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Abstract 
 

CHRONIC TOXICITY TESTING IN 
MINING INFLUENCED STREAMS OF WEST VIRGINIA 

 
By Leah J. Bitzer 

 
 

Whole effluent toxicity (WET) tests have become a common tool in the 

evaluation of effluent for discharge acceptability.  In this study, four years of toxicity data 

from 119 sampling locations were analyzed to determine relationships with ions and 

conductivity as indicators of toxicity.  West Virginia Stream Condition Index (WVSCI) 

scores were also examined to evaluate correlations between stream scores, conductivity, 

and IC25 endpoints from toxicity results.  Conductivity was not an indicator of toxicity in 

the range of conductivities tested.  Streams dominated by mining effluent sometimes 

exhibited toxicity to Ceriodaphnia dubia; however, toxicity was not found to be related 

to ionic concentration in the range tested.  Although mortality and reproductive 

impairment were often demonstrated in the mining effluent dominated streams, there 

were no relationships established between survival and reproductive endpoints and the 

ionic concentrations. Benthic macroinvertebrate communities in the streams sampled 

indicated some level of impairment.  Only a weak relationship was demonstrated between 

habitat assessment scores and WVSCI scores.  No apparent relationship between 

conductivity and WVSCI was observed. 
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Chapter 1 
 

Introduction 
 

Coal is a combustible material formed from the remains of living plants that 

flourished millions of years ago in swamp-like areas.  Layers of fallen plant material 

accumulated and partially decayed in wet environments to form a substance called peat.  

Over time, peat was compressed under sand and mud and heated by the earth to be 

transformed into coal (Plummer et al., 1999).  Coal is an organic compound primarily 

composed of carbon, hydrogen, and oxygen with lesser amounts of sulfur and nitrogen 

(Ragland and Bryden, 2011). 

Coal is used to generate heat, produce electricity and make steel and industrial 

products.  Simple burning of coal produces heat for homes and industries.  About 88% of 

the present use of coal in the United States is for generating electricity (Plummer et al., 

1999).  After oil and natural gas, coal is our third major energy source (Plummer et al., 

1999). 

Coke is a hard material produced when coal is heated without air at approximately 

1,000°C.  Coke is used to smelt iron ore for the production of steel.  Coal tar, a sticky 

black liquid derived from coke, is used for paving roads and tarring roofs (EFMR 2009).  

The extraction and distillation of coal tar into separate compounds produces a variety of 

products for making drugs, plastics, paints and synthetic fibers (EFMR 2009). 

The two main types of coal mining are underground and surface (strip).  

Underground mining involves the removal of coal deposits, often hundreds of feet below 
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the earth's surface.  Shafts or tunnels are dug into the coal layers and widened to allow 

room for miners and equipment.  Surface mining removes the soil and rock over a coal 

seam to expose the coal.  The excess overburden is often stacked in piles to be used to 

construct original contours after mining or disposed of in constructed fills in valleys or 

hollows (McElfish and Bier, 1990). 

Disposing of large quantities of materials can be a challenge for the mining 

industry.  Erosion from waste rock piles or runoff after heavy rainfall may increase the 

sediment load of nearby water bodies (Pepper et al., 2006).  In addition, mining may 

modify stream morphology by disrupting a channel, diverting stream flows, and/or 

changing the slope or bank stability of a stream channel. 

Mine drainage has a combination of elements that can interact to cause a variety 

of effects on aquatic life.  In the northern Appalachians and Allegheny Plateau, certain 

coal strata have higher sulfur content and tend to cause acidic mine drainage (AMD) 

(Pond et al. 2008).  Advances in mining technology allow for acid-base accounting in 

overburden so that alkaline amendments can be made to prevent or minimize the 

formation of AMD from surface operations (Lottermoser 2010).  The overall effect of 

mine drainage is also dependent on the flow, pH, and alkalinity or buffering capacity of 

the receiving stream.  The higher the concentration of bicarbonate and carbonate ions in 

the receiving stream, the higher the buffering capacity and the greater the protection of 

aquatic life from adverse effects of acid mine drainage (Kimmel 1983).  Alkaline mine 

drainage with low concentrations of metals may have little discernible effect on receiving 

streams, whereas acid mine drainage with elevated metal concentrations discharging into 

headwater streams or lightly buffered streams can have significant effects on the aquatic 
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life.  A study was conducted in western Pennsylvania on the effects of constant and 

intermittent acid mine drainage on insect fauna.  The results showed that, under 

conditions of constant acid mine drainage, the Odonata, Ephemeroptera and Plecoptera 

were completely eliminated.  The Trichoptera, Megaloptera and Diptera were reduced in 

number of species.  Ptilostomis (Trichoptera), Sialis (Megaloptera) and Chironomus 

attenuatus (Diptera) were tolerant of the conditions produced by acid mine drainage.  The 

non-benthic Hemiptera and Coleoptera were little affected and developed large 

populations in the stations damaged by acid mine drainage.  Under intermittent acid mine 

drainage, a diverse but slightly depressed insect fauna was able to develop (Roback and 

Richardson, 1969). 

All natural water contains dissolved minerals.  Common ions in freshwater 

include bicarbonate, sulfate, calcium, sodium, and silica (Weber-Scannell and Duffey, 

2007).  Adverse effects can occur in aquatic organisms when common ions exceed a 

certain concentration, when the normal composition (ratio) of ions is not correct, or in 

some cases when ion concentrations are too low (SETAC 2004a).  Several common ions 

can be toxic to aquatic organisms when present at concentrations above or below 

biologically-tolerable concentrations (SETAC 2004a).  Mount et al. (1997) conducted 

laboratory testing and established a database of the acute toxicity of seven major ions to 

three freshwater organisms and developed statistical toxicity models. 

Conductivity is a measure of the ability of water to pass an electrical current. 

Specific minerals influence the conductivity value differently.  Specific conductance 

(µS/cm) increases with increasing concentrations of total dissolved solids (Lind 1979). 

Conductivity above 2,000 µS/cm or TDS above 1,340 mg/L represent conditions that 
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may adversely affect freshwater organisms (Goodfellow et al., 2000).  Conductivity in 

water is affected by inorganic dissolved solids such as chloride, nitrate, sulfate and 

phosphate anions or sodium, magnesium, calcium, iron, and aluminum cations.  Organic 

compounds like oil, phenol, alcohol, and sugar do not conduct electrical current very well 

and therefore have a low conductivity when in water (Spellman 2009).   

Total dissolved solid (TDS) is a direct measure of all constituents dissolved in 

water while conductivity is an indirect approximation.  Changes in TDS levels and 

individual cations and anions can occur from a variety of anthropogenic sources 

including industry and resource extraction such as mining and gas well development 

(Fillo et al., 1992).  Toxicity of TDS to aquatic life depends upon the combinations and 

concentrations of the ions in solution which may have additive or synergistic properties 

and is not predictable from TDS concentrations alone (Chapman et al., 2000).  There is 

no sulfate or TDS federal water quality criterion for the protection of freshwater aquatic 

life.  Elevated TDS can be toxic to freshwater animals by causing osmotic stress and 

affecting the osmoregulatory capability of the organism (McCulloch et al., 1993). 

Sulfate is widely distributed in nature and may be present in natural waters at 

concentrations ranging from a few to several hundred milligrams (Iowa DNR 2007).  In 

coalfield streams, TDS is most often dominated on a mass basis by the dissolved anions 

sulfate and bicarbonate, with elevated concentrations (relative to reference streams) of 

calcium, magnesium, sodium, potassium, and chloride also common (Pond et al., 2008; 

Mount et al., 1997).  Kennedy et al. (2003) exposed Ceriodaphnia dubia to 

sulfate-dominated mine effluent and observed significant effects on survival and 



5 

reproduction at specific conductivities of approximately 6,000 and 3,700 µS/cm (approx. 

4,200 and 2,590 mg/L TDS), respectively.   

The physical alteration of water bodies in West Virginia, including wetlands and 

streams, are regulated by federal and state statutes under Section 401 (Certification) and 

Section 404 (Permits) of the Federal Clean Water Act (1972).  The Clean Water Act 

allows industries to discharge effluent to streams as long as the standards that are set in 

place are met and the aquatic resource is not significantly impacted.  Under Section 404 

of the Clean Water Act, the United States Army Corps of Engineers regulates the 

discharge of dredged and/or fill material in waters of the U.S. and under Section 10 of the 

Rivers and Harbors Act of 1899, the United States Army Corps of Engineers regulates 

work in navigable waters of the United States.  Section 401 of the Clean Water Act 

requires that any applicant for a Section 404 permit also obtain a Water Quality 

Certification from the State.  The purpose of the certification is to confirm that the 

discharge of fill materials will be in compliance with the State’s applicable Water Quality 

Standards.  The National Pollutant Discharge Elimination System (NPDES) permit 

program, authorized by the Clean Water Act, controls water pollution by regulating point 

source discharges into water of the United States (SETAC 2004b). 

For coal mining, permits must be submitted to the state and federal agencies to 

characterize any and all impacts to aquatic resources.  The agencies review the 

applications to ensure that environmental laws are obeyed.  If the permit application is 

granted, the resources are monitored prior to, during, and after any impact to the resource. 

The results are provided to the federal and state agencies to review the data to ensure the 

impacts are not exceeding any water quality standards.  In the event that the biological 
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community is significantly impacted, the violator is required to mitigate the impact or 

return the aquatic resource to its pre-impact condition. 

 Permits often include whole effluent toxicity (WET) tests as a monitoring 

requirement and sometimes for compliance determination (SETAC 2004b).  “WET” is a 

term used to describe the adverse effects or toxicity to a population of aquatic organisms 

caused by exposure to an effluent.  Toxicity can be experimentally determined in a 

laboratory by exposing sensitive organisms to effluents using WET tests.  WET testing is 

used to assess and regulate the combined effects of all constituents of a complex effluent 

rather than the conventional methods of controlling the toxicity of single chemicals or 

constituents. 

WET testing determines the specific toxicity, either acute or chronic, of the 

effluent being discharged into the streams so that discharges can be regulated to prevent 

in-stream effects.  Acute tests are conducted for 24 - 96 hours and usually focus on how 

well an organism survives.  Chronic tests are conducted for 7 days and evaluate survival, 

growth and/or reproduction (USEPA 2002).  The effluent is collected from a discharge 

point and sent to a WET testing laboratory.  At the lab, a serial dilution is prepared which 

tests the effluent at full concentration and several dilutions to determine which 

concentration may not meet the federal or state standard.  WET testing exposes 

laboratory populations of aquatic organisms such as fish, invertebrates, and algae to 

diluted and undiluted effluent samples under controlled conditions in order to estimate 

the environmental toxicity of that sample. 

The objective of aquatic toxicity tests with effluents is to estimate the "safe" or 

"no effect" concentration (NOEC) of these discharges, which is generally defined as the 
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concentration with no significant difference in mortality, growth, or reproduction in the 

test organisms (USEPA 2002).  The NOEC is a concentration believed to be protective of 

aquatic life in the receiving waters.  The LC50 is the lethal concentration to 50% of the 

population.  The NOEC is the no observable effects concentration where no statistical 

differences from the control are observed.  The LOEC is the lowest observable effect 

concentration and the IC25 is the 25% inhibition concentration.  The NOEC and the 

LOEC are determined by significance testing while the LC50 and the IC25 are 

determined by regression analysis. 

Information gained from WET tests is used to evaluate the impact of the effluent 

sample on survival, growth, reproductive capacity, and normal development of the test 

population.  The data provide an estimate of the concentration above which detrimental 

impact from the effluent would be predicted to occur in the receiving stream.  

In addition to laboratory testing, effects of discharges on aquatic communities are 

evaluated by monitoring in-stream communities.  Benthic macroinvertebrates are the 

most common stream organism used in biomonitoring due to their importance in the 

stream community.  Benthic macroinvertebrates are fairly ubiquitous and extremely easy 

to collect (Cummins 1975) and are ideal due to their sedentary nature (Resh and Jackson, 

1993).  Benthic macroinvertebrate communities are a good bioindicator because they 

integrate effects of stressors over the life cycle of each taxon (Barbour et al., 1999). 

According to Southerland and Stribling (1995), benthic macroinvertebrates are used in 

90% of the state water quality assessment programs in the United States. 

A 0.5 meter kick-net is commonly used to collect a four-sample composite 

benthic macroinvertebrate sample in riffle/run sections of stream channels.  Samples are 
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composited, field sieved, and preserved for identification.  Samples are picked and 

identified to the genus level using appropriate taxonomic keys with a target of 180 

organisms (WVDNR 2008).  The genus level benthic macroinvertebrate community data 

are evaluated using a series of metrics which includes taxa richness, Ephemeroptera, 

Plecoptera, and Trichoptera (EPT) taxa richness, percent EPT, percent two dominant 

taxa, percent Chironomidae, and Hilsenhoff Biotic Index (HBI) (Barbour et. al., 1999).  

Each metric responds to disturbance in a specific manner.  Taxa richness and EPT taxa 

richness are measures that provide information on overall and EPT-group specific 

taxonomic variety or diversity of the aquatic community (Barbour et. al., 1999).   

EPT are the sensitive Ephemeroptera (mayflies), Plecoptera (stoneflies), and 

Trichoptera (caddisflies) taxa.  Percent EPT and percent Chironomidae are taxonomic 

compositions that provide information on the make-up of the community and the relative 

contribution of a group to the total population (Barbour et al., 1999).  Percent two 

dominant taxa is a composition measure, but it is usually classified with tolerance 

measures.  Tolerance measures are intended to be representative of the relative sensitivity 

to perturbation and may include numbers of pollution tolerant and intolerant taxa 

(Barbour et al., 1999).  The Hilsenhoff Biotic Index (HBI) is also a tolerance measure 

which was originally designed to evaluate organic pollution. HBI rates the tolerance of 

the community on a 0 to 10 scale with 0 being pollution intolerant (Barbour et. al., 1999). 

The WVSCI is a multi-metric index that combines family level data describing the 

aforementioned six measures into a single value which is representative of the overall 

community health.  The WVSCI provides a total score for each site with a range from 

0 to 100.  Each score is also assigned a narrative term (Unimpaired and Impaired).  
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WVSCI scores are applicable to kick-net samples which are identified to the family level.  

As an indicator of overall community health, the WVSCI score is used to evaluate 

whether the narrative criteria are being met in streams. 
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Objectives 
 
In recent years, I have been involved with the coal industry monitoring streams and have 

conducted sampling for WET testing and benthic macroinvertebrate evaluations.  I would 

like to use the available data to answer questions pertaining to the impacts of mining on 

downstream aquatic resources. 

The specific objectives of the stream toxicity study are as follows: 

1) Because conductivity is an indicator parameter, the relationship 

with individual ions, such as sulfate, will be developed and 

examined as an indicator of toxicity 

2) To determine if mining effluent is toxic to sensitive laboratory 

test organisms 

3) If so, to determine whether toxicity is related to the ionic 

concentration of mining effluent 

4) And to demonstrate what level of stream conductivity is 

associated with toxicity 

5) To determine if stream impairment, as indicated by WVSCI 

scores, is related to laboratory toxicity 

6) To determine if stream impairment, as indicated by WVSCI 

scores, is related to conductivity. 

Objectives 1 - 4 will be presented in Chapter 2, and Objectives 5 and 6 will be 

presented in Chapter 3.  Chapter 4 will be a summary and conclusions of the 

research. 
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Chapter 2 
 

Toxicity Testing 
 

Introduction  

Natural fresh waters contain several ionic constituents at greater than trace levels. 

Ions such as sodium, calcium, magnesium, potassium, chloride, sulfate, and bicarbonate 

are required to support aquatic life.  Total dissolved solids (TDS) are a measure of all 

constituents dissolved in water.  Elevated levels of TDS have been suggested as stressors 

to aquatic life in streams influenced by coal mining (Timpano 2010).  Sulfate ions are 

known to be elevated in mining activity area receiving streams (Mount et al., 1997).  

Some effluents are toxic because of imbalances in the ion environment to which 

the test organisms are exposed (Goodfellow et al., 2000).  Toxicity can occur if ion 

concentrations are too low or too high for aquatic organisms to osmoregulate properly. 

Aquatic organisms have developed physiological mechanisms to balance water 

and ion concentrations in their body fluids.  A great deal of metabolic energy is spent 

trying to regulate water and ions (SETAC 2004a).  Changes in the concentration or 

composition of ions over long periods of time can cause an organism to expend too much 

energy trying to regulate water and ions.  This may result in chronic stress affecting 

important functions and can result in death (SETAC 2004a).  The toxicity level and 

relative toxicity of common ions are well-documented (Mount et al., 1997).  There is also 

much evidence that the presence of two or more ions can ameliorate the expected toxicity 

and result in lower toxicity levels than expected by individual ionic testing (Soucek and 

Kennedy, 2005).  The relationship between toxicity and specific ions is linear and 

predictable and can be used in determining safe exposure concentrations (Soucek and 
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Kennedy, 2005).  Currently, no federal water quality criteria exist for the protection of 

aquatic life for several individual ions like sulfate or for TDS.  WET testing has been 

used as part of the NPDES permitting process to evaluate complex effluents, specifically 

those with potential toxicity not protected by specific numeric criteria.  WET testing has 

recently been employed to evaluate the toxicity of high conductivity discharges in mining 

influenced streams. 

The water quality downstream of mining activity can have elevated levels of 

naturally occurring ions including SO4, Ca, Mg, Fe, Mn, Se, alkalinity, K, acidity, and 

NO3/NO2 (Bryant et al., 2002).  In addition to dissolved solids, total suspended solids 

may also be elevated below mining activities.  Sediment runoff is controlled through a 

series of sediment-control structures and ponds, but excess fine sediment might be 

increased in streams downstream of valley fills (Wiley and Brogan, 2003).  Physical 

effects, such as increased turbidity from soil erosion, accumulation of coal fines, and 

smothering of the stream substrate from precipitated metal compounds, may also occur 

(Parsons 1968; Warner 1971). 

The correlation between increasing TDS or conductivity and toxicity may vary 

with ionic composition and therefore may not be the best predictor of toxicity 

(Goodfellow et al., 2000).  If the conductivity of a freshwater effluent is above 2,000 

µs/cm, the concentration of dissolved solids can be high enough to adversely affect 

freshwater test species (American Petroleum Institute 1998).  The objective of the current 

study is to examine the potential toxicity of mining effluent dominated streams to 

establish whether mining discharges are toxic to aquatic organisms and to relate toxicity 
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found to specific discharge constituents, specifically those contributing to overall 

conductivity or TDS measurements. 

Materials and Methods 

Sampling sites included in this study are selected from watersheds in West 

Virginia influenced by mining activity (Figure 1).  Two coal companies were required to 

conduct semi-annual WET in streams receiving discharges where conductivity values 

greater than 1,500 µs/cm had been recorded in monthly discharge monitoring.  WET 

testing was conducted December 2008 to September 2011.  One coal company (Company 

1) conducted testing at 71 sites, with 29 sites being sampled semi-annually (Table 1). 

