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ABSTRACT

The Quotient of the beta-Weibull Distribution

Nonhle Channon Mdziniso

A new class of distributions recently developed involves the logit of the beta distribution.

Among this class of distributions are, the beta-Normal (Eugene et al. [15]); beta-Gumbel

(Nadarajah and Kotz [18]); beta-Exponential (Nadarajah and Kotz [19]); beta-Weibull

(Famoye et al. [6]); beta-Rayleigh (Akinsete and Lowe [3]); beta-Laplace (Kozubowshi and

Nadarajah [20]); and beta-Pareto (Akinsete et al. [4]), among a few others. Many useful

statistical properties arising from these distributions and their applications to real life data

have been discussed in literature. One approach by which a new statistical distribution

is generated is by the transformation of random variables having known distribution func-

tion(s). The focus of this work is to investigate the statistical properties of the quotient of

the beta-Weibull distribution. The latter was defined and extensively studied by Famoye et

al. [6]. That is, if X and Y are random variables having a beta-Weibull distribution with

parameters α1, β1, c1 and γ1, and α2, β2, c2 and γ2, respectively, i.e. X ∼ BW(α1,β1,c1,γ1),

and Y ∼ BW(α2,β2,c2,γ2), what then is the distribution of the quotient of X and Y? That

is, the distribution of the random variable V = X
Y . We obtain the probability density func-

tion (pdf) and the cumulative distribution (cdf) of this distribution. Various statistics of

the distribution are obtained, including, for example, moments, moment and characteristic

generating functions, hazard function, and the entropy. We propose the method of Maxi-

mum Likelihood Estimator (MLE) for estimating the parameters of the distribution. The

open source software R and Python are used extensively in implementing our results.
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Chapter 1

Introduction

Distribution functions, their properties and interrelationships play a significant role in mod-

eling naturally occuring phenomena. For this reason, a large number of distribution func-

tions which are found applicable to many events in real life have been proposed and defined

in literature. Various methods exist in defining statistical distributions. Many of these arose

from the need to model naturally occuring events. For example, the Normal distribution

addresses real-valued variables that tend to cluster at a single mean value, while the Poisson

distribution models discrete rare events. Yet few other distributions are functions of one

or more distributions. For example, a random variable T is said to have a t - distribution

if T = Z√
W/n

, where Z has the standard normal distribution, and W has the Chi-square

distribution with n degrees of freedom.

A new class of distributions recently developed involves the logit of the beta distribution,

where the logit for a probability p is defined as

logit(p) = log

(
p

1− p

)
= log(p)− log(1− p).

Among this class of distributions are the Beta-Normal (Eugene et al. [15]); Beta-Gumbel

(Nadarajah and Kotz [18]); Beta- Exponential (Nadarajah and Kotz [19]); Beta-Weibull

(Famoye et al. [6]); Beta-Rayleigh (Akinsete and Lowe [3]); Beta-Laplace (Kozubowshi

and Nadarajah [20]); and Beta-Pareto (Akinsete et al. [4]), among a few others. Many
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useful statistical properties arising from these distributions and their applications to real

life data have been discussed in the literature. One approach by which a new statistical

distribution is generated is by the transformation of random variables having known dis-

tribution function(s). Many useful properties of statistical distributions are revealed by

transformations of random variable. For example, if X and Y are independent and identi-

cally distributed random variables having the gamma distribution with parameters (α, s) ,

and (β, s), respectively, then a random variable Z defined by Z = X
X+Y is known to have a

beta distribution with parameter α and β.

The focus of this work is to investigate the statistical properties of the quotient of the beta-

Weibull distribution. The beta-Weibull distribution was defined and extensively studied

by Famoye et al. [6]. If X is a random variable having a beta-Weibull distribution with

parameters α1, β1, c1 and γ1, i.e. X ∼ BW(α1,β1,c1,γ1), and Y ∼ BW(α2,β2,c2,γ2), we

then seek to find the distribution of the quotient of X and Y. That is, the distribution of the

random variable V = X
Y . In this study, we obtain the probability density function (pdf) and

the cumulative distribution (cdf) of the quotient convoluted distribution. Various statistics

of this distribution are obtained, including, for example, moments, moment and character-

istic generating functions, hazard function, and the entropy. We propose the method of

Maximum Likelihood Estimator (MLE) for estimating the parameters of the distribution.

The open source software R and Python are used extensively in implementing our results.

2



Chapter 2

Literature Review

The beta distribution has been widely applied as a statistical distribution to address var-

ious kinds of problems in reliability. According to Nadarajah [17], a generalized class of

beta distribution has been introduced in recent years. Under this scheme, the cumulative

distribution function (cdf) for the generalized class of distributions for the random variable

X is generated by applying the inverse of the cdf of X to a beta distributed random variable

to obtain,

F(x) = 1
B(α,β)

∫ G(x)
0 tα−1(1− t)β−1dt; 0 < α, 0 < β.

The corresponding probability density function (pdf) from G(x) is given by

g(x) = 1
B(α,β) [F (x)]α−1[1− F (x)]β−1F ′(x),

where F ′(x) = f(x) is the pdf of X.

We discuss, in what follows, summaries of some of the beta compounded distributions

that have been defined and studied in literature.

2.1 The beta-Exponential distribution (BED)

The exponential distribution is perhaps the most widely applied statistical distribution for

problems in reliability. The beta exponential distribution, defined and studied by Nadarajah

and Kotz [19] , is generated from the logit of a beta random variable. In the paper, the
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author provides a comprehensive treatment of statistical properties of the beta exponential

distribution. The paper also discusses and derives expressions for the moment generating

function, characteristic function, the first four moments, variance, skewness, kurtosis, mean

deviation about the mean, mean deviation about the median, Rényi Entropy, and the

Shannon Entropy.

The paper proposes a generalization of the exponential distribution with the hope that

it would attract wider applications in reliability. The generalization is motivated by the

following general class:

If G denotes the cumulative distribution function of a random variable, then the cdf of a

generalized class of distribution can be defined by

F (x) = IG(x)(a, b); a > 0, b > 0,

where, Iy(a, b) =
By(a,b)
B(a,b) , denotes the incomplete beta function ratio, and

By(a, b) =
∫ y

0 w
a−1(1− w)b−1dw,

denotes the incomplete beta function.

The author defined the beta exponential distribution by taking G to be the cdf of an

exponential distribution with parameter λ. The cdf of the beta exponential distribution

then becomes,

F (x) = I1−e(−λx)(a, b), x > 0, a > 0, b > 0, λ > 0,

and the corresponding probability density function as obtained by Nadarajah and Kotz [19]

is,

f(x) = λ
B(a,b)e

(−bλx)(1− e(−λx))a−1 a > 0, b > 0, λ > 0.

4



This distribution is the generalization of the exponentiated exponential distribution de-

fined by Gupta and Kundu [16] . When b = 1 and a = 1, the beta exponential distribution

reduces to the exponential distribution with parameter λ .

Besides its mathematical simplicity, when compared with other beta compounded distri-

butions, the beta exponential distribution can be used as an improved model for the failure

time data. The distribution exhibits both increasing and decreasing failure rates, and the

shape of the failure rate function depends on the parameter a.

2.2 The beta-Gumbel distribution (BGD)

The Gumbel distribution is perhaps the most widely applied statistical distribution for

problems in engineering. Nadarajah and Kotz [18] introduced and defined the beta-Gumbel

distribution from the logit of a beta random variable. Their paper provides a comprehensive

treatment of the mathematical properties of the beta-Gumbel distribution, and discusses

the analytical shapes of the corresponding probability density function and the hazard rate

function. Expressions for the moment generating function, variation of the skewness and

kurtosis, asymptotic distribution of the extreme order statistics and estimation are also

discussed in the paper.

In the essence of the logit of the beta distribution, the cumulative distribution function

G(x) of the Gumbel distribution is defined by

G(x) = e
− exp

(
−(x−µ)

σ

)
,

where −∞ < x <∞,−∞ < µ <∞, σ > 0.

5



Thus, the CDF of the BGD is given by

F (x) = Ie(−u)(a, b) where, u = e
−(x−µ)

σ .

