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ABSTRACT

On the Logic of Reverse Mathematics

Alaeddine Saadaoui

The goal of reverse mathematics is to study the implication and non-implication relation-

ships between theorems. These relationships have their own internal logic, allowing some

implications and non-implications to be derived directly from others. The goal of this thesis

is to characterize this logic in order to capture the relationships between specific mathe-

matical works.

The results of our study are a finite set of rules for this logic and the corresponding

soundness and completeness theorems. We also compare our logic with modal logic and

strict implication logic. In addition, we explain two applications of S-logic in topology and

second order arithmetic.
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Chapter 1

INTRODUCTION

The goal of reverse mathematics is to find the weakest set of axioms that are capable of

proving a theorem T and to characterize the exact strength of these axioms. To start, we

build a weak axiom system B known as the base system which is too weak to prove T ,

but strong enough to state it. The next step consists of finding an axiom system A that is

stronger than B and is able to prove T . To show that A is required to prove T , we need to

show that T is provable from A and T itself implies A, if B is assumed. The second proof

shows that A is the weakest axiom system able to prove T . In other words, any system that

proves T extends A.

In reverse mathematics, researchers usually use subsystems of second order arithmetic

to formalize the base system and theorems they study. In second order arithmetic, objects

are natural numbers or sets of natural numbers. The most frequently used subsystems of

second order arithmetic in reverse mathematics are known as the “big five subsystems of

second order arithmetic” and are described by Simpson [4]. These subsystems are ordered

in terms of logical strength, which means that a system T is stronger than a system S if

B + T proves S. In our study, we will be interested in these relationships. We will build

a deductive system based on a logic that we call S-logic. We will also see that S-logic is

different from propositional logic.

To manage and organize relations among reverse mathematical principles, we can use

applications created for this purpose. For instance, the Reverse Mathematics Zoo program,
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created by Damir Dzhafarov,1 generates a diagram showing known results. The relation

could be an implication, a strict implication or a non-implication. A strict implication means

that if we have two systems A and B, then A strictly implies B when A implies B and B does

not imply A. Figure 1 shows an example of a diagram, which we will not discuss, generated

by the Reverse Mathematics Zoo program. The program also regenerated diagrams that

were created by hand. The input of the program is a database containing known facts

about reverse mathematical principles. By parsing the database in different ways, different

diagrams are generated. The benefits of this program are to visualize and capture the

relations between different mathematical theorems. However, Dzhafarov indicates that the

program has optimization issues that cannot be solved without knowledge of the logic behind

the relationships. The goal of our study is to determine the logic behind the relationships

between mathematical works.

Our work extends a previous study by Sean Sovine [5], who focused on particular im-

plication and non-implication statements that have the forms of A ` B and A 0 B, and

discovered two inference rules. However, the statements studied by Sovine do not contain

conjunctions in their hypotheses. We will extend his work by studying implication and

non-implication statements which may have conjunctions in their hypotheses.

1.1 Propositional logic

In this section, we will introduce propositional logic, which is a standard logic used by

logicians. We have two reasons for giving detailed introduction to this logic. The first reason

is that the structure of a statement in S-logic is different from the structure of a statement in

propositional logic. The second reason is that the semantics of non-implication statements

in S-logic are different from the semantics of non-implication statements in propositional

logic. We will define the language of S-logic in chapter 2, at which point we will describe

the differences between the two logics.

Propositional logic, also called sentential logic, is a formal logic used to study specific

1The zoo program, the database and the created diagrams are available on the website http://www.nd.

edu/~ddzhafar/The_Zoo.html.
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propositions, also called statements or sentences, to derive more complicated propositions

and study the logical properties to derive them. Enderton [1] provides a general reference

for propositional logic. The derivation is done by using specific formation rules called

inference rules, and the result of the derivation is called a theorem. The derivation can

be considered as a proof of the theorem. The interpretation of a proposition is limited to

two possible values: true or false, and its truth or falsity is determined by the truth or

falsity of its atomic parts.

1.2 Language of propositional logic

Statements and symbols

In propositional logic, a statement is a sequence of objects called symbols, and the set

of all possible symbols is called the alphabet. We have two types of symbols: variables

and sentential connective symbols. A sentence symbol, also called a variable, is usually

represented by a letter used to refer to a proposition that is part of the original one.

A sentence symbol could have a value of true or false, but it does not provide a logical

description of the relationship between the different parts of a statement. A sentential

connective symbol, also called a logical symbol, is used to define the logical relationship

within a sentence. The logical symbols are the negation symbol ¬, the conjunction symbol

∧, the disjunction symbol ∨ (inclusive or), the conditional symbol → (if..then..) and the

bi-conditional symbol ↔ (if and only if). To group a subset of symbols, we use the left and

right parentheses.

In the following examples, we will take declarative English sentences to translate them

to propositions.