Company 2 consisted of 48 sampling locations, with 19 sites sampled semi-annually 

(Table 2).  Combined, there are 119 WET test results.  Some sampling locations were 

tested multiple times. 
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Figure 1 – Sampling Locations for WET Testing 
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Table 1 - Stream Sampling Locations - Company 1 
 

Mine Sampling Location 
Company 1 Bias Branch 
Company 1 Big Creek 
Company 1 Downstream Fifteen Mile Fork 
Company 1 Hardway Branch 
Company 1 Hardway Pond @ Location PM 236 
Company 1 Horse Creek 
Company 1 Hughes Fork off Bells Creek 
Company 1 Laurel Creek 
Company 1 Lilly Fork @ PM 89 
Company 1 Line Creek 
Company 1 Mammoth Site 1 
Company 1 Mammoth Site 2 
Company 1 Mouth of Robinson Creek 

Company 1 
Mouth of Robinson Creek @ PM 24 
location 

Company 1 Mudlick Fork x3 
Company 1 Hardway Pond  
Company 1 No Name 
Company 1 PM 260 Inlet 
Company 1 PM 316 Pond 
Company 1 Robinson Creek 
Company 1 Robinson North @ PM 181 
Company 1 Sixmile off Hughes Creek 
Company 1 Slip Ridge 
Company 1 Spruce Laurel Fork 
Company 1 Stollings Fork 
Company 1 Taylor Fork 
Company 1 Twenty Mile Creek 
Company 1 UBB Area of Jarrells Branch 
Company 1 Upstream Fifteen Mile Fork 
Company 1 West Fork 
Company 1 Bandmill Below 016 
Company 1 Below 033 on 20 Mile Fork 
Company 1 Delbarton below 400 
Company 1 ICC Below 031 
Company 1 James Creek below 015 
Company 1 Mammoth below 004 
Company 1 Marfork Below 018 
Company 1 029 on Radner Fork of 20 mile 
Company 1 013 Robinson North on 20 mile 
Company 1 001 on Sugarcamp 
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Table 2 – Stream Sampling Locations - Company 2 
 

Mine Sampling Location 
Company 2 Ballard Branch 
Company 2 Calvin Branch 
Company 2 Sycamore Fork 
Company 2 Tenmile Fork 
Company 2 Cow Creek 
Company 2 Joes Creek 
Company 2 Left Fork 
Company 2 Stanley Fork 
Company 2 Jarrell Branch 
Company 2 White Oak 
Company 2 Mud Lick Branch 
Company 2 Jack Smith Branch 
Company 2 West Fork 
Company 2 Cabin Creek 
Company 2 Coal Fork 
Company 2 Seng Creek 
Company 2 Tom’s Fork 
Company 2 Little White Oak 
Company 2 UNT Left Fork 
Company 2 UNT Tenmile Fork 
Company 2 UNT Boone Block Hollow 
Company 2 Big Horse Creek 
Company 2 Pond Fork 
Company 2 Moccasin Hollow 
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WET testing was conducted under low summer/fall conditions and higher flow 

winter/spring conditions.  Field water quality measurements were taken at the time of 

sample collection by both companies.  Field parameters measured included conductivity, 

pH, temperature, and dissolved oxygen.  Additional water quality parameters requiring 

laboratory analysis were measured at sampling stations for Company 1 from the initiation 

of WET testing in the spring and fall of 2011.  The additional parameters included:  total 

alkalinity, total acidity, turbidity, specific conductance, total sulfates, chlorides, total and 

dissolved iron, total and dissolved manganese, total and dissolved aluminum, total and 

dissolved sodium, total and dissolved magnesium, total and dissolved calcium, total and 

dissolved hardness, total suspended solids, and total dissolved solids.  Additional water 

quality parameters requiring laboratory analysis were measured by Company 2 in the 

winter of 2011 and fall of 2011.  The additional parameters included:  bicarbonate, lab 

tested specific conductance, sulfate, and total dissolve solids.  In 2011, additional water 

quality analyses were collected along with WET testing as described by the West 

Virginia Department of Environmental Protection (WVDEP) Permitting Guidance for 

Surface Coal Mining Operations (2010a).  

Water for toxicity testing must be collected three times during the course of the 

seven-day test.  Water was collected, to the extent practical, from mid-channel, mid-depth 

locations.  It was collected in dedicated 1 gallon cubitainers and stored in coolers on ice 

during transport to the laboratory.  

The freshwater microcrustaceans Ceriodaphnia dubia were used in the seven-day 

chronic toxicity tests consistent with United States Environmental Protection Agency 

(USEPA) Method 133.  Organism mortality and reproduction were endpoints. 
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Ceriodaphnia dubia can be used in short-term standardized tests to estimate the acute or 

chronic toxicity of chemicals, effluents, and freshwater receiving systems (Naddy et al., 

1995; Stewart et al., 1990; Nimmo et al., 1990).  The use of this animal as a 

representative aquatic organism in such tests is justified in part because it has a 

widespread geographic distribution and holds an intermediate position in planktonic food 

webs; it consumes algae and detritus and, in turn, is consumed by various predators 

(Stewart and Konetsky, 1998).  Ceriodaphnia dubia is also convenient to use because it is 

sensitive to various toxic chemicals, easily reared under laboratory conditions, and has a 

moderately short life cycle (Mount and Norberg, 1984). 

Toxicity tests were conducted at laboratories that were National Environmental 

Laboratory Accreditation Conference (NELAC) certified.  The water samples were 

diluted at control concentration, 6.25% concentration, 12.5% concentration, 25.0% 

concentration, 50.0% concentration, and 100.0% concentration. 

Results 

Field Water chemistry 

In 2008, the conductivity ranged from 284 µS/cm at Spruce Laurel Creek to 2,540 

µS/cm at Mudlick Fork (Table 3, Appendix A).  The dissolved oxygen ranged from 9.19 

mg/L at Robinson Creek to 11.33 mg/L at Line Creek.  The temperature at the time of 

collection ranged from 3.0°C at Big Creek to 16.1°C at West Fork.  The pH ranged from 

5.93 S.U. at Taylor Fork to 8.13 S.U. at West Fork.  

In 2009, the conductivity ranged from 68 µS/cm at Mammoth Site 2 to 2,990 

µS/cm at Joes Creek (Table 4, Appendix A).  The dissolved oxygen ranged from 9.10 

mg/L at Jarrell Branch to 12.50 mg/L at Sixmile off Hughes Creek.  The temperature 
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ranged from 1.1°C at upstream fifteen mile to 18.6°C at Jarrell Branch.  The pH ranged 

from 6.72 S.U. at the Downstream Fifteen Mile Fork to 8.57 S.U. at Mammoth Site 1.  

In 2010, the conductivity ranged from 222 µS/cm at Little White Oak to 3,074 

µS/cm at Twentymile Creek (Table 5, Appendix A).  The dissolved oxygen ranged from 

4.0 mg/L at UBB Area of Jarrells Branch to 14.71 mg/L at White Oak.  The temperature 

ranged from 2.6°C at Horse Creek to 22.5°C at Mudlick Branch.  The pH ranged from 

5.25 S.U. at No Name to 10.40 S.U. at Mudlick Fork.  

In 2011, the conductivity ranged from 105 µS/cm at below 033 on 20 Mile Fork 

to 2,412 µS/cm at Tom’s Fork (Table 6, Appendix A).  The dissolved oxygen ranged 

from 6.90 mg/L at Delbarton below 400 to 12.00 mg/L at West Fork.  The temperature 

ranged from 4.0°C at Bandmill below 016 and Marfork below 018 to 26.8°C at ICC 

below 031.  The pH ranged from 6.50 S.U. at below 033 on 20 Mile Fork to 8.94 S.U. at 

Moccasin Hollow.  

Additional water data were collected for Company 1 in the spring and fall of 

2011.  Spring sampling occurred in May and June of 2011.  Fall sampling occurred in 

October and November of 2011.  The pH was in the acceptable range of 6 to 9 S.U. at all 

sampling sites during the spring and fall sampling events (Tables 7 and 8, Appendix A). 

Total and Dissolved ions measured included iron, manganese, aluminum, sodium, 

calcium, and hardness concentrations.  Total iron did not exceed the water quality 

standards of 1.5 mg/L and (Figure 2).  Total manganese exceeded the water quality 

standard of 1.0 mg/L at the Sugarcamp and Radner sampling locations (Figure 3).  Total 

Aluminum did not exceed the water quality standard of 0.75 mg/L at any of the sampling 

locations (Figure 4).  Total and dissolved sodium concentrations were the same in the 
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spring and fall of 2011 (Figure 5).  Total and dissolved ion concentrations for 

magnesium and calcium were equal, indicating the water is not saturated with respect to 

those constituents (Figure 6). 
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Figure 2 - Total and Dissolved Iron Concentrations from Sites Sampled in the 

Spring and Fall 2011 
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Figure 3 – Total and Dissolved Manganese Concentrations from Sites Sampled in 

the Spring and Fall 2011 
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Spring and Fall 2011 
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Figure 6 – Total Magnesium and Calcium Concentrations from Sites Sampled in the 

Spring and Fall 2011 
 
 

Mount et al. (1997) developed a DOS-based model effective in identifying ion 

toxicity to 3 freshwater organisms (Ceriodaphnia dubia, Daphnia magna, and 

Pimephales promelas).  Using the model developed by Mount, stream ion toxicity for 

Company 1 was calculated using spring (May/June) and fall (October/November) 2011 

water data.  Ion imbalance was demonstrated for James Creek, Delbarton, ICC, and 

Marfork in the spring of 2011 (Table 9, Appendix A).  Predicted percent survival in 

100% stream water ranged from 84.6% to 99.9% in these samples.  Ion imbalance was 

demonstrated for Mammoth, ICC, James Creek, and Delbarton, in the fall of 2011 (Table 

10, Appendix A).  Predicted percent survival in 100% stream water ranged from 84.6% 

to 99.9% in these samples. When comparing the predicted results from Mount’s model to 
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the measured results for 100% stream water survival, the results were consistent except 

for James Creek and Mammoth in the fall of 2011.  Mount’s model predicted a survival 

rate of 84.6% in the 100% concentration; however, the actual result was 100%.  James 

Creek had a predicted survival rate of 99.7%; however, the actual result was 70%.  

TSS ranged from non detect to 13 mg/L during the spring of 2011 and non detect 

to 9 mg/L in the fall of 2011 (Figure 7).  Radner had the highest TSS in both sampling 

events.  
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Figure 7 – Total Suspended Solid Concentrations from Sites Sampled in the Spring 
and Fall 2011 

 

Radner, Sugarcamp, ICC, James Creek and Mammoth were dominated by sulfate 

in the 2011 sampling (Figures 8 - 13).  Total Alkalinity was abundant at Marfork and 
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Delbarton in the spring of 2011 (Figures 14 -15).  Potassium levels were estimated based 

on professional judgment because it was not analyzed in spring and fall 2011.  
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Figure 8 - Major Ionic Constituents in 

Water Collected from Radner in Fall 2011 
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Figure 9 - Major Ionic Constituents in Water Collected 

from Sugarcamp in Fall 2011 
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Figure 10 - Major Ionic Constituents in 
Water Collected from ICC in Fall 2011 
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Figure 11 - Major Ionic Constituents in 

Water Collected from James Creek in Spring 2011 
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Figure 12 - Major Ionic Constituents in 

Water Collected from Mammoth in Fall 2011 
 
 
 



31 

84.94

5

84.06

66.27

28.95

218.07

471.37

Total Calcium

Potassium

Total Magnesium

Total Sodium

Chlorides

Total Alkalinity

Total Sulfates

Values are reported in mg/L

 
Figure 13 - Major Ionic Constituents in 

Water Collected from Bandmill in Spring 2011 
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Figure 14 - Major Ionic Constituents in    

Water Collected from Marfork in Spring 2011 
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Figure 15 - Major Ionic Constituents in 

Water Collected from Delbarton in Spring 2011 
 
 

The strongest relationship was observed between the indicator parameters TDS 

and conductivity (Figure 16).  A lower correlation was observed between sulfate and 

conductivity (Figure 17).  There was relationship observed between sulfate and TDS 

(Figure 18).  There was a prominent relationship between magnesium and conductivity 

(Figure 19).  The relationship between conductivity and chloride was weak (Figure 20). 

There was no correlation between bicarbonate and conductivity (Tables 11-12, 

Appendix A) (Figure 21).  
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Figure 16 - Relationship between Total Dissolved Solids and 

Conductivity in Mine Influenced Streams 
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Figure 17 - Relationship between Sulfate and 

Conductivity in Mine Influenced Streams 
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Figure 18 - Relationship between Sulfate and 

Total Dissolved Solids in Mine Influenced Streams 
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Figure 19 - Relationship between Magnesium and 

Conductivity in Mine Influenced Streams 
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Figure 20 - Relationship between Chloride and 

Conductivity in Mine Influenced Streams 
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Figure 21 - Relationship between Bicarbonate and 

Conductivity in Mine Influenced Streams 
 

Control survival of Ceriodaphnia dubia was acceptable in each of the tests 

conducted with 75 of the control treatments having 100% survival.  There were 31 tests 

with 90% survival and 13 tests with 80% control survival (Tables 13-14, Appendix A). 

The percent survival in 100% stream water was 57 streams at 100%, 37 streams at 90%, 

16 streams at 80%, 4 streams at 70%, 1 stream at 60%, 2 streams at 50%, and 2 streams 

at 0% (Figure 22).  The Lethal Concentration to 50% of the organisms (LC50) was 

calculated for each test at 48 hours.  For the majority of the streams tested, 115 out of 119 

streams, the LC50 was >100% stream water or no LC50 was generated.  The LC50 at 1 

of the streams was 100%; 1 stream had an LC50 of 57% and 1 stream had an LC50 of 
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50% stream water.  Jack Smith Branch had no toxicity demonstrated for the LC50 in fall 

2010.  The NOEC for survival was 100 for 112 out of the 119 streams. There were 6 

streams with an NOEC of 50 and 1 stream with a NOEC of 25. 
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Figure 22 - Percent Ceriodaphnia dubia Survival in 

Control and 100% Stream Water in Mining Influenced Streams 
 

Stream conductivity, TDS, and sulfate showed no relationship when compared to 

percent stream survival in 100% stream water (Figures 23-25). 
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Figure 23 - Relationship between Conductivity and 

Percent Survival of Ceriodaphnia dubia in 100% Mine Influenced Stream Water 
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Figure 24 - Relationship between Total Dissolved Solids and 

Percent Survival of Ceriodaphnia dubia in 100% Mine Influenced Stream Water 
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Figure 25 - Relationship between Sulfate and Percent Survival of 

Ceriodaphnia dubia in 100% Mine Influenced Stream Water 
 

With respect to the sub-lethal reproductive endpoint, 77 of the 119 sites had 

NOEC concentrations of 100% (Tables 15-18, Appendix A).  NOEC concentrations at 

29 of the stream sampling locations were 50%, 8 sampling locations had NOEC 

concentrations of 25% and 5 stream locations had an NOEC concentration of 12.5.  The 

Lowest Observable Effect Concentration (LOEC) concentrations were greater than 100% 

at 76 of the 119 stream sampling locations. LOEC concentrations were 100% at 30 of the 

sampling locations, 50% at 8 locations and 25% at 5 sampling locations.  The IC25, or 

concentration of stream water which is predicted to result in a 25% reduction in 

reproduction, was greater than 100% for 61 of the 119 streams.  IC25 concentrations 
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ranged from 15-25 for 6 of the streams, 26-50 for 6 of the streams, 51-75 for 24 streams 

and 76-100 for 22 of the streams. 

There was no relationship between the sensitive IC25 endpoint with conductivity, 

total dissolved solids, and sulfate (Figures 26-28).  There was no relationship between 

conductivity and toxicity in the streams sampled.  
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Figure 26 - Relationship between Conductivity and the 
Reproductive IC25 Endpoint in WET Tests Conducted in Mine Influenced Streams 
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Figure 27 - Relationship between TDS and the Reproductive 
IC25 Endpoint in WET Tests Conducted in Mine Influenced Streams 
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Figure 28 - Relationship between Sulfate and the Reproductive 
IC25 Endpoint in WET Tests Conducted in Mine Influenced Streams 

 

Discussion 

Sulfate dominated the mining effluent; however, Mount et al. (1997) observed 

sulfate as the least toxic ion. There was no correlation between sulfate and percent 

survival or reproduction of Ceriodaphnia dubia (Figures 25 & 28). This is important to 

the mining industry because sulfate is commonly found in mine effluent. Soucek and 

Kennedy (2005) observed lethal effects of sulfate to Hyalella azteca (512 mg/L), 

Ceriodaphnia dubia (2,050 mg/L), and Chironomus tentans (14,134 mg/L).  The stream 

water sampled by companies 1 and 2 showed sulfate levels >1,000 mg/L for four of the 

streams tested. Three out of the four streams had IC25 scores ranging from 46.6% to 

58.31% and one stream showed no toxicity in the sensitive reproductive endpoint. It is 
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believed that chloride and hardness influence the toxicity of sulfate to aquatic 

invertebrates due to alterations in osmoregulation. Dr. Soucek’s work revealed that the 

level of sulfate toxicity is driven by the concentrations of chloride and hardness. The high 

hardness and chloride concentrations in mining influenced streams would explain why 

the organisms are so tolerant of the elevated conductivities. 

Conductivity was not an indicator of toxicity in the stream sampled in this study 

(Figures 23 & 26). Although conductivity above 2,000 µS/cm may adversely affect 

freshwater organisms (Goodfellow 2000, SETAC 2004a), the conductivities in this study 

were often recorded at levels greater than 2,000 µS/cm and showed no adverse effect to 

Ceriodaphnia dubia survival. Although conductivity is an important factor in streams 

influenced by mining, this study shows that conductivity is not correlated with stream 

toxicity of Ceriodaphnia dubia. The thresholds of toxicity to the ceriodaphnid were not 

established. 

Toxicity was observed in streams receiving mine effluent; however, the cause of 

toxicity is undetermined.  Further research is warranted to investigate other factors that 

may contribute to toxicity, such as TSS, which was only included in a few samples in this 

study.  
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CHAPTER 3 

Benthic Macroinvertebrates and Toxicity 

Introduction 

 Recent studies have found that benthic macroinvertebrate communities in streams 

below Appalachian surface coal mines often differ from communities found in 

non-mined ecosystems.  Elevated levels of TDS have been suggested as stressors to 

aquatic life in Central Appalachian streams influenced by coal mining.  Although field 

studies have succeeded in demonstrating the ability of benthic macroinvertebrate 

monitoring to identify aquatic community responses to coal mining activity, much 

remains unknown about how benthic macroinvertebrate communities respond to specific 

TDS concentrations and compositions in the absence of non-TDS stressors that are often 

concurrent with elevated TDS levels in mining-influenced streams (Timpano et al., 

2010). 

Benthic macroinvertebrates do not move around much so they are less able to 

escape the effects of pollutants that diminish water quality.  Therefore, 

macroinvertebrates can provide reliable information about stream water quality.  Their 

long life cycles allow studies conducted by aquatic ecologists to determine any decline in 

environmental quality (Spellman 2009).  Macroinvertebrates represent an extremely 

diverse group of aquatic animals and the large numbers of species possess a wide range 

of responses to stressors such as organic pollutants, sediments, and toxicants.  

