis labels are shown in the immunoblotting images. 

Protein levels were adjusted by GAPDH levels and compared with the control day-1. 

 

 

 Significantly different from the saline control day-1 
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Figure 3-11: Activation of STAT-3 with CeO2 nanoparticles exposure follows the activation of 

p38 MAPK. 

Protein bands of the STAT-3 and Phospho STAT-3 proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 

 

 Significantly different from the saline control day-1 
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Figure 3-12: Alteration in the expression of JAK2 protein expression with CeO2 nanoparticles 

instillation. 

Protein bands of the JAK2 and Phospho JAK2 proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 

 Significantly different from the saline control day-1 
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Figure 3-13: Activation of pro-inflammatory cytokines and chemokines in the serum with CeO2 

nanoparticles exposure 
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Paper-II 

Specific Aim-2: To investigate if intratracheal instillation of CeO2 nanoparticles has any toxic 

effects on the liver, kidney, spleen and heart of rats 

 

Note: Animal studies and procedures such as exposure to CeO2 nanoparticles and scarifying of 

the animals mentioned in this part were conducted at NIOSH, where we collected the vital 

organs such as liver, kidney, spleen and heart and used to perform the experiments explained 

in this part. 

 

Note: This paper has been previously published: 

Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-
Dawley rats. Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, Katta A, Addagarla HS, Rice 
KM, Blough ER. Int J Nanomedicine. 2011; 6: 2327-35. Epub 2011 Oct 14 
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Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male 

Sprague Dawley rats 

 

Abstract 

Cerium oxide (CeO2) nanoparticles have been posited to have both beneficial and toxic 

effects on biological systems. Herein, we examine if a single intratracheal instillation of CeO2 

nanoparticles (1.0 mg/kg, 3.5 mg/kg or 7.0 mg/kg) after 28 days is associated with systemic 

toxicity in male Sprague-Dawley rats. Compared to control animals, CeO2 nanoparticle exposure 

was associated with increased liver ceria levels, elevations in serum alanine transaminase 

levels, reduced albumin levels, diminished sodium-potassium ratio and decreased serum 

triglyceride levels (P<0.05). Consistent with these data, rats exposed to CeO2 nanoparticles also 

exhibited reductions in liver weight (P<0.05) and dose dependent hydropic degeneration, 

hepatocyte enlargement, sinusoidal dilatation and the accumulation of granular material. No 

histopathological alterations were observed in the kidney, spleen and heart. Analysis of the 

serum biomarkers suggested that there was an elevation of acute phase reactants and markers 

of hepatocytes injury in the CeO2 nanoparticles exposed rats. Taken together, these data 

suggest that intratracheal instillation of CeO2 nanoparticles can result in liver damage.   

 

Key words: cerium oxide nanoparticles, systemic toxicity, hepatic toxicity and hydropic 

degeneration   

Running Title: Cerium oxide nanoparticles can cause hepatic toxicity 
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Introduction 

Cerium is a rare earth lanthanide metal that is a strong oxidizing agent. Cerium exists 

both in the trivalent (Ce3+, cerous) and in a very stable tetravalent state (Ce4+, ceric) as cerium 

oxide (CeO2) [8]. CeO2 is widely used as a polishing agent for glass mirrors, television tubes and 

ophthalmic lenses [7]. In addition, CeO2 can also act as a catalyst as it can both accept and give 

up oxygen [134]. This latter property has led to the widespread use of CeO2 in the automobile 

industry where it has been used to increase fuel efficiency and reduce particulate emissions 

[108, 109, 118]. It appears that CeO2 nanoparticles may also be capable of acting as 

antioxidants which has led some to postulate that these particles may be useful for the 

treatment of cardiovascular disease [10], neurodegenerative disease [11] and radiation-induced 

tissue damage [12, 135]. Nonetheless, other in vitro work has shown that CeO2 nanoparticles 

can also cause oxidative stress [19].  

The Organization for Economic Co-operation and Development (OECD) Working Party 

on Manufactured Nanomaterials (WPMN) has demarcated CeO2 nanoparticles along with 

fourteen other nanoparticles as a high-priority for evaluation [136]. Given current industrial 

applications, it is thought that the most common route of CeO2 exposure is likely to be through 

inhalation and/or ingestion. Although previous studies have shown that intratracheal 

instillation of CeO2 nanoparticles can cause a toxicological response in the lung, whether these 

particles also exhibit systemic toxicity is currently unclear [7, 17]. The purpose, therefore, of the 

current study was to determine if the intratracheal instillation of CeO2 nanoparticles is 

associated with indices of systemic toxicity and pathological change. On the basis of previous 

work examining the translocation of carbon nanotubes from the lung [137], we hypothesized 



65 
 

that intratracheal instillation of CeO2 nanoparticles may be associated with nanoparticle 

deposition in other organs through the circulation. Consistent with this hypothesis, our data 

suggest that the intratracheal instillation of CeO2 nanoparticles is associated with increased 

liver ceria levels, reductions in liver weight and evidence of liver damage.  

 

Materials and Methods 

Particle characterization  

CeO2 nanoparticles, 10 wt % in water (average diameter at ~20 nm), were obtained from 

Sigma-Aldrich (St Louis, MO, USA) as previously outlined 13. Normal saline was used as vehicle 

to suspend the nanoparticles prior to instillation. Diluted particle suspensions were also 

filtered, sputter coated, and examined with a Hitachi Model S-4800 Field Emission scanning 

electron microscope (Schaumburg, IL, USA) at 5 and 20 kV or placed on a formvar-coated 

copper grid to dry and imaged with a JEOL 1220 transmission electron microscope (Tokyo, 

Japan).  

 

Animal handling and instillation of CeO2 nanoparticles 

Specific pathogen-free male Sprague-Dawley (Hla: SD-CVF) rats (6 weeks old) were 

purchased from Hilltop Laboratories (Scottdale, PA, USA). Rats were kept in cages individually 

and ventilated with HEPA filtered air in an animal facility accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care International. After acclimatization for 

1 week, rats were randomly divided into four groups (n=7 per group): vehicle control (saline, 
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0.9% NaCl), or instillation with 1.0, 3.5, or 7.0 mg/kg CeO2 nanoparticles. Rats were 

anesthetized and placed on an inclined restraint board before instillation with 0.3 ml of saline 

suspension or CeO2 nanoparticles. Animals were euthanized 28 days post-exposure by drug 

overdose using the combination of xylazine and ketamine according to the Guide for the Care 

and Use of Laboratory Animals and as approved by the National Institute for Occupational 

Safety and Health Animal Care and Use Committee. All animals were humanely treated and 

were monitored for any potential suffering.  

 

Determination of cerium content in the liver 

Liver cerium content was estimated by Induction Coupled Plasma-Mass Spectrometry 

(ICP-MS) at Elemental Analysis Inc. (Lexington, KY, USA) according to standard protocol [137]. 

Briefly, liver samples (n=4 for each group) were prepared using EPA Method 3050B for the 

analysis of total Cerium by ICP-MS.  A 2.5 g sample was weighed to the nearest 0.0001g and 

digested with concentrated nitric acid, 30% hydrogen peroxide, and concentrated hydrochloric 

acid.  A method blank, laboratory control sample, a laboratory duplicate, and a pre-digestion 

matrix spike were prepared for each sample.  After digestion, the extracts and the quality 

control samples were diluted to a final volume of 50 mL before analysis using an Agilent 7500cx 

ICP-MS. The instrument was calibrated for Ce-140 with 0, 0.1, 1.0, 10.0, and 100 μg/L standards 

prepared from a certified reference standard traceable to NIST reference materials. A second 

source calibration verification standard traceable to NIST reference materials was analyzed to 

verify the calibration standards. A continuing calibration verification standard and a continuing 
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calibration blank were analyzed at the beginning of the run, after every ten samples, and at the 

conclusion of the run.  

 

Serum biochemical and lipid profile analysis 

Blood was collected from the euthanized animals by cardiac puncture into a serum 

collection tube (BD Vacutainer® SST™ Tubes; #367986) before centrifugation at 800 x g for 15 

minutes. Serum was collected and used for biochemical assays using Abaxis VetScan® analyzer 

(Abaxis, Union City, CA, USA). Serum biochemical parameters: alanine aminotransferase (ALT), 

alkaline phosphatase (ALP), bilirubin, blood urea nitrogen (BUN), albumin (ALB), calcium (Ca+2), 

creatinine (CRE), amylase (AMY), globulin (GLOB), potassium (K+), sodium (Na+), phosphorous 

(PHOS), total bilirubin (TBIL) and total protein were evaluated with a Comprehensive Diagnostic 

Profile Disk. The lipid profile: total cholesterol, triglycerides and HDL were measured using lipid 

profile-Glu cassettes (Cholestech LDX) and a Cholestech LDX® analyzer. The remaining serum 

was stored at -80 °C. 

 

Multiplexed serum protein immunoassays 

Pooled serum samples from all 7 animals in each experimental group were shipped on 

dry ice to Rules Based Medicine (Austin, Texas) for RodentMAP® version 2.0 Antigen analysis 

using a Luminex 100 instrument as detailed elsewhere [137]. The antigen panel consisted of 

fifty-nine proteins, which included proteins involved in inflammation, cytokines, growth factors 

and tissue factors. Each analyte was quantified using 4 and 5 parameter, weighted and non-
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weighted curve fitting algorithms using proprietary data analysis software developed at Rules-

Based Medicine. 

 

Tissue collection 

Liver, kidney, spleen and heart were collected at the time of death. Each tissue was 

weighed and then fixed in FineFIX™ (Milestone Medicals, Shelton, Connecticut) preservative for 

later histopathological examination. 

 

Histopathological examination 

Tissues from liver, spleen, kidney and heart were embedded in paraffin wax, sectioned 

at 5-μm, mounted on glass slide and stained with hematoxylin-eosin using standard 

histopathological techniques. Sections were examined by light microscopy in a blinded fashion 

by a board certified pathologist.  

 

Data Analysis 

Results are presented as mean ± SEM. Data were analyzed using the SigmaPlot 11.0 

statistical program. One-way analysis of variance  was performed for overall comparisons, while 

the Student–Newman–Keuls post hoc test used to determine differences between groups [17]. 

Values of P<0.05 were considered to be statistically significant. 
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Results 

Nanoparticle characterization 

Similar to previous work using the same batch of CeO2 nanoparticles 13, analysis of 

nanoparticle size by TEM and SEM confirmed the presence of single and agglomerated CeO2 

nanoparticles in the suspensions.  

 

CeO2 instillation decreases liver wet weight 

CeO2 instillation had no significant effect on rat body, heart, kidney, or spleen weight. 

Compared to control animals, CeO2 instillation decreased liver weight (Saline control 14.55 ± 

0.27 vs. CeO2 7.0 mg/kg 12.50 ± 0.54; P< 0.05, Table 3).   

 

CeO2 instillation increases liver ceria content  

The ceria content of animals instilled with 7.0 mg/kg CeO2 nanoparticles was higher than 

that observed in the other groups (Saline control: non-detectable vs. 1.0 mg/kg CeO2 0.05 ± 

0.01 ppm vs. 3.5 mg/kg CeO2 0.11 ± 0.02 ppm vs. CeO2 7.0 mg/kg: 0.50 ± 0.18 ppm; P< 0.05; 

Figure 3.14).  

 

Effect of CeO2 instillation on serum biochemical profile 

Table 4 shows the alterations of the serum biochemical parameters following CeO2 

nanoparticle exposure. Compared to control animals, CeO2 instillation increased serum ALT 

levels, reduced albumin levels and diminished the sodium-potassium ratio. The serum lipid 
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profile analysis (Table 4b) indicated a reduction in the triglyceride levels with CeO2 nanoparticle 

exposure.  

 

CeO2 nanoparticle exposure is associated with evidence of liver pathology 

The primary alterations considered for liver tissue damage were hydropic degeneration 

of the hepatocytes, dilation of the sinusoids, portal inflammation and fibrosis of the liver. 

Alterations considered for the kidney pathologies were necrosis of the proximal tubular 

epithelium, tubular accommodation of proteinaceous material, and inflammatory reaction in 

the interstitial areas of the cortex and medulla. For the spleen and heart tissues were examined 

for any histological alterations in structure along with the infiltration of inflammatory cells. 

CeO2 nanoparticle exposure showed wide spread hydropic degeneration of the 

hepatocytes around the central vein region with sparing of the immediate peri-portal region 

when compared with the controls (Figure 3.15). These changes were pan-lobular in nature. 

Along with hydropic degeneration, we also observed enlargement of the hepatocytes, 

enlargement of the nucleus in the hepatocyte, binucleation of some hepatocytes, dilatation of 

the sinusoids, and occasional focal necrosis areas in few of the exposed animals. As the dose of 

the nanoparticles was increased, the number of hepatocytes that show hydropic degeneration 

was also elevated suggesting that changes in hepatocyte structure were dose dependent. There 

was no evidence of granuloma, portal inflammation, fibrosis, or bile duct abnormalities except 

for the presence of some local inflammation of the lobules in some animals. We did not 

observe any alterations in the histological appearance or the infiltration of inflammatory cells in 

the heart, kidney and spleen with CeO2 nanoparticle exposure. 