Example 1.1. As a first example, the sentence “The weather is sunny” could be translated

in propositional logic to one non logical symbol, say, A. So the sentence “The weather is

not sunny” is a negation of the first sentence and it will be ¬A. If we have a compound

sentence, we break it down into atomic parts that can be expressed in propositional logic.

For example, the sentence “The weather is sunny and the sky is blue” could be divided to
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two parts “The weather is sunny” and “The sky is blue”. We already assigned a symbol A

to “The weather is sunny” and we will assign a second symbol B to “The sky is blue”. The

two parts of the sentence are connected by the conjunction “and” which will be translated

to the connective symbol ∧ to get the proposition A ∧B for the whole sentence.

The sequence of symbols of a sentence has to be written in a defined way by using

specific rules. Such sequences are called well formed formulas or wffs. For example, the

formula “(A1 → A2 ∨A3)” is a wff and the sequence “)→ A2))” is not.

A symbol cannot be a finite sequence of two or more symbols. For this reason we call a

finite sequence of symbols an expression. For example (¬A1) is an expression defined by

the sequence of symbols {(,¬, A1, )}.

Truth assignment

A truth assignment for a set S of sentence symbols is a function v defined by v : S →

{F, T}. F is called falsity and T is called truth. We also use 0 and 1 instead of F and T ,

respectively. The function v assigns to each symbol of S either T or F . When v(A) = T ,

we say that v satisfies A.

Example 1.2. Let S be a set of symbols such that S = {A1, A2, A3}. One truth assignment

for S is the v such that v(A1) = T , v(A2) = F and v(A3) = F .

Truth assignment for well formed formulas

The well formed formulas are built by using the sentence and connective symbols. So we

can assign the values F or T to a well formed formula. Suppose S̄ is the set of wffs built by

using the symbols from S. We will define the truth assignment v̄ : S̄ → {F, T} such that:

1. ∀A ∈ S, v̄(A) = v(A).

2. v̄(¬A) =


T if v̄(A) = F,

F if v̄(A) = T.
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3. v̄(A ∧B) =


T if v̄(A) = T and v̄(B) = T,

F if v̄(A) = F or v̄(B) = F (or both).

4. v̄(A ∨B) =


T if v̄(A) = T or v̄(B) = T (or both),

F if v̄(A) = F and v̄(B) = F.

5. v̄(A→ B) =


F if v̄(A) = T and v̄(B) = F,

T if v̄(A) = F or if v̄(A) = T and v̄(B) = T.

6. v̄(A↔ B) =


T if v̄(A) = v̄(B),

F if v̄(A) 6= v̄(B).

Example 1.3. Let S = {A1, A2, A3}, S̄ = {A1 ∨ A2,¬A3 ∧ A2, A2 → ¬A1}. Let v be a

truth assignment for S such that v(A1) = T , v(A2) = F and v(A3) = T . Let v̄ be the truth

assignment for S̄. We have:

1. v(A1) = T implies v̄(A1) = T and v(A2) = F implies v̄(A2) = F , so v̄(A1 ∨A2) = T .

2. v(A3) = T implies v̄(A3) = T , so v̄(¬A3) = F and v̄(A2) = F implies v̄(¬A3 ∧A2) =

F .

3. v̄(A1) = T , so v̄(¬A1) = F and v̄(A2) = F implies v̄(A2 → ¬A1) = T .

Tautologies

Let S be a set of formulas and A be a formula. We say that S tautologically implies A

and we write S � A if every truth assignment that satisfies every formula of S also satisfies

A.

Example 1.4. If we have A ∈ S then S � A. Because if we have a truth assignment that

satisfies every symbol of S, it will also satisfy A as A ∈ S.

Suppose S = {A,A → B}. If there exist a truth assignment v̄ such that v̄(A) = T and

v̄(A→ B) = T , we get v̄(B) = T . Thus, we can conclude S � B.
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1.3 Summary of results

In the remainder of this thesis, by studying the nature of implication and non-implication

relations, we define a logic that is capable of stating these relations. As we have two types of

relationships, we define the rules of each type, prove their soundness and their completeness.

The second chapter presents S-logic and contains two parts. The first part focuses on

positive statements and defines their rules. The second part of this chapter focuses on

negative statements and also presents its rules. For each rule, we prove its soundness and

at the end of each part we prove the completeness of the rules.

The third chapter shows two applications of S-logic. The first example is an application

in second order arithmetic and the second example is an application in topology. For each

example, we define the field, its semantics, and we show all steps needed to interpret each

field into S-logic. Also, we prove the properties of S-logic that we used for each example.

The fourth chapter presents a comparison between S-logic, modal logic and strict impli-

cation logic. First, we define each logic and describe its semantics. Second, we define the

interpretation between the three logics. Finally, we discuss the difference between S-logic

and the two other logics.