Concurrent with the toxicity testing described in Chapter 2, one of the coal mining 

companies (Company 2) was required to conduct annual benthic macroinvertebrate 

monitoring in streams where samples were collected for WET testing.  Three years of 
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monitoring have resulted in 28 paired data points which include toxicity testing and 

benthic macroinvertebrate community data.  The objectives are to determine if stream 

impairment, as indicated by WVSCI scores, is related to laboratory toxicity; and to 

determine if stream impairment, as indicated by WVSCI scores, is related to 

conductivity. 

Materials and Methods 

Benthic macroinvertebrates were collected using the USEPA’s Rapid 

Bioassessment Protocol (RBP) methods (Barbour et al., 1999).  A 0.5 meter kick-net was 

utilized to collect a four-sample composite in riffle/run sections of the stream channel. 

Samples were composited, field sieved, and preserved.  Samples were then sorted and 

subsampled with a target of 180 organisms (WVDNR 2008).  Samples are identified to 

the genus level by a biologist familiar with regional taxa using appropriate taxonomic 

keys (Merritt and Cummins 1996; Stewart and Stark, 2002; Smith 2001). 

The genus level benthic macroinvertebrate community data were evaluated using 

a series of metrics which include Taxa Richness, Ephemeroptera, Plecoptera, and 

Trichoptera (EPT) Taxa Richness, Percent EPT, Percent Two Dominant Taxa, Percent 

Chironomidae, and Hilsenhoff Biotic Index (HBI) (Table 19, Appendix A).  In addition 

to the genus level consideration of individual metrics described above, family level 

stream community data were also evaluated using the WVSCI (Table 20, Appendix A).   

Habitat assessments were completed using the USEPA RBP (Barbour et al., 

1999) and WVDEP Watershed Assessment Branch (WAB) Wadeable Benthic Stream 

Assessment Forms (WVDEP 2010b).  At these sampling locations, 10 parameters were 

evaluated that represent the overall quality of available habitat at each site.  Those 10 
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parameters include epifaunal substrate/available cover, embeddedness, velocity/depth 

regime, sediment deposition, channel flow status, channel alteration, frequency of riffles, 

bank stability, vegetative protection and riparian vegetative zone.  The results of the 

visual-based habitat assessment were used to determine the quality of habitat at each 

sampling location to discern effects of mining discharges as well as support the biological 

assessment. 

Results 

None of the 30 streams sampled over the 3 year period scored in the optimal 

habitat range.  Sub-optimal habitat was demonstrated in 20 sampling locations while 8 

sampling locations scored in the marginal range (Tables 21-23, Appendix A).  In 2009, 

Ballard Branch and Stanley Fork demonstrated marginal habitat due to low frequency of 

riffles, low channel flow status, and low riparian vegetative zone.  In 2010, Mud Lick 

Branch, Jack Smith Branch, Cabin Creek, and Seng Creek had low scores due to 

embeddedness, width of undisturbed vegetative zone, low velocity/depth regime, and low 

channel flow status.  In 2011, Jarrell Branch scored in the marginal range due to width of 

undisturbed vegetative zone, bank vegetative protection, channel alteration, channel flow 

status, and low velocity/depth regime.  

In general, most sites had substrates dominated by cobble and coarse gravel which 

would provide suitable substrate for benthic macroinvertebrates (Tables 24-26, 

Appendix A).  Mud Lick Branch was the only site dominated by bedrock. 
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Field Water Chemistry 

In the fall of 2009, conductivity ranged from 960 µS/cm at Cow Creek to 2,990 

µS/cm at Joes Creek (Table 27, Appendix A).  The dissolved oxygen ranged from 9.10 

mg/L at Jarrell Branch to 10.36 mg/L at Tenmile Fork.  The temperature ranged from 

13.9°C at Calvin Branch and Tenmile Fork to 18.2°C at Jarrell Branch.  The pH ranged 

from 7.66 S.U. at Joes Creek to 8.53 S.U. at Cow Creek.  The turbidity ranged from 0.0 

NTU at Cow Creek to 10.0 NTU at Stanley Fork.  Turbidity could not be recorded at 

some sites due to a meter malfunction.  Stream velocity ranged from 0.45 cfs at Ballard 

Branch to 6.20 cfs at Jarrell Branch. 

In the fall of 2010, conductivity ranged from 222.1 µs/cm at Little White Oak to 

2,747 µs/cm at Coal Fork (Table 28, Appendix A).  Dissolved oxygen ranged from 7.22 

mg/L at Big Horse Creek to 9.13 mg/L at Coal Fork.  The temperature ranged from 

14.2°C at Cabin Creek to 22.5°C at Mud Lick Branch.  The pH ranged from 7.77 S.U. at 

Mud Lick Branch to 8.52 S.U. at Pond Fork.  Turbidity ranged from 1.7 NTU at Big 

Horse Creek to 34.0 NTU at Mud Lick Branch.  Stream velocity ranged from 0.04 cfs at 

Little White Oak to 27.59 cfs at Pond Fork. 

In the fall of 2011, conductivity ranged from 622 µs/cm at Pond Fork to 1,965 

µs/cm at the UNT Left Fork (Table 29, Appendix A).  The temperature ranged from 

16.0°C at Pond Fork to 18.5°C at the other Pond Fork location.  The pH ranged from 7.35 

S.U. at the UNT Left Fork to 8.70 S.U. at Cow Creek.  Turbidity ranged from 3.2 NTU at 

Big Horse Creek to 19.0 NTU at Moccasin Hollow.  Stream velocity ranged from 0.45 

cfs at the UNT Tenmile Fork to 48.14 cfs at Pond Fork.  Dissolved oxygen readings were 

not recorded due to a meter malfunction. 
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Toxicity tests were conducted at nine sampling locations during the fall of 2009. 

Eight streams failed to generate an LC50 (lethal concentration to 50% of the organisms) 

and had NOEC of 100% stream water for the survival endpoint (Table 30, Appendix A).  

One sampling site, on Left Fork, had an LC50 of 100% and an NOEC of 25% stream 

water for the survival endpoint. 

With respect to the reproductive endpoint, 6 of the 9 sampling sites had NOEC 

concentrations of 100% stream water with LOEC estimated to be greater than 100 % 

stream water (Table 31, Appendix A).  Two of the streams, Stanley Fork and Cow Creek 

had NOEC of 50% and LOEC of 100% while one site, Left Fork, had an NOEC of 25% 

and an LOEC of 50%.  The IC25, or concentration of stream water which is predicted to 

result in a 25% reduction in reproduction, was greater than 100% for 4 of the 9 streams 

and ranged from 29.28% to 83.41% for the remaining streams. 

Toxicity tests were conducted at 10 sampling locations during the fall of 2010. 

Nine streams failed to generate an LC50 (lethal concentration to 50% of the organisms) 

(Table 32, Appendix A).  Jack Smith Branch had no toxicity demonstrated for the LC50 

analysis.  All streams sampled also had NOEC of 100 % stream water for the survival 

endpoint.   

With respect to the reproductive endpoint, 7 of the 10 sampling sites had NOEC 

of 100 % stream water with LOEC estimated to be greater than 100 % stream water 

(Table 33, Appendix A).  Three of the streams, Seng Creek, Tom’s Fork, and Jack Smith 

Branch had NOEC of 50% and LOECs of 100%.  The IC25 was greater than 100% for 4 

of the 10 streams and ranged from 56.61% to 87.74% for the remaining streams. 
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In fall of 2011, the 9 streams tested did not generate toxicity with no LC50s 

predictable for mortality (Table 34, Appendix A).  The streams sampled also had NOEC 

of 100 % stream water for the survival endpoint.  

With respect to the sub-lethal reproductive endpoint, 9 of the 9 sampling sites had 

NOEC of 100% stream water with LOEC estimated to be 100% stream water or greater 

(Table 35, Appendix A).  The IC25 was greater than 100% for each of the 9 streams. 

In the fall of 2009, genus level taxa richness ranged from 11 to 23 taxa per site in 

the benthic macroinvertebrate communities from the 9 streams sampled (Table 36, 

Appendix A).  Richness of the sensitive Ephemeroptera, Plecoptera, and Trichoptera 

(EPT) taxa ranged from 3 to 7 genera with the percentage of EPT taxa as high as 86.15 

%.  Most streams had fairly high values for the metric “percent two dominant taxa” (50 

% to 86.54 %) although the “percent Chironomidae” was variable ranging from 7.07 % to 

58.39 %.  The HBI, a composite tolerance value metric, was lowest in the Left Fork, 

indicating a sensitive community.  

WVSCI scores are calculated for each sampling location.  WVSCI is a 

multi-metric index that presents an overall estimation of community health.  Values 

ranged from 40.88 to 63.65 at the 9 sampling locations (Table 37, Appendix A) with 

each sampling site scoring in the impaired zone except Cow Creek which scored in the 

“grey zone.”  The composite benthic sample at Ballard Branch had less than 180 bugs; 

therefore, a WVSCI score could not be calculated. 

In the fall of 2010, genus level taxa richness ranged from 7 to 18 in the benthic 

macroinvertebrate communities from the streams sampled.  Richness of the EPT taxa 

ranged from 3 to 8 genera with the percentage of EPT taxa as high as 61.14 % (Table 38, 
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Appendix A).  The values for the metric “Percent Two Dominant Taxa” ranged from 

33.16 % to 84.13 % and the “Percent Chironomidae” varies from 11.92 % to 67.14 %.  

The HBI was lowest in the Pond Fork indicating a sensitive community.  This site was 

dominated by Ephemeroptera and Trichoptera species.  

The WVSCI scores ranged from 29.83 to 69.72 at the sampling locations (Table 

39, Appendix A) with each sampling site scoring in the impaired zone except West Fork 

which scored in the “Unimpaired.” 

In the fall of 2011, genus level taxa richness ranged from 13 to 18 in the benthic 

macroinvertebrate communities from the streams sampled (Table 40, Appendix A).  

Richness of the EPT taxa ranged from 2 to 8 genera with the percentage of EPT taxa as 

high as 60.77%.  The values for the metric “Percent Two Dominant Taxa” ranged from 

46.38 at the UNT Left Fork Creek to 74.29 at Jarrell Branch and the “Percent 

Chironomidae” varied from 6.22 at Cow Creek to 50.00 at Pond Fork.  The HBI was 

lowest in Cow Creek (4.4) indicating the more sensitive community.  This site was 

dominated by Ephemeroptera, Plecoptera and Trichoptera species. 

The WVSCI values ranged from 38.24 at Big Horse Creek to 65.62 at Moccasin 

Hollow at the sampling locations with each sampling site scoring in the impaired zone 

except the UNT of Left Fork Creek and Moccasin Hollow (Table 41, Appendix A). 

These sites scored in the “grey zone” which may indicate slight impairment. 

Benthic macroinvertebrate communities in the streams sampled indicated some 

level of impairment.  A weak relationship was demonstrated between habitat assessment 

scores and WVSCI scores (Figure 29).  No apparent relationships were observed 
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between conductivity and WVSCI or conductivity and the number of taxa present in the 

sampling locations (Figures 30-31).   
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Figure 29 - Relationship between Habitat Assessment Scores and 

WVSCI Scores in Mine Influenced Streams 
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Figure 30 - Relationship between Conductivity and 

WVSCI Scores in Mine Influenced Streams 
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Figure 31 - Relationship between Conductivity and 

Number of Taxa Present in Mine Influenced Streams 
 

Discussion 
 

Stream impairment, as indicated by WVSCI scores, was unrelated to laboratory 

toxicity testing outcomes.  Streams with the lowest WVSCI scores exhibited no toxicity. 

Benthic macroinvertebrate communities in the streams sampled indicated some level of 

impairment, however, no toxicity was observed in the 100% mine effluent stream 

survival of Ceriodaphnia dubia.  The toxicity tests conducted on Ceriodaphnia dubia 

occur in a controlled laboratory environment whereas benthic macroinvertebrates live in 

the environment which is uncontrolled.  Macroinvertebrates in the receiving environment 



58 

are exposed to a wide variety of abiotic and biotic modifying factors that can affect an 

organism’s response to a toxicant (Chapman 1999).  

There was no relationship between conductivity and WVSCI scores.  A stream 

can have a low level of specific conductance and a WVSCI score firmly within the range 

for impairment; conversely, a stream can have a high level of specific conductance and a 

WVSCI score that indicates the stream is above the threshold for impairment (WVDEP 

2010b).  WVSCI scores are affected by many factors: habitat, other uses of the stream 

and the surrounding land, and pollutants unrelated to conductivity (e.g., fecal coliform). 

Certain stream reaches simply cannot attain a “good” WVSCI score because of those 

factors (WVDEP 2010b).  The Pond-Passmore Study found a shift in the benthic 

macroinvertebrate community downstream from mining activity, but did not otherwise 

correlate this finding with any significant or adverse impairment of the ecosystem (Pond 

et al., 2008). 

 



59 

CHAPTER 4 

Conclusions 

 The toxicity research that I conducted demonstrates that conductivity does not 

correlate to toxicity. Conductivity measurements in the streams samples exceeded the 300 

µs/cm level recently deemed harmful to aquatic life in the Central Appalachians by the 

EPA (Cormier et al., 2011). Some of the streams tested did exhibit toxicity; however, it 

was not due to conductivity.  This is relevant to the coal industry for many reasons. The 

most recent news in coal mining involves a mining permit being revoked and one of the 

issues for the revocation is conductivity (Ward Jr. 2011). This study reveals that 

conductivity may not be the most important factor affecting aquatic ecosystems. Further 

investigation is warranted to determine what exactly causes benthic macroinvertebrate 

impairment and stream water toxicity to laboratory organisms. I think that it would be 

beneficial to conduct toxicity testing above and below mine effluent discharges to 

determine if toxicity changes between upstream and downstream sampling locations.  

Conducting upstream toxicity testing would also give an opportunity to investigate other 

variables which may result in stream toxicity. Stream sampling locations should also be 

selected for sampling without focusing on high conductivity. Some of the streams that I 

sampled during my research exhibited toxicity although the streams had low 

conductivity.  

 When evaluating the data I also noticed that some stream sampling locations had 

low IC25 values but their survival was not impaired. What could be causing these 

inconsistent values? Ceriodaphnia dubia are extremely sensitive organisms (USEPA 

2002 ). Changes in temperature and/or dissolved oxygen during testing could affect the 
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reproductive output of Ceriodaphnia dubia (USEPA 2002). It is also possible for the 

sensitive organisms to become stressed during the daily water changes from poor 

handling techniques (USEPA 2002). Another factor that may affect both the reproduction 

and survival of Ceriodaphnia dubia is a rain event during the water collection for WET 

testing.  Rain can cause the total suspended solids and turbidity of a stream increase. 

Filter-feeding invertebrates exposed to high levels of suspended solids can clog feeding 

structures, reducing feeding efficiency and therefore reducing growth rates, stressing and 

even killing the organisms (Hynes 1970). Suspended solids were not measured in the 

study presented here but might be something to include in future research.  Also, a 

possibility for no survival impairment but low IC25 might be higher conductivity or poor 

water quality in later samples since the 48 hour endpoint is based on the first of 3 

samples. 

Stream impairment, as indicated by WVSCI scores, were unrelated to laboratory 

toxicity testing outcomes.  Streams with the lowest WVSCI scores exhibited no toxicity.  

I think that this occurred due to the Ceriodaphnia dubia toxicity testing being conducted 

in a controlled laboratory environment whereas benthic macroinvertebrates live in the 

environment which is highly variable.  

There was no relationship between conductivity and WVSCI scores.  I think that 

stream impairment occurs regardless of conductivity.  Many factors can lead to stream 

impairment.  I have sampled all of these streams for benthics and the majority of the 

streams are affected by human disturbance.  Some other factors that come to mind are 

stream velocity, embeddedness, stream canopy, and substrate.  These are all important 

issues when considering stream impairment. 
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Appendix A 

Table 3 - Field Water Chemistry Analysis 2008 

Sampling Location Date Conductivity 
(µS/cm) 

Temperature  
(°C) 

pH 
(S.U.) 

DO 
(mg/L) 

Big Creek 12/15/2008 918 3.0 8.05 9.70 
Big Creek 12/17/2008 454 4.0 7.71 9.60 
Big Creek 12/19/2008 719 5.0 7.87 9.30 
Hardway Branch 12/11/2008 1,373 9.4 7.07 10.58 
Hardway Branch 12/13/2008 1,278 6.6 6.81 11.19 
Hardway Branch 1215/2008 1,500 8.1 6.88 10.49 
Laurel Creek 12/15/2008 1,550 7.0 7.79 9.50 
Laurel Creek 12/17/2008 735 10.2 7.45 10.43 
Laurel Creek 12/19/2008 1,130 8.3 6.08 10.45 
Line Creek 12/11/2008 883 6.2 7.29 10.85 
Line Creek 12/13/2008 574 5.5 6.99 11.33 
Line Creek 1215/2008 675 7.0 7.18 10.82 
Mudlick Fork 12/15/2008 2,540 8.8 6.24 9.95 
Mudlick Fork 12/17/2008 1,622 8.6 6.65 10.62 
Mudlick Fork 12/19/2008 2,410 10.4 6.45 10.20 
Robinson Creek 12/15/2008 802 7.9 6.32 9.19 
Robinson Creek 12/17/2008 336 8.6 7.63 10.64 
Robinson Creek 12/19/2008 653 8.8 6.48 10.27 
Spruce Laurel Creek 12/15/2008 550 9.5 7.69 9.64 
Spruce Laurel Creek 12/17/2008 284 10.0 7.60 10.34 
Spruce Laurel Creek 12/19/2008 401 10.4 7.13 10.05 
Stollings Fork 12/15/2008 1,826 9.2 6.76 9.20 
Stollings Fork 12/17/2008 1,180 9.0 7.48 10.33 
Stollings Fork 12/19/2008 1,815 10.4 6.39 9.86 
Taylor Fork 12/11/2008 350 7.3 6.23 9.62 
Taylor Fork 12/13/2008 403 5.1 5.93 10.56 
Taylor Fork 12/15/2008 401 10.9 6.10 9.22 
West Fork 12/15/2008 2,120 16.1 6.14 9.86 
West Fork 12/17/2008 1,341 13.1 8.13 9.64 
West Fork 12/19/2008 1,865 15.4 7.16 9.08 
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Table 4 - Field Water Chemistry Analysis 2009 

Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

DS Fifteen Mile 
Fork 6/22/2009 1,092 9.80 4.1 7.56 
DS Fifteen Mile 
Fork 6/24/2009 1,096 10.10 3.3 7.06 
DS Fifteen Mile 
Fork 6/26/2009 1,073 9.60 1.3 6.72 
Laurel Creek 6/29/2009 2,342 10.80 4.5 8.10 
Laurel Creek 7/1/2009 1,858 9.80  8.12 
Laurel Creek 7/2/2009 1,869 11.40 4.0 8.31 
Mammoth Site 1 6/22/2009 815 10.20 4.6 8.57 
Mammoth Site 1 6/24/2009 716 10.80 3.6 7.99 
Mammoth Site 1 6/26/2009 718 10.20 1.4 7.84 
Mammoth Site 2 6/22/2009 631 10.30 3.9 8.50 
Mammoth Site 2 6/24/2009 68 10.50 3.3 7.76 
Mammoth Site 2 6/26/2009 70 9.80 1.2 7.23 
Mouth of 
Robinson Creek 6/29/2009 2,137 10.90 4.6 7.97 
Mouth of 
Robinson Creek 7/1/2009 2,076 9.80  8.00 
Mouth of 
Robinson Creek 7/2/2009 2,123 11.20 4.1 8.21 
Mudlick Fork 6/29/2009 2,818 10.40 3.9 8.18 
Mudlick Fork 7/1/2009 2,849 9.60  8.13 
Mudlick Fork 7/2/2009 2,884 11.30 4.2 8.36 
PM 260 Inlet 6/29/2009 1,578 10.90 4.4 7.71 
PM 260 Inlet 7/1/2009 1,539 10.00  7.56 
PM 260 Inlet 7/2/2009 1,575 12.00 4.6 7.84 
PM 316 Pond 6/29/2009 1,598 11.70 4.0 7.67 
PM 316 Pond 7/1/2009 1,589 10.20  7.76 
PM 316 Pond 7/2/2009 1,625 11.70 4.1 7.99 
Stollings Fork 6/29/2009 1,839 10.60 4.4 8.13 
Stollings Fork 7/1/2009 2,351 9.80  8.11 
Stollings Fork 7/2/2009 2,373 11.50 4.3 8.33 
Upstream 
Fifteen Mile 6/22/2009 1,078 10.50 3.8 8.39 
Upstream 
Fifteen Mile 6/24/2009 1,071 10.40 3.4 7.82 
Upstream 
Fifteen Mile 6/26/2009 1,062 10.00 1.1 7.63 
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Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

Ballard Branch 9/14/2009 1,783 9.63 16.2 7.83 
Ballard Branch 9/16/2009 1,687 9.83 16.6 8.26 
Ballard Branch 9/18/2009 1,701 9.96 17.3 8.27 
Calvin Branch 9/14/2009 1,090 10.08 14.2 7.75 
Calvin Branch 9/16/2009 984 10.33 13.9 7.78 
Calvin Branch 9/18/2009 986 10.02 14.7 8.14 
Cow Creek 9/14/2009 1,010 9.68 13.0 8.49 
Cow Creek 9/16/2009 960 10.17 15.4 8.53 
Cow Creek 9/18/2009 975 10.13 15.8 8.54 
Hardway Pond 9/28/2009 1,214 11.20 4.6 7.82 
Hardway Pond 9/30/2009 1,353 10.20 3.3 7.68 
Hardway Pond 10/2/2009 1,396 10.40 4.7 7.81 
Jarrell Branch 9/14/2009 2,660 10.13 15.6 8.54 
Jarrell Branch 9/16/2009 2,410 9.10 18.2 8.38 
Jarrell Branch 9/18/2009 1,994 9.05 18.6 8.38 
Joes Creek 9/21/2009 2,730 10.09 15.7 7.92 
Joes Creek 9/23/2009 2,880 9.67 17.1 7.69 
Joes Creek 9/25/2009 2,990 9.52 16.7 7.66 
Laurel Creek 9/28/2009 1,307 10.80 4.2 7.93 
Laurel Creek 9/30/2009 1,568 10.40 3.3 8.10 
Laurel Creek 10/2/2009 1,651 10.60 5.9 8.17 
Left Fork 9/21/2009 2,640 9.72 16.5 8.28 
Left Fork 9/23/2009 1,853 9.45 16.4 7.97 
Left Fork 9/25/2009 1,842 9.51 16.9 8.01 
Mouth of 
Robinson Creek 
@ PM 24 
location 

9/28/2009 1,912 11.10 4.6 8.03 

Mouth of 
Robinson Creek 
@ PM 24 
location 

9/30/2009 2,023 10.30 3.3 8.10 

Mouth of 
Robinson Creek 
@ PM 24 
location 

10/2/2009 2,037 10.80 6.2 8.15 

Mudlick Fork 9/28/2009 2,081 10.90 4.2 8.34 
Mudlick Fork 9/30/2009 2,095 10.70 3.3 8.28 
Mudlick Fork 10/2/2009 2,264 10.50 6.5 8.33 
PM 316 Pond 9/28/2009 1,892 10.50 4.5 7.83 
PM 316 Pond 9/30/2009 1,878 9.60 3.3 7.92 
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Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

PM 316 Pond 10/2/2009 1,958 10.80 4.6 7.96 
Stanley Fork 9/14/2009 2,520 9.52 16.3 7.11 
Stanley Fork 9/16/2009 1,951 9.87 15.1 8.28 
Stanley Fork 9/18/2009 1,969 9.99 15.8 8.27 
Stollings Fork 9/28/2009 1,267 10.60 4.4 7.67 
Stollings Fork 9/30/2009 548 9.80 3.3 7.65 
Stollings Fork 10/2/2009 568 10.10 6.6 7.85 
Tenmile Fork 9/21/2009 1,378 10.65 13.7 8.36 
Tenmile Fork 9/23/2009 1,198 11.04 12.9 7.34 
Tenmile Fork 9/25/2009 1,112 10.36 13.9 7.95 
White Oak 9/21/2009 1,338 9.69 16.6 8.25 
White Oak 9/23/2009 1,199 9.58 16.7 7.90 
White Oak 9/25/2009 1,197 9.29 17.6 7.98 
Downstream 
Fifteen Mile 
Fork 

10/5/2009 1,164 10.30 3.8 7.17 

Downstream 
Fifteen Mile 
Fork 

10/7/2009 1,089 11.70 4.3 6.76 

Downstream 
Fifteen Mile 
Fork 

10/9/2009 1,140 10.10 1.4 7.18 

Hughes Fork off 
Bells Creek 

10/5/2009 765 11.30 3.7 8.19 

Hughes Fork off 
Bells Creek 

10/7/2009 767 12.30 3.9 8.11 

Hughes Fork off 
Bells Creek 

10/9/2009 765 11.10 1.7 8.20 

Sixmile off 
Hughes Creek 

10/5/2009 889 11.20 4.5 8.18 

Sixmile off 
Hughes Creek 

10/7/2009 869 12.50 4.0 8.06 

Sixmile off 
Hughes Creek 

10/9/2009 896 10.60 4.5 8.16 

Upstream 
Fifteen Mile 

10/5/2009 1,117 11.30 4.8 7.86 

Upstream 
Fifteen Mile 

10/7/2009 1,061 11.70 4.1 7.61 

Upstream 
Fifteen Mile 

10/9/2009 1,120 11.10 3.0 8.06 

 



65 

Table 5 - Field Water Chemistry Analysis 2010 

Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

Ballard Branch 2/22/2010 795 11.44 7.2 7.92 
Ballard Branch 2/24/2010     
Ballard Branch 2/26/2010 794 12.23 3.0 7.98 
Calvin Branch 2/22/2010 748 11.60 7.7 8.15 
Calvin Branch 2/24/2010     
Calvin Branch 2/26/2010 866 12.45 3.7 7.06 
Cow Creek 2/22/2010 767 11.23 8.2 8.21 
Cow Creek 2/24/2010     
Cow Creek 2/26/2010 753 11.88 5.3 8.08 
Jarrell Branch 2/22/2010 1,833 11.17 9.3 8.34 
Jarrell Branch 2/24/2010     
Jarrell Branch 2/26/2010 1,751 11.32 5.8 8.07 
Joes Creek 2/15/2010 1,077 8.38 5.5 8.07 
Joes Creek 2/17/2010 1,182 11.11 3.9 8.38 
Joes Creek 2/19/2010 1,173 10.80 6.4 7.87 
Left Fork 2/15/2010 1,800 8.00 5.6 8.90 
Left Fork 2/17/2010 1,710 9.65 4.4 9.04 
Left Fork 2/19/2010 1,690 12.83 6.7 8.84 
Jack Smith 
Branch 

9/20/2010 690 7.86 19.3 8.17 

Jack Smith 
Branch 

9/22/2010 1,242 7.53 18.3 8.14 

Jack Smith 
Branch 

9/24/2010 1,337 7.17 21.5 8.14 

Stanley Fork 2/22/2010 1,798 10.96 9.8 8.24 
Stanley Fork 2/24/2010     
Stanley Fork 2/26/2010 1,824 12.20 5.1 8.11 
Tenmile Fork 2/15/2010 1,130 6.31 7.3 8.64 
Tenmile Fork 2/17/2010 1,160 10.19 5.7 8.72 
Tenmile Fork 2/19/2010 1,126 11.28 4.8 8.01 
White Oak 2/15/2010 1,028 5.97 4.4 8.69 
White Oak 2/17/2010 1,061 7.13 3.2 8.86 
White Oak 2/19/2010 1,077 14.71 5.2 8.89 
Sycamore Fork 3/1/2010 594 10.78 8.5 7.90 
Sycamore Fork 3/3/2010 602 12.35 5.7 7.93 
Sycamore Fork 3/5/2010 614 12.51 6.6 7.76 
Horse Creek 4/26/2010 429 12.10 4.6 6.94 
Horse Creek 4/28/2010 223 11.50 5.0 6.90 
Horse Creek 4/30/2010 286 10.50 5.0 7.31 
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Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

Hardway Pond 
@ Location 
PM 235 

4/19/2010 2,145 9.00 4.3 7.82 

Hardway Pond 
@ Location 
PM 235 

4/21/2010 2,171 12.40 5.0 8.33 

Hardway Pond 
@ Location 
PM 235 

4/23/2010 2,188 10.70 5.0 8.25 

Lilly Fork @ 
PM 89 

4/19/2010 1,340 7.80 4.0 8.13 

Lilly Fork @ 
PM 89 

4/21/2010 1,310 11.60 5.0 8.28 

Lilly Fork @ 
PM 89 

4/23/2010 1,350 10.50 5.0 7.88 

Robinson 
North @ PM 
181 

4/19/2010 2,380 8.40 4.2 7.70 

Robinson 
North @ PM 
181 

4/21/2010 2,325 11.20 5.0 7.95 

Robinson 
North @ PM 
181 

4/23/2010 2,372 10.80 5.0 7.94 

Bias Branch 6/1/2010 392 7.60 4.1 6.47 
Bias Branch 6/3/2010 489 9.60 4.3 7.12 
Bias Branch 6/4/2010 329 7.90 5.0 6.83 
No Name 6/1/2010 1,470 8.20 4.4 7.01 
No Name 6/3/2010 1,460 10.20 4.3 7.25 
No Name 6/4/2010 1,301 8.40 5.0 6.83 
Slip Ridge 6/1/2010 1,096 8.50 4.0 7.49 
Slip Ridge 6/3/2010 909 9.90 4.8 7.93 
Slip Ridge 6/4/2010 936 8.50 5.0 7.87 
Mouth of 
Robinson 
Creek 

6/1/2010 1,275 8.10 4.6 7.59 

Mouth of 
Robinson 
Creek 

6/3/2010 1,266 10.20 4.6 7.61 

Mouth of 
Robinson 
Creek 

6/4/2010 1,377 8.50 5.0 7.79 
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Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

Mudlick Fork 6/1/2010 2,403 4.90 8.1 8.60 
Mudlick Fork 6/3/2010 2,364 4.10 8.2 10.40 
Mudlick Fork 6/4/2010 2,253 5.00 8.3 8.20 
UBB Area of 
Jarrells Branch 

6/1/2010 1,760 4.00 8.3 8.60 

UBB Area of 
Jarrells Branch 

6/3/2010 1,702 4.10 8.3 10.10 

UBB Area of 
Jarrells Branch 

6/4/2010 1,723 5.00 8.3 8.60 

Bias Branch 9/27/2010 342 7.40 3.2 7.26 
Bias Branch 9/29/2010 347 8.30 5.0 7.20 
Bias Branch 10/1/2010 357 9.90 5.0 7.82 
Big Horse 
Creek 

9/20/2010 1,538 6.82 20.5 7.39 

Big Horse 
Creek 

9/22/2010 1,761 7.22 18.8 7.91 

Big Horse 
Creek 

9/24/2010 1,793 7.17 22.3 7.94 

Cabin Creek 9/27/2010 1,030 8.30 16.3 8.14 
Cabin Creek 9/29/2010 1,039 8.89 14.2 8.11 
Cabin Creek 10/1/2010 1,050 8.68 14.9 8.09 
Coal Fork 9/27/2010 2,414 8.39 16.3 7.67 
Coal Fork 9/29/2010 2,747 9.13 14.5 7.92 
Coal Fork 10/1/2010 2,863 9.17 14.1 7.89 
Horse Creek 9/27/2010 693 7.60 2.6 7.68 
Horse Creek 9/29/2010 626 9.30 5.0 7.63 
Horse Creek 10/1/2010 579 10.30 5.4 7.86 
Little White 
Oak 

9/27/2010 294 6.76 17.1 8.09 

Little White 
Oak 

9/29/2010 222 7.75 17.1 7.87 

Little White 
Oak 

10/1/2010 343 7.91 15.6 8.38 

Mud Lick 
Branch 

9/20/2010 1,363 8.56 18.3 7.73 

Mud Lick 
Branch 

9/22/2010 1,319 7.47 22.5 7.77 

Mud Lick 
Branch 

9/24/2010 1,406 8.26 20.7 7.83 

Mudlick Fork 9/27/2010 3,019 7.70 3.3 7.95 
Mudlick Fork 9/29/2010 3,025 8.50 5.0 8.04 
Mudlick Fork 10/1/2010 2,977 10.40 5.3 8.22 
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Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

No Name 9/27/2010 1,718 7.60 2.9 7.36 
No Name 9/29/2010 2,258 8.40 5.0 7.25 
No Name 10/1/2010 2,364 10.30 5.7 5.25 
Pond Fork 9/20/2010 840 8.90 22.4 8.67 
Pond Fork 9/22/2010 835 8.95 21.4 8.52 
Pond Fork 9/24/2010 844 8.22 20.0 8.42 
Seng Creek 9/27/2010 1,631 8.44 17.3 8.27 
Seng Creek 9/29/2010 1,657 8.65 16.2 8.31 
Seng Creek 10/1/2010 1,657 8.45 15.8 8.27 
Tom’s Fork 9/27/2010 2,351 8.11 18.5 8.16 
Tom’s Fork 9/29/2010 2,410 7.63 18.0 8.15 
Tom’s Fork 10/1/2010 2,423 8.29 16.9 8.16 
UBB Area of 
Jarrells Branch 

9/27/2010 1,759 7.60 3.0 7.67 

UBB Area of 
Jarrells Branch 

9/29/2010 1,746 8.60 5.0 7.76 

UBB Area of 
Jarrells Branch 

10/1/2010 1,679 9.60 5.6 7.91 

Slip Ridge 9/27/2010 817 6.90 2.6 7.67 
Slip Ridge 9/29/2010 917 8.10 5.0 7.89 
Slip Ridge 10/1/2010 899 10.70 5.2 8.01 
West Fork 9/20/2010 1,610 7.84 19.5 8.16 
West Fork 9/22/2010 1,686 8.53 19.3 8.21 
West Fork 9/24/2010 1,678 8.95 18.4 8.26 
Lilly Fork @ 
PM 89 

10/11/2010 1,579 9.90 4.5 7.58 

Lilly Fork @ 
PM 89 

10/13/2010 1,594 9.30 5.0 7.58 

Lilly Fork @ 
PM 89 

10/15/2010 1,590 10.40 9.8 7.75 

Hardway Pond 
@ Location 
PM 236 

10/11/2010 1,516 9.30 4.1 7.44 

Hardway Pond 
@ Location 
PM 236 

10/13/2010 2,255 10.80 5.0 8.11 

Hardway Pond 
@ Location 
PM 236 

10/15/2010 2,256 11.50 9.0 8.27 

Mouth of 
Robinson 
Creek 

10/11/2010 2,311 10.50 4.3 7.94 
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Sampling 
Station 

Date 
Sampled 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature 
(°C) 

pH 
(S.U.) 

Mouth of 
Robinson 
Creek 

10/13/2010 2,232 10.30 5.0 7.98 

Mouth of 
Robinson 
Creek 

10/15/2010 2,485 10.40 8.9 8.27 

Twenty Mile 
Creek 

10/11/2010 3,047 9.50 4.5 8.00 

Twenty Mile 
Creek 

10/13/2010 3,014 10.20 5.0 8.03 

Twenty Mile 
Creek 

10/15/2010 3,026 9.70 9.0 8.10 

 

 

Table 6 - Field Water Chemistry Analysis 2011 

Sampling 
Station 

Date 
Sampled 

Conductivity    
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature  
(°C) 

pH             
(S.U.) 

Big Horse 
Creek 

2/14/2011 1,546 10.72 7.0 8.58 

Big Horse 
Creek 

2/16/2011 1,582 10.73 7.8 8.60 

Big Horse 
Creek 

2/18/2011 1,589 9.70 10.4 8.51 

Cabin Creek 2/21/2011 1,055 9.32 9.1 8.64 
Cabin Creek 2/23/2011 1,038 10.79 5.8 8.52 
Cabin Creek 2/25/2011 886 9.59 9.7 8.72 
Coal Fork 2/21/2011 1,827 9.80 8.1 8.16 
Coal Fork 2/23/2011 1,605 11.16 5.8 8.01 
Coal Fork 2/25/2011 758 9.97 8.5 8.22 
Jack Smith 
Branch 

2/14/2011 816 10.85 7.3 8.76 

Jack Smith 
Branch 

2/16/2011 813 10.97 8.4 8.75 

Jack Smith 
Branch 

2/18/2011 825 10.41 10.3 8.73 

Little White 
Oak 

2/21/2011 887 9.00 10.3 8.49 

Little White 
Oak 

2/23/2011 872 10.19 8.2 8.32 
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Sampling 
Station 

Date 
Sampled 

Conductivity    
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature  
(°C) 

pH             
(S.U.) 

Little White 
Oak 

2/25/2011 543 11.25 6.9 8.46 

Mud Lick 
Branch 

2/14/2011 1,403 9.72 7.8 7.76 

Mud Lick 
Branch 

2/16/2011 1,409 9.97 8.0 8.64 

Mud Lick 
Branch 

2/18/2011 811 8.80 11.4 8.11 

Pond Fork 2/14/2011 795 11.31 7.0 8.42 
Pond Fork 2/16/2011 803 11.40 7.5 8.69 
Pond Fork 2/18/2011 832 9.53 9.8 8.61 
Seng Creek 2/21/2011 1,588 9.61 9.0 8.35 
Seng Creek 2/23/2011 1,559 10.73 7.3 8.36 
Seng Creek 2/25/2011 1,325 10.89 7.2 8.47 
Tom’s Fork 2/21/2011 2,412 9.47 9.4 8.42 
Tom’s Fork 2/23/2011 2,369 10.15 7.6 8.36 
Tom’s Fork 2/25/2011 2,026 10.41 7.1 8.40 
West Fork 2/14/2011 1,570 12.00 11.4 8.92 
West Fork 2/16/2011 1,805 9.89 14.3 8.63 
West Fork 2/18/2011 1,679 8.30 13.3 8.64 
Below 033 on 
20 Mile Fork 

5/23/2011 105 8.90 4.4 6.91 

Below 033 on 
20 Mile Fork 

5/25/2011 127 8.80 18.5 6.94 

Below 033 on 
20 Mile Fork 

5/27/2011 136 9.20 14.0 7.36 

James Creek 
below 015 

5/23/2011 1,692 8.60 4.3 7.93 

James Creek 
below 015 

5/25/2011 1,730 8.80 18.8 7.80 

James Creek 
below 015 

5/27/2011 1,745 9.40 10.6 7.97 

Bandmill 
Below 016 

6/1/2011 1,127 7.40 25.7 8.38 

Bandmill 
Below 016 

6/3/2011 1,124 9.30 15.1 8.38 

Bandmill 
Below 016 

6/6/2011 1,143 9.60 4.0 8.38 

029 on Radner 
Fork of 20 mile 

5/23/2011 1,232 9.70 4.9 6.90 
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Sampling 
Station 

Date 
Sampled 

Conductivity    
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature  
(°C) 

pH             
(S.U.) 