The corresponding probability density function (pdf) is

f(x) = u
σB(a,b)e

−au(1− e−u)b−1

The above has the equivalent form

f(x) =Γ(a+b)
σΓ(a)

∑∞
k=0

(−1)kue−(a+k)u

k!Γ(b−k)

The beta-Gumbel distribution allows for greater flexibility of its tail, which enables some

real life problems with tail features to be analyzed more accurately, leading to a better

estimation and prediction of parameters.

2.3 The beta-Rayleigh distribution (BRD)

According to Akinsete and Lowe [3], the problem of estimating the reliability of components

is of utmost importance in many areas of research, for example, in medicine, engineering

and control systems. If X represents a random strength capable of withstanding a random

amount of stress Y in a component, the quantity R = P (Y < X) measures the reliability of

the component. In the paper, the authors defined and studied the beta-Rayleigh distribution

(BRD), and obtained a measure of reliability when both X and Y have the beta-Rayleigh

distribution. Some properties of the BRD are discussed in the paper, including for example,

special cases of the distribution, moments, and parameter estimation.

By taking F (x) as the cdf of the beta-Rayleigh distribution, the pdf for the beta Rayleigh

distribution can be written as

6



g(x) = x
σ2B(α,β)

e
−x2β
2σ2 (1− e

−x2
2σ2 )α−1; x ≥ 0.

Using the relationship between the incomplete beta function and the Gauss Hypergeometric

function, the cdf for the BRD can be expressed as

G(x) = 1− e
−αx2
2σ2

αB(α,β) 2F1(α, 1− β; 1 + α; e
−αx2
2σ2 )

where 2F1(a, b; c; z) is the second order hypergeometric cdf function.

The distribution is used in calculating the measure of reliability, which is vital in many

fields requiring safety. The reliability measure obtained from the BRD is seen to generalize

the known Rayleigh reliability measure, and addresses more cases of reliability measures.

2.4 The beta-Laplace distribution (BLD)

Motivated by the work of Eugene et al. [15], Kozubowski and Nadarajah [20] introduced

the beta Laplace distribution generated from the logit of a beta random variable. The basic

theoretical properties of the distribution are diiscussed, including, for example, modality

and concavity of the density, moments and related parameters, and stochastic representa-

tions that aid in random variate generation from the model.

By the usual method of the logit of the beta distribution, and using the cumulative

distribution function of the Laplace distribution, the pdf of the beta-Laplace distribution

is given by

fa,b(x) =
(

1
2

)a+b+1 Γ(α+β)
Γ(α)Γ(β) .


eax(2− ex)b−1 if x ≤ 0,

e−bx(2− e−x)a−1 if x > 0.
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2.5 The beta-Pareto distribution (BPD)

According Akinsete et al. [4], the family of the Pareto distribution is well known in litera-

ture for its capability in modeling the heavy-tail distribution, such as the data on income

distribution, city population size, and size of companies. Some other quantities measured in

the physical, biological, technological and social systems of various kinds have been found

to follow the Pareto distribution.

Different types of Pareto distributions and their generalizations exist in literature. In

the paper by Akinsete et al. [4], a four-parameter beta-Pareto distribution is generated

and studied. Some properties are discussed in the paper, including the unimodality of the

distribution, the unimodal or decreasing hazard rate, the expressions for the mean, mean

deviation, variance, skewness, kurtosis, Renyi and Shannon entropy, maximum likelihood

estimates of the parameters and applications to real life data.

A random variable Y is said to have the Pareto distribution with parameters k and θ if its

probability density function is given as

g(y) = kθk

yk+1 ; k > 0, θ > 0, y ≥ θ.

The Pareto distribution is skewed to the right and characterized by a shape parameter k

and a scale parameter θ. The cdf f(y) is a decreasing function and achieves its maximum

when y is smallest.

The probability density function of the beta-Pareto distribution is given in Akinsete et al. [4]

as

f(x) = k
θB(α,β)(1− (x/θ)−k)α−1(x/θ)−kβ−1; x ≥ 0, α, β, θ, k > 0.

8



2.6 The beta-Weibull distribution (BWD)

The Weibull distribution has a wide range of applications in many fields of studies. One gen-

eralization of the Weibull distribution is the beta-Weibull distribution, defined by Famoye

et al. [6].

The authors discussed some properties of the four-parameter beta-Weibull distribution. The

distribution is shown to have a bathtub, unimodal, increasing, and decreasing hazard func-

tions. The distribution is applied to censored data sets on bus-motor failures, a censored

data set on head-and-neck-cancer clinical trial, and also to survival data.

By taking G(x) to be the cumulative distribution function of a Weibull random variable

X, the corresponding probability density function for the beta-Weibull random variable is

expressed as:

f(x) = Γ(α,β)
Γ(α)Γ(β)

c
γ (x/γ)c−1(1− e−(x/γ)c)α−1e−β(x/γ)c ,

where, x > 0, α > 0, β > 0, c > 0, γ > 0.

We discuss in the following section, the quotient of two beta-Weibull distributed random

variables. Various properties of this distribution are obtained.

9



Chapter 3

The quotient of the beta-Weibull distribution

3.1 Definition, Density and Distribution Functions

Let f(x) be the pdf of a beta-Weibull random variable X. According to Famoye et al. [6],

the pdf of the distribution is expressed as,

f(x) =
1

B(α1, β1)

c1

γ1

(
x

γ1

)c1−1 (
1− e−(x/γ1)c1

)α1−1
e−β1(x/γ1)c1 ,

α1 > 0, β1 > 0, c1 > 0, γ1 > 0, x > 0.

(3.1)

A random variable X with pdf expressed in Equation(3.1) is said to have the beta-Weibull

distribution with parameters α1, β1, c1, γ1. By notation, we write X ∼ BW (α1, β1, c1, γ1).

Similarly, we write Y ∼ BW (α2, β2, c2, γ2) for the random variable Y having the beta-

Weibull distribution with parameters α2, β2, c2, γ2. Let V =X
Y be a random variable, the

quotient or ratio of the random variables X and Y . Using the transformation method, we

compute the pdf of V as follows:

Let V =X
Y and U = Y . Then Y = U and X = UV .

The set A = {(x, y)|x > 0, y > 0} with V =X
Y and U = Y maps onto

10



B = {(v, u)|v > 0, u > 0}. In this way, the Jacobian of the tranformation is

J =

∣∣∣∣∣∣∣∣∣∣
∂x
∂v

∂x
∂u

∂y
∂v

∂y
∂u

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
u v

0 1

∣∣∣∣∣∣∣ = u 6= 0.

The joint pdf of the independent random variables X and Y is given by

fX,Y (x, y) = fX(x) · fY (y)

=
1

B(α1, β1)B(α2, β2)

c1c2

γ1γ2

(
x

γ1

)c1−1( y

γ2

)c2−1(
1− e−

(
x
γ1

)c1)α1−1

×
(

1− e−
(
y
γ2

)c2)α2−1

e
−β1

(
x
γ1

)c1
e
−β2

(
y
γ2

)c2

With Y = U and X = UV , the joint pdf of U and V is

f(uv, u) =
1

B(α1, β1)B(α2, β2)

c1c2

γ1γ2

(
uv

γ1

)c1−1( u

γ2

)c2−1(
1− e−

(
uv
γ1

)c1)α1−1

×
(

1− e−
(
u
γ2

)c2)α2−1

e
−β1

(
uv
γ1

)c1
e
−β2

(
u
γ2

)c2

The marginal pdf of V is a procedure in statistical literature. By this procedure, the pdf of

the random variable V is expressed by:

11



fV (v) =

∫ ∞
−∞

f(uv, u) · |J |du =

∫ ∞
0

f(uv, u) · |J |du

⇒ fV (v) =

∫ ∞
0

1

B(α1, β1)B(α2, β2)

c1c2

γ1γ2

(
uv

γ1

)c1−1( u

γ2

)c2−1(
1− e−

(
uv
γ1

)c1)α1−1

×
(

1− e−
(
u
γ2

)c2)α2−1

e
−β1

(
uv
γ1

)c1
e
−β2

(
u
γ2

)c2
· u du

(3.2)