6



 A
CA

 

 R
T2

2 

 S
RA

M
 

 C
O

H
+W

K
L 

 B
Si

g2
+P

i0
1G

 

 E
M

 

 C
A

C 
 IP

T2
2 

 P
T2

2 
 S

RT
22

+C
O

H
 

 E
M

+A
D

S 

 S
RT

22
 

 A
SR

A
M

 
 W

K
L 

 C
O

H
 

 IS
ig

2 

 P
i0

1G
 

 IS
ig

2+
A

M
T 

 W
W

K
L 

 D
N

R 

 R
CA

 

 S
CA

C 

 A
D

S 
 S

CA
C+

CC
A

C 

 S
IP

T2
2 

 S
PT

22
 

 D
22

 
 A

SR
T2

2 

 S
A

D
S 

 C
RT

22
 

 O
PT

 
 C

A
D

S  A
ST

 

 B
Si

g2
 

 P
A

RT
 

 R
T1

2 

 A
M

T 

 S
tC

O
H

 
 C

CA
C 

 S
A

D
S+

CA
D

S 

 S
tC

RT
22

 
 S

tC
A

D
S 

 B
Si

g2
+C

A
D

S 
 B

Si
g2

+C
O

H
 

 C
RT

22
+B

Si
g2

 
 F

IP
 

 n
D

2I
P 

Figure 1: Diagram of implications in reverse mathematics generated by the Reverse Math-
ematics Zoo program. The diagram shows reverse mathematics of some mathematical
principles. Arrows indicate implications and double arrows indicate strict implications.

7



Chapter 2

S-LOGIC

In this chapter we will introduce S-logic, a new logic we create to study the relationships

between theorems. We first define the language of S-logic, its semantics, and several infer-

ence rules. We prove the soundness of each rule as it is defined, and at the end we prove

the completeness of all the rules together.

This chapter is divided into three parts. The first part contains the definitions of the

different terms of S-logic. The second part contains the rules for positive statements, and

the last part contains the rules for negative statements.

Definition 2.1. An alphabet, also called a set of symbols, represents a set of variables.

Each variable is represented by a letter. A sequent is defined by a finite set of variables

Γ and a variable x. There are two types of sequents: A positive sequent has the form of

Γ ` x and a negative sequent has the form of Γ 0 x.

An initial difference between S-logic and propositional logic is that any sequent in S-logic

has the form of Γ ` x or Γ 0 x, where x is a letter. Although Γ is a set of variables, we

think of it as a conjunction of variables. However, in propositional logic, we can have more

complicated statements like ¬(A→ B)→ (C → ¬D).

The intended meaning of Γ ` x is that if all variables of Γ are true, then x is true. So

every situation that makes Γ true also makes x true. Γ 0 x is intended to mean that there

is a situation where all variables of Γ are true and x is false. In standard logic models, Γ

implies x is defined by the formula (
∧

Γ)→ x, where
∧

Γ is the conjunction of the formulas

in Γ. Note that the formula for “Γ does not imply x” is ¬((
∧

Γ) → x) and means Γ is
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true and x is false, in propositional logic, which is different from the meaning of a negative

sequent in S-logic. The next definition is about the function that assigns the value of true

or false to each variable.

Definition 2.2. An S-theory is a fixed choice of an alphabet and a particular set of sequents

with letters from this alphabet.

The focus of this chapter is to determine which other sequents can be deduced from a

given S-theory.

Example 2.3. We can define an S-theory by an alphabet A and a set of sequents S0 where

A = {A,B,C,D,E, F} and S0 = {A ` B,B ` C, {C,D} ` F,D ` E, {A,E} ` F,A 0 F}.

Definition 2.4. A world w : A→ {T, F} is a function that makes each letter true or false.

If S is an S-theory, an S-world is a world that makes every positive sequent of S true.

Suppose Γ is a set of letters and A is a letter. Given a world w, we say w makes Γ ` A

true if either w makes some letters of Γ false or w makes A true. w makes Γ 0 A true if w

makes all letters of Γ true and A false.

Suppose we have a set of variables Γ and a world w, we say that w makes Γ true if w

makes every letter of Γ true.

A world in S-logic is like a truth assignment in standard propositional logic. The only

difference between a world and a truth assignment is that a world assigns to both a letter

and sequent the value of true or false. However, in standard propositional logic we have a

function that assigns the value of true or false to variables and another function that does

the same for formulas.

The concept of an S-world is important because we need it to define the semantics of

S-logic.

Definition 2.5. Suppose S is an S-theory. S is called consistent if there exists a set of

worlds W such that:

• For every world w ∈W and every positive sequent Γ ` x ∈ S, w makes Γ ` x true.
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• For every negative sequent Γ 0 x ∈ S, there exists a world w ∈W such that w makes

Γ 0 x true.

In other words, each negative sequent must be true at least one S-world. If W is a set of

worlds that verifies S is consistent we say that W is sufficient for S.

