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ABSTRACT 

 

The mapping of structural elements of a forest is important for forestry 

management to provide a baseline for old and new-growth trees while providing height 

strata for a stand.  These activities are important for the overall monitoring process which 

aids in the understanding of anthropogenic and natural disturbances.  Height information 

recorded for each discrete point is key for the creation of canopy height, canopy surface, 

and canopy cover models.  The aim of this study is to assess if LiDAR can be used to 

determine forest structures.  Small footprint, leaf-off LiDAR data were obtained for the 

Monongahela National Forest, West Virginia.  This dataset was compared to Landsat 

imagery acquired for the same area.  Each dataset endured supervised classifications and 

object oriented segmentation with random forest classifications.  These approaches took 

into account derived variables such as, percentages of canopy height, canopy cover, stem 

density, and normalized difference vegetation index, which were converted from the 

original datasets.  Evaluation of the study depicted that the classification of the Landsat 

data produced results ranging between 31.3 and 50.2%, whilst the LiDAR dataset 

produced accuracies ranging from 54.7 to 80.1%.  The results of this study increase the 

potential of LiDAR to be used regularly as a forestry management technique and warrant 

future research.                                    
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CHAPTER 1 

Introduction 

The identification of structural elements of a forest is linked to the identification 

and studies of wildlife habitats, carbon sequestration, and impacts of climate change.  

Forests are one of the world's most important renewable resources.  They help stimulate 

the economy and absorb an estimated 0.68 ± 0.34 billion tons of carbon per year in 

northern forests (Myneni et al., 2001).  Above all, forests are a crucial part of 

biodiversity.  Maintaining biodiversity increases biological and social benefits that we all 

can take advantage of.  Nationwide, forests are in decline due to deforestation, climate 

change, and an increase of pollution.  Old growth trees have experienced dramatic 

declines in the Appalachians, especially in the West Virginia region.  Remote sensing 

procedures can be deployed to capture and study these declines.  

The techniques and technologies utilized for forestry has shifted over the last 

century due to advances in technology.  These advances include technologies such as the 

global positioning system (GPS), aerial, and satellite photography (Leckie, 1990)  

Traditional forestry methods involved time consuming fieldwork and inventory 

processes, but the advancements in remote sensing and geographic information systems 

(GIS) have propelled measurement, inventory, and sampling, which are all components 

of forestry management. Forest management is the division of forestry concerned with 

the overall administrative, economic, legal, and regulations of the forest (Waring & 

Schlesinger, 1985).   Remote sensing technologies, such as light detection and ranging 
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(LiDAR) gives governmental, private, and non-profit organizations the ability to answer 

questions about forestry management for restoration, conservation, and policy creation. 

Although the integration of LiDAR and forestry is still developing, studies thus 

far depict a great relationship that creates detailed information about forest structure and 

composition.  In past years, LiDAR has been engrossed in terrain mapping and 

atmospheric research (Wandinger, 2005). Current LiDAR research focuses on the use of 

LiDAR for 3-D modeling, watershed, flood, and coastal mapping.  Within forestry, the 

focus has been on identifying individual tree species and producing stand maps 

(Reutebuch et al., 2005).  Less emphasis has been given to the use of LiDAR as a 

functioning tool for forestry management.  Therefore, the purpose of this master’s thesis 

is to use LiDAR data to identify and characterize vertical structures of a mixed forest for 

the purpose of forestry management.   

The conceptual and methodological procedures developed for this research will 

aid in the analysis of the forest structure by providing a baseline for comparison and 

measurement of forest structure shifts and declines. In addition, the comparison of 

LiDAR and Landsat remote sensing technologies will be examined.  This examination 

will determine which sensor provides the best overall results.  In addition, the comparison 

of classification techniques will be conducted to determine which algorithm is more 

robust. The methods presented in this research will contribute to knowledge about forest 

structures, remote sensing, and classification techniques.    
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CHAPTER 2 

Background and Literature Review 

2.1 Decline of Montane Forests in West Virginia  

 

Since the industrial revolution, the economic value of trees has been increasingly 

important, but the ecological value is often ignored until it is too late. The decline can be 

seen in the case of the montane forest in West Virginia. Due to many anthropogenic and 

natural disturbances, montane red spruce and douglas fir are now considered endangered. 