71 
 

Effect of CeO2 instillation on serum protein expression 

A panel of 59 protein biomarkers comprising cytokines, inflammatory markers, growth 

factors, and tissue factors were quantified in the serum samples collected in this study using 

the RBM RodentMAP®V2.0 multiplex immune assay service. Only the biomarkers which showed 

alterations in the serum protein biomarkers with the different experimental doses are depicted 

in Figure 3.16; Panels a, b, c). Among the 59 analytes, 20 analytes showed consistent changes 

across all the experimental groups. Among these 20 analytes, 8 analytes were up-regulated for 

CeO2 1.0 mg/kg dose group, 9 analytes were down regulated and 3 analytes did not change. For 

the 3.5 mg/kg CeO2 dose group, 12 analytes were up regulated, 7 were down regulated and 1 

did not change. Similarly, for the 7.0 mg/ kg CeO2 exposure, 17 analytes were up regulated, 

while 3 analytes were down regulated. Analytes that were elevated in all the experimental 

groups include: C-reactive protein, eotaxin, fibroblast growth factor-basic, haptoglobin, 

immunoglobulin-A, matrix metalloproteinase-9, serum amyloid-protein, serum glutamic 

oxaloacetic transaminase (SGOT) and thrombopoietin (TPO), vascular endothelial growth 

factor-A (VEGF-A) and von Willebrands’s factor (vWF). 
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Discussion 

Investigation of the effects that nanomaterials may have on cellular function is essential 

for ensuring that the utilization of these materials in industrial or medical applications is safe. 

Although CeO2 nanoparticles have demonstrated excellent potential for biomedical use [10], 

[11],[12] limited knowledge exists concerning potential systemic toxicity. The primary finding of 

this investigation was that the intratracheal instillation of CeO2 nanoparticles results in 

increased liver ceria levels (Figure 3.14) and that these changes in liver ceria are associated with 

evidence of liver pathology (Figure 3.15), decreases in liver weight (Table 3) and alterations in 

blood chemistry (Table 4). Consistent with other reports examining CeO2 [113], titanium dioxide 

[138], silica [139] and copper [140] nanoparticles, our data suggest that it is possible that CeO2 

nanoparticles are capable of translocating from the lung to the liver via the circulation.  

The histopathological appearance of the liver following CeO2 nanoparticle instillation is 

consistent with the possibility that ceria can induce several different pathological alterations 

including hydropic degeneration of the hepatocytes, enlargement of the hepatocytes, dilatation 

of the sinusoids and nuclear enlargement (Figure 3.15). As liver is the major organ for 

biotransformation of the toxins, it may be the first organ to be exposed to nanoparticles that 

are able to enter into the circulation. It is thought that hydropic degeneration can be caused by 

hypoxia [141], ischemia [142]  or the treatment of hepatocytes with endotoxins [143] or 

chemicals [144]. Consistent with our findings, this response has also been observed following 

exposure to other toxic materials including copper nanoparticles [145] and carbon tetrachloride 

[146] or following the inhalation of anesthetics such as sevofulrane and desflurane [147].  How 

exposure to CeO2 nanoparticles may induce hydropic degeneration or if these changes are 
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reversible is currently unclear.  Sinusoidal dilatation is the increased gap between the hepatic 

cords in the hepatic lobule. Sinusoidal dilatation is a pathological change that has also been 

observed in aluminum-induced hepatic toxicity [148], carbon tetrachloride-induced hepatic 

toxicity [149], ischemia [150], as well as with the organophosphate insecticide mathidathion 

[151]. In addition, we also noted the accumulation of granular material inside the hepatocytes 

which appeared to be dose-dependent and perhaps related to the reduction of liver weight 

(Table 3). The molecular mechanism(s) responsible for this accumulation are unknown and will 

require further investigation.   

To complement our study of liver histopathology we also investigated the effects that 

ceria might have on blood chemistry. Our data suggest that CeO2 nanoparticle instillation in the 

rat is associated with an elevation of ALT and reductions in albumin (Table 4). It is well 

established that hepatocyte damage is associated with the release of liver enzymes into the 

circulation and reduced albumin levels [148]. In addition to changes in the level of circulating 

liver enzymes, CeO2 nanoparticle instillation also appears to decrease the sodium-potassium 

ratio and the amount of triglycerides (Table 4). Whether alterations in the sodium-potassium 

ratio or triglyceride levels can be directly attributed solely to changes in liver, kidney or adrenal 

function or some combination thereof is currently unclear however it is interesting to note that 

these changes appear to occur coincident with decreases in liver weight.  

To identify potential serum biomarkers following CeO2 nanoparticle exposure, we 

examined 59 different analytes. Of the analytes studied, 20 biomarkers showed changes across 

all the groups. This may indicate that inhaled exposure to CeO2 nanoparticles may trigger the 

concurrent activation of several biochemical pathways. Similar to other work examining other 
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types of nanoparticles [152, 153], we observed elevations in the amount of C-reactive protein 

(10%), haptoglobin (16%), serum amyloid-p protein (24%) and von Willebrand’s factor (33%) 

following exposure to the CeO2 nanoparticles. Consistent with our histopathological findings, 

and the possibility of hepatic injury, we also found evidence that CeO2 nanoparticle instillation 

was associated with increases in the amount of serum thrombopoietin, fibroblast growth 

factor, SGOT and TPO (Figure 3.16).  Elevation in these serum biomarkers is thought to be 

highly correlated with acute hepatic damage [144],[154]. Taken together, these data suggest 

that ceria deposition may be associated with liver damage. Given our findings that CeO2 

nanoparticle instillation, at least at the levels used in the current study, does not induce 

appreciable damage to the heart, kidney or spleen, it is possible that the liver, by acting to clear 

CeO2 nanoparticles from the circulation, is functioning to prevent additional secondary or 

tertiary toxicological pathophysiology.  

 

Conclusion 

In summary, our data suggest that intratracheal instillation of CeO2 nanoparticles can 

induce hepatotoxicity resulting in the potential loss of hepatic mass and function. The toxicity 

induced by the CeO2 nanoparticles appear to be dose-dependent and the rats exposed with the 

7.0 mg/kg body weight of the CeO2 nanoparticles showed maximal toxic response when 

compared with other dosage groups. The toxicological response appears to be limited to the 

liver and may occur through extra pulmonary translocation of the CeO2 nanoparticles into the 

systemic circulation. Given these findings, additional research to evaluate the health effects of 

CeO2 nanoparticles is likely warranted. 
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Table 3:  Alterations in the absolute organ wet weight 28 days after the intratracheal instillation 

of cerium oxide nanoparticles. * Indicates significantly different from the vehicle control (p 

<0.05) 
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Table 4:  Changes in the serum biochemical parameters (a) and lipid profile (b) 28 days after the 

intratracheal instillation of cerium oxide nanoparticles. * Indicates significantly different from 

the vehicle control (P<0.05).  
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Figure 3-14: Concentration of cerium in the liver following intratracheal instillation of cerium 

oxide nanoparticles * Indicates significantly different from the vehicle control (P<0.05). 
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Figure 3-15: Cerium oxide nanoparticle exposure alters histopathological architecture of the 

liver. Panel a: saline control (400X), b: CeO2 at 1.0 mg/kg (400X), c: CeO2 3.5 mg/kg (400X) and 

d: CeO2 7.0 mg/kg (400X). Note evidence of hydropic degeneration (arrow) with CeO2 

instillation. 
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Figure 3-16: Cerium oxide nanoparticles exposure results in alterations in the expression of 

serum protein biomarkers.  

 

 



81 
 

 

 

 

 

 

 

 

 

Paper-III 

Specific Aim-3: To investigate the role of oxidative stress and apoptosis in the hepatic toxicity 

induced by CeO2 nanoparticles following intratracheal instillation 
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Role of Oxidative Stress and Apoptosis in the Hepatic Toxicity induced by Cerium Oxide 

Nanoparticles Following Intratracheal Instillation in Male Sprague-Dawley Rats 

 

Abstract 

Inhaled cerium oxide (CeO2) nanoparticles have been shown to be capable of 

translocation to the liver where they can cause dose dependent toxic effects [121]. Herein, we 

investigate if the deposition of ceria in the liver is associated with increased oxidative stress and 

cellular apoptosis. Specific pathogen free male Sprague-Dawley rats were instilled with either 

vehicle (saline) or CeO2 nanoparticles (7.0 mg/kg) and euthanized 1, 3, 14, 28, 56, or 90 days 

post exposure. Liver samples were evaluated for evidence of ceria deposition, oxidative stress 

and apoptosis. Inductively coupled plasma mass spectroscopy demonstrated that ceria 

deposition increased over time. Analysis of lipid peroxidation, superoxide levels and number of 

TUNEL positive cells revealed evidence of increased oxidative stress and apoptosis at 1, 3, and 

90 days post exposure. Immunoblotting showed that each of these time points was 

characterized by increases in the Bax/Bcl-2 ratio, elevations in caspase-9 protein levels and 

increased caspase-3 protein expression. Interestingly, we found no evidence of oxidative stress 

or apoptosis at day 14, 28, or 56 post-exposure. Taken together, these data demonstrate that 

the intratracheal instillation of CeO2 nanoparticles is associated with increased liver ceria 

deposition and that this deposition causes a biphasic oxidative stress and apoptotic response.   

 

Key words: Cerium oxide nanoparticles, bioaccumulation, hepatic toxicity, oxidative stress, lipid 

peroxidation and apoptosis 
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Introduction 

 CeO2 nanoparticles have been used as catalysts to increase fuel efficiency of automobile 

engines and to reduce particulate emissions from the incomplete combustion of fuels [25]. 

Recent data has also suggested that CeO2 nanoparticles may also have biomedical use as 

potential scavengers of reactive oxygen species (ROS) to protect against cardiomyopathy [10], 

neuronal toxicity [11] and radiation damage [12]. Whether CeO2 nanoparticles may exhibit toxic 

effects is not well understood. In vitro studies using the human bronchoalveolar carcinoma cell 

line (A549) and lung epithelial cell lines (BEAS2B) has demonstrated that CeO2 nanoparticles 

(20nm) can reduce cell viability and induce oxidative stress [15]. In vivo studies using male 

Sprague-Dawley rats has shown that the intratracheal instillation of CeO2 nanoparticles (20nm) 

can cause oxidative stress and apoptosis in pulmonary tissues [17]. Using this same model, 

Nalabotu and colleagues have shown that intratracheally instilled CeO2 nanoparticles can travel 

from the lungs and cause liver toxicity in a dose-dependent fashion [121].  

Similarly, other work has shown that inhaled nanoparticles such as silver, silica, copper, 

gold, TiO2 and Zinc oxide nanoparticles can enter into the circulation and cause and apoptosis in 

the liver [116, 117, 155, 156]. It is thought that nanoparticle exposure is associated with 

increased production of ROS [53]. ROS generation is linked to membrane damage and cellular 

apoptosis and is also known to activate the mitogen activated protein kinase (MAPK) pathways 

which are important mediators of cell survival, differentiation and apoptosis [157]. Whether the 

intratracheal instillation of CeO2 nanoparticles can cause increased oxidative stress and 

apoptosis in the liver is currently unclear.  
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 The purpose of this investigation was to evaluate if the hepatic toxicity induced by CeO2 

nanoparticles is associated with activation of oxidative stress and apoptotic protein signaling in 

the liver. We hypothesized that bioaccumulation of cerium in the liver will be associated with 

generation of ROS that will cause damage to cells and that the oxidative stress induced by CeO2 

nanoparticles will activate apoptotic protein signaling in the liver. Taken together, our data 

suggest that intratracheal instillation of CeO2 nanoparticles is associated with accumulation of 

cerium in the liver and the cerium can cause biphasic oxidative stress and apoptotic response in 

the liver. 

 

Materials and Methods 

Particle characterization  

CeO2 nanoparticles, 10 wt % in water (average diameter at ~20 nm), were obtained from 

Sigma-Aldrich (St Louis, MO, USA) as previously outlined [17]. Normal saline was used as vehicle 

to suspend the nanoparticles prior to instillation. Diluted particle suspensions were filtered, 

sputter coated, and examined with a Hitachi Model S-4800 Field Emission scanning electron 

microscope (Schaumburg, IL, USA) at 5 and 20 kV or placed on a formvar-coated copper grid to 

dry and imaged with a JEOL 1220 transmission electron microscope (Tokyo, Japan).  

 

Animal handling, CeO2 nanoparticles instillation and tissue collection 

All procedures were performed in accordance with the Marshall University Animal Care 

and Use Committee guidelines, using the criteria outlined by the Assessment and Accreditation 
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of Laboratory Animal Care (AAALAC). Five week old (150-174 g) Specific pathogen-free male 

Sprague-Dawley (Hla: SD-CVF) rats were purchased from Hilltop Lab Animals, Inc. (Scottdale, 

PA, USA). Rats were housed two per cage in an AAALAC approved vivarium with a 12-h light–

dark cycle. Housing temperature was maintained at 22 ± 2° C and the animals were given access 

to food and water ad libitum. All animals were allowed to acclimatize for 2 weeks before 

initiation of any treatment or procedures. All animals were examined for precipitous weight 

loss, failure to thrive or unexpected gait. Periodic weight measurements were taken throughout 

the duration of the study. After acclimatization, animals were divided randomly into 12 groups 

(n=6 per group). Animals underwent instillation with 0.3 ml of saline suspension or saline 

suspension containing CeO2 nanoparticles as described previously [17]. Rats were euthanized 

with a combination of xylazine and ketamine and livers were collected at 1, 3, 14, 28, 56 or 90 

days post exposure to either the CeO2 nanoparticles or normal saline. After removal from the 

animals, livers were cleaned of blood and connective tissues, weighed, and immediately snap 

frozen in liquid nitrogen. 

 

Determination of cerium content in the liver 

Liver cerium content was estimated for the 1, 28, 56, and 90 day animals by induction 

coupled plasma-mass spectrometry (ICP-MS) at Elemental Analysis Inc. (Lexington, KY, USA) 

using EPA Method 3050B using methods identical to that detailed previously[158]. All Ce-140 

calibration standards were prepared using a certified reference standard traceable to NIST 

reference materials. A continuing calibration verification standard and a continuing calibration 
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blank were analyzed at the beginning of the run, after every ten samples, and at the conclusion 

of the run.  