A set of worlds W sufficient for S guarantees the consistency of S. If S contains only

positive sequents then W could be empty. If S contains both positive and negative sequents,

then W must at least contain enough set of S-worlds to make each negative sequent true

in at least one S-world. A single S-world could make more than one negative sequent true

and a negative sequent could be true in more than one S-world.

We are only interested in consistent sets of sequents. We will first define the rules of

S-logic for positive sequents and second for negative sequents. For each rule we will prove its

soundness. Soundness of a rule means that a set of worlds sufficient for a set of sequents

is also sufficient for the new set deduced by applying the rule. In other words, the rule

preserves consistency in a strong way.

Example 2.6. Let S0 be the theory {A ` B,B ` C, {C,D} ` F,D ` E, {A,E} ` F,A 0 F}

from Example 2.3. We will suppose S0 is consistent and a set of worlds W is sufficient for

S0. As S0 contains one negative sequent A 0 F , W has to contain at least one S-world that

makes A 0 F true.

We now begin to define our deduction rules.

The I Rule (Identity). The identity rule states: for each letter A,

(I)
A ` A

In plain language, we can deduce A ` A without any hypothesis.

Theorem 2.7. (Soundness of I) If S is a consistent S-theory and A is a letter from the

alphabet of S, then the set S′ = S ∪ {A ` A} is also consistent.

Proof. It is clear that every S-world makes A ` A true, so if S is a consistent S-theory, then

S′ = S ∪ {A ` A} is also consistent.
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Example 2.8. Because S0 is consistent, S′ = S0 ∪ {A ` A} is also consistent.

The MP Rule (Modus ponens). The Modus ponens rule is defined by:

{A1, . . . , An} ` X {B1, . . . , Bk} ` A1
(MP)

{B1, . . . , Bk, A2, . . . , An} ` X

In plain language, we suppose that we have an S-theory S. If {A1, . . . , An} ` X is in S and

{B1, . . . , Bk} ` A1 is in S then we can deduce {B1, . . . , Bk, A2, . . . , An} ` X from S.

The MP rule is important to deduce positive sequents from a set of positive sequents.

Example 2.9. By using the set of sequents S0, A ` B and B ` C imply A ` C. Also,

B ` C and {C,D} ` F imply {B,D} ` F .

The next theorem states the soundness of the MP rule.

Theorem 2.10. (Soundness of MP) Suppose we have a consistent theory S, a set of vari-

ables Γ = {a1, ..., an} such that Γ ` b ∈ S, and a set of variables Γ′ = {c1, ..., cm} such that

Γ′ ` a1 ∈ S. Let S′ = S ∪ {Γ ∪ Γ′ − {a1} ` b}. If a set of worlds W is sufficient for S then

W is also sufficient for S′.

Proof. Let W be a set of worlds sufficient for S and fix a world w in W . We know that

every sequent X ` y ∈ S is also a sequent in S′. For Γ ∪ Γ′ − {a1} ` b, take w that makes

Γ∪ Γ′ − {a1} true, so it will make all variables of Γ′ true. Therefore we have w(cj) = T for

all j, 1 6 j 6 m. As {c1, ..., cm} ` a1, this implies w(a1) = T because S is consistent and

we know that w(aj) = T for 1 < j 6 n. So w(aj) = T for all j, 1 6 j 6 n, which implies

that Γ is true. And since W is sufficient for S, we get w(b) = T .

For any sequent X 0 y of S′, X 0 y is also an element of S and as S is consistent, there

exist at least one world that makes X true and y false.

Example 2.11. Let S0 be the theory from Example 2.3. Assume a set of worlds W is

sufficient for S0. Let Γ = {C,D} so we have Γ ` F ∈ S0. Let Γ′ = {B} and we get

Γ′ ` C ∈ S0. By applying MP rule, we obtain W is also sufficient for S0∪{Γ∪Γ′−{C} ` F},

which means that W is also sufficient for S0 ∪ {{B,D} ` F}.
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The W Rule (Weakening). The weakening rule is defined by:

Γ ` X Γ ⊆ ∆
(W)

∆ ` X

In plain language, we suppose we have an S-theory S. If Γ ` X is in S and Γ ⊆ ∆ then we

can deduce ∆ ` X from S.

The W rule reflects that Γ ` X is stronger than ∆ ` X for any set of variables ∆ such

that Γ ⊆ ∆, and ∆ does not change the consistency of S′ formed by S and ∆ ` X. The

following theorem states the soundness of W rule.

Theorem 2.12. Suppose we have an S-theory S, a sequent Γ ` b of S, a set of variables

Γ′ and a set S′ = S ∪ {Γ ∪ Γ′ ` b}. If a set of S-worlds W is sufficient for S then W is

sufficient for S′.

Proof. (Soundness of W rule) Take an S-world w. If w(b) = T , then w satisfies Γ′ ` b.