029 on Radner 
Fork of 20 mile 

5/25/2011 1,284 9.60 5.1 7.72 

029 on Radner 
Fork of 20 mile 

5/27/2011 1,312 9.90 9.7 7.06 

013 Robinson 
North on 20 
mile 

5/23/2011 472 9.00 4.1 7.13 

013 Robinson 
North on 20 
mile 

5/25/2011 552 9.00 19.0 6.87 

013 Robinson 
North on 20 
mile 

5/27/2011 589 9.30 12.6 7.22 

001 on 
Sugarcamp 

5/23/2011 1,341 9.60 4.9 8.59 

001 on 
Sugarcamp 

5/25/2011 1,358 8.50 18.8 8.51 

001 on 
Sugarcamp 

5/27/2011 1,433 8.70 13.0 8.40 

Delbarton 
Below 400 

6/1/2011 990 6.90 26.1 8.47 

Delbarton 
Below 400 

6/3/2011 985 8.40 16.1 8.50 

Delbarton 
Below 400 

6/6/2011 974 10.10 4.1 8.47 

ICC Below 031 6/1/2011 882 7.60 26.8 8.04 
ICC Below 031 6/3/2011 907 9.30 15.5 7.97 
ICC Below 031 6/6/2011 879 10.20 4.0 8.33 
Mammoth 
below 004 

6/1/2011 1,207 7.70 26.5 8.21 

Mammoth 
below 004 

6/3/2011 1,222 9.80 15.2 8.20 

Mammoth 
below 004 

6/6/2011 1,185 9.60 4.8 8.23 

Marfork Below 
018 

6/1/2011 857 7.70 24.6 8.17 

Marfork Below 
018 

6/3/2011 905 9.70 15.4 8.15 

Marfork Below 
018 

6/6/2011 884 10.40 4.0 8.19 

Big Horse 
Creek 

9/19/2011 2,014 9.30 17.6 8.10 
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Sampling 
Station 

Date 
Sampled 

Conductivity    
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature  
(°C) 

pH             
(S.U.) 

Big Horse 
Creek 

9/21/2011 1,768 10.10 17.1 7.69 

Big Horse 
Creek 

9/23/2011 1,609 8.90 16.9 8.14 

Cow Creek 9/26/2011 1,054 9.50 18.0 8.29 
Cow Creek 9/28/2011 744 8.60 16.1 8.70 
Cow Creek 9/30/2011 876 8.90 15.6 8.35 
Jarrell Branch 9/26/2011 1,473 8.50 18.9 8.35 
Jarrell Branch 9/28/2011 1,388 8.20 17.8 8.63 
Jarrell Branch 9/30/2011 1,484 8.50 17.5 8.53 
Moccasin 
Hollow 

9/26/2011 1,391 9.00 18.7 8.30 

Moccasin 
Hollow 

9/28/2011 1,351 8.20 17.4 8.12 

Moccasin 
Hollow 

9/30/2011 1,445 8.50 15.3 8.94 

UNT Boone 
Block Hollow 

9/19/2011 1,443 8.60 17.3 8.10 

UNT Boone 
Block Hollow 

9/21/2011 1,398 8.90 17.0 8.01 

UNT Boone 
Block Hollow 

9/23/2011 2,053 8.70 17.4 8.26 

UNT Left Fork 9/19/2011 1,968 9.20 15.2 7.41 
UNT Left Fork 9/21/2011 1,965 9.40 17.3 7.35 
UNT Left Fork 9/23/2011 1,792 8.30 16.9 6.70 
UNT Tenmile 
Fork 

9/19/2011 1,745 9.40 14.3 7.74 

UNT Tenmile 
Fork 

9/21/2011 1,818 8.90 16.9 7.87 

UNT Tenmile 
Fork 

9/23/2011 1,981 8.30 17.3 8.19 

Pond Fork 9/26/2011 802 9.20 17.9 8.24 
Pond Fork 9/26/2011 1,117 8.90 19.3 8.39 
Pond Fork 9/28/2011 622 8.60 16.0 8.42 
Pond Fork 9/28/2011 766 8.90 18.5 8.64 
Pond Fork 9/30/2011 751 8.60 15.0 8.41 
Pond Fork 9/30/2011 891 9.10 16.9 8.39 
Bandmill 
Below 016 

10/31/2011 1,084 10.20 4.1 8.47 

Bandmill 
Below 016 

11/2/2011 1,138 11.00 4.6 8.25 
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Sampling 
Station 

Date 
Sampled 

Conductivity    
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature  
(°C) 

pH             
(S.U.) 

Bandmill 
Below 016 

11/4/2011 1,202 10.70 5.0 8.20 

Below 033 on 
20 Mile Fork 

10/24/2011 747 8.00 5.0 7.10 

Below 033 on 
20 Mile Fork 

10/26/2011 163 7.30 5.0 7.05 

Below 033 on 
20 Mile Fork 

10/28/2011 147 11.40 5.0 6.50 

Delbarton 
below 400 

10/31/2011 591 10.70 4.4 8.30 

Delbarton 
below 401 

11/2/2011 743 11.10 4.1 8.14 

Delbarton 
below 402 

11/4/2011 777 9.70 5.0 8.13 

ICC Below 031 10/31/2011 671 10.80 4.2 8.19 
ICC Below 031 11/2/2011 753 10.90 4.9 7.92 
ICC Below 031 11/4/2011 767 10.70 5.0 7.80 
James Creek 
below 015 

10/31/2011 1,495 10.80 4.6 8.20 

James Creek 
below 015 

11/2/2011 1,379 10.80 4.9 7.98 

James Creek 
below 015 

11/4/2011 1,367 10.10 5.0 7.79 

Mammoth 
below 004 

10/24/2011 460 8.20 4.6 7.52 

Mammoth 
below 004 

10/26/2011 1,264 8.60 4.8 8.04 

Mammoth 
below 004 

10/28/2011 1,137 11.60 5.0 8.08 

Marfork Below 
018 

10/31/2011 340 10.60 4.7 8.21 

Marfork Below 
018 

11/2/2011 381 10.90 4.6 7.66 

Marfork Below 
018 

11/4/2011 324 10.60 5.0 6.94 

029 on Radner 
Fork of 20 mile 

10/24/2011 1,414 8.20 4.9 7.29 

029 on Radner 
Fork of 20 mile 

10/26/2011 1,421 8.20 4.6 7.26 

029 on Radner 
Fork of 20 mile 

10/28/2011 1,211 11.50 5.0 7.52 
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Sampling 
Station 

Date 
Sampled 

Conductivity    
(µS/cm) 

Dissolved 
Oxygen 
(mg/L) 

Temperature  
(°C) 

pH             
(S.U.) 

13 Robinson 
North on 20 
mile 

10/24/2011 2,018 8.30 4.8 7.63 

13 Robinson 
North on 20 
mile 

10/26/2011 604 8.10 4.6 6.94 

13 Robinson 
North on 20 
mile 

10/28/2011 522 11.80 4.7 6.60 

001 on 
Sugarcamp 

10/24/2011 1,710 8.30 4.7 7.52 

001 on 
Sugarcamp 

10/26/2011 1,621 8.10 4.6 7.62 

001 on 
Sugarcamp 

10/28/2011 1,515 11.20 4.9 7.80 
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Table 7 - Company 1 Additional Water Data Spring 2011 

Parameter 
Sugarcamp 
5/25/2011 

Robinson 
Fork    

5/25/2011 

Radner 
5/25/2011 

James 
Creek 

5/25/2011 

20 mi. 
5/25/2011 Unit MDL  Method 

Field pH 
8.30 6.60 6.56 7.80 6.18 S.U.  

Field Test 
SM204500H B 

Total 
Alkalinity 

54.86 20.17 24.59 413.75 11.89 mg/L 0.31 SM202320B 

Total Acidity <0.63 <0.63 <0.63 <0.63 <0.63 mg/L 0.63 SM202310B 
Turbidity 10.80 9.40 20.80 3.40 2.80 NTU 0.10 EPA 180.1 
Sp. Cond. 1,445 600 1,362 1,847 128 µS/cm 1.9 EPA 120.1 
Total 
Sulfates 

685.04 270.06 697.64 1,173.70 44.25 mg/L 0.1 EPA 300.0 

Chlorides 19.42 1.18 11.12 35.68 1.25 mg/L 0.07 EPA 300.0 
Total Iron 0.06 0.08 0.82 0.01 0.05 mg/L 0.007 EPA 200.7 
Dissolved 
Iron 

<0.007 <0.007 0.25 <0.007 0.02 mg/L 0.007 EPA 200.7 

Total 
Manganese 

1.42 0.14 2.48 0.08 0.05 mg/L 0.036 EPA 200.7 

Dissolved 
Manganese 

1.280 0.120 2.420 <0.036 0.040 mg/L 0.036 EPA 200.7 

Total 
Aluminum 

0.31 0.13 0.52 0.04 0.06 mg/L 0.010 EPA 200.7 

Dissolved 
Aluminum 

0.209 0.014 0.034 0.030 0.013 mg/L 0.010 EPA 200.7 

Total 
Sodium 

46.70 5.56 6.02 15.50 2.64 mg/L 0.007 EPA 200.7 

Dissolved 
Sodium 

43.27 5.24 5.83 14.62 2.58 mg/L 0.007 EPA 200.7 

Total 
Magnesium 

96.17 42.06 103.30 147.40 7.77 mg/L 0.006 EPA 200.7 
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Parameter 
Sugarcamp 
5/25/2011 

Robinson 
Fork    

5/25/2011 

Radner 
5/25/2011 

James 
Creek 

5/25/2011 

20 mi. 
5/25/2011 Unit MDL  Method 

Dissolved 
Magnesium 

92.88 41.02 102.70 142.60 7.21 mg/L 0.006 EPA 200.7 

Total 
Calcium 

124.40 50.48 147.20 181.80 9.69 mg/L 0.007 EPA 200.7 

Dissolved 
Calcium 

119.20 48.79 145.70 173.50 8.06 mg/L 0.007 EPA 200.7 

Total 
Hardness 

706.65 299.25 792.95 1,060.95 56.19 mg/L  SM202340B 

Dissolved 
Hardness 

680.12 290.75 786.73 1,020.46 49.82 mg/L  SM202340B 

TSS 6.00 12.00 13.00 <2.00 <2.00 mg/L 2.00 SM202540D 
TDS 1,131 447 1,149 1,439 86 mg/L 2.00 SM202540C 

Temperature 
21.40 15.80 16.60 15.80 15.00 °C  

Field Test 
SM202550 B 

Flow 0.668 1.780 0.222 0.858 1.780 cfs  Field Test 

Field pH 8.44 7.54 8.25 7.98 7.85 S.U.  
Field Test 
SM204500H B 

Total 
Alkalinity 307.31 93.71 218.07 192.86 139.67 mg/L 0.31 SM202320B 
Total Acidity <0.63 <0.63 <0.63 <0.63 <0.63 mg/L 0.63 SM202310B 
Turbidity 7.10 1.80 3.70 4.50 18.60 NTU 0.10 EPA 180.1 
Sp. Cond. 1,045 923 1,188 1,308 943 µS/cm 1.9 EPA 120.1 
Total 
Sulfates 229.73 337.93 471.37 548.34 157.08 mg/L 0.1 EPA 300.0 
Chlorides 15.06 4.85 28.95 2.12 7.26 mg/L 0.07 EPA 300.0 
Total Iron 0.57 0.04 0.03 0.09 0.42 mg/L 0.007 EPA 200.7 
Dissolved 
Iron 0.110 0.010 0.010 <0.007 0.020 mg/L 0.007 EPA 200.7 
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Parameter 
Sugarcamp 
5/25/2011 

Robinson 
Fork    

5/25/2011 

Radner 
5/25/2011 

James 
Creek 

5/25/2011 

20 mi. 
5/25/2011 Unit MDL  Method 

Total 
Manganese 0.080 0.030 <0.036 0.040 0.120 mg/L 0.036 EPA 200.7 
Dissolved 
Manganese 0.050 0.030 <0.036 0.040 0.070 mg/L 0.036 EPA 200.7 
Total 
Aluminum 0.21 0.07 0.09 0.09 0.26 mg/L 0.010 EPA 200.7 
Dissolved 
Aluminum 0.105 0.063 0.071 0.066 0.118 mg/L 0.010 EPA 200.7 
Total 
Sodium 137.30 9.40 66.27 11.02 83.15 mg/L 0.007 EPA 200.7 
Dissolved 
Sodium 135.10 8.46 64.59 10.99 79.65 mg/L 0.007 EPA 200.7 
Total 
Magnesium 36.45 77.58 84.06 107.30 42.49 mg/L 0.006 EPA 200.7 
Dissolved 
Magnesium 33.67 75.92 82.88 104.30 37.48 mg/L 0.006 EPA 200.7 
Total 
Calcium 61.53 90.21 84.94 137.50 77.18 mg/L 0.007 EPA 200.7 
Dissolved 
Calcium 58.50 86.10 81.76 131.50 71.71 mg/L 0.007 EPA 200.7 
Total 
Hardness 303.74 544.73 558.25 785.20 367.69 mg/L  SM202340B 
Dissolved 
Hardness 284.73 527.63 545.45 757.86 333.40 mg/L  SM202340B 
TSS 2.00 <2.00 <2.00 <2.00 <2.00 mg/L 2.00 SM202540D 
TDS 676 733 827 1,304 625 mg/L 2.00 SM202540C 

Temperature 20.00 16.90 18.00 17.60 17.30 °C  
Field Test 
SM202550 B 

Flow 3.03 2.61 2.92 0.65 4.85 cfs  Field Test 



78 

 
 
 

Table 8 - Company 1 Additional Water Data Fall 2011 

Parameter 
Sugarcamp 
10/26/2011 

Robinson 
Fork 
10/26/2011 

 Radner 
10/26/2011 

Mammoth      
10/26/2011 

 20 mi.         
10/26/2011 Unit MDL  Method 

Field pH 
7.98 6.51 6.77 7.74 6.33 S.U.  

Field Test 
SM204500H B 

Total 
Alkalinity 

58.72 22.51 28.51 211.21 12.34 mg/L 0.31 SM202320B 

Total Acidity <0.63 <0.63 <0.63 <0.63 <0.63 mg/L 0.63 SM202310B 
Turbidity 9.80 8.80 11.23 4.20 3.35 NTU 0.10 EPA 180.1 
Sp. Cond. 1,541 721 1,423 1,299 346 µS/cm 1.9 EPA 120.1 
Total 
Sulfates 

712.35 335.27 725.92 552.16 55.21 mg/L 0.1 EPA 300.0 

Chlorides 18.76 1.25 9.87 1.87 1.14 mg/L 0.07 EPA 300.0 
Total Iron 0.05 0.05 0.91 0.06 0.04 mg/L 0.007 EPA 200.7 
Dissolved 
Iron 

<0.007 <0.007 0.150 <0.007 0.020 mg/L 0.007 EPA 200.7 

Total 
Manganese 

1.64 0.11 2.15 0.09 0.06 mg/L 0.036 EPA 200.7 

Dissolved 
Manganese 

1.31 0.09 2.03 0.02 0.04 mg/L 0.036 EPA 200.7 

Total 
Aluminum 

0.35 0.13 0.34 0.11 0.06 mg/L 0.010 EPA 200.7 

Dissolved 
Aluminum 

0.24 0.02 0.11 0.03 0.02 mg/L 0.010 EPA 200.7 

Total 
Sodium 

49.34 5.41 5.64 15.54 2.15 mg/L 0.007 EPA 200.7 
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Parameter 
Sugarcamp 
10/26/2011 

Robinson 
Fork 
10/26/2011 

 Radner 
10/26/2011 

Mammoth      
10/26/2011 

 20 mi.         
10/26/2011 Unit MDL  Method 

Dissolved 
Sodium 

45.14 5.16 4.82 11.70 1.87 mg/L 0.007 EPA 200.7 

Total 
Magnesium 

88.63 48.67 99.74 113.21 8.15 mg/L 0.006 EPA 200.7 

Dissolved 
Magnesium 

83.21 44.82 93.69 106.91 7.98 mg/L 0.006 EPA 200.7 

Total 
Calcium 

134.47 52.69 168.21 126.33 10.25 mg/L 0.007 EPA 200.7 

Dissolved 
Calcium 

128.50 47.13 157.46 123.71 10.05 mg/L 0.007 EPA 200.7 

Total 
Hardness 

745.28 317.51 821.64 786.98 66.72 mg/L  SM202340B 

Dissolved 
Hardness 

701.6 303.68 813.55 742.12 58.94 mg/L  SM202340B 

TSS 5.00 3.00 9.00 3.00 <2.00 mg/L 2.00 SM202540D 
TDS 1,189.42 554.21 1,256.00 1,067.00 95.00 mg/L 2.00 SM202540C 

Temperature 
18.21 15.40 15.91 16.45 16.21 °C  

Field Test 
SM202550 B 

Flow 0.54 1.82 0.22 0.69 1.91 cfs  Field Test 

Field pH 
7.68 7.81 7.61 8.14 8.35 S.U.  