During the 19
th
 century, the distribution of these trees in the Appalachians was very 

extensive, but now they are highly restricted (Noss et al., 1995; Adams et al., 2009).   

There are several old growth red spruce stands in the Appalachians that were “over 

looked” by loggers.  West Virginia's Shavers Mountain and Gaudineer Knob (Rollins, 

2005; Adams et al., 2009) have beautiful old growth virgin stands that are now federally 

protected. Montane forests provide an important habitat for many endangered animals. 

These consist of the cheat mountain salamander, the sow whet owl, and the recently de-

listed northern flying squirrel (Byers et al., 2010; Loeb et al., 2000).  Also, red spruce and 

douglas fir’s shallow root system is a vital source for the stabilization of watersheds 

which protects soils from erosion (Rollins, 2005).  These watersheds are very important 

to West Virginia's ecosystems and economy.  They provide fresh and clean water for 

wildlife, drinking, and recreation.  In addition, these forests form a vital ecotone which 

provides a transition zone between northern hardwoods and spruce-fir forests (Battles & 

Fahey, 2000). If the anthropogenic and natural disturbances continue on the same trend, 
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then forest tree species with limited ranges are expected to become extinct as their access 

to suitable habitat becomes more limited  (Potter et al., 2009).  

Wood has been an invaluable resource to mankind.  It is only relatively recently 

that this resource has become abused.  With the impulse of technology and land use 

conversion certain habitats have been destroyed.  Within America, European settlers were 

the first to make the expansion westward.  Since the 1700s, European settlers have logged 

many old growth conifer stands for economic and technological growth.  Red spruce, one 

of the dominant trees at the time, along with balsam firs, hemlocks and eastern white 

pines were some of the first species to experience a decline (Nowacki et al., 2009).  Since 

this initial disturbance, the spruce-fir forests have been in a detrimental state.  

In addition to logging, climate change has been affecting forests all over the world 

from the beginning of time, but the recent influx of anthropogenic induced climate 

change is negatively affecting forests everywhere.  It is fair to say that logging has 

affected spruce-fir forests more, but several studies have shown that climate change and 

various forms of atmospheric pollutants have influenced a lack of growth increase in 

spruce-fir (Adams et al., 2009; Dale et al., 2001; Johnson  et al., 1985). This recent 

evidence depicts that global climate change is being effected by a large anthropogenic 

component (Houghton et al., 1996). This component will create an increase in timing, 

frequency, and extent of natural disturbances that will force forests to face rapid 

alternations (Dale et al., 2001).  Montane forests are already in a critical state, and with 

the increase of disturbances they could face extinction.  
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2.2 Overview of LiDAR 

 

LiDAR, is an optical and active remote sensing technique that measures scattered 

light from target items (NOAA 2008).  These data can be used to measure distance, 

speed, rotation, and chemical composition of clouds.  Traditionally these data is acquired 

through airborne mechanism, but there is also space-based LiDAR that is becoming 

increasingly popular.  In addition to how LiDAR is acquired, there are now two forms of 

LiDAR.  They are discrete and full waveform LiDAR.  Although full waveform LiDAR 

data are thought to provide more information, because it is relatively new and denser, the 

amount of research compared to discrete data has been minimal.  LiDAR data can be 

applied to all environments including urban and forestry.  More and more LiDAR based 

research has been based on the application of LiDAR in a forestry application, but mostly 

within the context of measuring tree crowns and vegetation biomass (Lim et al., 2003; 

Dubayah & Drake, 2000).  

LiDAR is considered to be a “breakthrough technology for forestry applications” 

(Dubayah & Drake, 2000). Many studies show that LiDAR is an appropriate dataset for 

the analysis of vegetative structures.   Alone, the LiDAR point clouds aid in the 

visualization of a forestry structure, but with the creation of several algorithms, these 

point clouds can depict much more.  LiDAR transforms a traditional 2-D representation 

to a 3-D representation of a forest.  This visualization gives a unique insight into the 

structure of the forest.  LiDAR datasets can be transformed into canopy height models, 

canopy surface models, canopy cover models, digital terrain models, intensity images, 

and many more derived products.  The creation of these derived products aid in the 
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analysis of silvicultural studies, such as vegetation distribution, habitat mapping, and 

species identification. 