Otherwise, because w satisfies Γ ` b, w(Γ) = F so w(Γ ∪ Γ′) = F and therefore w satisfies

Γ ∪ Γ′ ` b.

Example 2.13. Let Γ = {A} and Γ′ = {E}. Thus Γ ` B ∈ S0. As W is sufficient for S0,

by applying the W rule, we see that W is also sufficient for Γ ∪ Γ′ ` B, which means W is

also sufficient for {A,E} ` B.

Definition 2.14. A sequent σ can be derived from S if there is a sequence of sequents

such that each is either in S or is derived from previous sequents by a single rule, and the

sequence ends with σ.

The next theorem states the completeness of the I, MP, and W rules for positive sequents.

Completeness means that if every set of worlds sufficient for a set of sequents S is also

sufficient for a positive sequent σ, then σ could be deduced from S by using the rules of

S-logic.

Theorem 2.15. (Completeness of I, MP and W rules for positive sequents) Let S be a set

of positive sequents. If every S-world makes a positive sequent σ true then σ can be derived

from S by using some sequence of the I, MP and W rules.
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Proof. The idea of the proof is to take a sequent σ such that every S-world makes σ true

and prove that we can derive σ from S. Suppose Γ ` b is an arbitrary sequent. We have

two cases:

Case 1: If b ∈ Γ, then by using the I rule, b ` b can be derived from S. By applying

the W rule on b ` b, Γ ` b can be derived from S.

Case 2: If b /∈ Γ, we prove the contrapositive of the theorem, which says that if we

cannot derive Γ ` b from S by using the MP, I and W rules then there is a world satisfying

S and Γ in which b is false.

We define a world w as follows. The world w makes every variable in Γ true and b false.

because b is not in Γ. For any variable x /∈ Γ ∪ {b}, if Γ ` x ∈ S we make w(x) = T ,

otherwise we make w(x) = F .

We need to check that w satisfies S. In other words, if Σ ` c ∈ S and every variable in

Σ is true in w, then c is true in w. If Σ ⊆ Γ, apply the W rule to deduce Σ ∪ Γ ` c, which

means w(c) = T .

Now, suppose Σ is not a subset of Γ. Let Σ = {v1, ..., vn} and Γ = {w1, ..., wk}. For

each variable vi ∈ Σ, 1 6 i 6 n, w(vi) = T , so vi ∈ Γ or Γ ` vi ∈ S. So by rearranging

the elements of Σ, Σ = Γ′ ∪ {v′1, ..., v′p} such that Γ′ ⊆ Γ, Γ ` v′i ∈ S, 1 6 i 6 p and then

Γ′ ∪ {v′1, ..., v′p} ` c. By applying repeatedly the MP rule on each variable v′i, 1 6 i 6 p we

deduce Γ′ ∪ Γ ` c and therefore Γ ` c. As the w(Γ) = T , w(c) = T .

By analyzing the proof of Theorem 2.15, we can obtain a stronger result stated in the

next lemma.

Lemma 2.16. If S is consistent, ∆ 0 c is in S and x is such that S does not derive ∆ ` x,

then there is an S-world in which ∆ is true, x is false and c is false.

Proof. We cannot derive ∆ ` x from S so by Theorem 2.15, there exists a world w such

that w(∆) = T and w(x) = F . ∆ 0 c is in S, so the same world makes c false.

Next, we define a rule for negative sequents, then prove its soundness and completeness

with the previous rules.

The N rule(Negativity). The negativity rule is defined by:
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∆ 0 c ∆ ∪ {b} ` c ∆ ` Γ
(N)

Γ 0 b

In plain language, the rule means that if we have an S-theory S, ∆ 0 c is in S, ∆, b ` c is

in S and ∆ ` Γ is in S then we can deduce Γ 0 b from S. To prove the soundness of the N

rule, we need to find a world w such that w(Γ) = T and w(b) = F .

Theorem 2.17. (Soundness of the N rule) If W is a set of S-worlds sufficient for S and

Γ 0 b is derived from S by the N rule. Then W is sufficient for S ∪ {Γ 0 b}.

Proof. The sequent ∆ 0 c ∈ S, so there exists an S-world w in W such that w(∆) = T and

w(c) = F . The sequent ∆ ` Γ ∈ S so w(Γ) = true. We need to prove that w(b) = false.

We proceed by contradiction. Assume w(b) = T , thus Γ ` b can be deduced from S. By

deduction, we obtain ∆ ` b. As we have ∆, b ` c ∈ S, by applying the MP rule we get

∆ ` c, a contradiction. So we have w(b) = false and therefore w satisfies Γ 0 b.

Example 2.18. If we take the set of sequents S0 from Example 2.3 and consider ∆ =

{A},Γ = {A}, c = F, b = E. From S0 we have:

A 0 F {A,E} ` F (I)
A ` A

(N)
A 0 E

First, we derive A ` A by using the I rule. Then, we derive A 0 E by using A ` A and two

sequents in S0.