 

Transmission electron microscopy (TEM) 

 

Liver slices from 90 days control and 90 days post exposure are fixed in Karnovsky’s 

fixative (2.5% glutaraldehyde, 3.5% paraformaldehyde in 0.1 M Sodium Cacodylate buffer), then 

embedded in 4% agarose and refixed for 2 h. The samples were post-fixed in 1% osmium 

tetroxide (120 min at 4C), mordanted in 1% tannic acid (pH 7.0) and block stained in 0.5% 

uranyl acetate (both at room temperature for 60 minutes) all in a buffer of 8%sucrose and 0.9% 

sodium chloride. When the staining was complete, the solution was changed to 70% ethyl 

alcohol and then 90%, samples were then rinsed twice with 100% ethyl alcohol for 15 min each. 

Then placed into a solution of 1:1 100% ethyl alcohol to propylene oxide for 15 min, and finally 

into 100% propylene oxide changing the solution twice. The sample solution was replaced with 

a 1:1 of propylene oxide and LX112 embedding media, followed by a 3:1 solution for 30 min, 

and then finally into 100% solution of LX112 overnight on a rotating platform. This solution was 

changed again for an additional 4 h, then placed into embedding molds and placed into a 60C 

oven for 48 h. Thick (0.5 µm) sections were cut and stained with a 1% toluidine blue (in 1% 

sodium borate) solution on a hot plate for 90 sec. Thin sections (70 nm) were placed on 200 

mesh copper grids and stained with 4% aqueous uranyl acetate and Reynold’s lead citrate for 

15 and 20 min, respectively. Images were taken on a JEOL 1220 transmission electron 

microscope at 80 kV. 



87 
 

Lipid peroxidation assay 

Lipid peroxidation assays were performed on liver tissues removed from the 1, 3, 14, 28, 

56 and day 90 exposure animals and compared with the saline controls from each group. 

Briefly, individual liver pieces (200 mg) were homogenized in 1 ml phosphate buffered saline 

and the homogenizer probe then rinsed with an additional 1ml of PBS. Lipid peroxidation was 

measured as described previously [159]. The amount of malondialdehyde (MDA) was calculated 

based on a standard curve (range 1–40 nmol) using MDA (Aldrich, St. Louis, MO) and expressed 

as nmol MDA/g liver tissue. 

 

Dihydroethidium staining 

Liver tissues were serially sectioned (8 µm) using an IEC Microtome cryostat and the 

sections were collected on poly-lysine coated slides. The fluorescent superoxide indicator 

dihydroethidium (HE) was used to evaluate superoxide levels as detailed previously [98]. Upon 

oxidation, dihydroethidium intercalates with DNA exhibiting a bright fluorescent red. Briefly, 

frozen tissue sections were washed with phosphate-buffered saline (PBS) for 5 min and then 

incubated with 200 µl of 10 µM dihydroethidium (Molecular Probes, Eugene, OR, USA) for 1 h 

at room temperature. After washing with PBS (3 X 10 min), fluorescence was visualized under 

Texas red filter using an Olympus BX51 microscope (Olympus America, Melville, NY, USA) 

equipped with Olympus WH 209 wide field eyepieces and an Olympus UPlanF1 409/0.75 

objective lens. 
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TUNEL staining 

Liver tissues were serially sectioned (8 µm) using an IEC Microtome cryostat and the 

sections were collected on poly-lysine coated slides. DNA fragmentation was determined by 

TdT-mediated dUTP nick end labeling (TUNEL) according to the manufacturer’s 

recommendations (In Situ Cell Death Detection Kit, Roche Diagnostics, Mannheim, Germany). 

TUNEL staining was performed on tissue sections obtained from saline controls and the day 1, 

3, and 90 CeO2 nanoparticle exposure groups (n=4/group) as described elsewhere [98]. Cross-

sections from each tissue were treated with DNase-I to induce DNA fragmentation as a positive 

control. Liver sections were blocked with 3% BSA and incubated with anti-dystrophin antibody 

(NCL-DYS2, Novocastra Vector Laboratories, Burlingame, CA, USA) at a dilution of 1:200 to 

visualize the cell membrane. Nuclei were counter stained using DAPI (Vectashield HardSet 

Mounting Medium, Vector Laboratories, Burlingame, CA, USA). Liver cross sections were 

visualized by epifluorescence using an Olympus fluorescence microscope (Melville, NY, USA) 

fitted with 20X and 40X objectives and the images recorded digitally using a CCD camera 

(Olympus, Melville, NY, USA). The number of TUNEL positive nuclei was counted in three 

randomly selected regions in each slide. Four different animals were counted from each group. 

 

Immunoblotting analysis  

Portions of individual liver tissues (100-150mg) were homogenized in buffer (T-PER, 8 

mL/g tissue; Pierce, Rockford, IL, USA) containing protease (P8340, Sigma-Aldrich, Inc., St. Louis, 

MO, USA) and phosphatase inhibitors (P5726, Sigma-Aldrich, Inc., St. Louis, MO, USA) and 

sonicated (3 x 30 sec at 150W). The supernatant protein was collected by centrifuging the 
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tissue homogenate at 12,000g for 5 minutes at 4°C. Protein concentration of homogenates was 

determined via the 660nm assay method (Fisher Scientific, Rockford, IL, USA). After boiling in 

Laemmli 2X sample buffer (Sigma-Aldrich, Inc., St. Louis, MO, USA) for 5 min, 32µg of total 

protein for each sample was separated on a 10% PAGEr Gold Precast gel (Lonza, Rockland, ME, 

USA) and then transferred to nitrocellulose membranes. Gels were stained with a RAPID Stain 

protein stain reagent (G-Biosciences, St. Louis, MO, USA) to verify transfer efficiency to 

membrane. Membranes were stained with Ponceau S and the amount of protein quantified by 

densitometric analysis to confirm successful transfer of proteins and equal loading of lanes as 

detailed somewhere else [120]. Membranes were blocked with 5% milk in Tris Buffered Saline 

(TBS) containing 0.05% Tween-20 (TBST) for 1 h and then incubated with primary antibody 

overnight at 4°C. After washing with TBST, the membranes were incubated with the 

corresponding secondary antibodies conjugated with horseradish peroxidase (HRP) (anti-rabbit 

(#7074) or anti-mouse (#7076), (Cell Signaling Technology, Danvers, MA, USA) for 1 h at room 

temperature. Protein bands were visualized following reaction with ECL reagent (Amersham 

ECL Western Blotting reagent RPN 2106, GE Healthcare Bio-Sciences Corp., Piscataway, NJ, 

USA). Target protein levels were quantified by AlphaView image analysis software (Alpha 

Innotech, San Leandro, CA, USA). Protein levels were normalized with the corresponding 

GAPDH protein level and expressed as increased expression when compared with the controls. 

Primary antibodies against caspase-3 (#9662), cleaved caspase-3 (#9661S), Bax (#2772), Bcl-2 

(#2870S), caspase-9 (#9506), nuclear factor-kappa  p65 (#3034) , Phosho NF-k P65 (Ser536 # 

3033), p38 MAPK (#9212), Phospho p38 MAPK (Thr180/Tyr182) (#9216L) were purchased from 

Cell Signaling  Technology (Beverly, MA, USA). 
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Multiplexed serum protein immunoassays 

Pooled serum samples from all six animals in the 1-, 3-, 28-, 56- and 90-day 

experimental groups were shipped on dry ice to Rules Based Medicine (Austin, Texas) for 

Rodent MAP® version 2.0 Antigen analysis using a Luminex 100 instrument as detailed 

elsewhere [121]. The antigen panel consisted of fifty-nine proteins, which included proteins 

involved in inflammation, cytokines, growth factors and tissue factors. Each analyte was 

quantified using 4 and 5 parameter, weighted and non-weighted curve fitting algorithms using 

proprietary data analysis software developed at Rules-Based Medicine. 

 

Data Analysis 

Results are presented as mean ± SEM. Data were analyzed using the Sigma Plot 11.0 

statistical program. One-way analysis of variance and two-way analysis of variance were 

performed for overall comparisons, while the Student–Newman–Keuls post hoc test used to 

determine differences between groups. Values of P<0.05 were considered to be statistically 

significant. 
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Results 

Nanoparticle characterization 

Similar to previous work [17, 121] which used the same batch of CeO2 nanoparticles, 

TEM and scanning electron microscopy confirmed the presence of single and agglomerated 

CeO2 nanoparticles in the suspensions. Field emission scanning electron microscopy showed 

that the CeO2 nanoparticles were generally dispersed into submicron groups with an average 

size of 9.26 ± 0.58 nm. The diameter of the primary CeO2 particles was determined to be 10.14 

± 0.76 nm by TEM. 

 

Effect of CeO2 nanoparticle exposure on feed intake, body weight gain and liver ceria levels  

CeO2 nanoparticle exposure had no effect on the average food intake or weight gain 

(Figure 3.17). Compared to saline control animals, CeO2 nanoparticle exposure did not increase 

the liver weight to body weight ratio (Table 5). Compared to the day 1 exposure animals, the 

liver weight to body weight ratio was reduced in the day 3, 28, 56, and 90 day animals (Table 5). 

The concentration of cerium was undetectable in the saline control animals (Figure 3.18). The 

concentration of the cerium at day 1 post exposure was 0.03 ± 0.01 ppm and increased 

thereafter before peaking at 0.20 ± 0.04 ppm at day 90 (P<0.001). However, total cerium 

content in the liver also appears to increase with the progression of the days of exposure (Data 

not shown).  
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Alterations in the ultrastructure of hepatocytes 

TEM image of the liver shows that the sub-µm sized nanoparticles are dispersed in the 

hepatocytes (Figure 3.19 a and b). Alterations observed in the ultrastructure of the liver with 90 

days post CeO2 nanoparticles exposure include reduced fat droplets when compared with the 

90 days control animals, increased non-specific deposition of particulate material in the 

hepatocytes, altered mitochondrial structure and increased number of peroxisomes or 

lysosomes and splitting of endoplasmic reticulum. 

 

CeO2 nanoparticle exposure is associated with lipid peroxidation, elevations in hepatic 

superoxide levels and evidence of hepatic apoptosis. 

Compared to age matched control animals, the concentration of MDA per gram of the 

liver tissue was elevated by 25%, 31%, and 20% at day 1, 3, and 90, respectively (P<0.05) (Figure 

3.20). Similarly, compared to control animals, dihydroethidium fluorescence intensity was 

increased by 122%, 145%, and 96% at days 1, 3, and 90, respectively (P<0.05) (Figure 3.21). 

Compared to day 1 saline controls, CeO2 nanoparticle exposure increased the number of TUNEL 

positive nuclei by 378%, 351% and 435% at days 1, 3 and day 90 post exposure (Figure 3.22). 

 

Apoptosis induced by CeO2 nanoparticles is associated with caspase cleavage  

Compared to day 1 saline controls, the Bax to Bcl-2 protein ratio was 32% and 10% 

higher in the day 1 and 3 exposure groups (P<0.05). After day 3, the Bax to Bcl-2 ratio began to 
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decline and was 55%, 62%, and 47% lower in the day 14, 28 and 56 exposure animals (P<0.05) 

(Figure 3.23). 

Caspases are cysteine-dependent aspartate specific proteases that are activated during 

cell death. Compared to saline control day 1 animals, caspase-9 protein levels in CeO2 

nanoparticle exposed animals were 25%, 21% and 35% higher at days 1, 3, and 90 exposure, 

respectively (P<0.05). In a similar fashion, the amount of cleaved caspase-9 (activated) was 

29%, 36% and 60% higher in the day 1, 3 and 90 animals, respectively (P<0.05) (Figure 3.24). 

Compared to saline control day 1, caspase 3 levels were 16% higher in day 1 exposure group 

(P<0.05). Compared to saline control day1, the amount of cleaved caspase-3 (activated) was 

32%, 49% and 13% higher in the day 1, 3 and 90 exposure groups (P<0.05) (Figure 3.25). 

 

CeO2 nanoparticle exposure affects p38 MAPK and NF-K phosphorylation in the liver 

Compared to saline control day1, the ratio of phosphorylated p38 MAPK to total p38 

MAPK ratio was reduced by 7%, 16%, and 50% in the day 1, 3, and 90 exposure animals 

(P<0.05). Conversely, the ratio of phosphorylated p38 MAPK (Thr180/Tyr 182) to total p38 

MAPK ratio was elevated by 100%, 65%, and 91% in the day 14, 28 and 56 exposure groups 

(P<0.05) (Figure 3.26). Similar to p38 MAPK, it is thought that the NF-k p65 plays a protective 

role in the liver [160-162]. Compared to saline control day 1 animals, the ratio of 

phosphorylated NF-k p65 (Ser536) to total NF-k p65 protein was reduced by 14%, 5%, and 

67% in the day 1, 3, and 90 exposure groups (P<0.05). Compared to saline control day 1 



94 
 

animals, phosphorylated NF-k p65 to total NF-k p65 protein levels were 26%, 34%, and 18% 

higher for day 14, 28 and 56 exposure groups (P<0.05) (Figure 3.27). 

 

CeO2 nanoparticle exposure alters serum inflammatory biomarkers 

We monitored 55 serum biomarkers that include inflammatory cytokines, interleukins, 

chemokines, tissue factors and growth factors. Among the 55 parameters, 35 showed changes 

in the expression across all the groups. Compared to saline control day 1 animals, CeO2 

nanoparticle exposure increased the expression of 26 parameters, lowered expression of 8 

parameters and failed to change the expression for one parameter (Figure 3.28 a). Compared to 

saline control day 1 animals, the 3 day exposure group showed an elevation of expression for 8 

parameters, lowered expression for 22 parameters and no change in the expression of 5 

parameters (Figure 3.28 b). Compared to saline control day 1 animals, animals in the day 28 

exposure group showed an elevation of 10 parameters, lowered expression for 19 parameters 

and no change in the expression of 6 parameters (Figure 3.28 c). Compared to saline control 

day 1, the day 90 exposure group showed an elevation of 5 parameters, a lowered expression 

for 24 parameters and no change in the expression for 6 parameters (Figure 3.28 d). 