The classification or identification of tree species has been a recent trend in 

LiDAR research.   There are numerous studies describing the accuracies of LiDAR data 

for separating and classifying deciduous and coniferous tree species. These studies use 

statistical methods such as regression analysis and discriminant analysis to determine tree 

species classifications using variables derived from LiDAR. The results of these studies 

show that LiDAR data can accurately classify tree species as well as tree structure or 

landcover (Song et al., 2002; Boyd & Hill 2007; Reitberger et al., 2008; Kim et al., 

2008).  Kim et al. (2008) reported that LiDAR has the ability to distinguish between 

species within the broadleaved deciduous and conifers.  This study reports classification 

accuracies which range from 88.8% to 98.2%.  

The intensity data provided for both discrete and full waveform LiDAR data can 

provide much needed information about an object’s reflectance properties.  Intensity is 

related to reflectance properties of vegetation, absence of foliage, type of foliage, as well 

as canopy openness (Kim et al., 2008). The observed intensity properties are similar to 

the near infrared reflectance properties for vegetation.  Essentially, the healthier 

vegetation that is present the “brighter” the intensities are.  Other spectral reflectance 

studies have reported this direct relationship (Ahokas et al., 2006 & Kim et al., 2008).   

Conversely, Song et al., (2002) reported that intensity values do not conform to 

theoretical reflectance properties of materials. The reflectance values follow a path of 

relative magnitudes of reflectance that allows separability. Because intensity values do 

not adhere to true reflectance properties, the spectral signatures from separate datasets 
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cannot be directly compared.  In addition, intensity values are noisy.  The amount of 

noise available is a product of gaussian, impulse, and speckle noise (Xudong et al., 2005).  

With an increase in noise there is a decrease in separability.   Song et al., (2002); Yan & 

Shaker, (2006); Xudong et al., (2005) agree that using a filtering method to decrease the 

noise within the recorded intensities will allow more separability, thus allowing for a 

more detailed classification.   

Intensity values derived from LiDAR have not been studied fully so more 

research needs to be conducted to fully understand their suitability in forestry 

applications.  Lim et al., (2003) revealed that intensity values from different sensors 

could not be compared because of the lack of calibration amongst LiDAR sensors. In 

addition the intensity values resulting from LiDAR cannot be directly compared to 

intensity values from other remote sensing technologies.  Similarly, to fully understand 

intensity values, there is a need to create more algorithms for these data.  These 

algorithms could lead to more accurate measurements of forest parameters and vegetation 

classifications as well as having a more automated process for tree delineation and 

classification. 

 

 

 

 

 



8 
 

CHAPTER 3 

Conceptual Model 

 

This thesis research proposes a remote forest classification (RFC) process for the 

investigation of the structural elements of a forest.   The guiding principles for the RFC 

process were established by several studies which have identified individual tree species 

and tree structures using LiDAR products (Kim et al., 2008; Sullivan, 2008).  These 

principles require the model to be driven by an understanding of remote sensing, forestry 

management, scientific and statistical methods.  The model for this study will be built on 

a foundation of existing successful LiDAR remote sensing principles. In addition, the 

model will be adaptive so it can evolve with continuing research in remote sensing as 

well as forestry inventory management. To be successful, the model must be able to 

address current natural resource questions which include: 1) What are the proportions of 

old growth and new growth trees in our national forests?  2) Are the threatened and 

endangered tree species declining locally and nationally?  Each of these issues requires 

addressing the fundamental question:  What are the tree structures in a particular study 

area? The RFC process will enhance an overall understanding of the canopy and sub-

layers, determine the stand quality and status of the resources, and discern between old 

and new trees.  The proposed framework formally links natural resources and remote 

sensing in an iterative process which aids in the inventory process of forest management.  