For mathematical simplicity, let α1 = α2 = 1 in Equation(3.2). Then,

fV (v) =

∫ ∞
0

β1β2c1c2

γ1γ2

(
uv

γ1

)c1−1( u

γ2

)c2−1

e
−β1

(
uv
γ1

)c1
e
−β2

(
u
γ2

)c2
· u du (3.3)

Again, we set c1 = c2 = 1 in Equation(3.3) for simplicity. Then we have,

fV (v) =

∫ ∞
0

β1β2

γ1γ2
e
−β1

(
uv
γ1

)
e
−β2

(
u
γ2

)
· u du =

β1β2

γ1γ2

∫ ∞
0

ue
−
(
β1γ2v+β2γ1

γ1γ2

)
u
du (3.4)

Let w =β1γ2v+β2γ1
γ1γ2

in Equation(3.4). Then, Equation(3.4) becomes

fV (v) =
β1β2

γ1γ2

∫ ∞
0

ue−uw du

⇒

fV (v) =
β1β2

γ1γ2w

∫ ∞
0

uwe−uw du (3.5)

By definition,

∫ ∞
0

uwe−uw du = E(U),

12



for a random variable U having the exponential distribution with parameter w. This implies

that

E(U) =

∫ ∞
0

uwe−uw du =
1

w

Substituting this result back into Equation(3.5) we obtain,

fV (v) =
1

w
· β1β2

γ1γ2
· 1

w

Therefore

fV (v) =
β1β2γ1γ2

(β1γ2v + β2γ1)2
, (3.6)

where β1 > 0, β2 > 0, γ1 > 0, γ2 > 0, and v > 0

Equation (3.6) is the pdf of the random variable V , the quotient of two independent, beta-

Weibull distributed random variables. We say that V has a four parameter quotient beta-

Weibull distribution (QBWD), with parameters β1, β2, γ1, γ2, and write, for notational pur-

poses; V ∼QBWD(β1, β2, γ1, γ2).

This is a special case of QBWD(α1, α2, β1, β2, c1, c2, γ1, γ2) with c1 = c2 = α1 = α2 = 1. In

that case, QBWD(1, 1, β1, β2, 1, 1, γ1, γ2) = QBWD(β1, β2, γ1, γ2).

Theorem 1. Let V be a non-negative random variable having the quotient beta-Weibull

distribution with parameters β1, β2, γ1 and γ2. Then

fV (v) =
β1β2γ1γ2

(β1γ2v + β2γ1)2
, β1 > 0, β2 > 0, γ1 > 0, γ2 > 0, v > 0,

13



is a legitimate probability density function.

Proof. The above requires us to show that

fV (v) ≥ 0 and

∫ ∞
0

fV (v) dv = 1.

Now,

∫ ∞
0

fV (v)dv =

∫ ∞
0

β1β2γ1γ2

(β1γ2v + β2γ1)2
dv

Set w = β1γ2v + β2γ1. Then dw = β1γ2dv, v = 0⇒ w = β2γ1, and v →∞⇒ w →∞.

This implies that

∫ ∞
0

fV (v)dv =

∫ ∞
β2γ1

β1β2γ1γ2

w2
· dw
β1γ2

= β2γ1

∫ ∞
β2γ1

1

w2
dw

= β2γ1 lim
c→∞

∫ c

β2γ1

1

w2
dw

= β2γ1 lim
c→∞

[
−1

w

]c
β2γ1

= β2γ1 lim
c→∞

[
−1

c
+

1

β2γ1

]
= β2γ1

[
0 +

1

β2γ1

]
= 1.

This concludes the proof, showing that fV (v) is a pdf.

By definition, the cumulative distribution function of a random variable V is defined as

F (v) = P (V ≤ v). Using Equation (3.6), the cdf of the quotient beta-Weibull distribution

14



becomes,

F (v) =

∫ v

0
f(t)dt

=

∫ v

0

β1β2γ1γ2

(β1γ2t+ β2γ1)2
dv

= β2γ1

∫ v

0

β1γ2

(β1γ2t+ β2γ1)2
dt

= β2γ1

[
−1

β1γ2t+ β2γ1

]v
0

= β2γ1

[
−1

β1γ2v + β2γ1
+

1

β2γ1

]

F (v) = 1−
[

β2γ1

β1γ2v + β2γ1

]
=

β1γ2v

β1γ2v + β2γ1
(3.7)

We immediately see from Equation(3.7) that limv→∞ F (v) = 1.

The graph of the cdf of the quotient beta-Weibull distribution is shown in Figure (3.1).
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Figure 3.1: The CDF of the QBWD with parameters (β1 = 2, β2 = 3, γ1 = 2γ2 = 4)

3.2 Shape

The shape of the QBWD is investigated in this section under various parameter values.

Again, recall that the pdf of a QBWD with parameters β1 > 0, β2 > 0, γ1 > 0, γ2 > 0 is

given as

fV (v) =
β1β2γ1γ2

(β1γ2v + β2γ1)2
. (3.8)

The behavior of f(v) given β1, β2, γ1, and γ2 with v → 0 or v →∞ is as follows;

f(v) has a vertical asymptote given by v = −β2γ1
β1γ2

.
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We see that

lim
v→−

(
β2γ1
β1γ2

) f(v) =∞, ∀β1 > 0, β2 > 0, γ1 > 0, γ2 > 0, and

lim
v→∞

f(v) = 0, ∀β1 > 0, β2 > 0, γ1 > 0, γ2 > 0.

The first and second derivatives of Equation(3.8) with respect to v are

f ′(v) =
−2β2

1β2γ1γ
2
2

(β1γ2v + β2γ1)3
, and (3.9)

f ′′(v) =
6β3

1β2γ1γ
3
2

(β1γ2v + β2γ1)4
. (3.10)

The possible extreme values of f(v) are given by the roots of f ′(v) = 0:

f ′(v) = 0⇒ −2β2
1β2γ1γ

2
2

(β1γ2v + β2γ1)3
= 0⇒ −2β2

1β2γ1γ
2
2 = 0, (3.11)

which shows that the function f(v) has no extreme values.

The possible points of inflection result from f ′′(v) = 0:

f ′′(v) = 0⇒ 6β3
1β2γ1γ

3
2

(β1γ2v + β2γ1)4
= 0⇒ 6β3

1β2γ1γ
3
2 = 0 (3.12)

which also shows that the function f(v) has no points of inflection.

By choosing different values for the parameters β1, β2, γ1, and γ2 in the distribution, corre-

sponding shapes of the distribution are shown in Figure 3.2.
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Figure 3.2: The graph of the pdf of the QBWD with various values of the parameters

From the graphs of the distribution, we note that all the parameters of the QBWD

are location parameters. Changing the values of the parameters changes the heaviness of

the tail of the function. We also noticed the following about the variation of the location

parameters β1, β2, γ1 and γ2. The vertical asymptote is v = −1, if β2γ1 = β1γ2. The vertical

asymptote is v < −1, if β2γ1 > β1γ2. This will result in the graph of the pdf shifting towards

the left horizontally. The vertical asymptote is v > −1, if β2γ1 < β1γ2. This will result in

the graph of the pdf shifting towards the right horizontally. However, the vertical asymptote

is always v = k, k being a negetive constant, and v 6= 0 since β1 > 0, β2 > 0, γ1 > 0, γ2 > 0.
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Moreover, from the analysis of the graph of the pdf of the QBWD we make the following

conclusions;

• The QBWD has a heavy right tail and therefore is positively skewed.

• It is a heavy tailed distribution, meaning that a random variable following the QBWD

can have extreme values.

• The modal value of the QBWD is also the minimum value of the random variable V ,

where V ∼QBWD(β1, β2, γ1, γ2). From the graph of the pdf, we see that the modal

value occurs at v = 0, since V = {v|v > 0}.

From the shape of the pdf of the QBWD, we can see that this distribution can be applied

to many situations in which an equilibrium is found in the distribution of the “small” to

the “large”. An example would be in describing the allocation of wealth which is defined

by the Pareto principle or the “80-20 rule” which says that 20% of the population controls

80% of the wealth. According to John Reh [7], it can be shown that from a pdf graph of

the population f(v), the probability, or fraction, of f(v) that own a small amount of wealth

per person is high. The probabitlity then decreases steadily as wealth increases.