Field Test 
SM204500H B 

Total 
Alkalinity 

85.42 415.62 155.22 225.63 298.45 mg/L 0.31 SM202320B 

Total Acidity <0.63 <0.63 <0.63 <0.63 <0.63 mg/L 0.63 SM202310B 
Turbidity 2.10 2.50 11.40 3.60 6.54 NTU 0.10 EPA 180.1 
Sp. Cond. 1,013 1,789 1,084 1,246 1,075 µS/cm 1.9 EPA 120.1 
Total 
Sulfates 

375.25 789.39 226.39 488.93 245.10 mg/L 0.1 EPA 300.0 

Chlorides 5.23 21.81 8.13 26.55 12.35 mg/L 0.07 EPA 300.0 
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Parameter 
Sugarcamp 
10/26/2011 

Robinson 
Fork 
10/26/2011 

 Radner 
10/26/2011 

Mammoth      
10/26/2011 

 20 mi.         
10/26/2011 Unit MDL  Method 

Total Iron 0.05 0.01 0.62 0.03 0.09 mg/L 0.007 EPA 200.7 
Dissolved 
Iron 

<0.007 <0.007 0.020 <0.007 0.040 mg/L 0.007 EPA 200.7 

Total 
Manganese 

0.050 0.050 0.130 <0.036 0.070 mg/L 0.036 EPA 200.7 

Dissolved 
Manganese 

0.010 0.010 0.090 <0.036 0.040 mg/L 0.036 EPA 200.7 

Total 
Aluminum 

0.11 0.04 0.31 0.11 0.23 mg/L 0.010 EPA 200.7 

Dissolved 
Aluminum 

0.05 0.03 0.13 0.08 0.09 mg/L 0.010 EPA 200.7 

Total 
Sodium 

9.52 17.84 91.52 75.21 145.21 mg/L 0.007 EPA 200.7 

Dissolved 
Sodium 

8.87 15.91 88.68 72.33 141.82 mg/L 0.007 EPA 200.7 

Total 
Magnesium 

79.42 155.42 48.71 89.81 38.29 mg/L 0.006 EPA 200.7 

Dissolved 
Magnesium 

75.31 151.79 45.35 84.20 35.71 mg/L 0.006 EPA 200.7 

Total 
Calcium 

95.64 198.65 78.52 79.54 66.13 mg/L 0.007 EPA 200.7 

Dissolved 
Calcium 

90.10 194.31 73.11 76.52 62.81 mg/L 0.007 EPA 200.7 

Total 
Hardness 

588.72 1,163.21 395.21 611.27 296.38 mg/L  SM202340B 

Dissolved 
Hardness 

554.90 1,127.85 354.65 593.59 275.41 mg/L  SM202340B 

TSS 3.00 4.00 3.00 4.00 3.00 mg/L 2.00 SM202540D 
TDS 785 1,456 714 875 721 mg/L 2.00 SM202540C 
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Parameter 
Sugarcamp 
10/26/2011 

Robinson 
Fork 
10/26/2011 

 Radner 
10/26/2011 

Mammoth      
10/26/2011 

 20 mi.         
10/26/2011 Unit MDL  Method 

Temperature 16.23 15.90 15.30 16.33 17.31 °C  
Field Test 

SM202550 B 
Flow 2.89 2.31 3.62 2.75 2.89 cfs  Field Test 
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Table 9 – Ion Imbalance Calculations from the 
GRI model from Spring 2011 

 
Sampling 
Location 

% Charge 
Difference 

% Survival 100%                
Stream Water 

Sugarcamp 
5/25/2011 

2.05 99.3 

Robinson Fork    
5/25/2011 

5.88 99.9 

Radner 
5/25/2011 

6.31 99.7 

James Creek                    
5/25/2011 

37.7 84.6 

20 Mile 
5/25/2011 

11.26 100 

Delbarton 
6/3/2011 

17.18 99.2 

ICC 
6/3/2011 

26.96 99.7 

Bandmill 
6/3/2011 

-0.27 98.4 

Mammoth 
6/3/2011 

10.73 99.2 

Marfork 
6/3/2011 

63.21 99.9 

 

 

Table 10 – Ion Imbalance Calculations from 
the GRI model from Fall 2011 

 
Sampling 
Location 

% Charge 
Difference 

% Survival 100% 
Stream Water 

Sugarcamp 
10/26/2011 

2.05 99.3 

Robinson Fork    
10/26/2011 

5.88 99.9 

Radner 
10/26/2011 

6.31 99.7 

Mammoth 
10/26/2011 

37.7 84.6 
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Sampling 
Location 

% Charge 
Difference 

% Survival 100% 
Stream Water 

20 Mile 
10/26/2011 

11.26 100 

ICC 
10/31/2011 

17.18 99.2 

James Creek 
10/31/2011 

26.96 99.7 

Marfork 
10/31/2011 

-0.27 98.4 

Bandmill 
11/2/2011 

10.73 99.2 

Delbarton 
11/2/2011 

63.21 99.9 

 
 

Table 11 - Company 2 Additional Water Data Winter 2011 

Date Sampling 
Location 

Bicarbonate 
(mg/L) 

Conductivity 
(µS/cm) 

Sulfate 
(mg/L) 

TDS (mg/L) 

Winter 
2011 

Big Horse 
Creek 

133.7 1,480 662.0 1,183 

Winter 
2011 

Jack Smith 
Branch 

77.5 766 294.3 527 

Winter 
2011 Pond Fork 

143.3 764 179.0 466 

Winter 
2011 

Mud Lick 
Branch 

95.2 1,333 536.7 947 

Winter 
2011 West Fork 

573.3 1,597 216.7 1,003 

Winter 
2011 Coal Fork 

20.1 1,361 222.7 766 

Winter 
2011 Seng Creek 

176.7 1,453 554.0 1,072 

Winter 
2011 Cabin Creek 

91.7 965 381.7 656 

Winter 
2011 Tom’s Fork 

186.0 2,200 1,042.7 1,833 

Winter 
2011 

Little White 
Oak 

26.9 750 333.3 503 
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Table 12 - Company 2 Additional Water Data Fall 2011 

Date Sampling 
Location 

Bicarbonate 
(mg/L) 

Conductivity 
(µS/cm) 

Sulfate  
(mg/L) 

TDS 
(mg/L) 

Fall 
2011 

UNT Boone 
Block Hollow 

195.7 1,400 584.0 971 

Fall 
2011 Big Horse Creek 

132.7 1,903 1,321.7 1,267 

Fall 
2011 Cow Creek 

155.0 926 241.3 569 

Fall 
2011 Jarrell Branch 

301.3 1,493 260.0 838 

Fall 
2011 UNT Left Fork  

87.9 1,947 963.3 1,367 

Fall 
2011 Pond Fork 

207.7 961 218.0 574 

Fall 
2011 Moccasin Hollow 

68.9 1,500 736.7 1,009 

Fall 
2011 

UNT Tenmile 
Fork 

253.0 1,840 842.0 1,310 

Fall 
2011 Pond Fork 

128.7 762 203.7 462 

 
 

Table 13 - Survival of Ceriodaphnia dubia Seven-day 
Chronic Toxicity Tests in 2008 

 

Test Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% 
Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

12/12/2008 Hardway Branch 90 100 >100 100 1,373 
12/12/2008 Line Creek 90 100 >100 100 883 
12/12/2008 Taylor Fork 90 100 >100 100 350 
12/15/2008 Big Creek 100 100 >100 100 918 
12/16/2008 Laurel Creek 100 100 >100 100 1,550 
12/16/2008 Mudlick Fork 90 100 >100 100 2,540 
12/16/2008 Robinson Creek 100 100 >100 100 802 

12/16/2008 
Spruce Laurel 
Fork 

90 100 >100 100 550 

12/16/2008 Stollings Fork 80 100 >100 100 1,826 
12/16/2008 West Fork 100 100 >100 100 2,120 
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Table 14 - Survival of Ceriodaphnia dubia Seven-day 

Chronic Toxicity Tests 2009 
 

 

Test 
Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

Survival 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

6/23/2009 
Downstream 
Fifteen Mile Fork 

100 50 >100 50 1,092 

6/23/2009 Mammoth Site 2 100 100 >100 100 631 

6/23/2009 
Upstream Fifteen 
Mile Fork 

100 90 >100 100 1,078 

6/23/2009 Mammoth Site 1 100 100 >100 100 815 
6/30/2009 PM 260 Inlet 80 70 >100 100 1,578 
6/30/2009 Laurel Creek 80 90 >100 100 2,342 
6/30/2009 PM 316 Pond 90 90 >100 100 1,598 

6/30/2009 
Mouth of 
Robinson Creek 

100 100 >100 100 2,137 

6/30/2009 Stollings Fork 100 80 >100 100 1,839 
6/30/2009 Mudlick Fork 90 80 >100 100 2,818 
9/14/2009 Ballard Branch 90 100 >100 100 1,783 
9/14/2009 Calvin Branch 90 80 >100 100 1,090 
9/14/2009 Stanley Fork 100 80 >100 50 2,520 
9/14/2009 Cow Creek 100 90 >100 50 1,010 
9/14/2009 Jarrell Branch 80 80 >100 100 2,660 
9/21/2009 White Oak 90 80 >100 100 1,338 
9/21/2009 Joes Creek 100 100 >100 100 2,990 
9/21/2009 Tenmile Fork 90 80 >100 100 1,378 
9/21/2009 Left Fork 100 50 100 25 2,660 
9/29/2009 Hardway Pond 100 90 >100 100 1,214 
9/29/2009 Laurel Creek 90 100 >100 100 1,307 
9/29/2009 PM 316 Pond 100 100 >100 100 1,892 

9/29/2009 
Mouth of 
Robinson Creek 
@ PM 24 location 

100 90 >100 100 1,912 

9/29/2009 Mudlick Fork 100 90 >100 100 2,081 
9/29/2009 Stollings Fork 80 90 >100 100 1,267 

10/06/2009 
Downstream 
Fifteen Mile Fork 

100 0 57 50 1,164 

10/6/2009 
Sixmile off 
Hughes Creek 

100 100 >100 100 889 



86 

Test 
Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

Survival 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

10/6/2009 
Upstream Fifteen 
Mile Fork 

100 90 >100 100 1,117 

10/6/2009 
Hughes Fork off 
Bells Creek 

100 100 >100 100 765 

 
 

 
Table 15 - Survival of Ceriodaphnia dubia Seven-day 

Chronic Toxicity Tests 2010 
 

Test 
Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

2/15/2010 Tenmile Fork 90 100 >100 100 1,130 
2/15/2010 White Oak 80 100 >100 100 1,028 
2/15/2010 Left Fork 90 100 >100 100 1,800 
2/15/2010 Joes Creek 90 90 >100 100 1,077 
2/15/2010 Sycamore Fork 90 90 >100 100 594 
2/22/2010 Cow Creek 100 90 >100 100 767 
2/22/2010 Jarrell Branch 100 80 >100 100 1,833 
2/22/2010 Stanley Fork 100 100 >100 100 1,798 
2/22/2010 Ballard Branch 100 90 >100 100 795 
2/22/2010 Calvin Branch 90 100 >100 100 748 

4/20/2010 
Hardway Pond @ 
Location PM 236 

100 100 >100 100 2,145 

4/20/2010 
Lilly Fork @ PM 
89 

100 100 >100 100 1,340 

4/20/2010 
Robinson North @ 
PM 181 

100 100 >100 100 2,380 

4/27/2010 Horse Creek 100 90 >100 100 429 
6/2/2010 No Name 100 100 >100 100 1,470 
6/2/2010 Slip Ridge 100 90 >100 100 1,096 
6/2/2010 Bias Branch 100 90 >100 100 392 

6/2/2010 
UBB Area of 
Jarrells Branch 

100 100 >100 100 1,760 

6/2/2010 Mudlick Fork 100 90 >100 100 2,403 

6/2/2010 
Mouth of Robinson 
Creek 

100 90 >100 100 1,275 
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Test 
Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

9/20/2010 Mud Lick Branch 90 90 >100 100 1,363 
9/20/2010 Jack Smith Branch 100 100 NTD* 100 690 
9/20/2010 Big Horse Creek 80 90 >100 100 1,538 
9/20/2010 Pond Fork 100 100 >100 100 840 
9/20/2010 West Fork 100 100 >100 100 1,610 
9/27/2010 Cabin Creek 90 100 >100 100 1,030 
9/27/2010 Coal Fork 100 100 >100 100 2,414 
9/27/2010 Seng Creek 100 90 >100 100 1,631 
9/27/2010 Tom’s Fork 100 70 >100 100 2,351 
9/27/2010 Little White Oak 100 90 >100 100 294 
9/28/2010 Slip Ridge 100 100 >100 100 817 
9/28/2010 Horse Creek 100 90 >100 100 693 
9/28/2010 Bias Branch 100 100 >100 100 342 

9/28/2010 
UBB Area of 
Jarrells Branch 

100 100 >100 100 1,759 

9/28/2010 Mudlick Fork 100 60 >100 50 3,019 
9/28/2010 No Name 100 0 50 50 1,718 
9/29/2010 Mudlick Fork 100 90 >100 100 2,081 

10/12/2010 
Mouth of Robinson 
Creek 

100 90 >100 100 2,311 

10/12/2010 Twenty Mile Creek 90 100 >100 100 3,047 

10/12/2010 
Lilly Fork @ PM 
89 

100 90 >100 100 1,579 

10/12/2010 
Hardway Pond @ 
Location PM 236 

100 90 >100 100 1,516 

 
 

Table 16 - Survival of Ceriodaphnia dubia Seven-day 
Chronic Toxicity Tests 2011 

 

Test 
Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

2/14/2011 Mud Lick Branch 90 100 >100 100 1,403 
2/14/2011 Jack Smith Branch 100 90 >100 100 816 
2/14/2011 Big Horse Creek 100 90 >100 100 1,546 
2/14/2011 Pond Fork 90 90 >100 100 795 
2/14/2011 West Fork 100 90 >100 100 1,570 
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Test 
Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

2/21/2011 Cabin Creek 90 90 >100 100 1,055 
2/21/2011 Coal Fork 100 90 >100 100 1,827 
2/21/2011 Seng Creek 80 80 >100 100 1,588 
2/21/2011 Tom’s Fork 100 80 >100 100 2,412 
2/21/2011 Little White Oak 80 80 >100 100 887 

5/24/2011 
Below 033 on 20 
Mile Fork 

100 80 >100 100 105 

5/24/2011 
James Creek 
below 015 

100 90 >100 100 1,692 

5/24/2011 
029 on Radner 
Fork of 20 mile 

100 100 >100 100 1,232 

5/24/2011 
013 Robinson 
North on 20 mile 

100 100 >100 100 472 

5/24/2011 001 on Sugarcamp 100 100 >100 100 1,341 

6/2/2011 
Bandmill Below 
016 

100 80 >100 100 1,127 

6/2/2011 
Delbarton below 
400 

100 100 >100 100 990 

6/2/2011 ICC Below 031 100 100 >100 100 882 

6/2/2011 
Mammoth below 
004 

100 100 >100 100 1,207 

6/2/2011 
Marfork Below 
018 

100 100 >100 100 857 

9/19/2011 
UNT Left Fork 
Creek 

90 80 >100 100 2,070 

9/19/2011 
UNT Tenmile 
Fork 

90 80 >100 100 1,850 

9/19/2011 
UNT Boone Block 
Hollow 

80 90 >100 100 1,540 

9/19/2011 Big Horse Creek 80 80 >100 100 2,130 
9/26/2011 Pond Fork 90 100 >100 100 844 
9/26/2011 Cow Creek 80 90 >100 100 1,090 
9/26/2011 Jarrell Branch 100 100 >100 100 1,520 
9/26/2011 Pond Fork 100 100 >100 100 1,160 
9/26/2011 Moccasin Hollow 90 90 >100 100 1,600 

10/25/2011 
Below 033 on 20 
Mile Fork 

100 70 >100 100 747 

10/25/2011 
Mammoth below 
004 

90 100 >100 100 460 
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Test 
Start 
Date 

Sampling 
Location 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

10/25/2011 
029 on Radner 
Fork of 20 mile 

90 100 >100 100 1,414 

10/25/2011 
013 Robinson 
North on 20 mile 

100 100 >100 100 2,018 

10/25/2011 001 on Sugarcamp 90 100 >100 100 1,710 

11/1/2011 
Bandmill Below 
016 

100 100 >100 100 1,084 

11/1/2011 
Delbarton below 
400 

80 100 >100 100 591 

11/1/2011 ICC Below 031 100 100 >100 100 671 

11/1/2011 
James Creek 
below 015 

90 70 >100 100 1,495 

11/1/2011 
Marfork Below 
018 

100 100 >100 100 340 

 
 
 

Table 17 - Reproduction of Ceriodaphnia dubia Seven-day 
Chronic Toxicity Tests in 2008 

 

Test Start 
Date Sampling Location NOEC LOEC IC25 

Initial Field 
Conductivity 

(µS/cm) 
12/12/2008 Hardway Branch 100 >100 93.95 1,373 
12/12/2008 Line Creek 100 >100 >100.00 883 
12/12/2008 Taylor Fork 100 >100 >100.00 350 
12/15/2008 Big Creek 100 >100 >100.00 918 
12/16/2008 Laurel Creek 100 >100 >100.00 1,550 
12/16/2008 Mudlick Fork 100 >100 >100.00 2,540 
12/16/2008 Robinson Creek 100 >100 >100.00 802 
12/16/2008 Spruce Laurel Fork 100 >100 >100.00 550 
12/16/2008 Stollings Fork 100 >100 >100.00 1,826 
12/16/2008 West Fork 100 >100 >100.00 2,120 
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Table 18 - Reproduction of Ceriodaphnia dubia Seven-day 
Chronic Toxicity Tests in 2009 

 
Test 
Start 
Date 

Sampling 
Location NOEC LOEC IC25 

Initial Field 
Conductivity 

(µS/cm) 

6/23/2009 
Downstream Fifteen 

Mile Fork 
12.5 25 17.90 1,092 

6/23/2009 Mammoth Site 2 50.0 100 91.50 631 

6/23/2009 
Upstream Fifteen 

Mile Fork 
12.5 25 18.40 1,078 

6/23/2009 Mammoth Site 1 50.0 100 86.20 815 
6/30/2009 PM 260 Inlet 100.0 >100 97.40 1,578 
6/30/2009 Laurel Creek 100.0 >100 >100.00 2,342 
6/30/2009 PM 316 Pond 100.0 >100 >100.00 1,598 

6/30/2009 
Mouth of Robinson 

Creek 
100.0 >100 98.60 2,137 

6/30/2009 Stollings Fork 50.0 100 69.10 1,839 
6/30/2009 Mudlick Fork 50.0 100 54.50 2,818 
9/14/2009 Ballard Branch 100.0 >100 >100.00 1,783 
9/14/2009 Calvin Branch 100.0 >100 >100.00 1,090 
9/14/2009 Stanley Fork 50.0 100 74.25 2,520 
9/14/2009 Cow Creek 50.0 100 83.41 1,010 
9/14/2009 Jarrell Branch 100.0 >100 69.94 2,660 
9/21/2009 White Oak 100.0 >100 >100.0 1,338 
9/21/2009 Joes Creek 100.0 >100 >100.0 2,990 
9/21/2009 Tenmile Fork 100.0 >100 81.25 1,378 
9/21/2009 Left Fork 25.0 50 29.28 2,660 
9/29/2009 Hardway Pond 100.0 >100 100.00 1,214 
9/29/2009 Laurel Creek 50.0 100 71.00 1,307 
9/29/2009 PM 316 Pond 50.0 100 >100 1,892 

9/29/2009 
Mouth of Robinson 

Creek @ PM 24 
location 

50.0 100 95.40 1,912 

9/29/2009 Mudlick Fork 25.0 50 55.70 2,081 
9/29/2009 Stollings Fork 100.0 >100 >100.00 1,267 

10/06/2009 
Downstream Fifteen 

Mile Fork 
12.5 25 18.70 1,164 

10/6/2009 
Sixmile off Hughes 

Creek 
100.0 >100 >100.00 889 

10/6/2009 
Upstream Fifteen 

Mile Fork 
25.0 50 15.70 1,117 

10/6/2009 
Hughes Fork off 

Bells Creek 
100.0 >100 80.60 765 
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Table 19 - Benthic Macroinvertebrate Metrics and 
Their Response to Disturbance 

 
Metric Description 

Taxa Richness Number of distinct taxa present 

EPT Taxa Richness 
Number of Ephemeroptera, Plecoptera, 
and Trichoptera taxa present 

Percent EPT 
Percentage of sample which is composed 
of the sensitive EPT individuals 

Percent Two Dominant 
Taxa 

Measures the dominance of the two most 
abundant taxa as a percentage 

Percent Chironomidae 
Percentage of sample which is composed 
of the family Chironomidae 