This linkage will provide the information needed to better understand the theory behind 

the methodology for tree species classification for remote sensing technologies.  The 

conceptual model proposed is illustrated in Figure 1.   
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In this study, the goal of the RFC process is to classify delineated tree stands 

using remotely sensed data.  It consists of five steps, namely, acquisition, variable 

extraction, tree isolation, analysis, and classification.  The first segment, acquisition, 

represents the procurement of the remotely sensed data needed to start the RFC process.  

These data is restricted to remotely sensed data because of the spectral information that is 

captured.   

The second segment represents the types of variables that can be derived from 

remotely sensed data for the isolated trees.  Spectral variables refer to any reflectance 

data that can be used to distinguish between vegetation or structure types. Crown 
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structure variables refer to measurements of the crown.  These measurements could 

include crown width, crown length, crown height, stem density, and percentage of canopy 

cover.  An additional variables section allows for any information that can be derived 

from other sensors.  Which includes information gained from sensors such as synthetic 

aperture radar or hyperspectral data.   

The third segment represents the tree stand delineation process.  To decrease error 

from other types of vegetation, it is important to isolate trees, tree canopies, or tree 

stands.   This segment depicts an iterative three step process for stand delineation.  First, 

the scale at which the landscape is delineated must be identified.  These scales can range 

from individual trees, tree stands, or larger landscape sections.  Second, the identified 

scale must be delineated or segmented.  This process can be automated or digitized.  And 

last, the delineated segments must be inspected for reduction of error, which can be 

achieved by a visual inspection or statistically.   For smaller or more detailed segments 

this process can be iterated until satisfactory stand delineation is achieved.  

The fourth segment represents the analysis of the variables.  First, these variables 

must be reduced to maximize the amount of variance between variables.  Second, a 

method must be applied which analyzes the variables and groups them statistically for 

classification.  The fifth and final segment is the classification process.  The results of the 

statistical methods will allow for the classification of the groupings.  The classifications 

are analyzed to determine if the results are satisfactory.  If not, additional data can be 

acquired or the delineation process can be repeated for different tree segments.  

The most significant aspect of the conceptual model is the universal nature at 



11 
 

which any remote sensing technology can adapt the model for the purpose of tree stand 

classification.  This universality is indicated in the simplicity of the model.  The 

acquisition, tree isolation, variables, analysis, and classification segments are coordinated 

in a fashion that provides a framework for structural classification for trees without being 

specific to one remotely sensed technique or technologies. 

The universal and iterative nature proposed in this model will provide several 

benefits.  The first benefit is the optimization of spatial resolution.  This optimization is 

accomplished by the iterative process for tree isolation by identifying the optimum 

geographic scale for species classification for a specific sensor. A second benefit is the 

ability to compare temporal resolutions.  This comparison is accomplished through a time 

series analysis that can detect variability in the composition of the forest and the 

identification of any extreme changes. Last, the universal nature of the RFC process 

allows for the measurement of variables at the same locations using different remote 

sensing techniques, which allows for the comparison of imagery from various remote 

sensing sensors.  

Remote sensing has become more advanced and there is a need for sophisticated 

techniques to analyze the increasingly detailed data being made available.  But the nature 

of forest planning and management necessary to address current and future questions 

about natural resources will depend on institutional policies and logistics.  The 

overarching benefit of this conceptual model is the availability of a framework by which 

a certain region can be assessed for its forestry composition and be applied to specific 

natural resource issues or questions. 
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CHAPTER 4 

Methodology 

4.1 Introduction  

 

LiDAR has many advantages over other aerial and satellite remote sensing 

technologies.  LiDAR has the ability to capture structures in three dimensions while 

capturing dense data which result in high resolution imagery. The height information 

obtained during a LiDAR acquisition contains important information which correlates to 

tree heights.  These heights, along with coordinate information, can provide canopy 

heights, canopy densities, and percentages of canopy cover.  All of these variables have 

been used in previous studies to classify forest structures and species.  Brennan and 

Webster (2006) reported the effect of intensity, canopy height, surface height, and density 

of LiDAR returns on land cover features.  This study recommends the use of LiDAR 

height derived information to distinguish between land cover classifications. This study 

also reports that dense coniferous forest stands were harder to classify because of the 

inability of LiDAR to penetrate the canopy. These results directly relate to LiDAR and 

forest structures.  Lo and Chen (2008) developed a workflow which utilizes canopy 

heights derived from LiDAR to analyze vertical profiles of trees to delineate individual 

tree crowns.  This study found that individual tree crowns were harder to distinguish due 

to the nature of a dense forest.    