The next theorem states the completeness of I, MP, W and N rules.

Theorem 2.19. Suppose S is a consistent S-theory. If every set of worlds that is sufficient

for S is also sufficient for Γ 0 b, then we can derive Γ 0 b from S.

Proof. We will prove the theorem by contraposition. We assume we cannot derive Γ 0 b

from S and we prove that there is a set of S-worlds sufficient for S, but not for S ∪{Γ 0 b}.

Let SN = {σ ∈ S : σ is a negative sequent}.

Let S1 = {σ ∈ SN : there is an S-world w such that w(σ) = T and w(Γ) = F}. If

SN = S1 then we get a set of worlds sufficient for S but not for Γ 0 b. If σ = ∆σ 0 cσ is

in SN − S1, every w that makes σ true makes Γ true. By using Lemma 2.16, we can derive

∆σ ` Γ.
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Let S2 be the set of all negative sequents σ ∈ SN −S1 such that if σ = ∆σ 0 cσ there is

an S-world satisfying ∆σ and b in which cσ is false. If SN = S1 ∪ S2, we get a set of worlds

sufficient for SN but not for Γ 0 b. Otherwise if σ = ∆σ 0 cσ is in SN − (S1 ∪ S2), every

S-world satisfying ∆σ and b makes cσ true, so we can derive ∆σ, b ` cσ. By using the N

rule, we can derive Γ 0 b which is impossible by assumption.

Figure 2 shows all the rules of S-logic. The next theorem summarizes our results.

Theorem 2.20. The rules I, MP, W and N are sound and complete in the following sense:

1. A positive sequent σ can be derived from an S-theory with these rules if and only if σ

holds in every S-world.

2. A negative sequent σ can be derived from a consistent S-theory if and only if every set

of worlds sufficient for S is also sufficient for σ.
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Identity:

(I)
A ` A

Weakening:

Γ ` X Γ ⊆ ∆
(W)

∆ ` X

Modus ponens:

{A1, . . . , An} ` X {B1, . . . , Bk} ` A1
(MP)

{B1, . . . , Bk, A2, . . . , An} ` X

Negativity:

∆ 0 c ∆ ∪ {b} ` c ∆ ` Γ
(N)

Γ 0 b

Figure 2: Inference rules for S-logic.
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Chapter 3

APPLICATIONS OF S-LOGIC

The goal of S-logic is to study the relations between particular mathematical theorems.

S-logic can be used in two different ways. The first way is to deduce new theorems from

existing ones, and the second way is to check whether a theorem is immediately provable

from other ones. To be able to apply S-logic, we need to construct from the existing theorems

an alphabet, a set of sequents and a set of models. A model makes each statement true or

false, so it gives a world in S-logic. The set of statements that we want to study will be the

S-theory.

Because S-logic is an effective deductive system, it can be implemented by creating a

computer program that uses known facts and the rules of S-logic to deduce new statements

or check whether a statement could be deduced. In the following examples, we will show

two applications of S-logic. The first example demonstrates an application of S-logic in

reverse mathematics; the second demonstrates an application of S-logic in topology.

3.1 Second order arithmetic

Definition 3.1. Second order arithmetic is an axiomatic system designed for two kinds of

variables: the natural numbers and the subsets of natural numbers. The formal system of

second order arithmetic is denoted by Z2.

A model of second order arithmetic, also called structure, is a set of objects that are

natural numbers or sets of natural numbers.

The two following theorems are well known and proved by Simpson [4].
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Theorem 3.2. (Completeness theorem) Let B be the base system and A be a set of axioms.

A formula X is provable from B +A if and only if X holds in every model of B +A.

Theorem 3.3. (Soundness theorem) Let B be the base system and A be a set of axioms.

B + A is sound if whenever a formula X is deduced from A + B, every model satisfying

A+B satisfies X.

3.2 Interpretation of second order arithmetic into S-logic

First, we need to pick a collection of formulas A1, A2, ..., An corresponding to subsystems

of Z2. The alphabet A will be the set of these formulas and a model M will be a world in

S-logic. Let Γ be a conjunction of formulas and X be a formula. An S-theory T1 will be

defined as follows:

1. Put Γ ` X into T1 if there exists a proof in literature such that B+Γ proves X.

2. Put Γ 0 X into T1 if there is a model M , constructed in the literature, where M

satisfies Γ and not X.

The set of sequents of T1 has to be fixed, so we take a fixed set of results from the literature

to construct T1.

Lemma 3.4. Each model M of the base system of Z2 gives a world in S-logic that satisfies

T1.

Proof. For any Γ 0 X ∈ T1, there exists a model M such that M satisfies B and Γ but not

X, so M is a world satisfying Γ but not X.

Let W1 be the set of all models in literature that satisfy the base system B.

Lemma 3.5. W1 is sufficient for T1.