 

Discussion 

Previous investigations examining the toxicity of metallic nanoparticles have 

demonstrated that the exposure to silver, gold, silica, copper, zinc oxide and TiO2 nanoparticles 

increases hepatic ROS and cell apoptosis [116, 117, 155, 156]. We found evidence of a similar 

phenomenon in the liver following the instillation of CeO2 nanoparticles.  Specifically, our 
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primary finding was that the deposition of ceria in the liver is associated with evidence of 

increased tissue ROS and cellular apoptosis.  

One potential marker of increased oxidative stress is lipid peroxidation[163]. Lipid 

peroxidation is the end product of the oxidative degradation of lipids and can be assessed by 

the measurement of malondialdehyde (MDA) levels [163]. Here we observed that ceria 

deposition in the liver was associated with elevations in the amount of liver MDA at 1, 3 and 90 

days after exposure (Figure 3.20). Interestingly, there was no evidence of elevated MDA levels 

at days 14, 28, or 56 of exposure. In addition to MDA levels, we also examined liver tissue 

sections for the presence of superoxide using dihydroethidium staining (Figure 3.21). Consistent 

with our MDA data, the HE staining procedure demonstrated that CeO2 instillation at a dose of 

7.0 mg/kg was associated with a robust increase in liver superoxide levels at day 1, 3 and 90 of 

exposure (Figure 3.22). Taken together, these data demonstrated that CeO2 nanoparticles can 

induce the generation of ROS [164, 165] and in addition, that increases in hepatic ROS levels 

appear to be associated with increased hepatocyte lipid peroxidation. Why MDA and 

superoxide levels are increased at the early (days 1 and 3) and late (day 90) but not the middle 

time points is not clear. We suspect that the acute exposure to large dose of nanoparticles seen 

during the initial phase of the study is associated with the development of a systemic 

inflammatory response and increased oxidative stress which is then followed by a “remodeling 

phase”. During this remodeling phase, ceria deposition continues in the liver which reaches a 

maximal level at day 90 (Figure 3.18) at which point the ceria levels may be high enough to 

initiate a second wave of inflammation and cell death. It is also observed that with the 

increased deposition of the CeO2 nanoparticles in the hepatocytes as seen from the TEM 
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images of the liver, there are increased alterations in the structure of the organelles such as 

mitochondria and endoplasmic reticulum (Figure 3.19). More research, perhaps using 

additional time points longer than 90 days post exposure will be needed to mechanistically 

define the biphasic inflammatory response we observed in the liver.  

To evaluate if the oxidative stress at days 1, 3 and 90 exposure groups was associated 

with the hepatocyte apoptosis, we next performed TUNEL staining to examine hepatocytes for 

the presence of double stranded DNA breaks. As predicted, our TUNEL analysis was consistent 

with the possibility of increased liver apoptosis at these time points (Figure 3.22). In an effort to 

better understand the potential mechanism(s) underlying these findings we next prepared 

protein isolates from the liver and used immunoblotting to examine the isolates for changes in 

apoptotic signaling. Immunoblotting was conducted on day 1 control isolates, and protein 

fractions from animals that had been exposed to the cerium oxide nanoparticles for 1, 3, 14, 28, 

56, or 90 days. Our findings suggested that there was increased proapoptotic Bax/Bcl-2 protein 

signaling at day 1 and 3 post exposure that decreased thereafter. Proapoptotic protein signaling 

appeared to be diminished at day 14, 28, and 56 post exposure. Interestingly, and consistent 

with our oxidative stress data, we noted a robust increase in proapoptotic protein signaling in 

90 day exposure group when compared to what was observed in the 56 day exposure animals 

(Figure 3.23).  

Given that increases in the ratio of Bax/Bcl-2 can give rise to cellular apoptosis via the 

activation of intracellular caspases, we next examined our protein isolates for evidence of 

caspase cleavage. Our data suggested that there were increased levels of active caspase-9 

(cleaved caspase-9) at day 1, 3, and day 90 post exposures (Figure 3.24). Conversely, the 
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expression of active caspase 9 appeared to be declined in the day 14, 28 and 56 exposure 

animals. Similar to our findings for Bax/Bcl-2 we also noted an increase in the amount of 

cleaved caspase-9 in the day 90 exposure group (Figure 3.24). To extend these findings, we 

repeated these experiments and examined if caspase-3 exhibited a similar trend. Like our data 

for caspase-9, caspase-3 cleavage also appeared to be increased at days 1, 3, and 90 (Figure 

3.25). Taken together, these data, when considered in the context of our TUNEL findings, 

suggest that ceria deposition in the liver is associated with hepatic apoptosis and that these 

findings may be mediated by increased levels of oxidative stress. Why the apoptotic response 

appears to be biphasic in nature is not currently clear.   

The p38 MAPK and NF-k-P65 are thought to play important roles in the protection of 

the liver from oxidative stress and apoptosis [160, 161, 166, 167]. When phosphorylated, p38 

MAPK, and NF-k-P65 activate a number of different transcription factors which can then travel 

to the nucleus to induce changes in gene expression [161, 166]. Phosphorylated p38 MAPK has 

been shown to be involved in reducing the production of inflammatory factors [162, 168]. In 

the current study, we found that the ratio of phosphorylated to total p38 MAPK protein level 

was unaltered at days 1 and 3 post exposure while it was increased at days 14, 28, and 56 post 

exposure (Figure 3.26). Consistent with these findings, we also found that p38 MAPK activation 

(phosphorylation) appeared to be significantly reduced in the day 90 exposure group. Like p38 

MAPK, the NF-k P65 is also thought to play a crucial role in hepatic cell survival and 

proliferation [160, 161]. Similar to our findings for p38 MAPK, we observed that the ratio of 

phosphorylated to total NF-k P65 protein levels appeared to be reduced in the day 1 and 3 

exposure groups, elevated in the day 14, 28, and 56 before becoming significantly reduced in 
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the day 90 animals (Figure 3.27). Whether these decreases in p38 MAPK and NF-k activation 

can explain the increased susceptibility of the liver to exhibit increased oxidative stress and 

cellular apoptosis at day 90 post exposure is currently unclear and will require further 

investigation.  

In addition to examining the effects of ceria deposition on the liver we also examined if 

exposure to CeO2 nanoparticles elicited changes in proinflammatory cytokines. Our analysis of 

serum biomarkers suggested that CeO2 nanoparticle exposure was associated with increased 

levels of cytokines, tissue factors and growth factors. In particular, our data suggested that ceria 

deposition in the liver was characterized by elevated acute phase reactant proteins such as  

fibrinogen, haptoglobin, serum amyloid P-component and Von Willebrand’s factor at days 1, 3, 

28, 56, and 90 [121, 152] (Figure 3.28). Our analysis of the serum also suggested that inhalation 

of CeO2 nanoparticles was also associated with an allergic response. Eotaxin is a chemokine that 

attracts eosinophils to the site of injury to elicit an inflammatory response [169]. MCP-1, MCP-

3, MIP-1 beta and MIP-2 are a group of chemokines that are induced by eotaxin, and have been 

shown to play a crucial role in the inflammation induced by eosinophils [170-172]. In addition, 

eotaxin also exhibits the ability to selectively prime eosinophils for chemotaxis, to direct their 

migration/chemotaxis, and to activate inflammatory activity in the cells attracted [171-173]. 

Two cell types that are candidates for mediating such an early or initial response are mast cells, 

a known source of IL-4 and TNF-alpha a finding which is consistent with our observation of 

increased IL-4 following CeO2 nanoparticle exposure [171, 173].  

Taken together, the data of the current study demonstrate that the exposure to CeO2 

nanoparticles is characterized by acute increases in hepatic oxidative stress, elevations in 
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hepatic apoptosis, and an eosinophil mediated inflammatory response that declines over time.  

Interestingly, at day 90 post exposure, oxidative stress and apoptosis once again increases. 

Although unable to demonstrate cause and effect, the increased oxidative stress and apoptosis 

at day 90 appears to be correlated with the increased bioaccumulation of cerium in the liver as 

well as diminished p38 MAPK and NF-kB activation. Further studies may be warranted to 

determine if exposure to CeO2 nanoparticles is associated with any long term effects on hepatic 

structure and function.     
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Figure 3-17: Intratracheal instillation of CeO2 nanoparticles does not alter feed intake and body 

weight gain  

 

 

 

 

 

 



101 
 

Table 5: Alterations in the liver weight, body weight and coefficient of liver weights with the 

ceO2 nanoparticle exposure 

 
 

*Significant difference from the 1 Day exposure group in each condition 
α Significant difference from the 3 Day exposure group in each condition 

μ Significant difference from the 14 Day exposure group in each condition 
¶ Significant difference from the 28days exposure group 
# Significant difference from the 56days exposure group 
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Figure 3-18: Accumulation of cerium in the liver with the days of the exposure to CeO2 

nanoparticles  

 
 
 

* Significant difference from control-1 
¶ Significant difference from Day-1 exposure 

α Significant difference from Day-28 exposure 
# Significant difference from Day-56 exposure 
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Figure 3-19: Alterations in the ultrastructure of the hepatocytes as observed with TEM a) 90 

days control, b) 90 days CeO2 nanoparticles exposed liver 

 

Black Arrow: Deposition of CeO2 nanoparticles 

Red Arrow: Altered mitochondrial structure with CeO2 nanoparticle exposure 
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Figure 3-20: CeO2 nanoparticles can cause lipid peroxidation of the hepatic cell membranes  

 

 
 

 
* Significant difference from the controls in each group 

¶ Significant difference from the 14, 28 and 56 days CeO2 exposure group 
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Figure 3-21:  Increased generation of superoxide radicals in the liver with the intratracheal 

instillation of CeO2 nanoparticles 

 
 

* Significant difference from control-1 
¶ Significant difference from Day-1 exposure 
# Significant difference from Day-3 exposure 
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Figure 3-22: CeO2 nanoparticles exposure can increase TUNEL positive nuclei in the liver 

 

 
 

* Significant difference from control-1 
¶ Significant difference from Day-3 exposure 
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Figure 3-23: Activation of proapoptotic protein signaling in the liver following intratracheal 

instillation of CeO2 nanoparticles. 

Protein bands of the Bax and Bcl-2 proteins and corresponding GAPDH are represented in the 

figure. Bands corresponding to the X-axis labels are shown in the immunoblotting images. 

Protein levels were adjusted by GAPDH levels and compared with the control day-1. 

 
 

* Significant difference from control-1 
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Figure 3-24: CeO2 nanoparticle exposure can activate initiator caspase-9  

Protein bands of the Caspase-9 and cleaved caspase-9 proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 
 

* Significant difference from control-1 
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Figure 3-25: CeO2 nanoparticle exposure can activate executor caspase-3  

Protein bands of the Caspase-3 and cleaved caspase-3 proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1.  

 

 
 

* Significant difference from day 1 control animals 
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Figure 3-26: CeO2 nanoparticle exposure can alter the cell protective signaling in the liver by 

modulating the activity of p38 MAPK 

Protein bands of the p38 MAPK and phospho p38 MAPK proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 
 

* Significant difference from day 1 control animals 
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Figure 3-27: CeO2 nanoparticle exposure can alter the cell protective signaling in the liver by 

modulating the activity of NF-k activity 

Protein bands of the NF-k and phospho NF-k p65 proteins and corresponding GAPDH are 

represented in the figure. Bands corresponding to the X-axis labels are shown in the 

immunoblotting images. Protein levels were adjusted by GAPDH levels and compared with the 

control day-1. 

 

 
 

* Significant difference from day 1 control animals 
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Figure 3-28: Intratracheal instillation of CeO2 nanoparticles can alter the expression of serum 

biomarkers that play an important role in the inflammation and/ or act as inflammatory 

cytokines and tissue factors 
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Chapter 4  
 

General Discussion 

The applications of nanotechnology are growing tremendously in several sectors 

including electronics (chips, screens), energy (production, catalysis, and storage), materials 

(lubricants, abrasives, paints, tires and sportswear), consumer products (clothes, goggles, skin 

lotions and sun screens), automotive, soil/water remediation (pollution absorption, water 

filtering, and disinfection), pesticides, chemicals and pharmaceutical industries [1, 2, 30, 39, 40]. 

It is estimated that there are almost 800 nanoproducts currently available [5]. With increased 

production and utilization of nanomaterials, there is increased chance of exposure to 

nanomaterials. The primary goal of this study was to investigate the potential toxic effects 

induced by CeO2 nanoparticles following intratracheal instillation.  

CeO2 nanoparticles have application in fuel cells, solid cells, the polishing industries and 

biomedical fields [7]. Potential sources of CeO2 nanoparticles exposure to the humans include 

environmental and industrial sources. While inhalation is the most common route of exposure, 

ingestion is also possible. But the inhalation route of exposure is the route of exposure of most 

concern as the absorption through oral route is very minimal [7].  
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CeO2 nanoparticles induced oxidative stress and apoptosis in the lungs is associated with 

MAPK and caspase activation  

CeO2 nanoparticles have been shown to induce oxidative stress and apoptosis in 

cultured lung cells[16]. However, little is known about the effects of these nanomaterials on the 

intact lung. In addition, the cell signaling events associated with the CeO2 nanoparticle toxicity 

are not currently clear. Here we evaluated the role of MAPKs and caspases in the oxidative 

stress and apoptosis induced by CeO2 nanoparticles in the lungs following intratracheal 

instillation. Similar to previous work [119], CeO2 nanoparticle exposure is associated with the 

activation of MAPKs protein signaling and increased oxidative stress. Specifically, we observed 

that CeO2 nanoparticles activate p38 MAPK and inhibit the activity of ERK 1/2-MAPK. In 

addition, our data also show that the p38 MAPK activation (phosphorylation) is paralleled by 

STAT-3 phosphorylation. Phosphorylated p38 MAPK has been shown to play an important role 

in the activation of inflammatory cell signaling pathway by activating different cell signaling 

events and STAT-3 protein signaling is one such pathway [174]. CeO2 nanoparticle exposure is 

also associated with an elevation of serum biomarkers that have been shown to play very 

crucial roles as inflammatory mediators. Increased oxidative stress is associated with increased 

protein expression of proapoptotic Bax and reduced expression of anti-apoptotic Bcl-2. This 

proapoptotic protein signaling is associated with the activation of caspase-9 and caspase-3. 