To better understand the utility of LiDAR, it must be compared with another 

remote sensing dataset.  Landsat is an easily available moderate resolution dataset which 

provides spectral information ranging from 0.45 – 12.5 µm (Campbell, 2002).  This 
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spectral information can be used in a variety of vegetation indices that estimates 

vegetation cover and density.  The most popular vegetation index is the Normalized 

Difference Vegetation Index (NDVI).  Freitas et al., (2005) analyzed the relationship 

between NDVI, moisture vegetation index (MVI) and the structure of an Atlantic 

Rainforest. This study reported that NDVI is a good indicator of biomass in deciduous 

and dry forests, whereas MVI is a better indicator for rainforests.  

In addition, the supervised classification and random forest classification methods 

must be compared to determine which is more robust for the classification of tree 

structures. Classification is the decision-making process that is used to understand large 

quantities of data (Ayhan and Kansu, 2010).  The supervised classification technique 

requires defined training areas to determine the characteristics of each class.  Lee et al., 

(2005) reported that the use of supervised classification yielded better results than 

unsupervised classification of Interferometric synthetic aperture radar (InSAR) data. In 

contrast, the random forest classification is a machine learning, rule based, classification 

which has many decision trees.  Pal and Mather (2003) assessed the efficiency of 

decision tree algorithms for land cover classification.  They concluded that the use of 

decision trees ultimately were computationally faster and had the ability to handle data of 

any scale with no statistical assumptions.  In addition they found that once high-

dimensional data were introduced that decision tree classifiers no longer exceeded 

maximum likelihood classifiers in accuracy.  To better utilize the random forest 

algorithm, this study employed the object oriented segmentation process which groups 

features into homogenous objects or segments.  According to Geneletti and Gorte (2003), 
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the object oriented segmentation process enhanced the accuracies of land-cover 

classifications when compared to pixel based classifiers.   

The Monongahela National Forest is a suitable study area to analyze the utility of 

using remote sensing to determine tree structures.  This study site has few man-made 

structures which aid in each remote sensing acquisition to capture pure vegetation values.  

The presence of these structures can skew digital numbers by scattering the energy source 

used for each remote sensing technique (Campbell, 2002). This section presents a 

workflow which transforms variables which represent heights and densities related to the 

canopy and sub-layers of the forest.   

4.2 Site Description 

 

The Monongahela National Forest lies within the Alleghany mountains valley and 

ridge system and is described as lying within the strategic heart of the Appalachians 

(Mueller, 2003).  This forest is more than 1.7 million acres and is comprised mostly of 

mixed, deciduous and conifer, forest types.  The elevation ranges from 1,000 to 4,863 

feet and is home to Canaan Valley, the highest valley east of the Mississippi River.  This 

forest is owned by the United States Forest Service (USFS) and provides an ample 

amount of outdoor recreation during all seasons.  For this study, the Monongahela 

National Forest was subset to a region spanning 4,568 acres. This region is comprised of 

mature and young stands which depict most of the tree species composition present 

throughout the Monongahela National Forest.  Figure 2 depicts the location of the study 

area.   
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4.3 Data Acquisition 

The LiDAR data used for this study were collected in November of 2007 by 

Canaan Valley Institute using a small footprint, high density scanning system. The data 

were captured during the winter and is leaf off.  This system acquires discrete multi-

return LiDAR data.  The Natural Resource Analysis Center (NRAC) pre-processed the 

data by removing outliers and characterizing LiDAR point data based on ground-truthed 

data points.  Table 1 outlines the specifications for the LiDAR dataset.  The LiDAR 

dataset was compared to the Landsat dataset to determine the full utility of using LiDAR 

to classify forest structures. Figure 3 depicts an overview and side view of the LiDAR 

imagery. Landsat thematic mapper was chosen because it is a readily available dataset 

which provides full coverage for the study area.  