Another example would be in modelling the number of students taking upper-level math

courses. Suppose that we monitor a large group of students in a certain university over

an eight-year period starting from their first year in college. Let X represent the level of

the math course, and f(x) be its probability distribution, or fraction of students who are

taking an X-level math course. We would notice that probability for students taking the

100-level math courses is high, mainly because of the requirements in the different majors,

which then decreases as the level of the Math courses increases.

Another example is the distribution of the length of the programs for the number of jobs

assigned to supercomputers, consisting of few large ones and many small ones.
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3.3 Asymptotic behavior

The asymptotic properties of the quotient beta-Weibull distribution are investigated by

considering the behaviors of limv→0 f(v) and limv→∞ f(v) as follows.

Considering the situation when v → 0 and v →∞ in Equation(3.6), we have,

lim
v→0

f(v) = lim
v→0

(
β1β2γ1γ2

(β1γ2v + β2γ1)2

)
=
β1γ2

β2γ1
,

and

lim
v→∞

f(v) = lim
v→∞

(
β1β2γ1γ2

(β1γ2v + β2γ1)2

)
= 0,

and these analytical results agree with the numerical results from the shape of the graph of

the pdf f(v).

3.4 Relationship with other distributions

3.4.1 The beta-Weibull distribution(BWD)

Let f(x) be the pdf of a beta-Weibull random variable X. According to Famoye et al. [6],

the pdf of the distribution is given by,

f(x) =
1

B(α, β)

c

γ

(
x

γ

)c−1 (
1− e−(x/γ)c

)α−1
e−β(x/γ)c ,

α > 0, β > 0, c > 0, γ > 0, x > 0.

(3.13)

We compare the graph of the pdf of the BWD with parameters α = β = c = γ = 1, and

the graph of the QBWD with parameters β1 = β2 = γ1 = γ2 = 1. The graphs are shown in

Figure 3.3.
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Figure 3.3: The pdf of the QBWD with parameters (β1 = β2 = γ1 = γ2 = 1) and the BWD
with parameters (α = β = c = γ = 1)

From the graph, we see that the BWD has the same shape as the QBWD with the given

parameters.

3.4.2 The Pareto Distribution

According to Balakrishnan et al. [14], the pdf of a random variable X distributed as the

Pareto distribution is given by

f(x) =


αhα

(x−a)α+1 if x ≥ a+ h,

0 if x < a+ h,

where −∞ < a <∞, h > 0.

The QBWD has the same pdf as the Pareto distribution when α = 1, a = −β2γ1 and

h = β1β2γ1γ2. We compare the graph of the pdf of the Pareto distribution with parameters

α = 1, a = −6, h = 6, and the graph of the QBWD with parameters β1 = 2, β2 = 3, γ1 =
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2, γ2 = 0.5. The graphs are shown in figure 3.4.
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Figure 3.4: The pdf of the QBWD and the pdf of the Pareto distribution

3.4.3 The Webull-Pareto distribution(WPD)

According to Alzaatreh [5], the pdf of a random variable X ∼WPD(c, β, θ) distributed as

the Weibull-Pareto distribution is given by

f(x) =
βc

x

(
β log

(x
θ

))c−1
exp

(
−
(
β log

(x
θ

))c)

x > θ, c > 0, β > 0, θ > 0.

The shape of the pdf of the QBWD is the same as the shape of the pdf of the WPD with

parameters c = 0.5, β = 1, θ = 1. In fact, the QBWD has the same pdf as the WPD with

parameters c = 0.5, β = 1, θ = 1 when the QBWD has parameters β1 = 2, β2 = 3, γ1 =

2γ2 = 4 on the interval (3,∞).The graphs are shown in Figure 3.5.
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WPD with parameters (c = 0.5, β = 1, θ = 1)
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Chapter 4

The Hazard Function

The hazard function is defined as the probability per unit time that a case which has

survived to the beginning of the respective interval will fail in that interval. Specifically, it

is computed as the number of failures per unit time in the respective interval, divided by

the average number of surviving cases at the mid-point of the interval.

Mathematically, the hazard function for a random variable X is defined as

h(x) =
f(x)

1− F (x)
,

with h(x) ≥ 0 and
∫∞

0 h(x)dx =∞.

Hence the hazard function associated with the QBWD from Equation (3.6) and Equation

(3.7) is

h(v) =
f(v)

1− F (v)

=

β1β2γ1γ2
(β1γ2v+β2γ1)2

1−
[
1− β2γ1

(β1γ2v+β2γ1)

]

Therefore,

h(v) =
β1γ2

β1γ2v + β2γ1
(4.1)
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The behavior of the hazard function as v approaches zero and as v approaches ∞ is as

follows:

Taking the limit of Equation(4.1) as v → 0, we have

lim
v→0

h(v) = lim
v→0

β1γ2

β1γ2v + β2γ1
=
β1γ2

β2γ1
.

Taking the limit of Equation (4.1) as v →∞, we have

lim
v→∞

h(v) = lim
v→∞

β1γ2

β1γ2v + β2γ1
= 0.

We note that h(v) ≥ 0 as desired.

From the graph, we can see that the value of the hazard function decreases as v increases. It

approaches zero as v increases. The implication of this behavior explains that the quotient

beta-Weibull distribution may be appropriate in modelling events where infant mortality

failures are occurring.
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Chapter 5

Moments and Characteristics Functions

Moments are the expected values of certain functions of a random variable. They serve

to numerically describe the variable with respect to given charateristics such as location,

variation, skewness and kurtosis. Section 5.1 gives the moment generating function for

a random variable with the QBWD density function. Section 5.2 gives the characteristic

function and the moments, and section 5.3 gives the shape characteristics of a random

variable with a QBWD density function.

5.1 Moment generating function

We derive the moment generating function for a random variable V having the QBWD

density function given by Equation(3.6) as follows:

Let V be a non-negetive random variable, by definition, the moment generating function of

V is given by

MV (t) = E(etv) =

∫ ∞
0

etvf(v)dv,

where |t| < 1.
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Using Equation(3.6), we have,

MV (t) =

∫ ∞
0

etvf(v)dv = β2γ1

∫ ∞
0

β1γ2e
tv

(β1γ2v + β2γ1)2
dv (5.1)

In order to simplify Equation(5.1), we use a result from Wolfram Mathematica which is

stated as follows;

∫ ∞
0

aetx

(ax+ b)2
dx =

[
te(−bt/a)Ei(xt+ bt

a )

a
− etx

(ax+ b)

]∞
x=0

,

where Ei(z) is the exponential integral defined as

Ei(z) = C + ln(z) +
∞∑
k=1

zk

kk!
, z 6= 0,

and C is the Euler -Mascheroni constant whose value is C ≈ 0.5772156649.

Applying this result to Equation(5.1), noting that a = β1γ2, b = β2γ1, and applying the

limits from 0 to ∞ we obtain

= β2γ1

[
t exp(−β2γ1tβ1γ2

)Ei(tv + β2γ1t
β1γ2

)

(β1γ2)
− etv

(β1γ2v + β2γ1)

]∞
v=0

=∞,

which shows that the moment generating function does not exist.