Altogether, the data from the current study indicates that CeO2 nanoparticle induced oxidative 

stress is mediated through activation of the stress responsive MAP kinase protein signaling 

pathway, phosphorylation of STAT-3 and activation of the intrinsic pathway of apoptosis.   
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CeO2 nanoparticles produce toxic effects in the liver 

Our next step was to examine if CeO2 nanoparticles could translocate to other organs 

from the lungs through the circulation. For these experiments, we evaluated the 

histopathology, organ weights and cerium concentration in the liver, kidney, spleen and heart. 

Similar to that observed with other nanoparticles [26, 27], CeO2 nanoparticle exposure was 

associated with increased liver ceria levels, elevations in serum alanine transaminase levels, 

reduced albumin levels, a diminished sodium-potassium ratio and decreased serum triglyceride 

levels. Consistent with these data, rats exposed to CeO2 nanoparticles also exhibited reductions 

in liver weight and dose dependent hydropic degeneration, hepatocyte enlargement, sinusoidal 

dilatation and the accumulation of granular material in the hepatocytes. No histopathological 

alterations were observed in the kidney, spleen and heart. Analysis of the serum biomarkers 

suggested that there was an elevation of the acute phase reactants in the CeO2 nanoparticles 

exposed rats. Taken together, these data suggest that intratracheal instillation of CeO2 

nanoparticles can result in liver accumulation and can damage the liver. 

 

Hepatic toxicity induced by CeO2 nanoparticles is associated with oxidative stress and 

apoptosis  

There are several studies that show that nanoparticle toxicity is mediated through the 

activation of oxidative stress and apoptosis [2, 24]. To investigate this mechanism, rats were 

instilled with either CeO2 nanoparticles or normal saline and sacrificed 1, 3, 14, 28, 56 or 90 

days after exposure. Our data demonstrated an increase in the concentration of cerium with 
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day of the exposure indicating that cerium bioaccumulates in the liver.  Lipid peroxidation 

assays and staining with dihydroethidium indicated increased oxidative stress 1, 3 and 90 days 

post exposure. Compared to saline control animals, the increased oxidative stress was 

associated with evidence of apoptosis in the livers at 1, 3 and 90 days exposure groups. 

Immunoblotting data indicated that these changes were associated with an increased 

proapoptotic Bax/Bcl-2 ratio, increased caspase-9 protein levels and increased caspase-3 

protein levels. Taken together, these data suggest that CeO2 nanoparticle exposure is 

associated with increased oxidative stress and apoptosis in the liver.  
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Summary 

1. Intratracheal instillation of CeO2 nanoparticles is associated with changes in the 

histological and gross appearance of the lungs. 

2. CeO2 nanoparticle instillation is associated with activation of MAP kinase and STAT-3 

signaling in the lungs.  

3. CeO2 nanoparticle instillation is associated with oxidative stress in the lungs and 

activation of intrinsic pathway of apoptosis. 

4. The CeO2 nanoparticles can translocate to the liver and induce toxic effects on the liver 

but do not appear to induce any histological alterations in the kidney, spleen or heart. 

5. Histological alterations induced by CeO2 nanoparticles include hydropic degeneration, 

hepatocyte enlargement, sinusoidal dilatation and the accumulation of granular 

material inside the hepatocytes. 

6. CeO2 nanoparticles appear to bioaccumulate in the liver. 

7. CeO2 nanoparticle induced hepatic toxicity is associated with oxidative stress and 

apoptosis. The oxidative stress and apoptosis appear to follow a biphasic response. 

8. CeO2 nanoparticles exposure causes the generation of ROS and apoptosis of the 

hepatocytes. CeO2 nanoparticles also appear to cause lipid peroxidation of the 

membranes.  
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Figure 4-1:  Activation of MAP kinases and caspases in the lungs 

 

 

Note: In the above figure, black colored text indicates the results from our studies and the red 

colored text indicates what is already known or what can be implied from the previous studies. 
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Figure 4-2: Possible route of translocation of CeO2 nanoparticles into the liver 

 

Note: In the above figure, black colored text indicates the results from our studies and the red 

colored text indicates what is already known or what can be implied from the previous studies. 
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Figure 4-3: Possible role of oxidative stress and apoptosis in the hepatic toxicity induced by 

CeO2 nanoparticles 

 

Note: In the above figure, black colored text indicates the results from our studies and the red 

colored text indicates what is already known or what can be implied from the previous studies. 
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Future Directions 

The current study evaluated the role of the oxidative stress and apoptosis in the toxicity 

induced by CeO2 nanoparticles in the lungs and liver. We have shown that the CeO2 

nanoparticles can be translocated from the lungs to the liver and have shown that these 

materials induce oxidative stress and apoptosis. Previous work by others has shown that 

nanoparticles can be localized to subcellular organelles [21-23, 70]. Future work could 

determine if the mitochondria and nucleus take up CeO2 nanoparticles. Although we have 

shown that CeO2 nanoparticles can accumulate in the liver, it is not clear if they can be taken up 

by other organs or not. Additional studies examining other tissues or organs are needed. 

Potential aims for future studies could be:  

 

Specific Aim I 

To investigate the possible subcellular localization of the CeO2 nanoparticles in the 

mitochondria and nucleus as well as to investigate the possible structural and functional 

alterations induced by CeO2 nanoparticles following subcellular localization. Electron 

microscopy could be used to examine the structural alterations as well as the subcellular 

localization. Mitochondria or nuclei could be isolated to examine changes in protein 

signaling or for evidence of DNA damage.  Mitochondrial function could be assessed by 

measuring the rate of mitochondrial ATP production and mitochondrial oxygen 

consumption using assay kits. 
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Specific Aim II:  

To investigate the possible toxic effects of CeO2 nanoparticles on the other vital organs 

such as brain. Studies have shown that the nanoparticles can enter brain and disturb the 

blood-brain barrier [1, 6, 96]. It is not clear if CeO2 nanoparticles can induce any damage 

to the brain. We could investigate if cerium can accumulate in the brain and induce any 

structural alterations in the brain. We could also investigate if oxidative stress, 

inflammation and apoptosis have any role in the CeO2 nanoparticles induced brain 

toxicity.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 
 

References 

1. Buzea, C., Pacheco, II, and K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. 
Biointerphases, 2007. 2(4): p. MR17-71. 

2. Oberdorster, G., E. Oberdorster, and J. Oberdorster, Nanotoxicology: an emerging discipline 
evolving from studies of ultrafine particles. Environ Health Perspect, 2005. 113(7): p. 823-39. 

3. Ju-Nam, Y. and J.R. Lead, Manufactured nanoparticles: an overview of their chemistry, 
interactions and potential environmental implications. Sci Total Environ, 2008. 400(1-3): p. 396-
414. 

4. Jiao, P.F., et al., Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. 
Curr Med Chem, 2011. 18(14): p. 2086-102. 

5. Fiorino, D.J., Voluntary Initiatives, Regulation, and Nanotechnology Oversight Charting a Path. 
Woodrow Wilson International Center for Scholars;Project on Emerging Nanotechnologies. 2010. 

6. Hardas, S.S., et al., Brain distribution and toxicological evaluation of a systemically delivered 
engineered nanoscale ceria. Toxicol Sci, 2010. 116(2): p. 562-76. 

7. Cassee, F.R., et al., Exposure, health and ecological effects review of engineered nanoscale 
cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol, 2011. 41(3): 
p. 213-29. 

8. Bumajdad, A., J. Eastoe, and A. Mathew, Cerium oxide nanoparticles prepared in self-assembled 
systems. Adv Colloid Interface Sci, 2009. 147-148: p. 56-66. 

9. Heckert, E.G., S. Seal, and W.T. Self, Fenton-like reaction catalyzed by the rare earth inner 
transition metal cerium. Environ Sci Technol, 2008. 42(13): p. 5014-9. 

10. Niu, J., et al., Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model 
of cardiomyopathy. Cardiovasc Res, 2007. 73(3): p. 549-59. 

11. Das, M., et al., Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord 
neurons. Biomaterials, 2007. 28(10): p. 1918-25. 

12. Colon, J., et al., Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. 
Nanomedicine, 2009. 5(2): p. 225-31. 

13. Pirmohamed, T., et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem 
Commun (Camb), 2010. 46(16): p. 2736-8. 

14. Thill, A., et al., Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of 
the cytotoxicity mechanism. Environ Sci Technol, 2006. 40(19): p. 6151-6. 

15. Kim, I.S., M. Baek, and S.J. Choi, Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO 
nanoparticles to human lung cells. J Nanosci Nanotechnol, 2010. 10(5): p. 3453-8. 

16. Park, E.J., et al., Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. 
Toxicology, 2008. 245(1-2): p. 90-100. 

17. Ma, J.Y., et al., Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar 
macrophage functional change in rats. Nanotoxicology, 2010. 

18. Lin, W., et al., Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol, 
2006. 25(6): p. 451-7. 

19. Eom, H.J. and J. Choi, Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in 
human bronchial epithelial cell, Beas-2B. Toxicol Lett, 2009. 187(2): p. 77-83. 

20. Kreyling, W.G., S. Hirn, and C. Schleh, Nanoparticles in the lung. Nat Biotechnol, 2010. 28(12): p. 
1275-6. 

21. Xia, T., et al., Comparison of the abilities of ambient and manufactured nanoparticles to induce 
cellular toxicity according to an oxidative stress paradigm. Nano Lett, 2006. 6(8): p. 1794-807. 



124 
 

22. Berton, M., et al., Uptake of oligonucleotide-loaded nanoparticles in prostatic cancer cells and 
their intracellular localization. Eur J Pharm Biopharm, 1999. 47(2): p. 119-23. 

23. Porter, A.E., et al., Uptake of C60 by human monocyte macrophages, its localization and 
implications for toxicity: studied by high resolution electron microscopy and electron 
tomography. Acta Biomater, 2006. 2(4): p. 409-19. 

24. Li, N., T. Xia, and A.E. Nel, The role of oxidative stress in ambient particulate matter-induced lung 
diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med, 
2008. 44(9): p. 1689-99. 

25. Hirst, S.M., et al., Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in 
mice. Environ Toxicol, 2011. 

26. Zhu, M.T., et al., Particokinetics and extrapulmonary translocation of intratracheally instilled 
ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci, 2009. 
107(2): p. 342-51. 

27. Sung, J.H., et al., Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci, 2009. 108(2): 
p. 452-61. 

28. Abdelhalim, M.A. and B.M. Jarrar, Gold nanoparticles induced cloudy swelling to hydropic 
degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, 
karyolysis, karyorrhexis and necrosis in the liver. Lipids Health Dis, 2011. 10: p. 166. 

29. NANOtechnology: untold promise, unknown risk. Consum Rep, 2007. 72(7): p. 40-5. 
30. Hobson, D.W., Commercialization of nanotechnology. Wiley Interdiscip Rev Nanomed 

Nanobiotechnol, 2009. 1(2): p. 189-202. 
31. Kibble, A., Pharma 2020--An Economist Conference Shaping the Future of the Pharmaceuticals 

Industry. IDrugs, 2008. 11(5): p. 331-3. 
32. Simonelli, F., et al., Cyclotron production of radioactive CeO(2) nanoparticles and their 

application for in vitro uptake studies. IEEE Trans Nanobioscience, 2011. 10(1): p. 44-50. 
33. Environment Directorate, O., WORKING PARTY ON MANUFACTURED NANOMATERIALS: LIST OF 

MANUFACTURED NANOMATERIALS AND LIST OF ENDPOINTS FOR PHASE ONE OF THE OECD 
TESTING PROGRAMME, in ENV/JM/MONO(2008)13/REV. 2008. 

34. Singh, S. and H.S. Nalwa, Nanotechnology and health safety--toxicity and risk assessments of 
nanostructured materials on human health. J Nanosci Nanotechnol, 2007. 7(9): p. 3048-70. 

35. Kumar, V., et al., Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam 
Toxicol, 2012. 215: p. 39-121. 

36. Jennings, T. and G. Strouse, Past, present, and future of gold nanoparticles. Adv Exp Med Biol, 
2007. 620: p. 34-47. 

37. Dreaden, E.C., et al., The golden age: gold nanoparticles for biomedicine. Chem Soc Rev, 2011. 
38. Fiorino, D.J., Voluntary Initiatives, Regulation, and Nanotechnology Oversight Charting a Path. 

Woodrow Wilson International Center for Scholars;Project on Emerging Nanotechnologies. 2010. 
39. Malsch, D.H.a.I., Hazards and Risks of Engineered Nanoparticles for the Environment and Human 

Health. Sustainability, 2009. 1(2071-1050): p. 1161-1194. 
40. Hofmann-Amtenbrink, M., H. Hofmann, and X. Montet, Superparamagnetic nanoparticles - a 

tool for early diagnostics. Swiss Med Wkly, 2010. 140: p. w13081. 
41. Islam, T. and L. Josephson, Current state and future applications of active targeting in 

malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark, 2009. 5(2): p. 
99-107. 

42. Bhaskar, S., et al., Multifunctional Nanocarriers for diagnostics, drug delivery and targeted 
treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre 
Toxicol, 2010. 7: p. 3. 