Proof. By construction, for every sequent Γ 0 X ∈ T1, there exists a model M ∈ W1 such

that M satisfies Γ and B but not X.

Let cl(T ) be the closure of an S-theory T .
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Theorem 3.6. W1 is sufficient for cl(T1) under the rules of S-logic.

Proof. W1 is sufficient for T1 and the rules of S-logic are sound. Therefore by Theorem

2.19, W1 is sufficient for cl(T1) under the rules of S-logic.

T1 is limited to the literature and the proofs that we have discovered so far. By contrast,

we can construct a new S-theory T2 such that:

1. A2 is the alphabet of T2 such that A2 is the set of all formulas of Z2.

2. Γ ` X ∈ T2 if there is a proof of X in principle assuming Γ and B.

3. Γ 0 X ∈ T2 if there exists a model M that makes B and Γ true but X false.

The S-theory T2 contains all information and T1 just contains partial information that we

are sure of, so T1 is a subset of T2. Similarly, W1 is the set of models discovered so far, so

we will define the set of models W2 for T2 such that W2 is the set of every possible model.

Lemma 3.7. W2 is sufficient for T2.

Theorem 3.8. W2 is sufficient for cl(T2)under the rules of S-logic.

The proof of this theorem is similar to the proof of Theorem 3.6.

3.3 Topology

In this section, we apply S-logic to capture the relationship between topological properties of

topological spaces. We will define an alphabet and show the steps to construct the S-theory.

3.4 Interpretation of topology into S-logic

We take a set of properties P1, ..., Pn of topological spaces. The alphabet A3 is the set of

these properties, and a topological space M , for example, gives a world in S-logic. Let Γ

be a conjunction of topological properties from A3, X be a topological property in A3. We

will construct the S-theory T3 as follows:

1. We put Γ ` X into T3 if there is a proof in literature for Γ ` X.
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2. We put Γ 0 X into T3 if there is a topological space M in literature that satisfies Γ

and not X.

Figure 3 shows counterexamples for a fixed set of topological properties that can be used

to construct negative sequents.

Theorem 3.9. Let W3 be the set of topological spaces sufficient for T3. W3 is sufficient for

cl(T3) under the rules of S-logic.

The proof of this theorem is similar to the proof of Theorem 3.6.

The S-theory T3 just contains the statements for which we have proofs or counterexam-

ples. We can construct another S-theory T4 such that:

1. A4 is the alphabet of T4 and it is the set of all topological properties. W4 is the set

of all topological spaces.

2. We put Γ ` X into T4 if there is a proof for X in principle assuming Γ.

3. We put Γ 0 X into T4 if there is a topological space M in W4 that satisfies Γ and not

X.

Lemma 3.10. W4 is sufficient for T4.

Theorem 3.11. W4 is sufficient for cl(T4) under the rules of S-logic.

The proof of this theorem is similar to the proof of Theorem 3.6.

3.5 Other applications

S-logic can be applied in other situations where we have a set of objects and a set of

properties such that we can construct the set of worlds from the set of objects and the

S-theory from the relationships between the different properties. The set of worlds has to

be sufficient to verify non-implication relationships.
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Figure 3: Excerpt from Counterexamples in Topology [6]. Each row is a particular property
of a space and each column is a specific topological space.
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Chapter 4

MODAL LOGIC AND STRICT IMPLICATION LOGIC

Modal logic is an extension of propositional logic that includes modality operators [2].

Modality consists of qualifying a proposition by adding expressions like “usually,” “neces-

sarily,” “possibly,”... The words used to express modality are called modals. For example,

the sentence “The weather is sunny” could be qualified by saying “The weather is possibly

sunny,” or “The weather is usually sunny.” Modals give an idea about the truthfulness of

a statement by stating the circumstances under which the statement is true. Modal logic

studies focus on the two modals “necessarily” and “possibly.” However, the term modal

logic, in general, refers to a family of logics that use different modals.

4.1 Language of modal logic

Modal logic is an extension of propositional logic that adds two unary modal operators �

and ♦ for necessarily and possibly, respectively [7]. The operator � could be expressed in

terms of the operator ♦, and vice versa, through the following properties:

1. �A↔ ¬♦¬A

2. ♦A↔ ¬�¬A

Example 4.1. In the following examples, we will use English sentences.

1. It is necessary that it will rain if and only if it is not possible that it will not rain today.

In this example, the variable A is “It will rain” and the sentence shows �A↔ ¬♦¬A,
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2. It is possible that Marc will come today if and only if it is not necessary that Marc

will not come today. In this example, the variable A is “Marc will come today” and

the sentence shows ♦A↔ ¬�¬A.

4.2 Modal logic rules

The base system of modal logic is called K. K is obtained by adding two rules to the

propositional logic rules:

1. Necessitation rule: If A is a theorem of K, then so is �A. In other words, any theorem

of K is necessary.