To further prove this, we derive the characteristics function, the raw moments and central

moments, and use this information to analyze the shape of the distribution.
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5.2 Characteristics function and Moments

By definition, the characteristic function for a random variable V is defined as,

φV (t) = E(eitv) =

∫ ∞
−∞

eitvf(v)dv,

where |t| < 1. For the QBWD, we have,

φV (t) =

∫ ∞
0

eitvf(v)dv =

∫ ∞
0

β1β2γ1γ2e
itv

(β1γ2v + β2γ1)2
dv. (5.2)

Consider a special case for which β1 = β2 = γ1 = γ2 = 1 in Equation(5.2). We then have,

φV (t) =

∫ ∞
0

eitv

(v + 1)2
dv =

∫ ∞
0

cos(tv)

(v + 1)2
dv + i

∫ ∞
0

sin(tv)

(v + 1)2
dv (5.3)

According to Gradshteyn et.al( [10], pages 187, 406), we have the following standard inte-

grals: ∫ ∞
0

sin(kx)

(x+ 1)2
dx =

[
− sin(kx)

x+ 1

]∞
0

+ k

∫ ∞
0

cos(kx)

x+ 1
dx, (5.4)

∫ ∞
0

cos(kx)

(x+ 1)2
dx =

[
− cos(kx)

x+ 1

]∞
0

− k
∫ ∞

0

sin(kx)

x+ 1
dx, (5.5)

∫ ∞
−∞

sin(ax)

x+ β
dx = π cos(aβ), [|argβ| < π, a > 0], (5.6)

and ∫ ∞
−∞

cos(ax)

x+ β
dx = π sin(aβ), [|argβ| < π, a > 0]. (5.7)
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From the graphs of the integrands in Equation(5.6) and Equation(5.7), we obtain the fol-

lowing equations

∫ ∞
0

sin(ax)

x+ β
dx =

1

2
π cos(aβ), [|argβ| < π, a > 0] (5.8)

∫ ∞
0

cos(ax)

x+ β
dx =

1

2
π sin(aβ), [|argβ| < π, a > 0] (5.9)

Substituting Equation(5.8) and Equation(5.9) into Equation(5.4) and Equation(5.5), with

β = 1 and a = k, we obtain

∫ ∞
0

sin(kx)

(x+ 1)2
dx =

[
− sin(kx)

x+ 1

]∞
0

+
k

2
π sin(k), k > 0 (5.10)

∫ ∞
0

cos(kx)

(x+ 1)2
dx =

[
− cos(kx)

x+ 1

]∞
0

− k

2
π cos(k), k > 0 (5.11)

Now, we apply the identities in Equation(5.10) and Equation(5.11) to Equation(5.3), with

x = v and k = t to obtain,

φV (t) =

∫ ∞
0

cos(tv)

(v + 1)2
dv + i

∫ ∞
0

sin(tv)

(v + 1)2
dv

=

[
− cos(tv)

v + 1

]∞
0

− t

2
π cos(t) + i

{[
− sin(tv)

v + 1

]∞
0

+
t

2
π sin(t)

}
,

where t > 0. (5.12)
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We know that −1 ≤ cos(x) ≤ 1 and −1 ≤ sin(x) ≤ 1 for any x ∈ <. In that case,

[
− cos(tv)

v + 1

]∞
0

= 0− (−1) = 1, and[
− sin(tv)

v + 1

]∞
0

= 0 +
0

1
= 0. (5.13)

Equation(5.12) may now be written as

φV (t) = 1− t

2
π cos(t) + i

t

2
π sin(t), t > 0 (5.14)

which is the characteristic function of the random variable V ∼ QBWD(1, 1, 1, 1).

We now use the characteristic function in Equation(5.14) to compute the raw moments of

order n, also known as the nth moment about the origin. The nthraw moment is defined in

terms of the characteristic function as follows:

φ(n)(0) =

[
dnφ

dtn

]
t=0

= inµ′n = inE(xn)

= iµ′1 + i2µ′2 + i3µ′3 + i4µ′4 + i5µ′5 + i6µ′6 + · · ·

= iµ′1 − µ′2 − iµ′3 + µ′4 + iµ′5 − µ′6 − · · ·

Using Equation(5.14), the raw moments are given by

φ′(it) =
−π
2

cos(t) +
π

2
t sin(t) + i

π

2
sin(t) + i

π

2
t cos(t)

φ′(0) =
−π
2

φ′′(it) =
π

2
sin(t) +

π

2
sin(t) +

π

2
t cos(t) + i

π

2
cos(t) + i

π

2
cos(t)− iπ

2
t sin(t)

= π sin(t)− iπ
2
t sin(t) +

π

2
t cos(t) + iπ cos(t)

φ′′(0) = πi
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φ′′′(it) = π cos(t)− iπ
2

sin(t)− iπ
2
t cos(t) +

π

2
cos(t)− π

2
t sin(t)− iπ

2
sin(t)− iπ

2
sin(t)

=
3π

2
cos(t)− i3π

2
sin(t)− iπ

2
t cos(t)− π

2
t sin(t)

φ′′′(0) =
3π

2

φ(4)(it) =
−3π

2
sin(t)− i3π

2
cos(t)− iπ

2
cos(t) + i

π

2
t sin(t)− π

2
sin(t)− π

2
t cos(t)

= −2π sin(t)− i2π cos(t) + i
π

2
t sin(t)− π

2
t cos(t)

φ(4)(0) = −2πi

φ(5)(it) = −2π cos(t) + i2π sin(t) + i
π

2
sin(t) + i

π

2
t cos(t)− π

2
cos(t) +

π

2
t sin(t)

φ(5)(it) =
−5π

2
cos(t) + i

5π

2
sin(t) + i

π

2
t cos(t) +

π

2
t sin(t)

φ(5)(0) =
−5π

2

φ(6)(it) =
5π

2
sin(t) + i

5π

2
cos(t) + i

π

2
cos(t)− iπ

2
t sin(t) +

π

2
sin(t) +

π

2
t cos(t)

= 3π sin(t) + i3π cos(t)− iπ
2
t sin(t) +

π

2
t cos(t)

φ(6)(0) = 3πi,

and so on.

The sequence of raw moments of the distribution is

φ′(0) =
−π
2
, φ′′(0) = πi, φ′′′(0) =

3π

2
, φ(4)(0) = −2πi, φ(5)(0) =

−5π

2
, φ(6)(0) = 3πi, · · ·

In general, we may write the nth moment as,

φ(n)(0) =


nπ
2 i

n+1, if n is odd;

nπ
2 i

n−1, if n is even.
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We now use the raw moments to analyze the shape of the distribution.

5.3 Shape Characteristics

We discuss the skewness and kurtosis of the QBWD in what follows:

Skewness: The skewness of a distribution is defined as the lack of symmetry. In a symmet-

rical distribution, the mean, median and, mode are equal to each other, and the ordinate at

the mean divides the distribution into two equal parts such that one part is a mirror image

of the other. The Karl Pearson’s measure of skewness is based upon the divergence of the

mean from the mode in a skewed distribution. Pearson’s measure of skewness is given by,

γ1 =
β3

β
(3/2)
2

,

where β2 and β3 are the second and third central moments.

When the distribution is symmetric about the mean; β3 = 0 ⇒ γ1 = 0. It can also be

noted that the measure of skewness γ1 may take on positive or negetive values depending

on whether β3 is positive or negetive, respectively. Hence, distributions with γ1 > 0 are

said to be positively skewed distributions, while those with γ1 < 0 are said to be negetively

skewed.

Kurtosis: Kurtosis is another measure of the shape of a distribution. It is a measure of the

relative peakedness of its frequency curve. A measure of skewness is given by

γ2 =
β4

β2
2

.

Based on this value, distributions with γ2 > 3 are called leptokurtic, distributions with

γ2 < 3 are called platykurtic, while distributions with γ2 = 3 are called mesokurtic. The
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latter case is similar to the bell shape of the normal distribution.

The central moments or the moments about the mean are expressed in terms of raw mo-

ments. By definition,

βn = E[X − E(X)]n =

n∑
k=0

(−1)k
(
n

k

)
E[E(X)]KE(Xn−k)

=
n∑
k=0

(−1)k
(
n

k

)
αk1αn−k, αn = E(Xn) = φ(n)(0).

In particular, we have

V ar(X) = β2 = α2 − α2
1,

β3 = α3 − 3α1α2 + 2α3
1, and

β4 = α4 − 4α1α3 + 6α2
1α2 − 3α4

1.

Note that the first central moment β1 = 0.

Now, for the random variable V with the quotient beta-Weibull distribution, the central

moments are as follows:

V ar(X) = β2 = α2 − α2
1 = πi−

(
−π
2

)2

≈ −2.467 + 3.412i

β3 = α3 − 3α1α2 + 2α3
1 =

3

2
π − 3

(
−π
2

)
(iπ) + 2

(
−π
2

)3

≈ −3.039 + 14.804i

β4 = α4 − 4α1α3 + 6α2
1α2 − 3α4

1

= −2πi− 4

(
−π
2

)(
3π

2

)
+ 6

(
−π
2

)2

(iπ)− 3

(
−π
2

)4

≈ 11.345 + 40.226i
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Thus, the Pearson’s measure of skewness is

γ1 =
β3

β
(3/2)
2

=
−3.039 + 14.804i

(−2.467 + 3.412i)(3/2)
≈ −0.0204− 1.893i,

and, Pearson’s measure of kurtosis is

γ2 =
β4

β2
2

=
11.345 + 40.226i

(−2.467 + 3.412)2
≈ −2.617 + 0.093i.