125 
 

43. Tiede, K., et al., Detection and characterization of engineered nanoparticles in food and the 
environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2008. 25(7): p. 
795-821. 

44. Morris, V.J., Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol, 
2011. 29(10): p. 509-16. 

45. Petosa, A.R., et al., Aggregation and deposition of engineered nanomaterials in aquatic 
environments: role of physicochemical interactions. Environ Sci Technol, 2010. 44(17): p. 6532-
49. 

46. Gottschalk, F. and B. Nowack, The release of engineered nanomaterials to the environment. J 
Environ Monit, 2011. 13(5): p. 1145-55. 

47. Bernhardt, E.S., et al., An ecological perspective on nanomaterial impacts in the environment. J 
Environ Qual, 2010. 39(6): p. 1954-65. 

48. Woskie, S., Workplace practices for engineered nanomaterial manufacturers. Wiley Interdiscip 
Rev Nanomed Nanobiotechnol, 2010. 2(6): p. 685-92. 

49. Ren, H. and X. Huang, Polyacrylate nanoparticles: toxicity or new nanomedicine? Eur Respir J, 
2010. 36(1): p. 218-21. 

50. Bystrzejewska-Piotrowska, G., J. Golimowski, and P.L. Urban, Nanoparticles: their potential 
toxicity, waste and environmental management. Waste Manag, 2009. 29(9): p. 2587-95. 

51. Khlebtsov, N. and L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: a 
review of in vitro and in vivo studies. Chem Soc Rev, 2011. 40(3): p. 1647-71. 

52. Trickler, W.J., et al., Silver nanoparticle induced blood-brain barrier inflammation and increased 
permeability in primary rat brain microvessel endothelial cells. Toxicol Sci, 2010. 118(1): p. 160-
70. 

53. Yang, H., et al., Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by 
four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol, 2009. 
29(1): p. 69-78. 

54. Simon-Deckers, A., et al., Size-, composition- and shape-dependent toxicological impact of metal 
oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol, 2009. 43(21): p. 
8423-9. 

55. Lam, C.W., et al., A review of carbon nanotube toxicity and assessment of potential occupational 
and environmental health risks. Crit Rev Toxicol, 2006. 36(3): p. 189-217. 

56. Jia, G., et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, 
and fullerene. Environ Sci Technol, 2005. 39(5): p. 1378-83. 

57. Warheit, D.B., et al., Health effects related to nanoparticle exposures: environmental, health and 
safety considerations for assessing hazards and risks. Pharmacol Ther, 2008. 120(1): p. 35-42. 

58. Monopoli, M.P., et al., Physical-chemical aspects of protein corona: relevance to in vitro and in 
vivo biological impacts of nanoparticles. J Am Chem Soc, 2011. 133(8): p. 2525-34. 

59. Geiser, M. and W.G. Kreyling, Deposition and biokinetics of inhaled nanoparticles. Part Fibre 
Toxicol, 2010. 7: p. 2. 

60. Sadauskas, E., et al., Biodistribution of gold nanoparticles in mouse lung following intratracheal 
instillation. Chem Cent J, 2009. 3: p. 16. 

61. Tjalve, H., et al., Uptake of manganese and cadmium from the nasal mucosa into the central 
nervous system via olfactory pathways in rats. Pharmacol Toxicol, 1996. 79(6): p. 347-56. 

62. Elder, A., et al., Translocation of inhaled ultrafine manganese oxide particles to the central 
nervous system. Environ Health Perspect, 2006. 114(8): p. 1172-8. 

63. Sharma, H.S. and A. Sharma, Nanoparticles aggravate heat stress induced cognitive deficits, 
blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res, 2007. 162: 
p. 245-73. 



126 
 

64. Oberdorster, G., et al., Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 
2004. 16(6-7): p. 437-45. 

65. Tallkvist, J., et al., Transport and subcellular distribution of nickel in the olfactory system of pikes 
and rats. Toxicol Sci, 1998. 43(2): p. 196-203. 

66. Scheuch, G., et al., Deposition, imaging, and clearance: what remains to be done? J Aerosol Med 
Pulm Drug Deliv, 2010. 23 Suppl 2: p. S39-57. 

67. Henning, A., et al., Influence of particle size and material properties on mucociliary clearance 
from the airways. J Aerosol Med Pulm Drug Deliv, 2010. 23(4): p. 233-41. 

68. Geiser, M., Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med 
Pulm Drug Deliv, 2010. 23(4): p. 207-17. 

69. Driscoll, K.E., et al., Intratracheal instillation as an exposure technique for the evaluation of 
respiratory tract toxicity: uses and limitations. Toxicol Sci, 2000. 55(1): p. 24-35. 

70. Stefani, D., D. Wardman, and T. Lambert, The implosion of the Calgary General Hospital: ambient 
air quality issues. J Air Waste Manag Assoc, 2005. 55(1): p. 52-9. 

71. Chawla, J.S. and M.M. Amiji, Cellular uptake and concentrations of tamoxifen upon 
administration in poly(epsilon-caprolactone) nanoparticles. AAPS PharmSci, 2003. 5(1): p. E3. 

72. Rouse, R.L., et al., Soot nanoparticles promote biotransformation, oxidative stress, and 
inflammation in murine lungs. Am J Respir Cell Mol Biol, 2008. 39(2): p. 198-207. 

73. Stone, V., H. Johnston, and M.J. Clift, Air pollution, ultrafine and nanoparticle toxicology: cellular 
and molecular interactions. IEEE Trans Nanobioscience, 2007. 6(4): p. 331-40. 

74. Johnston, H.J., et al., A review of the in vivo and in vitro toxicity of silver and gold particulates: 
particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev 
Toxicol, 2010. 40(4): p. 328-46. 

75. Mocan, T., et al., Implications of oxidative stress mechanisms in toxicity of nanoparticles 
(review). Acta Physiol Hung, 2010. 97(3): p. 247-55. 

76. Xiong, D., et al., Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute 
toxicity, oxidative stress and oxidative damage. Sci Total Environ, 2011. 409(8): p. 1444-52. 

77. Clichici, S., et al., Blood oxidative stress generation after intraperitoneal administration of 
functionalized single-walled carbon nanotubes in rats. Acta Physiol Hung, 2011. 98(2): p. 231-41. 

78. Kumar, A., et al., Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA 
damage leading to reduced viability of Escherichia coli. Free Radic Biol Med, 2011. 51(10): p. 
1872-81. 

79. Guyton, K.Z., et al., Activation of mitogen-activated protein kinase by H2O2. Role in cell survival 
following oxidant injury. J Biol Chem, 1996. 271(8): p. 4138-42. 

80. Tournier, C., et al., Mediation by arachidonic acid metabolites of the H2O2-induced stimulation 
of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-
terminal kinase). Eur J Biochem, 1997. 244(2): p. 587-95. 

81. Thomas, G., MAP kinase by any other name smells just as sweet. Cell, 1992. 68(1): p. 3-6. 
82. Boulton, T.G., et al., ERKs: a family of protein-serine/threonine kinases that are activated and 

tyrosine phosphorylated in response to insulin and NGF. Cell, 1991. 65(4): p. 663-75. 
83. Pages, G., et al., Mitogen-activated protein kinases p42mapk and p44mapk are required for 

fibroblast proliferation. Proc Natl Acad Sci U S A, 1993. 90(18): p. 8319-23. 
84. Kharbanda, S., et al., Activation of the c-Abl tyrosine kinase in the stress response to DNA-

damaging agents. Nature, 1995. 376(6543): p. 785-8. 
85. Sluss, H.K., et al., Signal transduction by tumor necrosis factor mediated by JNK protein kinases. 

Mol Cell Biol, 1994. 14(12): p. 8376-84. 



127 
 

86. Uchida, K., et al., Activation of stress signaling pathways by the end product of lipid peroxidation. 
4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem, 
1999. 274(4): p. 2234-42. 

87. Hsin, Y.H., et al., The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent 
mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett, 2008. 179(3): p. 
130-9. 

88. Yamakoshi, Y., et al., Active oxygen species generated from photoexcited fullerene (C60) as 
potential medicines: O2-* versus 1O2. J Am Chem Soc, 2003. 125(42): p. 12803-9. 

89. Hotze, E.M., et al., Mechanisms of photochemistry and reactive oxygen production by fullerene 
suspensions in water. Environ Sci Technol, 2008. 42(11): p. 4175-80. 

90. Zhang, Z., et al., On the interactions of free radicals with gold nanoparticles. J Am Chem Soc, 
2003. 125(26): p. 7959-63. 

91. Lee, H.M., et al., Nanoparticles up-regulate tumor necrosis factor-alpha and CXCL8 via reactive 
oxygen species and mitogen-activated protein kinase activation. Toxicol Appl Pharmacol, 2009. 
238(2): p. 160-9. 

92. Kennedy, I.M., D. Wilson, and A.I. Barakat, Uptake and inflammatory effects of nanoparticles in a 
human vascular endothelial cell line. Res Rep Health Eff Inst, 2009(136): p. 3-32. 

93. Boonstra, J. and J.A. Post, Molecular events associated with reactive oxygen species and cell 
cycle progression in mammalian cells. Gene, 2004. 337: p. 1-13. 

94. Turrens, J.F., Mitochondrial formation of reactive oxygen species. J Physiol, 2003. 552(Pt 2): p. 
335-44. 

95. Eom, H.J. and J. Choi, p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as 
mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol, 2010. 44(21): 
p. 8337-42. 

96. Borm, P.J., et al., The potential risks of nanomaterials: a review carried out for ECETOC. Part 
Fibre Toxicol, 2006. 3: p. 11. 

97. Lenaz, G., The mitochondrial production of reactive oxygen species: mechanisms and 
implications in human pathology. IUBMB Life, 2001. 52(3-5): p. 159-64. 

98. Kakarla, S.K., et al., Chronic acetaminophen attenuates age-associated increases in cardiac ROS 
and apoptosis in the Fischer Brown Norway rat. Basic Res Cardiol, 2010. 105(4): p. 535-44. 

99. Asano, S., et al., Aging influences multiple indices of oxidative stress in the heart of the Fischer 
344/NNia x Brown Norway/BiNia rat. Redox Rep, 2007. 12(4): p. 167-80. 

100. Morimoto, Y. and I. Tanaka, [Effects of nanoparticles on humans]. Sangyo Eiseigaku Zasshi, 2008. 
50(2): p. 37-48. 

101. Nielsen, G.D., et al., In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin 
Pharmacol Toxicol, 2008. 103(3): p. 197-208. 

102. Marano, F., et al., Nanoparticles: molecular targets and cell signalling. Arch Toxicol, 2011. 85(7): 
p. 733-41. 

103. Park, E.J., et al., Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. 
Toxicol Appl Pharmacol, 2010. 244(2): p. 226-33. 

104. Rawlings, J.S., K.M. Rosler, and D.A. Harrison, The JAK/STAT signaling pathway. J Cell Sci, 2004. 
117(Pt 8): p. 1281-3. 

105. Brierley, M.M. and E.N. Fish, Stats: multifaceted regulators of transcription. J Interferon Cytokine 
Res, 2005. 25(12): p. 733-44. 

106. Blank, V.C., C. Pena, and L.P. Roguin, STAT1, STAT3 and p38MAPK are involved in the apoptotic 
effect induced by a chimeric cyclic interferon-alpha2b peptide. Exp Cell Res, 2010. 316(4): p. 603-
14. 

107. A., T., Catalysis by Ceria and Related Materials,. Catalytic Science Series, 2002. 2. 



128 
 

108. Nikolaou, K., Emissions reduction of high and low polluting new technology vehicles equipped 
with a CeO2 catalytic system. Sci Total Environ, 1999. 235(1-3): p. 71-6. 

109. Park, B., et al., Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel 
additive - a case study. Inhal Toxicol, 2008. 20(6): p. 547-66. 

110. Zholobak, N.M., et al., UV-shielding property, photocatalytic activity and photocytotoxicity of 
ceria colloid solutions. J Photochem Photobiol B, 2011. 102(1): p. 32-8. 

111. Karakoti, A.S., et al., Nanoceria as Antioxidant: Synthesis and Biomedical Applications. JOM 
(1989), 2008. 60(3): p. 33-37. 

112. Celardo, I., et al., Ce(3)+ ions determine redox-dependent anti-apoptotic effect of cerium oxide 
nanoparticles. ACS Nano, 2011. 5(6): p. 4537-49. 

113. He, X., et al., Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal 
instillation. Nanotechnology, 2010. 21(28): p. 285103. 

114. Hirst, S.M., et al., Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009. 5(24): 
p. 2848-56. 

115. Asati, A., et al., Surface-charge-dependent cell localization and cytotoxicity of cerium oxide 
nanoparticles. ACS Nano, 2010. 4(9): p. 5321-31. 

116. Sharma, V., et al., Induction of oxidative stress, DNA damage and apoptosis in mouse liver after 
sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res, 2011. 

117. Piao, M.J., et al., Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA 
glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in 
human Chang liver cells. Toxicol Lett, 2011. 207(2): p. 143-8. 

118. Park, B., et al., Initial in vitro screening approach to investigate the potential health and 
environmental hazards of Enviroxtrade mark - a nanoparticulate cerium oxide diesel fuel 
additive. Part Fibre Toxicol, 2007. 4: p. 12. 

119. Samet, J.M., et al., Activation of MAPKs in human bronchial epithelial cells exposed to metals. 
Am J Physiol, 1998. 275(3 Pt 1): p. L551-8. 

120. Wu, M., et al., Acetaminophen improves protein translational signaling in aged skeletal muscle. 
Rejuvenation Res, 2010. 13(5): p. 571-9. 

121. Nalabotu, S.K., et al., Intratracheal instillation of cerium oxide nanoparticles induces hepatic 
toxicity in male Sprague-Dawley rats. Int J Nanomedicine, 2011. 6: p. 2327-35. 