Hilsenhoff Biotic Index 
(HBI) 

Abundance-weighted average tolerance of 
assemblage of organisms (Scale of zero to 
10) 

 

 
Table 20 

WVSCI Scoring Criteria 
 

> 68.0 
UNIMPAIRED 
> 60.6 to 68.0 
GREY ZONE 

< 60.6 
IMPAIRED 

 
 
 

Table 21 - Reproduction of Ceriodaphnia dubia Seven-day 
Chronic Toxicity Tests in 2010 

 
Test 
Start 
Date 

Sampling 
Location NOEC LOEC IC25 

Initial Field 
Conductivity 

(µS/cm) 
2/15/2010 Tenmile Fork 100.0 >100 >100.00 1,130 
2/15/2010 White Oak 100.0 >100 >100.00 1,028 
2/15/2010 Left Fork 50.0 100 90.47 1,800 
2/15/2010 Joes Creek 100.0 >100 >100.00 1,077 
2/15/2010 Sycamore Fork 100.0 >100 >100.00 594 



92 

Test 
Start 
Date 

Sampling 
Location NOEC LOEC IC25 

Initial Field 
Conductivity 

(µS/cm) 
2/22/2010 Cow Creek 50.0 100 74.72 767 
2/22/2010 Jarrell Branch 100.0 >100 >100.00 1,833 
2/22/2010 Stanley Fork 50.0 100 93.62 1,798 
2/22/2010 Ballard Branch 100.0 >100 >100.00 795 
2/22/2010 Calvin Branch 100.0 >100 >100.00 748 

4/20/2010 
Hardway Pond @ 
Location PM 236 

50.0 100 90.60 2,145 

4/20/2010 Lilly Fork @ PM 89 50.0 100 85.70 1,340 

4/20/2010 
Robinson North @ PM 
181 

100.0 >100 89.60 2,380 

4/27/2010 Horse Creek 100.0 >100 >100.00 429 
6/2/2010 No Name 50.0 100 65.50 1,470 
6/2/2010 Slip Ridge 100.0 >100 95.10 1,096 
6/2/2010 Bias Branch 12.5 25 15.40 392 

6/2/2010 
UBB Area of Jarrells 
Branch 

25.0 50 45.00 1,760 

6/2/2010 Mudlick Fork 25.0 50 46.60 2,403 

9/20/2010 
Mouth of Robinson 
Creek 

50.0 100 62.70 1,275 

9/20/2010 Mud Lick Branch 100.0 >100 77.40 1,363 
9/20/2010 Jack Smith Branch 50.0 100 65.35 690 
9/20/2010 Big Horse Creek 100.0 >100 >100.00 1,538 
9/20/2010 Pond Fork 100.0 >100 >100.00 840 
9/27/2010 West Fork 100.0 >100 84.92 1,610 
9/27/2010 Cabin Creek 100.0 >100 >100.00 1,030 
9/27/2010 Coal Fork 100.0 >100 87.74 2,414 
9/27/2010 Seng Creek 50.0 100 78.49 1,631 
9/27/2010 Tom’s Fork 50.0 100 56.61 2,351 
9/28/2010 Little White Oak 100.0 >100 >100.00 294 
9/28/2010 Slip Ridge 100.0 >100 >100.00 817 
9/28/2010 Horse Creek 100.0 >100 75.00 693 
9/28/2010 Bias Branch 100.0 >100 25.70 342 

9/28/2010 
UBB Area of Jarrells 
Branch 

50.0 100 74.60 1,759 

9/28/2010 Mudlick Fork 25.0 50 51.10 3,019 
9/29/2010 No Name 12.5 25 29.60 1,718 
10/12/2010 Mudlick Fork 25.0 50 55.70 2,081 

10/12/2010 
Mouth of Robinson 
Creek 

50.0 100 68.80 2,311 

10/12/2010 Twenty Mile Creek 50.0 100 73.50 3,047 
10/12/2010 Lilly Fork @ PM 89 100.0 >100 >100.00 1,579 
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Test 
Start 
Date 

Sampling 
Location NOEC LOEC IC25 

Initial Field 
Conductivity 

(µS/cm) 

10/12/2010 
Hardway Pond @ 
Location PM 236 

50.0 100 52.70 1,516 

 
 

Table 22 - Reproduction of Ceriodaphnia dubia Seven-day 
Chronic Toxicity Tests in 2011 

 
Test 
Start 
Date 

Sampling 
Location NOEC LOEC IC25 

Initial Field 
Conductivity 

(µS/cm) 
2/14/2011 Mud Lick Branch 100.0 >100 >100.00 1,403 
2/14/2011 Jack Smith Branch 100.0 >100 >100.00 816 
2/14/2011 Big Horse Creek 100.0 >100 >100.00 1,546 
2/14/2011 Pond Fork 100.0 >100 >100.00 795 
2/14/2011 West Fork 100.0 >100 >100.00 1,570 
2/21/2011 Cabin Creek 100.0 >100 >100.00 1,055 
2/21/2011 Coal Fork 100.0 >100 >100.00 1,827 
2/21/2011 Seng Creek 100.0 >100 >100.00 1,588 
2/21/2011 Tom’s Fork 100.0 >100 58.31 2,412 
2/21/2011 Little White Oak 50.0 100 71.27 887 
4/20/2011 Lilly Fork @ PM 89 50.0 100 85.70 1,340 

5/24/2011 
Below 033 on 20 Mile 
Fork 

50.0 100 70.10 105 

5/24/2011 James Creek below 015 50.0 100 58.60 1,692 

5/24/2011 
029 on Radner Fork of 20 
mile 

25.0 50 47.80 1,232 

5/24/2011 
013 Robinson North on 20 
mile 

100.0 >100 >100.00 472 

5/24/2011 001 on Sugarcamp 100.0 >100 >100.00 1,341 
6/2/2011 Bandmill Below 016 100.0 >100 >100.00 1,127 
6/2/2011 Delbarton below 400 100.0 >100 >100.00 990 
6/2/2011 ICC Below 031 100.0 >100 >100.00 882 
6/2/2011 Mammoth below 004 100.0 >100 >100.00 1,207 
6/2/2011 Marfork Below 018 100.0 >100 >100.00 857 
9/19/2011 UNT Left Fork Creek 100.0 >100 >100.00 2,070 
9/19/2011 UNT Tenmile Fork 100.0 >100 >100.00 1,850 
9/19/2011 UNT Boone Block Hollow 100.0 >100 >100.00 1,540 
9/19/2011 Big Horse Creek 100.0 >100 >100.00 2,130 
9/26/2011 Pond Fork 100.0 >100 >100.00 844 
9/26/2011 Cow Creek 100.0 >100 >100.00 1,090 
9/26/2011 Jarrell Branch 100.0 100 >100.00 1,520 



94 

Test 
Start 
Date 

Sampling 
Location NOEC LOEC IC25 

Initial Field 
Conductivity 

(µS/cm) 
9/26/2011 Pond Fork 100.0 >100 >100.00 1,160 
9/26/2011 Moccasin Hollow 100.0 >100 >100.00 1,600 

10/25/2011 
Below 033 on 20 Mile 
Fork 

100.0 >100 96.50 747 

10/25/2011 Mammoth below 004 50.0 100 84.20 460 

10/25/2011 
029on Radner Fork of 20 
mile 

100.0 >100 >100.00 1,414 

10/25/2011 
013 Robinson North on 20 
mile 

100.0 >100 >100.00 2,018 

10/25/2011 001 on Sugarcamp 100.0 >100 88.10 1,710 
11/1/2011 Bandmill Below 016 100.0 >100 >100.00 1,084 
11/1/2011 Delbarton below 400 100.0 >100 >100.00 591 
11/1/2011 ICC Below 031 50.0 100 42.20 671 
11/1/2011 James Creek below 015 50.0 100 66.50 1,495 
11/1/2011 Marfork Below 018 100.0 >100 >100.00 340 
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Table 23 - Habitat Assessment for Benthic Macroinvertebrate 
Toxicity Sampling Fall 2009 

 
Station Habitat 

Category/Parameter 

Highest 
Possible 
Score 

Ballard 
Branch 

Calvin 
Branch 

White Oak 
Creek 

Joes  
Creek 

Epifaunal 
Substrate/Available 
Cover 

20 11 15 14 11 

Embeddedness 20 11 10 7 13 
Velocity/Depth Regime 20 9 10 13 13 
Sediment Deposition 20 14 16 14 15 
Channel Flow Status 20 7 9 15 14 
Channel Alteration 20 15 15 15 13 
Frequency of Riffles (or 
bends) 

20 6 10 14 12 

Bank Stability 20 16 10 14 12 
Vegetative Protection 20 16 16 14 14 
Riparian Vegetative 
Zone Width 

20 7 3 4 4 

Total 200 112 114 124 121 
Assessment category Marginal Suboptimal Suboptimal Suboptimal 
Epifaunal Substrate/Available 
Cover 20 14 15 15 
Embeddedness 20 12 6 13 
Velocity/Depth Regime 20 15 12 14 
Sediment Deposition 20 11 8 12 
Channel Flow Status 20 14 7 11 
Channel Alteration 20 15 15 15 
Frequency of Riffles (or bends) 20 14 12 11 
Bank Stability 20 11 8 14 
Vegetative Protection 20 12 16 12 
Riparian Vegetative Zone Width 20 4 2 4 
Total 200 122 101 121 
Assessment category Suboptimal Marginal Suboptimal Suboptimal 
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Table 24 - Habitat Assessment for Benthic 
Macroinvertebrate Toxicity Sampling Fall 2010 

 
Station 

Habitat 
Category/Parameter 

Highest 
Possible 
Score 

Mud 
Lick 

Branch 

Jack 
Smith 

Branch 

Big 
Horse 
Creek 

Pond 
Fork 

West 
Fork 

Epifaunal 
Substrate/Available 
Cover 

20 8 13 14 14 14 

Embeddedness 20 2 13 10 10 8 
Velocity/Depth 
Regime 

20 7 14 13 14 12 

Channel Alteration 20 8 14 14 14 14 
Sediment Deposition 20 14 13 14 14 14 
Frequency of Riffles 
(or bends) 

20 13 12 13 15 13 

Channel Flow Status 20 12 12 13 14 14 
Bank Stability 20 12 7 13 13 12 
Bank Vegetative 
Protection 

20 13 6 10 12 14 

Width of 
Undisturbed 
Vegetative Zone 

20 2 2 2 2 4 

Total 200 91 106 116 122 119 
RBP Assessment 
Category 

 Marginal Marginal 
Sub-

Optimal 
Sub-

Optimal 
Sub-

Optimal 
       
       
Benthic 
Macroinvertebrate 
Substrate 

20 8 14 15 15 14 

Trash Index 20 12 5 11 8 11 
Remoteness Rating 20 4 6 5 4 6 
Epifaunal 
Substrate/Available 
Cover 

20 10 14 11 14 10 

Embeddedness 20 10 13 9 14 12 
Velocity/Depth 
Regime 

20 12 9 12 14 6 

Channel Alteration 20 13 14 13 14 14 
Sediment Deposition 20 12 14 13 13 14 
Frequency of Riffles 
(or bends) 

20 13 12 14 14 9 

Channel Flow Status 20 12 11 11 12 6 
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Station 
Habitat 

Category/Parameter 

Highest 
Possible 
Score 

Mud 
Lick 

Branch 

Jack 
Smith 

Branch 

Big 
Horse 
Creek 

Pond 
Fork 

West 
Fork 

Bank Stability 20 10 11 10 12 9 
Bank Vegetative 
Protection 

20 11 12 10 9 12 

Width of 
Undisturbed 
Vegetative Zone 

20 5 4 2 5 12 

Total  200 108 114 105 121 104 
RBP Assessment 
Category  Marginal 

Sub-
Optimal Marginal 

Sub-
Optimal Marginal 

       
        
Benthic 
Macroinvertebrate 
Substrate 

20 9 14 10 14 6 

Trash Index 20 5 14 10 13 11 
Remoteness Rating 20 4 7 5 6 13 

 
 
 

Table 25 - Habitat Assessment for Benthic 
Macroinvertebrate Toxicity Sampling Fall 2011 

 
Station 

Habitat 
Category/Parameter 

Highest 
Possible 
Score 

UNT 
Left 
Fork 

UNT 
Tenmile 

Fork 

UNT 
Boone 
Block 

Hollow 

Big 
Horse 
Creek 

Pond        
Fork 

Epifaunal 
Substrate/Available 
Cover 

20 10 12 13 13 14 

Embeddedness 20 6 9 11 13 11 
Velocity/Depth 
Regime 

20 13 8 12 7 15 

Channel Alteration 20 14 12 15 11 10 
Sediment Deposition 20 10 12 6 11 12 
Frequency of Riffles 
(or bends) 

20 13 11 11 10 14 

Channel Flow Status 20 15 14 14 13 14 
Bank Stability 20 14 14 16 16 12 
Bank Vegetative 
Protection 

20 16 18 16 16 9 
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Station 

Habitat 
Category/Parameter 

Highest 
Possible 
Score 

UNT 
Left 
Fork 

UNT 
Tenmile 

Fork 

UNT 
Boone 
Block 

Hollow 

Big 
Horse 
Creek 

Pond        
Fork 

Width of 
Undisturbed 
Vegetative Zone 

20 6 10 10 4 4 

Total  200 117 120 124 114 115 
RBP 
Assessment 
Category                             

Sub-
Optimal 

Sub-
Optimal 

Sub-
Optimal 

Sub-
Optimal 

Sub-
Optimal 

       
        
Benthic 
Macroinvertebrate 
Substrate 

20 10 13 13 13 14 

Trash Index 20 7 10 14 16 11 
Remoteness Rating 20 7 6 13 4 5 

 
 

 
Table 25 (Continued) - Habitat Assessment for Benthic 

Macroinvertebrate Toxicity Sampling Fall 2011 
 

Station Habitat 
Category/Parameter 

Highest 
Possible 
Score 

Cow       
Creek 

Jarrell          
Branch 

Pond        
Fork 

Moccasin 
Hollow 

Epifaunal 
Substrate/Available 
Cover 

20 13 11 14 14 

Embeddedness 20 11 10 13 13 
Velocity/Depth 
Regime 

20 14 6 14 15 

Channel Alteration 20 14 5 14 13 
Sediment Deposition 20 13 11 13 14 
Frequency of Riffles 
(or bends) 

20 12 6 13 15 

Channel Flow Status 20 14 14 14 15 
Bank Stability 20 12 12 12 11 
Bank Vegetative 
Protection 

20 10 4 13 8 

Width of 
Undisturbed 
Vegetative Zone 

20 4 2 6 6 
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Station Habitat 
Category/Parameter 

Highest 
Possible 
Score 

Cow       
Creek 

Jarrell          
Branch 

Pond        
Fork 

Moccasin 
Hollow 

Total  200 117 81 126 124 
RBP Assessment 
Category  

Sub-
Optimal 

Marginal 
Sub-

Optimal 
Sub- 

Optimal 
      
       
Benthic 
Macroinvertebrate 
Substrate 

20 13 6 13 13 

Trash Index 20 13 11 11 14 
Remoteness Rating 20 4 4 5 6 

 
 

Table 26 - Inorganic Substrate Components Results for 
Benthic Macroinvertebrate Toxicity Sampling Fall 2009 

 

Sampling Station Bedrock Boulder Cobble Gravel Sand Silt Clay 

Ballard Branch 0 5 35 30 20 10 0 
Calvin Branch 5 10 60 10 10 5 0 
White Oak Creek 0 15 30 25 20 10 0 
Joes Creek 0 15 40 20 20 5 0 
Tenmile Fork 0 5 40 35 10 10 0 
Stanley Fork 0 5 60 10 20 5 0 
Cow Creek 10 15 40 20 10 5 0 
Jarrell Branch 0 5 45 30 10 10 0 
Left Fork 0 20 20 40 10 10 0 
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Table 27 - Inorganic Substrate Components Results for 
Benthic Macroinvertebrate Toxicity Sampling Fall 2010 

 
Sampling 
Station 

Bedrock Boulder  Cobble Coarse 
Gravel 

Fine 
Gravel 

Sand Silt & 
Fines 

Clay 

Mud Lick 
Branch 

60 10 5 10 10 5 0 0 

Jack 
Smith 
Branch 

0 10 40 10 10 10 10 0 

Big 
Horse 
Creek 

0 10 30 20 20 10 20 0 

Pond 
Fork 

0 25 50 5 10 10 0 0 

West 
Fork 

0 20 30 40 5 0 5 0 

Cabin 
Creek 

0 10 60 10 10 10 0 0 

Coal Fork 0 5 40 30 10 5 10 0 
Seng 
Creek 

0 40 20 20 10 10 0 0 

Tom’s 
Fork 

0 20 40 20 10 10 0 0 

Little 
White 
Oak 

0 10 60 20 10 0 0 0 

 
 
 

Table 28 - Inorganic Substrate Components Results for 
Benthic Macroinvertebrate Toxicity Sampling Fall 2011 

 
 

Sampling Station Bedrock Boulder  Cobble 
Coarse 
Gravel 

Fine 
Gravel Sand 

Silt & 
Fines Clay 

UNT Left Fork 10 5 35 25 15 5 5 0 
UNT Tenmile Fork 0 0 45 25 20 5 5 0 
UNT Boone Block 
Hollow 

0 0 40 25 10 15 10 0 

Big Horse Creek 0 0 40 25 15 10 10 0 
Pond Fork 0 5 40 20 20 10 10 0 
Cow Creek 10 30 40 10 5 5 0 0 
Jarrell Branch 0 0 30 40 20 10 0 0 
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Sampling Station Bedrock Boulder  Cobble Coarse 
Gravel 

Fine 
Gravel 

Sand Silt & 
Fines 

Clay 

Pond Fork 0 10 40 20 20 10 0 0 
Moccasin Hollow 0 10 20 20 40 10 0 0 

 
 
 
 

Table 29 – Field Water Chemistry Results for Benthic 
Macroinvertebrate Sampling Fall 2009 

 
Sampling 
Station 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen (mg/L) 

Temperature  
(°C) 

pH 
(S.U.) 

Turbidity 
(NTU) 

Flow               
(cfs) 

Ballard 
Branch 

1,687 9.83 16.6 8.26 6.3 0.45 

Calvin 
Branch 

984 10.33 13.9 7.78 3.0 0.59 

Stanley 
Fork 

1,951 9.87 15.1 8.28 10.0 2.86 

Cow 
Creek 

960 10.17 15.4 8.53 0.0 3.23 

Jarrell 
Branch 

2,410 9.10 18.2 8.38 5.7 0.80 

White 
Oak 

1,197 9.29 17.6 7.98  6.20 

Joes 
Creek 

2,990 9.52 16.7 7.66  2.28 

Tenmile 
Fork 

1,112 10.36 13.9 7.95  3.48 

Left Fork 1,842 9.51 16.9 8.01  2.82 
 
 

Table 30 – Field Water Chemistry Results for Benthic 
Macroinvertebrate Sampling Fall 2010 

 
Sampling 
Station 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen (mg/L) 

Temperature  
(°C) 

pH 
(S.U.) 