The value of the measure of skewness obtained above implies that this distribution is nege-

tively skewed. However, this contradicts the results obtained from the shape of the pdf

of the QBWD distribution, as illustrated in the graphs in Figure 3.2. This contradiction

further justifies the non-existence of the moments of the QBWD, for the specified parameter

values. It would be interesting to investigate the distribution for values of parameters α

and c other than α = 1 = c. After a number of attempts, this would be either impossible

analytically or, in the least, rigorous.
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Chapter 6

Entropy and Asymptotic Behaviors

6.1 Rényi Entropy

The Rényi entropy of a random variable is one family of functions for quantifying the

uncertainty or randomness in a system (Rényi [1]). The Rényi entropy has been used in

various situations in science and engineering (Cordeiro [8]). According to Akinsete [2], the

Rényi entropy is defined by,

R(s) =
1

1− s
log

[∫ ∞
−∞

fs(v)dv

]
, (6.1)

where s > 0 and s 6= 1, and it is called the Rényi’s information measure of order s, or

Rényi’s S entropy.

Rényi showed that this R(s) also represents the disclosed information (or removed igno-

rance) after analysing the expression in a close analog with Shannon’s theory (Cederlof [11]).

The Shannon entropy H(s) is a fundamental measure in information theory, and is a spe-

cial case of Rényi’s entropy. It is defined as H(s) = lims→1R(s). It is worth noting that,

at a deeper level, Rényi’s entropy measure is much more flexible due to the parameter s,

enabling several measurements of uncertainty (or dissimilarity) within a given distribution.
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For the pdf of the QBWD given by Equation(3.6), we have

R(s) =
1

1− s
log

[∫ ∞
0

(
β1β2γ1γ2

(β1γ2v + β2γ1)2

)s
dv

]
=

1

1− s
log

[∫ ∞
0

βs1β
s
2γ

s
1γ

s
2

(β1γ2v + β2γ1)2s
dv

]
=

1

1− s

[
log

(
(β1β2γ1γ2)s

β1γ2

)
+ log

(∫ ∞
0

β1γ2

(β1γ2v + β2γ1)2s
dv

)]
=

1

1− s

{
s log(β1β2γ1γ2)− log(β1γ2) + log

[
1

(−2s+ 1)(β1γ2v + β2γ1)2s−1

]∞
0

}
=

1

1− s

{
s log(β1β2γ1γ2)− log(β1γ2) + log

[
1

(2s− 1)(β2γ1)2s−1

]}
=

1

1− s
{
s log(β1β2γ1γ2)− log(β1γ2)− log

[
(2s− 1)(β2γ1)2s−1

]}
=

1

1− s
[s log(β1β2γ1γ2)− log(β1γ2)− log(2s− 1)− (2s− 1) log(β2γ1)]

=
1

1− s
[
log(β1β2γ1γ2)s − log(β1γ2)− log(2s− 1)− log(β2γ1)2s−1

]
=

1

1− s
log

[
(β1β2γ1γ2)s

(β1γ2)(2s− 1)(β2γ1)2s−1

]
=

1

1− s
log

[
1

(2s− 1)
βs−1

1 β
−(s−1)
2 γ

−(s−1)
1 γs−1

2

]
=

1

s− 1
log(2s− 1) +

1

1− s
log

(
β1γ2

β2γ1

)s−1

.

The above may now be written as,

R(s) =
1

s− 1
log(2s− 1)− log

(
β1γ2

β2γ1

)
, s 6= 1.

Therefore, Rényi’s entropy for the QBWD random variable is given by

R(s) =
1

s− 1
log(2s− 1)− log

(
β1γ2

β2γ1

)
, s 6= 1. (6.2)

To analyze the Rényi’s entropy for the QBWD random variable, we consider the following

three cases:
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Case 1: The limit as s→ 1:

lim
s→1

R(s) = lim
s→1

(
1

s− 1
log(2s− 1)− log

(
β1γ2

β2γ1

))
.

Using the L’Hospital’s rule, we have

lim
s→1

R(s) = lim
s→1

2/(2s− 1)

1
− log

(
β1γ2

β2γ1

)
= lim

s→1

2

2s− 1
− log

(
β1γ2

β2γ1

)
= 2− log

(
β1γ2

β2γ1

)
. (6.3)

Taking the limit as s → 1 of the Rényi entropy gives the Shannon’s entropy, making

this a special case of the Rényi’s entropy. The results obtained in Equation(6.3) can be

interpreted as the needed length, in bits, of a message communicating a measurement that

had probability f(v). This makes Shannon’s entropy a measure of the expected message

length needed to communicate the measured value of a random variable(Cederlof [11]).

Therefore, the greater the value of f(v), the greater the value of Shannon’s entropy.

Case 2: The limit as s→ 0:

lim
s→0

R(s) = lim
s→0

(
1

s− 1
log(2s− 1)− log

(
β1γ2

β2γ1

))
= lim

s→0

(
1

s− 1
log(2s− 1)

)
− lim
s→0

log

(
β1γ2

β2γ1

)
= −πi− log

(
β1γ2

β2γ1

) (6.4)

Taking the limit as s→ 0 of the Rényi entropy gives the logarithm of the number of nonzero

components of the QBWD distribution, generally known in the literature as Hartley’s en-

tropy(Cederlof [11]).
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Case 3: The limit as s→∞:

lim
s→∞

R(s) = lim
s→∞

(
1

s− 1
log(2s− 1)− log

(
β1γ2

β2γ1

))
= lim

s→∞

(
1

s− 1
log(2s− 1)

)
− lim
s→∞

log

(
β1γ2

β2γ1

)
= − log

(
β1γ2

β2γ1

)
, β1γ2 ≤ β2γ1

(6.5)

The limit as s → ∞ of R(s) can also be thought of as lims→∞R(s) = R∞, with R∞ =

− log(max(f(v))), which is called Chebyshev’s entropy (Cederlof [11]). We know that

max(f(v)) = limv→0 f(v) =β1γ2
β2γ1

.

The plots of R(s) are also generated in order to study the behavior of R(s).

These graphs illustrate the behavior of R(s) as s → 0, s → 1 and s → ∞. From the

0 1 2 3 4 5 6 7 8
s-value

−4

−2

0

2

4

6

8

R
(s
)

b1=b2=d1=d2=1
b1=0.5,b2=0.1,d1=2,d2=0.8
b1=20,b2=4,d1=0.025,d2=5

Figure 6.1: The graph of the Renyi entropy of the QBWD

diagram, we see that

lim
s→1−

R(s) = 2, and lim
s→1+

R(s) = 2,

for the graph with parameters β1 = β2 = γ1 = γ2 = 1, and these numerical results agree

with the analytical results computed previously in Equation(6.3).
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We also note that the parameters β1, β2, γ1and γ2 are shift parameters. Increasing the

value of β1γ2
β2γ1

results in a downward vertical shift of the graph of R(s). On the other hand,

decreasing the value of β1γ2
β2γ1

results in an upward vertical shift of the graph of R(s).
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Chapter 7

Parameter Estimation

In this chapter, we consider the process for estimating the parameters of the QBWD by

the method of maximum likelihood estimation. Let V1, V2, . . . , Vn be the random sample

from n independent and identically distributed random variables, each with density function

given by Equation(3.6). Then the likelihood function for the random variables is defined as

follows;

L(V1, V2, . . . , Vn;β1, β2, γ1, γ2) =
n∏
i=1

f(vi)

=
n∏
i=1

β1β2γ1γ2

(β1γ2vi + β2γ1)2

=
(β1β2γ1γ2)n

n∏
i=1

(β1γ2vi + β2γ1)2

(7.1)

The values of the parameters that maximize the likelihood function also maximize the log

likelihood, logL(V1, V2, . . . , Vn;β1, β2, γ1, γ2). Taking the logarithm of Equation(7.1), we
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have

` = logL(V1, V2, . . . , Vn;β1, β2, γ1, γ2)