122. Donaldson, K., et al., Carbon nanotubes: a review of their properties in relation to pulmonary 
toxicology and workplace safety. Toxicol Sci, 2006. 92(1): p. 5-22. 

123. Park, E.J., et al., Induction of chronic inflammation in mice treated with titanium dioxide 
nanoparticles by intratracheal instillation. Toxicology, 2009. 260(1-3): p. 37-46. 

124. Bergamaschi, E., et al., Nanomaterials and lung toxicity: interactions with airways cells and 
relevance for occupational health risk assessment. Int J Immunopathol Pharmacol, 2006. 19(4 
Suppl): p. 3-10. 

125. Folkmann, J.K., et al., Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes 
and single-walled carbon nanotubes. Environ Health Perspect, 2009. 117(5): p. 703-8. 

126. Jeong, Y.S., et al., Cellular uptake, cytotoxicity, and ROS generation with silica/conducting 
polymer core/shell nanospheres. Biomaterials, 2011. 32(29): p. 7217-25. 

127. Koike, E. and T. Kobayashi, Chemical and biological oxidative effects of carbon black 
nanoparticles. Chemosphere, 2006. 65(6): p. 946-51. 

128. Kuwano, K., Epithelial cell apoptosis and lung remodeling. Cell Mol Immunol, 2007. 4(6): p. 419-
29. 

129. Kang, K.A., et al., Myricetin Protects Cells against Oxidative Stress-Induced Apoptosis via 
Regulation of PI3K/Akt and MAPK Signaling Pathways. Int J Mol Sci, 2010. 11(11): p. 4348-60. 



129 
 

130. Ruckerl, R., et al., Ultrafine particles and platelet activation in patients with coronary heart 
disease--results from a prospective panel study. Part Fibre Toxicol, 2007. 4: p. 1. 

131. Chakrabarti, S., et al., The role of CD40L and VEGF in the modulation of angiogenesis and 
inflammation. Vascul Pharmacol, 2010. 53(3-4): p. 130-7. 

132. Yazdi, A.S., et al., Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) 
inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. 
Proc Natl Acad Sci U S A, 2010. 107(45): p. 19449-54. 

133. Gojova, A., et al., Effect of cerium oxide nanoparticles on inflammation in vascular endothelial 
cells. Inhal Toxicol, 2009. 21 Suppl 1: p. 123-30. 

134. Korsvik, C., et al., Superoxide dismutase mimetic properties exhibited by vacancy engineered 
ceria nanoparticles. Chem Commun (Camb), 2007(10): p. 1056-8. 

135. Salyer, D.C. and J.C. Eggleston, Oat cell carcinoma of the bronchus and the carcinoid syndrome. 
Arch Pathol, 1975. 99(10): p. 513-5. 

136. Simonelli, F., et al., Cyclotron Production of Radioactive Nanoparticles andTheir Application for 
UptakeStudies. IEEE Trans Nanobioscience, 2011. 

137. Costelli, P., et al., Ca(2+)-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol, 2005. 
138. Li, Y., et al., Systematic influence induced by 3 nm titanium dioxide following intratracheal 

instillation of mice. J Nanosci Nanotechnol, 2010. 10(12): p. 8544-9. 
139. Jin, C., et al., [Comparative study of the effect on oxidative damage in rats inhaled by nano-sized 

and micro-sized silicon dioxide]. Wei Sheng Yan Jiu, 2008. 37(1): p. 16-8, 36. 
140. Yang, B., et al., Systems toxicology used in nanotoxicology: mechanistic insights into the 

hepatotoxicity of nano-copper particles from toxicogenomics. J Nanosci Nanotechnol, 2010. 
10(12): p. 8527-37. 

141. Yasuda, J., et al., Lactate dehydrogenase isoenzyme patterns in bovine liver tissue. Nihon Juigaku 
Zasshi, 1989. 51(4): p. 733-9. 

142. Chen, J.W., D.Z. Chen, and G.Z. Lu, Asymptomatic process of hepatic artery thrombosis in a 
patient after orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int, 2004. 3(1): p. 149-
51. 

143. Memis, D., et al., Curcumin attenuates the organ dysfunction caused by endotoxemia in the rat. 
Nutrition, 2008. 24(11-12): p. 1133-8. 

144. Chaung, S.S., et al., The hepatoprotective effects of Limonium sinense against carbon 
tetrachloride and beta-D-galactosamine intoxication in rats. Phytother Res, 2003. 17(7): p. 784-
91. 

145. Liu, Y., et al., Potential health impact on mice after nasal instillation of nano-sized copper 
particles and their translocation in mice. J Nanosci Nanotechnol, 2009. 9(11): p. 6335-43. 

146. Bogers, M., et al., Effects of the exposure profile on the inhalation toxicity of carbon tetrachloride 
in male rats. J Appl Toxicol, 1987. 7(3): p. 185-91. 

147. Arslan, M., et al., The age- and gender-dependent effects of desflurane and sevoflurane on rat 
liver. Exp Toxicol Pathol, 2010. 62(1): p. 35-43. 

148. Turkez, H., M.I. Yousef, and F. Geyikoglu, Propolis prevents aluminium-induced genetic and 
hepatic damages in rat liver. Food Chem Toxicol, 2010. 48(10): p. 2741-6. 

149. Kamalakkannan, N., et al., Comparative effects of curcumin and an analogue of curcumin in 
carbon tetrachloride-induced hepatotoxicity in rats. Basic Clin Pharmacol Toxicol, 2005. 97(1): p. 
15-21. 

150. Baykara, B., et al., The protective effects of carnosine and melatonin in ischemia-reperfusion 
injury in the rat liver. Acta Histochem, 2009. 111(1): p. 42-51. 

151. Sutcu, R., et al., The effects of subchronic methidathion toxicity on rat liver: role of antioxidant 
vitamins C and E. Cell Biol Toxicol, 2006. 22(3): p. 221-7. 



130 
 

152. Higashisaka, K., et al., Acute phase proteins as biomarkers for predicting the exposure and 
toxicity of nanomaterials. Biomaterials, 2011. 32(1): p. 3-9. 

153. Gabay, C. and I. Kushner, Acute-phase proteins and other systemic responses to inflammation. N 
Engl J Med, 1999. 340(6): p. 448-54. 

154. Schiodt, F.V., et al., Thrombopoietin in acute liver failure. Hepatology, 2003. 37(3): p. 558-61. 
155. Abdelhalim, M.A. and B.M. Jarrar, Histological alterations in the liver of rats induced by different 

gold nanoparticle sizes, doses and exposure duration. J Nanobiotechnology, 2012. 10: p. 5. 
156. Ahmad, J., et al., Apoptosis induction by silica nanoparticles mediated through reactive oxygen 

species in human liver cell line HepG2. Toxicol Appl Pharmacol, 2012. 259(2): p. 160-8. 
157. Neuzil, J., et al., Molecular mechanism of 'mitocan'-induced apoptosis in cancer cells epitomizes 

the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett, 2006. 580(22): 
p. 5125-9. 

158. Zhang, L., et al., The dose-dependent toxicological effects and potential perturbation on the 
neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. 
Nanotoxicology, 2011. 

159. Valentovic, M.A., et al., Characterization of 2-amino-4,5-dichlorophenol (2A45CP) in vitro toxicity 
in renal cortical slices from male Fischer 344 rats. Toxicology, 2002. 172(2): p. 113-23. 

160. Sun, B. and M. Karin, NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene, 
2008. 27(48): p. 6228-44. 

161. Llacuna, L., et al., Reactive oxygen species mediate liver injury through parenchymal nuclear 
factor-kappaB inactivation in prolonged ischemia/reperfusion. Am J Pathol, 2009. 174(5): p. 
1776-85. 

162. Aroor, A.R. and S.D. Shukla, MAP kinase signaling in diverse effects of ethanol. Life Sci, 2004. 
74(19): p. 2339-64. 

163. Valentovic, M., et al., S-Adenosylmethionine (SAMe) attenuates acetaminophen hepatotoxicity in 
C57BL/6 mice. Toxicol Lett, 2004. 154(3): p. 165-74. 

164. Toblli, J.E., et al., Assessment of the extent of oxidative stress induced by intravenous 
ferumoxytol, ferric carboxymaltose, iron sucrose and iron dextran in a nonclinical model. 
Arzneimittelforschung, 2011. 61(7): p. 399-410. 

165. Shukla, R.K., et al., Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in 
human keratinocyte cells. J Biomed Nanotechnol, 2011. 7(1): p. 100-1. 

166. Iida, A., et al., Hepatocyte nuclear factor-kappa beta (NF-kappaB) activation is protective but is 
decreased in the cholestatic liver with endotoxemia. Surgery, 2010. 148(3): p. 477-89. 

167. Kuboki, S., et al., Hepatocyte NF-kappaB activation is hepatoprotective during ischemia-
reperfusion injury and is augmented by ischemic hypothermia. Am J Physiol Gastrointest Liver 
Physiol, 2007. 292(1): p. G201-7. 

168. Zhao, G., et al., [Protective effect of remifentanil preconditioning against hepatic ischemia-
reperfusion injury in rats: role of p38 mitogen-activated protein kinases]. Nan Fang Yi Ke Da Xue 
Xue Bao, 2011. 31(12): p. 2016-20. 

169. Harrington, P.M., et al., Eotaxin and eotaxin receptor (CCR3) expression in Sephadex particle-
induced rat lung inflammation. Int J Exp Pathol, 1999. 80(3): p. 177-85. 

170. Ishihara, Y., et al., Acute biological effects of intratracheally instilled titanium dioxide whiskers 
compared with nonfibrous titanium dioxide and amosite in rats. Inhal Toxicol, 1999. 11(2): p. 
131-49. 

171. Underwood, S.L., et al., Functional characterization and biomarker identification in the Brown 
Norway model of allergic airway inflammation. Br J Pharmacol, 2002. 137(2): p. 263-75. 

172. Inoue, K., et al., Effects of nano particles on antigen-related airway inflammation in mice. Respir 
Res, 2005. 6: p. 106. 



131 
 

173. Lima, C., et al., Eosinophilic inflammation and airway hyper-responsiveness are profoundly 
inhibited by a helminth (Ascaris suum) extract in a murine model of asthma. Clin Exp Allergy, 
2002. 32(11): p. 1659-66. 

174. Park, E.J., et al., Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in 
cultured BEAS-2B cells. Toxicol Lett, 2008. 180(3): p. 222-9. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



132 
 

Curriculum Vitae 

 
Siva Krishna Nalabotu DVM, MS 

6129, Country Club Drive, Huntington, WV-25705 
Phone – 304.638.3696 

E-mail: sivaknalabotu@gmail.com 
 

Career Objective 
 
To obtain an assistant professor position in toxicology while utilizing my veterinary clinical 
skills and research experience for growth and development of the institution with excellent 
career growth perspective 
 
Summary of Qualifications  
 
 Over four years of post-graduate research experience in the design, implementation, 

conduct and management of research projects on efficacy of drugs to treat age and 
metabolic related medical conditions and to evaluate the toxicity effects of 
nanomaterials  
 

 Licensed veterinarian to practice veterinary medicine in the USA with thorough 
knowledge in pharmacology, physiology, toxicology, and pathology of the laboratory and 
pet animals 
 

 Highly motivated, hardworking, intelligent, enthusiastic and very successful graduate 
student with 15 publications; 6 published, 3 under review in peer-reviewed journals and 
another 6 publications in preparation. 

 

 Ability to comprehend and understand complex research works with work experience in 
varied fields including toxicology, nanotechnology, histopathology, Immunoblotting, 
immunohistochemistry, biomarkers and microfluidics. 

 
Professional Experience 
 
Graduate Research Assistant - 2008-Present 
 

Center for Diagnostic Nano systems, Marshall University, Huntington, WV 
 

 Devised and implemented research projects on efficacy of drugs to treat age and 

metabolic related conditions and toxicological evaluation of nanomaterials 

 Developed standard operating animal protocols to get approval with IACUC 

 Designed and implemented academic research project to investigate the toxicity 

potential and the mechanisms of the toxicity of CeO2 nanoparticles 

 Led project team of four graduate students for a toxicity evaluation study on the 

laboratory rats that includes dosing with nanomaterials, physiological and biochemical 

monitoring of animals after dosing with the nanomaterial, euthanizing and collecting the 

tissues from the animals  

 Investigated the toxicological effects of nanomaterials on lungs, liver, kidney, heart and 

brain  

 Identification of serum biomarkers and microRNAs to predict hepatic toxicity of 

nanoparticles 



133 
 

 Critical analysis and interpretation of the scientific data; developed and published the 

manuscripts in peer reviewed journals 

 Gave training for graduate and undergraduate students on various laboratory techniques 

such as western blotting and immunohistochemistry  

 Made successful collaborations with senior scientists at National Institute of 

Occupational Health Sciences and Hazards and Veterans Affairs Medical Center to work 

on research studies 

 

Intern Veterinary Doctor Feb 2007-Oct 2007 
 

Veterinary Poly Clinic, Ongole, AP, India 
 

 Responsible to manage the veterinary hospital facility along with other senior doctors to 

treat the patients 

 Addressed the client questions and instructed clients on how to take care of the patient 

 Scheduled and performed surgeries 

 Managed, led and motivated the paramedical staff of the facility to get the best 

performance 

 Public outreach to make farmers and clients aware of the zoonotic diseases and 

vaccinated the animal population to reduce mortality and morbidity  

 

Dissertation Project 
 

Objectives: 
  

i. To evaluate the systemic toxicological effects of Cerium Oxide nanoparticles following 

intratracheal instillation in male Sprague-Dawley rats  

ii. To investigate the role of oxidative stress and apoptosis in the toxicity induced by 

Cerium Oxide nanoparticles following intratracheal instillation in male Sprague-Dawley 

rats. 