Turbidity 
(NTU) 

Flow                
(cfs) 

Mud Lick 
Branch 

1,319 7.47 22.5 7.77 34.0 0.76 

Jack 
Smith 
Branch 

1,242 7.53 18.3 8.14 8.5 0.86 

Big Horse 
Creek 

1,761 7.22 18.8 7.91 1.7 2.11 
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Sampling 
Station 

Conductivity 
(µS/cm) 

Dissolved 
Oxygen (mg/L) 

Temperature  
(°C) 

pH 
(S.U.) 

Turbidity 
(NTU) 

Flow                
(cfs) 

Pond 
Fork 

835 8.95 21.4 8.52 3.0 27.59 

West 
Fork 

1,686 8.53 19.3 8.21 4.9 13.40 

Cabin 
Creek 

1,039 8.89 14.2 8.11 11.0 26.10 

Coal Fork 2,747 9.13 14.5 7.92 4.1 6.76 
Seng 
Creek 

1,657 8.65 16.2 8.31 2.8 2.45 

Tom’s 
Fork 

2,410 7.63 18.0 8.15 5.4 18.54 

Little 
White 
Oak 

222 7.75 17.1 7.87 3.6 0.04 

 
 
 

Table 31 – Field Water Chemistry Results for 
Benthic Macroinvertebrate Sampling Fall 2011 

 

Sampling Station Conductivity 
(µS/cm) 

Temperature  
(°C) 

pH (S.U.) Turbidity 
(NTU) 

Flow                      
(cfs) 

UNT Left Fork  1,965 17.3 7.35 4.1 0.79 
UNT Tenmile Fork 1,818 16.9 7.87 3.6 0.45 
UNT Boone Block 
Hollow 

1,398 17.0 8.01 4.2 0.46 

Big Horse Creek 1,768 17.1 7.69 3.2 7.00 
Pond Fork 622 16.0 8.42 4.0 19.67 
Cow Creek 744 16.1 8.70 4.5 3.31 
Jarrell Branch 1,388 17.8 8.63 6.0 1.43 
Pond Fork 766 18.5 8.64 4.9 48.14 
Moccasin Hollow 1,351 17.4 8.12 19.0 0.77 
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Table 32 - Survival of Ceriodaphnia dubia in 
Seven-day Toxicity Tests Fall 2009 

 

Receiving 
Stream 

% 
Control 
Survival 

% Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

Ballard Branch 90 100 >100.0 100 1,783 
Calvin Branch 90 80 >100.0 100 1,090 
White Oak 90 80 >100.0 100 1,338 
Joes Creek 100 100 >100.0 100 2,990 
Tenmile Fork 90 80 >100.0 100 1,378 
Stanley Fork 100 80 >100.0 50 2,520 
Cow Creek 100 90 >100.0 50 1,010 
Jarrell Branch 80 80 >100.0 100 2,660 
Left Fork 100 50 100.0 25 2,640 

 
 
 

Table 33 - Results of Reproductive Comparisons for 
Ceriodaphnia dubia Seven-day Toxicity Tests Fall 2009 

 

Receiving Stream NOEC LOEC IC25 
Initial Field 
Conductivity 

(µS/cm) 
Ballard Branch 100 >100.0 >100.00 1,783 
Calvin Branch 100 >100.0 >100.00 1,090 
White Oak 100 >100.0 >100.00 1,338 
Joes Creek 100 >100.0 >100.00 2,990 
Tenmile Fork 100 >100.0 81.25 1,378 
Stanley Fork 50 100.0 74.25 2,520 
Cow Creek 50 100.0 83.41 1,010 
Jarrell Branch 100 >100.0 69.94 2,660 
Left Fork 25 50.0 29.28 2,640 
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Table 34 - Survival of Ceriodaphnia dubia in 
Seven-day Toxicity Tests Fall 2010 

 

Receiving 
Stream 

% 
Control 
Survival 

% 
Survival in 

100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

Mud Lick 
Branch 90 90 >100.0 100 1,363 
Jack Smith 
Branch 100 100 NTD* 100 690 
Big Horse 
Creek 80 90 >100.0 100 1,538 
Pond Fork 100 100 >100.0 100 840 
West Fork 100 100 >100.0 100 1,610 
Cabin Creek 90 100 >100.0 100 1,030 
Coal Fork 100 100 >100.0 100 2,414 
Seng Creek 100 90 >100.0 100 1,631 
Tom’s Fork 100 70 >100.0 100 2,351 
Little White 
Oak 100 90 >100.0 100 294 

 
NTD* - No Toxicity Demonstrated 

 
 
 

Table 35 - Results of Reproductive Comparisons for 
Ceriodaphnia dubia Seven-day Toxicity Tests Fall 2010 

 

Receiving Stream NOEC LOEC IC25 
Initial Field 
Conductivity 

(µS/cm) 
Mud Lick Branch 100 >100.0 77.40 1,363 
Jack Smith Branch 50 100.0 65.35 690 
Big Horse Creek 100 >100.0 >100.00 1,538 
Pond Fork 100 >100.0 >100.00 840 
West Fork 100 >100.0 84.92 1,610 
Cabin Creek 100 >100.0 >100.00 1,030 
Coal Fork 100 >100.0 87.74 2,414 
Seng Creek 50 100.0 78.49 1,631 
Tom’s Fork 50 100.0 56.61 2,351 
Little White Oak 100 >100.0 >100.00 294 
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Table 36 - Survival of Ceriodaphnia dubia in 
Seven-day Toxicity Tests Fall 2011 

 

Receiving Stream 
% 

Control 
Survival 

% 
Survival 
in 100% 
Stream 
Water 

LC50 NOEC 
Initial Field 
Conductivity 

(µS/cm) 

UNT Left Fork Creek 90 80 >100.0 100 2,070 
UNT Tenmile Fork 90 80 >100.0 100 1,850 
UNT Boone Block 
Hollow 

80 90 >100.0 100 1,540 

Big Horse Creek 80 80 >100.0 100 2,130 
Pond Fork 90 100 >100.0 100 844 
Cow Creek 80 90 >100.0 100 1,090 
Jarrell Branch 100 100 >100.0 100 1,520 
Pond Fork 100 100 >100.0 100 1,160 
Moccasin Hollow 90 90 >100.0 100 1,600 
 
 
 

Table 37 - Results of Reproductive Comparisons for 
Ceriodaphnia dubia Seven-day Toxicity Tests Fall 2011 

 

Receiving Stream NOEC LOEC IC25 
Initial Field 
Conductivity 

(µS/cm) 
UNT Left Fork Creek 100 >100.0 >100.0 2,070 
UNT Tenmile Fork 100 >100.0 >100.0 1,850 
UNT Boone Block Hollow 100 >100.0 >100.0 1,540 
Big Horse Creek 100 >100.0 >100.0 2,130 
Pond Fork 100 >100.0 >100.0 844 
Cow Creek 100 >100.0 >100.0 1,090 
Jarrell Branch 100 100.0 >100.0 1,520 
Pond Fork 100 >100.0 >100.0 1,160 
Moccasin Hollow 100 >100.0 >100.0 1,600 
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Table 38 - Genus Level Benthic Macroinvertebrate 

Summary for Toxicity Sampling Fall 2009 
 

Station Sample 
Method 

Taxa 
Richness 

EPT 
Taxa 

Richness 

Percent 
EPT 

Percent 
Two 

Dominant 
Taxa 

Percent 
Chironomidae 

HBI 

Ballard Branch Kicknet 11 3 21.52 64.56 46.84 4.8 
Calvin Branch Kicknet 16 5 46.45 57.92 26.23 5.9 
White Oak Creek Kicknet 23 6 49.04 53.85 23.56 4.7 
Joes Creek Kicknet 13 7 22.98 69.57 58.39 4.8 
Tenmile Fork Kicknet 14 6 40.22 63.13 45.25 4.5 
Stanley Fork Kicknet 12 4 34.38 77.08 48.96 4.8 
Cow Creek Kicknet 12 6 61.96 50.00 7.07 4.2 
Jarrell Branch Kicknet 18 6 27.78 65.66 56.57 5.1 
Left Fork Kicknet 11 4 86.15 86.54 10.00 1.7 

 
 
 

Table 39 - Family Level Benthic Macroinvertebrate 
Summary for Toxicity Sampling Fall 2009 

 

Station Sample 
Method 

Taxa 
Richness 

EPT 
Taxa 

Richness 

Percent 
EPT 

Percent 
Two 

Dominant 
Taxa 

Percent 
Chironomidae 

HBI 
WVSCI 
Total 
Score 

WVSCI 
Scoring 
Criteria 

Ballard 
Branch 

Kicknet 7 1 21.52 68.35 46.84 5.8** ** ** 

Calvin 
Branch 

Kicknet 12 2 46.45 64.48 26.23 6.0 51.67 Impaired 
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Station Sample 
Method 

Taxa 
Richness 

EPT 
Taxa 

Richness 

Percent 
EPT 

Percent 
Two 

Dominant 
Taxa 

Percent 
Chironomidae 

HBI 
WVSCI 
Total 
Score 

WVSCI 
Scoring 
Criteria 

White 
Oak 
Creek 

Kicknet 17 4 49.04 65.38 23.56 5.4 60.27 Impaired 

Joes 
Creek 

Kicknet 10 4 22.98 70.81 58.39 6.2 40.88 Impaired 

Tenmile 
Fork 

Kicknet 11 4 40.22 82.12 45.25 6.0 44.40 Impaired 

Stanley 
Fork 

Kicknet 11 3 34.38 77.08 48.96 5.4 44.25 Impaired 

Cow 
Creek 

Kicknet 10 4 61.96 53.26 7.07 5.1 63.65 Grey Zone 

Jarrell 
Branch 

Kicknet 14 4 27.78 71.21 56.57 6.1 45.23 Impaired 

Left 
Fork 

Kicknet 8 2 86.15 86.54 10.00 3.7 57.96 Impaired 

 
   ** Less than 180 organisms 
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Table 40 - Genus Level Benthic Macroinvertebrate 
Summary for Toxicity Sampling Fall 2010 

 

Station Sample 
Method 

Taxa 
Richness 

 EPT 
Taxa 
Richness 

Percent 
EPT 

Percent 
Two 
Dominant 
Taxa 

Percent 
Chironomidae 

HBI 

Mud 
Lick 
Branch 

Kicknet 7 3 40.00 50.00 30.00 6.2 

Jack 
Smith 
Branch 

Kicknet 18 7 33.67 75.88 48.74 6.1 

Big 
Horse 
Creek 

Kicknet 13 5 35.96 71.92 46.31 5.9 

Pond 
Fork 

Kicknet 18 8 61.14 33.16 11.92 4.2 

West 
Fork 

Kicknet 14 6 21.54 72.82 61.54 6.1 

Cabin 
Creek 

Kicknet 8 4 11.76 84.13 66.67 5.8 

Coal 
Fork 

Kicknet 14 7 28.17 77.46 67.14 6.0 

Seng 
Creek 

Kicknet 18 8 35.64 61.70 39.89 5.5 

Tom’s 
Fork 

Kicknet 10 6 60.40 56.44 34.65 5.2 

Little 
White 
Fork 

Kicknet 15 7 55.93 66.10 28.81 5.9 
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Table 41 - Family Level Benthic Macroinvertebrate 
Summary for Toxicity Sampling Fall 2010 

 

Station Sample 
Method 

Taxa 
Richness 

EPT 
Taxa 

Richness 

Percent 
EPT 

Percent 
Two 

Dominant 
Taxa 

Percent 
Chironomidae 

HBI 
WVSCI 
Total 
Score 

WVSCI 
Scoring 
Criteria 

Mud 
Lick 
Branch 

Kicknet 6 2 40.00 60.00 30.00 6.0 46.10 Impaired 

Jack 
Smith 
Branch 

Kicknet 15 6 33.67 77.89 48.74 5.8 49.38 Impaired 

Big 
Horse 
Creek 

Kicknet 10 4 35.96 74.88 46.31 5.7 44.82 Impaired 

Pond 
Fork 

Kicknet 13 6 61.14 48.19 11.92 4.6 69.79 Unimpaired 

West 
Fork 

Kicknet 11 4 21.54 77.95 61.54 6.0 38.86 Impaired 

Cabin 
Creek 

Kicknet 7 3 11.76 84.31 66.67 6.2 29.83 Impaired 

Coal 
Fork 

Kicknet 13 6 28.17 87.32 67.14 5.8 41.24 Impaired 

Seng 
Creek 

Kicknet 16 6 35.64 69.68 39.89 5.7 54.40 Impaired 

Tom’s 
Fork 

Kicknet 8 4 60.40 80.69 34.65 5.5 48.82 Impaired 

Little 
White 
Fork 

Kicknet 13 6 55.93 67.80 28.81 5.3 59.12 Impaired 
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Table 42 - Genus Level Benthic Macroinvertebrate 
Summary for Toxicity Sampling Fall 2011 

 

Station Sample 
Method 

Taxa 
Richness 

EPT 
Taxa 

Richness 

Percent 
EPT 

Percent 
Two 

Dominant 
Taxa 

Percent 
Chironomidae 

HBI  

*UNT Left 
Fork 

Kicknet 16 8 49.28 46.38 17.39 5.3 

UNT 
Tenmile 
Fork 

Kicknet 14 3 12.05 54.22 42.17 6.4 

*UNT 
Boone Block 
Hollow 

Kicknet 18 5 46.63 58.55 20.73 14.0 

*Big Horse 
Creek 

Kicknet 14 2 1.24 71.43 43.48 6.1 

*Pond Fork Kicknet 14 7 21.70 68.40 50.00 5.4 
Cow Creek Kicknet 14 5 60.77 57.89 6.22 4.4 
*Jarrell 
Branch 

Kicknet 13 4 8.57 74.29 41.90 5.1 

Pond Fork Kicknet 14 7 39.89 64.48 48.09 5.6 
Moccasin 
Hollow 

Kicknet 18 8 51.98 56.50 34.46 5.2 

* all organisms identified in kicknet sample 
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Table 43 - Family Level Benthic Macroinvertebrate 
Summary for Toxicity Sampling Fall 2011 

 

Station Sample 
Method 

Taxa 
Richness 

EPT 
Taxa 

Richness 

Percent 
EPT 

Percent 
Two 

Dominant 
Taxa 

Percent 
Chironomidae 

HBI 
WVSCI 
Total 
Score 

WVSCI 
Scoring 
Criteria 

UNT Left Fork * Kicknet 14 6 49.28 53.62 17.39 5.2 64.75 Grey Zone 
UNT Tenmile Fork Kicknet 13 2 12.05 54.22 42.17 5.8 46.01 Impaired 
UNT Boone Block 
Hollow * 

Kicknet 13 4 46.63 60.10 20.73 5.2 58.52 Impaired 

Big Horse Creek * Kicknet 11 2 1.24 71.43 43.48 5.6 38.24 Impaired 
Pond Fork * Kicknet 13 6 21.70 68.40 50.00 5.6 48.50 Impaired 
Cow Creek Kicknet 11 4 60.77 77.99 6.22 4.9 58.02 Impaired 
Jarrell Branch * Kicknet 12 3 8.57 74.29 41.90 5.6 41.23 Impaired 
Pond Fork Kicknet 10 5 39.89 64.48 48.09 5.4 50.09 Impaired 
Moccasin Hollow Kicknet 17 7 51.98 56.60 34.46 5.0 65.62 Grey Zone 
*all organisms identified in kicknet sample 
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Appendix A 
 
Table 1 – Stream Sampling Locations Company 1 
 
Table 2 – Stream Sampling Locations Company 2 
 
Table 3 – Field Water Chemistry Analysis 2008 
 
Table 4 - Field Water Chemistry Analysis 2009 
 
Table 5 - Field Water Chemistry Analysis 2010 
 
Table 6 - Field Water Chemistry Analysis 2011 
 
Table 7 – Water Data Spring 2010 
 
Table 8 – Company 1 Water Data Spring 2011 
 
Table 9 - Ion Imbalance Calculations from the GRI model from Spring 2011 
 
Table 10 - Ion Imbalance Calculations from the GRI model from Fall 2011 
 
Table 11 – Company 1 Water Data Fall 2011 
 
Table 12 – Company 2 Water Data Winter 2011 
 
Table 13 – Company 2 Water Data Fall 2011 
 
Table 14 – Survival of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2008 
 
Table 15 - Survival of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2009 
 
Table 16 - Survival of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2010 
 
Table 17 - Survival of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2011 
 
Table 18 - Reproduction of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2008 
 
Table 19– Benthic Macroinvertebrate Metrics and Their Response to Disturbance 
 
Table 20 – West Virginia Stream Condition Index (WVSCI) Scoring Criteria 
 
Table 21 - Reproduction of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2009 
 
Table 22 - Reproduction of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2010 
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Table 23 - Reproduction of Ceriodaphnia dubia Seven-day Chronic Toxicity Tests 2011 
 
Table 24 – Habitat Assessment for Benthic Macroinvertebrate Toxicity Sampling Fall 
2009 
 
Table 25 – Habitat Assessment for Benthic Macroinvertebrate Toxicity Sampling Fall 
2010 
 
Table 26 – Habitat Assessment for Benthic Macroinvertebrate Toxicity Sampling Fall 
2011 
 
Table 27 – Inorganic Substrate Component Results for Benthic Macroinvertebrate 
Toxicity Sampling Fall 2009 
 
Table 28 – Inorganic Substrate Component Results for Benthic Macroinvertebrate 
Toxicity Sampling Fall 2010 
 
Table 29 – Inorganic Substrate Component Results for Benthic Macroinvertebrate 
Toxicity Sampling Fall 2011 
 
Table 30 - Water Chemistry Results for Benthic Macroinvertebrate Sampling Fall 2009 
 
Table 31 - Water Chemistry Results for Benthic Macroinvertebrate Sampling Fall 2010 

Table 32 - Water Chemistry Results for Benthic Macroinvertebrate Sampling Fall 2011 

Table 33 - Survival of Ceriodaphnia dubia in Seven-day Toxicity Tests Fall 2009 

Table 34 - Results of Reproductive Comparisons for Ceriodaphnia dubia Seven-day 
Toxicity Tests Fall 2009 
 
Table 35 - Survival of Ceriodaphnia dubia in Seven-day Toxicity Tests Fall 2010 

Table 36 - Results of Reproductive Comparisons for Ceriodaphnia dubia Seven-day 
Toxicity Tests Fall 2010 
 
Table 37 - Survival of Ceriodaphnia dubia in Seven-day Toxicity Tests Fall 2011 

Table 38 - Results of Reproductive Comparisons for Ceriodaphnia dubia Seven-day 
Toxicity Tests Fall 2011 
 
Table 39 - Genus Level Benthic Macroinvertebrate Summary for Toxicity Sampling Fall 
2009 
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Table 40 - Family Level Benthic Macroinvertebrate Summary for Toxicity Sampling Fall 
2009 
 
Table 41 - Genus Level Benthic Macroinvertebrate Summary for Toxicity Sampling Fall 
2010 
 
Table 42 - Family Level Benthic Macroinvertebrate Summary for Toxicity Sampling Fall 
2010 
 
Table 43 - Genus Level Benthic Macroinvertebrate Summary for Toxicity Sampling Fall 
2011 
 
Table 44 - Family Level Benthic Macroinvertebrate Summary for Toxicity Sampling Fall 
2011 
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