= log

 (β1β2γ1γ2)n

n∏
i=1

(β1γ2vi + β2γ1)2


= log(β1β2γ1γ2)n − log

(
n∏
i=1

(β1γ2vi + β2γ1)2

)
= n log(β1β2γ1γ2)−

[
log(β1γ2v1 + β2γ1)2 + . . .+ log(β1γ2vn + β2γ1)2

]
= n log(β1β2γ1γ2)− 2

n∑
i=1

log(β1γ2vi + β2γ1) (7.2)

Now, taking the partial derivatives of Equation(7.2) with respect to β1, β2, γ1 and γ2 re-

spectively, we have,

∂`

∂β1
=

n

β1
− 2

n∑
i=1

γ2vi
(β1γ2vi + β2γ1)

(7.3)

∂`

∂β2
=

n

β2
− 2

n∑
i=1

γ1

β1γ2vi + β2γ1
(7.4)

∂`

∂γ1
=

n

γ1
− 2

n∑
i=1

β2

β1γ2vi + β2γ1
(7.5)

and

∂`

∂γ2
=

n

γ2
− 2

n∑
i=1

β1vi
β1γ2vi + β2γ1

(7.6)

The maximum likelihood estimates for parameters β1, β2, γ1 and γ2 are obtained by solving

Equation(7.3)-(7.6) when equated to zero. Unfortunately, this is analytically impossible.

For interval estimations of the set of (β1, β2, γ1, γ2), and their tests of hypothesis, the Fisher

information In(·) symmetric matrix is required. The Fisher-information matrix is used to

calculate the covariance matrix associated with maximum-likelihood estimates. It is a way

of measuring the amount of information that an observable random variable X carries about

an unknown parameter θ upon which the probability of X depends. The elements of this
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matrix consist of the negetives of the expected values of the second partial derivatives of

the log likelihood. That is,

In(β1, β2, γ1, γ2) =



−E
(
∂2`
∂2β1

)
−E

(
∂2`

∂β1∂β2

)
−E

(
∂2`

∂β1∂γ1

)
−E

(
∂2`

∂β1∂γ2

)
−E

(
∂2`

∂β1∂β2

)
−E

(
∂2`
∂2β2

)
−E

(
∂2`

∂β2∂γ1

)
−E

(
∂2`

∂β2∂γ2

)
−E

(
∂2`

∂β1∂γ1

)
−E

(
∂2`

∂β2∂γ1

)
−E

(
∂2`
∂2γ1

)
−E

(
∂2`

∂γ1∂γ2

)
−E

(
∂2`

∂β1∂γ2

)
−E

(
∂2`

∂β2∂γ2

)
−E

(
∂2`

∂γ1∂γ2

)
−E

(
∂2`
∂2γ2

)



Continuing from the first derivatives in Equation(7.3)-(7.6), the corresponding second par-

tial derivatives are obtained as follows;

∂2`

∂β2
1

=
−n
β2

1

+ 2
n∑
i=1

γ2
2v

2
i

(β1γ2vi + β2γ1)2
;

∂2`

∂β2
2

=
−n
β2

2

+ 2
n∑
i=1

γ2
1

(β1γ2vi + β2γ1)2

∂2`

∂γ2
1

=
−n
γ2

1

+ 2
n∑
i=1

β2
2

(β1γ2vi + β2γ1)2
;

∂2`

∂γ2
2

=
−n
γ2

2

+ 2
n∑
i=1

β2
1v

2
i

(β1γ2vi + β2γ1)2

∂2`

∂β1∂β2
= 2

n∑
i=1

γ1γ2vi
(β1γ2vi + β2γ1)2

;
∂2`

∂β1∂γ1
= 2

n∑
i=1

β2γ2vi
(β1γ2vi + β2γ1)2

∂2`

∂β1∂γ2
= 2

n∑
i=1

β1γ2v
2
i

(β1γ2vi + β2γ1)2
;

∂2`

∂β2∂γ1
= 2

n∑
i=1

β2γ1

(β1γ2vi + β2γ1)2

∂2`

∂β2∂γ2
= 2

n∑
i=1

β1γ1vi
(β1γ2vi + β2γ1)2

;
∂2`

∂γ1∂γ2
= 2

n∑
i=1

β1β2vi
(β1γ2vi + β2γ1)2
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The expressions for the Fisher Information matrix are not simple to handle analytically,

and we do not intend to pursue this further. In the next chapter, we discuss the method of

simulation by the Markov Chain Monte Carlo and generate random variates of the QBWD

from a proposal distribution.
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Chapter 8

Simulation

The Markov Chain Monte Carlo (MCMC) methods encompass a general framework for

Monte Carlo integration (Roberts [9]) . As outlined in Sun [12], the Monte Carlo estimates

the integral

∫
A
g(t)dt

with a sample mean by restating the integration problem as an expectation with respect to

some density function f(·). The integration problem is reduced to find a way to generate

samples from the target density f(·). According to Maria [13], the MCMC approach to

sampling from f(·) is to construct a Markov chain with stationary distribution f(·), and run

the chain for a sufficiently long time until the chain converges to its stationary distribution.

Simply, the Monte Carlo estimate of

E[g(θ)] =

∫
g(θ)fθ|x(θ)dθ

is the sample mean

g =
1

m

m∑
i=1

g(xi)

where x1, x2, . . . , xm is a sample from the distribution with density fθ|x.
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The Metropolis-Hastings (M-H) algorithms are a class of MCMC methods, one of which

is the Metropolis sampler. The main idea is to generate a Markov Chain {Xt|t = 0, 1, 2, . . .}

such that its stationary distribution is the target distribution. The algorithm must specify,

for a given Xt, how to generate Xt+1. In all of the Metropolis-Hastings sampling algorithms,

there is a candidate point Y generated from a proposal distribution g(·|Xt). If this candi-

date point is accepted, the chain moves to state Y at time t + 1 and Xt+1 = Y ; otherwise

the chain stays in the state Xt and Xt+1 = Xt. The choice of proposal distribution is very

flexible, but the chain generated by this choice must satisfy certain regularity conditions.

The proposal distribution must be chosen so that the generated chain will converge to a

stationary distribution - the target distribution.

The algorithms or steps required in generating a Markov chain {X0, X1, X2, . . .} by the

Matropolis-Hastings sampler are as follows, (See Maria [13] and Sun [12]):

1. Choose a proposal distribution g(·|Xt) (subject to regularity conditions stated above).

2. Generate X0 from a distribution g.

3. Repeat (until the chain has converged to a stationary distribution according to some

criterion):

(a) Generate Y from g(·|Xt).

(b) Generate U from Uniform (0, 1).

(c) If

U ≤ f(Y )g(Xt|Y )

f(Xt)g(Y |Xt)

accept Y and set Xt+1 = Y ; otherwise set Xt+1 = Xt.

4. Increment t.

Following the procedure described above, we generate a simulation of the quotient beta-

Weibull distribution with parameters β1 = 1, β2 = 4, γ1 = 3γ2 = 2. The histogram of the
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simulated data and the curve of the empirical density function of the QBWD with the same

parameters are shown in the next diagram. Also, the R script for the MCMC samples of

the QBWD is provided in the Appendix.
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Figure 8.1: The histogram of the simulated QBWD and the pdf of the QBWD
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Chapter 9

Conclusion

The quotient beta-Weibull distribution was defined and studied in this work. Various prop-

erties of the distribution were discussed, including, for example, the moment generating

function, characteristic function, variance, skewness, kurtosis, and the raw moments. Also

discussed are the Rényi entropy, asymptotic behaviors, estimation of parameters by the

method of maximum likelihood. We pointed out some of the special cases of the distribu-

tion and highlighted the similarities of the distribution with few known distributions in the

literature. A simulated random variates of the distribution were generated by the method

of Markov Chain Monte Carlo (MCMC). The R statistical package and python software

were used in implementing our results.
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Appendix A

1. The code in R program to generate the graph of the CDF of the Quotient Beta-Weibull

distribution with parameters

β1 = 2, β2 = 3, γ1 = 2, γ2 = 4.

b1=2

b2=3

d1=2

d2=4

v=seq(0,50,.01)

F=function(x)