2. Distribution axiom: �(A→ B) ` (�A→ �B). In other words, if it is necessary that

A implies B, then necessary A implies necessary B.

The operator ♦ is not used in the two rules because we can express it by using � as

♦A = ¬�¬A.

4.3 The semantics of modal logic

The semantics of modal logic are defined using frames. A frame is a pair 〈W,R〉 where

W is a set of worlds and R is an accessibility relation [7]. xRy means that the world y

is “accessible” from the world x. When every world is accessible from every other, we call

the frame a Euclidean frame. The system S5 is a complete modal logic system that has

a Euclidean frame.

The accessibility relation is used to define truth values of formulas with modal operators.

For example, �A is true in a world w if A is true in every world v such that wRv. In other

words, �A is true in a world w if �A is true in every world accessible from w. �A implies

A if the relation R is reflexive. In other words, �A implies A if every world is accessible

from itself.

In case we have a Euclidean frame, A necessarily implies B means that every model

that satisfies A also satisfies B. In other words, there is no model that satisfies A and does
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not satisfy B. However, A possibly implies B means that there is a least one model that

satisfies A and B. So we can deduce that “A necessarily implies B” necessarily implies “A

possibly implies B” and we get then �(�(A→ B)→ ♦(A→ B)).

4.4 Relationship between S-logic and modal logic

Suppose we have an alphabet A, Γ is a conjunction of letters A1, ..., An from A, a letter X

from A and an S-theory T . Γ ` X is in T means that every world that makes Γ true also

makes X true. So we can deduce that the conjunction of A1, ..., An necessarily implies X

and then the translation of Γ ` X in modal logic will be �((A1 ∧ ... ∧An)→ X).

The sequent Γ 0 X ∈ T means that there is a world that satisfies all the variables of Γ

and not X. So the translation of Γ 0 X in modal logic will be ♦((A1 ∧ ... ∧ An) ∧ ¬X) or

¬�((A1 ∧ ... ∧An)→ X).

Definition 4.2. Given Γ = {A1, ..., An}, we define a function τ that translates sentences

of S-logic into sentences of modal logic such that:

1. τ(Γ ` x) = �((A1 ∧ ... ∧An)→ x)

2. τ(Γ 0 x) = ♦((A1 ∧ ... ∧An) ∧ ¬X)

3. If T is an S-theory, τ(T ) = {τ(σ) : σ ∈ T}

Theorem 4.3. Given any S-theory T and a sentence σ, σ is deducible from T in S-logic if

and only if τ(σ) is deducible from τ(T ) in the modal system S5.

Proof. By using Theorem 2.20, T is complete in S-logic so σ is deducible from T if and

only if every set of worlds W sufficient for T is sufficient for T ∪ {σ}. The system S5 is

complete in modal logic, so τ(σ) is deducible from τ(T ) if and only if every Euclidean frame

F sufficient for τ(T ) is sufficient for τ(T ∪ {σ}).

The relationship between the set of worlds W and the Euclidean frame F can be defined

in this way. Given W , we can define F = 〈W,R〉, where R is an accessibility relation such

that every world in W is accessible from every other world in W . Conversely, if we have
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a Euclidean frame F = 〈W,R〉, we take the set of worlds W for the S-theory T in S-logic.

Then a set of worlds W is sufficient for an S-theory T if and only if 〈W,R〉 satisfies τ(T )

4.5 Difference between S-logic and modal logic

The difference between S-logic and modal logic is the statement structure of the statements.

In modal logic, we can have nested connectives like �(¬♦A→ B), which is not possible in

S-logic. Also the hypothesis of a statement in S-logic can just be a conjunction of letters

but in modal logic we can have more complicated hypothesis like �(♦(A→ B)→ D).

4.6 Strict implication logic

The implication A → B in standard propositional logic have sometimes interpretation

problems in natural language. For example, if we take the sentence “If the sky is green,

then 1+1=2”. This sentence is true in standard propositional logic because “The sky is

green” is false and “1+1=2” is true, so F → T is true. However the implication in the

original sentence is not true. So the strict implication logic defines a new implication by

using the modal operator � used in modal logic and the propositional logic implication

A ` B [3]. We say that A strictly implies B by using the formula �(A ` B), which means

that A implies B in every possible world. In strict implication logic, we use the symbol ⊃

and A ⊃ B means A strictly implies B.

4.7 Relationship between S-logic and strict implication logic

A ⊃ B in modal logic is �(A → B) so the translation of Γ ` X in strict implication logic

will be A1 ∧ A2.... ∧ An ⊃ X. Similarly, A 6⊃ B in modal logic is ¬�(A → B) so the

translation of Γ 0 X,in strict implication logic, will be A1 ∧A2.... ∧An 6⊃ X.

Thus, if we have a complete system in strict implication logic, we can define a function

that translates sentences of S-logic into sentences of strict implication logic like the function

τ defined in modal logic, and we obtain the same results of Theorem 4.3.
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