Results: 
 

i. Intratracheal instillation of Cerium Oxide nanoparticles induces hepatic toxicity but do 

not appear to cause any toxic effects on kidney, spleen and heart. (Published in Int. J 

Nanomedicine) 

ii. Hepatic toxicity induced by Cerium Oxide nanoparticles is associated with 

bioaccumulation of cerium in the liver and this accumulation results oxidative stress 

that in turn causes apoptosis of hepatocytes in male Sprague-Dawley rats. (Manuscript in 

preparation) 

 
Education 
 

July 2009-Present Ph.D., Biomedical Sciences (Toxicology) Joan C Edwards School of 
Medicine, Marshall University, Huntington, WV  

 
Jan 2008-Jun 2009 MS, Biological Sciences (Bionanotechnology) College of Science, Marshall 

University, Huntington, WV-25755 
 



134 
 

Aug 2002-Oct 2007 B.V.Sc & A.H (DVM) College of Veterinary Science, Sri Venkateswara 
Veterinary University, Tirupati, Andhra Pradesh, INDIA 

 

Board Certification Educational Commission for Foreign Veterinary Graduates (ECFVG) 
Certification  

 
Licensure  Pennsylvania State Board of Veterinary Medicine License #: BV012989 
 Kentucky Board of Veterinary Examiners License #: NS-KY-4653  
 
Skills and Techniques 
 

 Lab animal husbandry and maintenance  

 Lab animal medicine and surgery 

 Small animal (dog and cat) internal medicine and surgery 

 Biochemical and physiological monitoring of lab animals 

 Cell cultures 

 Histopathology 

 Immunohistochemistry 

 Immunoblotting 

 Fluorescent microscopy 

 Working with nanomaterials and intratracheal instillation of nanomaterials  

 Microarray 

 Identification of MicroRNAs and serum biomarkers to predict hepatic toxicity 

 Fabrication of microfluidic devices 

 Photolithography 
 

Familiarity of Techniques 
 

 HPLC 

 FTIR Spectrometry 

 Electron microscopy 

 Interpretation and data analysis of ICP-MS 

 Echocardiography and electrocardiography of rodents 

 RT-PCR 

 

Computer Skills 
  

 Excellent hands-on experience with MS Office. (MS Word, Excel, PowerPoint, Outlook 

and Access) 

 Excellent experience with statistical software – Sigma Stat 

 Excellent experience with imaging software – Alpha Ease, Image J  

 Excellent experience with Adobe software (Acrobat, Photoshop), and Endnote 

Awards & Honors 

1. Mar 2011: Marshall University Biomedical Sciences travel grant for poster presentation at 

Society of Toxicology Annual Meeting held at Washington D.C. 
 



135 
 

2. Jan 2008-June2009: Marshall University, NSFEPSCoR #9871948 graduate assistantship 

with stipend. 
 

3. Oct 2007: Best volunteer for National Social Service program during veterinary 

internship program. 

 

Professional Memberships 
 

1. Society of Toxicology 
 

2. American Association for Advancement of Sciences 
 

3. Veterinary Council of India (Eligible to practice Veterinary medicine in India) 
 

4. A.P Veterinary Council (Eligible to practice Veterinary medicine in Andhra Pradesh, 

India) 
 

5. West Virginia e-mentoring service 

Publications in Peer-Reviewed Journals 
 
1. Siva K Nalabotu, Hideyo Takatsuki, Madhukar Kolli, Leslie Frost, Benjamin Crowder, 

Shinji Yoshiyama , Murali K Gadde, Sunil K Kakarla, Kazuhiro Kohama, Arun Kumar and  
Eric R. Blough. Control of myosin motor activity by the reversible alteration of protein 
structure for applications in the development of a bio nano device. (Accepted for 
publication in Advanced Science Letters. Jan-2012) 
 

2. Siva K Nalabotu, Madhukar B. Kolli, William E. Triest, Jane Y. Ma, Nandini D.P.K. 
Manne, Anjaiah Katta, Hari S. Addagarla,  Kevin M. Rice,  and Eric R. Blough. 
Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male 
Sprague dawley rats. Int J Nanomedicine. 2011; 6:2327-35.  

 

3. Hideyo Takatsuki, Hideyuki Tanaka, Kevin M Rice, Madhukar B Kolli, Siva K Nalabotu, 
Kazuhiro Kohama, Parviz Famouri and Eric R Blough. Transport of single cells using an 
actin bundle–myosin bionanomotor transport system. Nanotechnology 22 (2011) 245101. 

 

4. Madhukar B. Kolli, B. Scott Day, Hideyo Takatsuki, Siva K Nalabotu, Kevin M. Rice, 
Kazuhiro Kohama, Murali K. Gadde, Sunil K. Kakarla, Anjaiah Katta, and Eric R. Blough. 
Application of Poly (amidoamine) Dendrimers for Use in Bionanomotor Systems. 
Langmuir 2010, 26(9) 

 

5. Satyanarayana Paturi, Anil K. Gutta, Anjaiah Katta, Sunil K. Kakarla, Ravi K. Arvapalli, 
Murali K. Gadde, Siva K Nalabotu, Kevin M. Rice, Miaozong Wu, Eric Blough. Effects of 
aging and gender on muscle mass and regulation of Akt-mTOR-p70s6k related signaling 
in the F344BN rat model. Mechanisms of Ageing and Development 131 (2010) 202–209 

 

6. Sunil K. Kakarla,  Jacqueline C. Fannin, Saba Keshavarzian,  Anjaiah Katta, 
Satyanarayana Paturi, Siva K Nalabotu, Miaozong Wu, Kevin M. Rice, Kamran Manzoor, 
Ernest M. Walker Jr., Eric R. Blough. Chronic acetaminophen attenuates age-associated 
increases in cardiac ROS and apoptosis in the Fischer Brown Norway rat. Basic Res 
Cardiol (2010) 105:535–544 

 
 
 



136 
 

Manuscripts in Review in Peer-Reviewed Journals 
 

1. Anjaiah Katta, Sunil Kakarla, Nandini Manne, Siva K Nalabotu, Miaozong Wu, 
Sudarsanam Kundla, Madhukar Kolli, and Eric Blough. Attenuation of load-induced 
muscle hypertrophy in the obese Zucker rat is associated with alterations in AMPK and 
dsRNA-dependent protein kinase activation. (Journal of Applied Physiology) 
 

2. Anjaiah Katta, Srinivas Thulluri, Murali Gadde, Nandini D.P.K. Manne, Siva K Nalabotu, 
Kevin M. Rice, and Eric R. Blough. Overload induced heat shock proteins (HSPs), MAPK 
and miRNA (miR-1 and miR133a) response in insulin-resistant skeletal muscle. (The 
American Journal of Physiology- Cell Physiology 
 

3. Sunil K. Kakarla, Sudarsanam Kundla, Madhukar Kolli, Anjaiah Katta, Siva K Nalabotu, 
Emily Whitt, Kevin M. Rice and Eric R. Blough. Mechanisms of age-related cardiac 
hypertrophy in the F344XBN rat model (Mechanisms of Ageing and Development) 

 
Manuscripts in Preparation 
 

1. Siva K. Nalabotu, Nandini D.P.K. Manne, Madhukar B. Kolli, Geeta Nandyala, Radha K. 
Para, Jane Y. Ma, and Eric R. Blough. Role of Oxidative Stress and Apoptosis in the 
hepatic Toxicity induced by Cerium Oxide Nanoparticles Following Intratracheal 
Instillation in Male Sprague-Dawley Rats.  
 

2. Siva K. Nalabotu, Nandini D.P.K. Manne, Madhukar B. Kolli, Geeta Nandyala, Radha K. 
Para, Jane Y. Ma, and Eric R. Blough. Exposure to cerium oxide nanoparticles is 
associated with activation of MAPK signaling and apoptosis in the rat lungs.  
 

3. Siva K. Nalabotu, Niraj Nepal, Srinivas Thulluri, Madhukar B. Kolli, Nandini D.P.K. 
Manne, Robert Harris and Eric R. Blough. Cerium oxide nanoparticles induce genotoxic 
effects in the liver of male Sprague-Dawley rats following intratracheal instillation.  
 

4. Radha K. Para, Siva K. Nalabotu, Nandini D.P.K. Manne, Madhukar B. Kolli, Geeta 
Nandyala, Jane Y. Ma, and Eric R. Blough. Investigating the role of oxidative stress, 
autophagy and apoptosis in the toxicity induced by CeO2 nanoparticles on the heart of 
male Sprague-Dawley rats following intratracheal instillation.  

 

5. Madhukar B. Kolli, Radha K. Para, Siva K. Nalabotu, Nandini D.P.K. Manne, and Eric R. 
Blough. Cerium oxide nanoparticles treatment attenuates Monocrotaline induced 
pulmonary arterial hypertension and associated right ventricular hypertrophy in rats.  

 

6. Nandini D.P.K. Manne, Siva K. Nalabotu, Madhukar B. Kolli, and Eric R. Blough. Cancer 
Cachexia in the heart of APC Min/+ mice model of colon cancer is associated with 
activation of Akt and inhibition of mTOR dependent signaling.  

 
Abstracts & Presentations 
 

1. Siva K. Nalabotu, Nandini Manne,  Madhukar Kolli, Geeta Nandyala, Radha K Para, 
Valentovic Monica, Jane Ma and Eric R. Blough. Evaluation of oxidative stress and 
apoptosis in the liver following a single intratracheal instillation of cerium oxide 
nanoparticles in male Sprague dawley rats. (Society of Toxicology Annual Meeting, San 
Francisco 2012) 
 

2. Guest speaker at University of Charleston School of Pharmacy as a part of Brown bag 
lunch seminar series on “Nanomaterials and Nanotoxicity: Should we be scared?”(Oct 
2011) 



137 
 

 

3. Siva K. Nalabotu†, Ashu Dhanjal†, Lucy Dornon, Nandini Manne, Madhukar B. Kolli, 

Paulette Wehner, and Eric R. Blough. Intratracheal instillation of the cerium oxide 

nanoparticles may induce cardiac alterations in the male Sprague-Dawley rats. (West 

Virginia-ACC Annual Meeting 2011) 
 

4. Siva K. Nalabotu, Jane Ma, William E. Triest, Madhukar Kolli, Paulette Wehner, and Eric 

R. Blough. Intratracheal instillation of nano ceria induces systemic toxicity in rats. 

(Society of Toxicology Annual Meeting, Washington D. C. 2011).  
 

5. Siva K. Nalabotu, Jane Ma, William E. Triest, Madhukar Kolli, Paulette Wehner, Nandini 

Manne and Eric R. Blough. Systemic toxicological effects of nanoceria following 

intratracheal instillation. (Marshall University Research day 2011). 
 

6. Hideyo Takatsuki, Kevin Rice, Madhukar B. Kolli, Siva K. Nalabotu, Kazuhiro Kohama, 

Famouri, Micheal Norton and Eric R. Blough. Autonomous nanocargo transport system 

using actin bundle-myosin bionanomotor. (ACS CERM Meeting 2011) 
 

7. Madhukar B Kolli, Arun Kumar, Feras Elbash, Radha Para, Siva K. Nalabotu, Nandini D 

Manne, Geeta Nandyala, Paulette Wehner, Eric R. Blough. Efficacy Of Curcumin 

Nanoparticles On Monocrotaline Induced Pulmonary Arterial Hypertension And Right 

Ventricular Hypertrophy. (American Heart Association HPBL, 2011). 
 

8. Katta, A, Kundla S, Kakarla S, Wu M, Paturi S, Gadde M.K., Arvapalli R, Kolli M, Siva K. 

Nalabotu. Rice, Kevin M., Blough, R., Impaired Overload-induced Hypertrophy Is 

Associated With Diminished mTOR Signaling In Insulin Resistant Obese Zucker Rat 

(American College of Sports & Medicine, Baltimore 2010). 
 

9. Murali K. Gadde, Hideyo Takatsuki, Madhukar Kolli, Kevin M. Rice, Siva K Nalabotu, 

Kazuhiro Kohama, Eric Blough. Disassembly of fascin bundled actin filaments induced by 

myosin II motors in an in-vitro motility assay and its applications to nanotechnology. 

(Sigma Xi Research day, April 2008) 

Media Reports about Publication (Selected from more than 30 reports)) 

1. Nanoparticles Used as Additives in Diesel Fuels Can Travel from Lungs to Liver 

ScienceDaily (Nov. 17, 2011) 
 

2. In vivo study reveals toxic effects of cerium oxide nanoparticles in liver Safenano; 

Europe Center of excellence on nanotechnology hazard and risk (21/11/2011) 
 

3. Marshall Study: Efficiency Additive Linked to Liver Damage West Virginia State Journal 

(Nov 17, 2011) 

 

 

 

 



138 
 

References 

1. Dr. Eric R Blough  

(Thesis Advisor for MS and PhD)                   

Room # 241 R BBSC Building 

Marshall University 

Huntington, WV 25755 

Phone: (304) 696 2708 

blough@marshall.edu 

 

2. Dr. Monica A Valentovic  

Room # 406 BBSC Building 

Marshall University 

Huntington, WV 25755 

Phone: (304) 696-7332 

valentovic@marshall.edu 

 

3. Dr. Gary O Rankin 

Room # 435-F BBSC Building 

Marshall University 

Huntington, WV 25755 

Phone: (304) 696-7319 

rankin@marshall.edu 

 

mailto:blough@marshall.edu
mailto:valentovic@marshall.edu
mailto:rankin@marshall.edu

	Marshall University
	Marshall Digital Scholar
	1-1-2012

	Evaluation of the Role of Oxidative Stress, Inflammation and Apoptosis in the Pulmonary and the Hepatic Toxicity Induced by Cerium Oxide Nanoparticles Following Intratracheal Instillation in Male Sprague-Dawley Rats
	Siva Krishna Nalabotu
	Recommended Citation