(b1*d2*v)/(b1*d2*v + b2*d1)

plot(v,F(v),main=”CDF of the QBWD”,type=”l”,xlab=”V-value”)

2. The code in R program to generate the graph of the pdf of the Quotient Beta-Weibull

distribution with parameters

β1 = 2, β2 = 3, γ1 = 2, γ2 = 4;

β1 = .5, β2 = .4, γ1 = .3, γ2 = .6;

β1 = .5, β2 = .4, γ1 = 5, γ2 = 7.

b1=2

b2=3
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d1=2

d2=4

x=seq(0,15,.01)

bw1.pdf=function(v,b1,b2,d1,d2)

f=(b1*b2*d1*d2)/(b1*d2*v + b2*d1)**2

plot(x,bw1.pdf(x,2,3,2,4),type=’l’,ylim=c(0,.6),xlab=”V-value”,ylab=”pdf”)

lines(x,bw1.pdf(x,.5,.4,.3,.6),lty=2)

lines(x,bw1.pdf(x,.5,.4,5,7),lty=4)

legend(”topright”,inset=0.02,c(”b1=2.0,b2=3.0,d1=2.0,d2=4.0”,”b1=.5,b2=.4,d1=.3,d2=.6”,

”b1=.5,b2=.4,d1=5.0,d2=7.0”),lty=1:2:4)

3. The code in R program to generate the graph of the Hazard Rate Function of the

Quotient Beta-Weibull distribution with parameters

β1 = 2, β2 = 3, γ1 = .05, γ2 = .03;

β1 = .02, β2 = .15, γ1 = 2, γ2 = 4.

b1=2

b2=3

d1=.05

d2=.03

x=seq(0,20,.01)

bw1.hzd=function(v,b1,b2,d1,d2)

f=(b1*d2)/(b1*d2*v + b2*d1)

plot(x,bw1.hzd(x,2,3,.05,.03),type=’l’,ylim=c(0,.6),xlab=”v-value”,ylab=”h(v)”)

lines(x,bw1.hzd(x,.02,.15,2,4),lty=2)

legend(”topright”,inset=0.02,c(”b1=2,b2=3,d1=0.05,d2=0.03”,”b1=.02,b2=.15,d1=2,d2=4”),lty=1:2)
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4. The code in Python program to generate the graph of the Rényi Entropy of the Quo-

tient Beta-Weibull distribution with parameters

β1 = β2 = γ1 = γ2 = 1;

β1 = .5, β2 = .1, γ1 = 2, γ2 = .8;

β1 = 20, β2 = 4, γ1 = .025, γ2 = 5.

from math import ceil, log

from pylab import*

def F1(x): return(log(2*x-1))/(x-1)

def F2(x): return(log(2*x-1))/(x-1) - log(2)

def F3(x): return(log(2*x-1))/(x-1) - 3

S1 = []

S2 = []

S3 = []

R1 = []

R2 = []

R3 = []

N = 30

M = 400

i = 1

x = 0.51

for i in range (N):

S1.append(x)

S2.append(x)
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S3.append(x)

R1.append((log(2*x-1))/(x-1))

R2.append((log(2*x-1))/(x-1) - log(2))

R3.append((log(2*x-1))/(x-1) - 3)

i += 1

x += 0.016

x = 1.1

for i in range (M):

S1.append(x)

S2.append(x)

S3.append(x)

R1.append((log(2*x-1))/(x-1))

R2.append((log(2*x-1))/(x-1) - log(2))

R3.append((log(2*x-1))/(x-1) - 3)

i += 1

x += 0.016

plt.plot(S1, R1,’b-’, label=”b1=b2=d1=d2=1”)

plt.plot(S2, R2,’r–’, label=”b1=0.5,b2=0.1,d1=2,d2=0.8”)

plt.plot(S3, R3,’k-’,linewidth =5, label=”b1=20,b2=4,d1=0.025,d2=5”)

plt.axvline(x=1, ymin=0, ymax=5)

plt.legend(loc=”upper right”)

xlabel(’s-value’)

ylabel(’R(s)’)

title(’Renyi Entropy of the QBWD’)

show()
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5. The code in R to generate the histogram of the simulated QBWD and the pdf of the

QBWD with parameters

β1 = 1, β2 = 4, γ1 = 3, γ2 = 2.

par(mfrow=c(2,2))

K=(b1*b2*r1*r2)

f=function(x,b1,b2,r1,r2)

if(any(x¡0))return(0)

stopifnot(b1¿0,b2¿0,r1¿0,r2¿0)

return(K/(b1*r2*x+b2*r1)**2)

m=10000

b1=1

b2=4

r1=3

r2=2

x=numeric(m)

x[1]=rexp(1,1)

k=0

u=runif(m)

for(i in 2:m)

xt=x[i-1]

z=rexp(1,xt)

num=f(z,b1,b2,r1,r2)*dexp(xt,z)

den=f(xt,b1,b2,r1,r2)*dexp(z,xt)

if(u[i]¡=num/den) x[i]=z else

x[i]=xt

k=k+1
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print(k)

b=1001

z=x[b:m]

hist(z,breaks=”scott”,freq=F,xlim=c(0,20),ylim=c(0,.25),xlab=”V - value”)

t=seq(0,18,0.01)

lines(t,K/(b1*r2*t+b2*r1)**2,type=”l”)

6. The code in R program to generate the graph of the pdf of the Beta-Weibull distribu-

tion with parameters α = β = c = γ = 1, Versus the pdf of the Quotient Beta-Weibull

distribution with parameters β1 = β2 = γ1 = γ2 = 1;

b1=1.0

b2=1.0

d1=1.0

d2=1.0

x=seq(0.1,15,.01)

bw1.pdf=function(v,b1,b2,d1,d2)

f=(b1*b2*d1*d2)/(b1*d2*v + b2*d1)**2

bw2.bwd=function(v)

g=exp(-v)

plot(x,bw1.pdf(x,1.0,1.0,1.0,1.0),type=’l’,ylim=c(0,.6),xlab=”V-value”,ylab=”pdf”)

lines(x,bw2.bwd(x),lty=2)

legend(”topright”,inset=0.02,c(”QBWD-pdf”,”BWD-pdf”),lty=1:2)

7. The code in R program to generate the graph of the pdf of the Pareto distribution

with parameters α = 1, a = −6, h = 6, Versus the pdf of the Quotient Beta-Weibull
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distribution with parameters β1 = 2, β2 = 3, γ1 = 2, γ2 = .5;

b1=2.0

b2=3.0

d1=2.0

d2=0.5

a=-6.0

b=1.0

h=48

x=seq(1.1,15,.01)

bw1.pdf=function(v,b1,b2,d1,d2)

f=(b1*b2*d1*d2)/(b1*d2*v + b2*d1)**2

bw2.wpd=function(v,a,b,h)

g=(b*h**b)/(v-a)**(b+1)

plot(x,bw1.pdf(x,2.0,3.0,2.0,0.5),type=’l’,ylim=c(0,.6),xlab=”V-value”,ylab=”pdf”)

lines(x,bw2.wpd(x,-6.0,1.0,6.0),lty=2)

legend(”topright”,inset=0.02,c(”QBWD-pdf”,”Pareto-pdf”),lty=1:2)

8. The code in R program to generate the graph of the pdf of the Weibull-Pareto distribu-

tion with parameters c = .5, β = 1, θ = 1, Versus the pdf of the Quotient Beta-Weibull

distribution with parameters β1 = 2, β2 = 3, γ1 = 2, γ2 = 4;

b1=2

b2=3

d1=2

d2=4

x=seq(1.5,15,.01)

bw1.pdf=function(v,b1,b2,d1,d2)
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f=(b1*b2*d1*d2)/(b1*d2*v + b2*d1)**2

bw2.wpd=function(v)

g=(0.5/v)*((log(v))**(-0.5))*exp(-(log(v))**0.5)

plot(x,bw1.pdf(x,2,3,2,4),type=’l’,ylim=c(0,.6),xlab=”V-value”,ylab=”pdf”)

lines(x,bw2.wpd(x),lty=2)

legend(”topright”,inset=0.02,c(”QBWD-pdf”,”WPD-pdf”),lty=1:2)
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