Figure 2:  Study area in Randolph and Pocahontas county of 

West Virginia 

0 400 800 1,200200
Meters
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The Landsat data used for this study were captured from the United States 

Geological Survey (USGS).  This scene was captured on March 3
rd

, 2008.  This image 

was captured during late winter/ early spring, which indicates that the trees are in the 

beginning stages of sprouting new leaves.  The date for this scene was chosen based on 

Table 1: Specifications for LiDAR Acquisition 

Acquisition Date November 2007 

Laser Scanner ALTM 3100 

Flying Height 1000 feet 

Laser Pulse Density 1 meter 

Max returns per pulse 5 returns  

Angle of Incidence 18 Degrees 

Figure 3:  Top; side view of study area in 

LiDAR.  Bottom; Overview of study area in 

LiDAR.  Imagery depicts the LiDAR point 

clouds for the study area. 
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its closeness in date to the LiDAR acquisition while having zero percentage of cloud 

cover present.  The LiDAR and Landsat acquisition does differ, but it does not make a 

significant difference. Stereńczak (2010) reported that seasonal changes do have an 

influence on LiDAR values, but the influence measured was significantly small.  Figure 4 

depicts the Landsat imagery for the study area.  This study is only focusing on height and 

densities while disregarding differences in vegetation types.  The presence of clouds in 

imagery creates scattering which can affect the data collected by skewing the digital 

numbers (Campbell, 2002).  This Landsat image was radiometrically enhanced based on 

the first level of standard terrain correction (Level 1T).  This type of correction rectifies 

an image by removing random radiometric noise (Meyer et al., 1993).  In addition, the 

level 1T corrects for geometric errors.  Table 2 outlines the specifications for the Landsat 

dataset.   

 

             

 Figure 4:  Landsat image of study area.  Image acquired from  

 USGS Earth Resources Observation and Science (EROS) center                                 

(http://eros.usgs.gov/).). 

 

https://ch1prd0102.outlook.com/owa/redir.aspx?C=tOJwfu_W6EqZI-nfGqP_5gFtm0ts-M4Iztk3BynH3mVK73Es_0FOkjneNKf3fZTdHNmtIxcZzG8.&URL=http%3a%2f%2feros.usgs.gov%2f).
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4.4 Pre-Processing 

The processing procedures of LiDAR and Landsat data used in this research were 

derived from literature and previous studies depicting the uses of remote sensing 

techniques in forestry management and inventory (Brandtberg et al., 2003, Tiede et al., 

2007, Koukoulas & Blackburn, 2005; Kwak et al., 2007). Canopy height, percent canopy 

cover, stem density, and the normalized vegetation difference index are commonly used 

variables for vegetation and forestry analysis (Kwak et al., 2007, Kim et al., 2008, 

Koukoulas & Blackburn, 2005; Pascual et al., 2010).  Algorithms, such as canopy height 

models and canopy cover models were used to transform the LiDAR and Landsat data 

into products used for the segmentation and classification process.  A methodology was 

developed that compares LiDAR and Landsat imagery for the classification of forest 

structures.  This process gains insight into the effects of resolution and sensor type on 

identifying structural elements of a forest.   

Figure 5 depicts the steps of analysis for the comparing the results of LiDAR and 

Landsat data for structural classification.  The flow chart describes the steps, processes, 

and software used to create the LiDAR and Landsat products for segmentation and 

classification.  The data pre-processing and analysis are divided into four main steps. 

Table 3 outlines the variables derived from the LiDAR and Landsat imagery.

 

Table 2:  Specifications for Landsat Acquisition 

Acquisition Date March 3rd  2008 

Sensor Landsat Thematic Mapper 5 

Resolution 30 meters 

Cloud Cover  0% 

Correction  Standard Terrain Correction (level 1T) 
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Figure 5:  Flow Chart of Pre-processing process 
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Table 3:  Summary of Variables 

Canopy Height Height of tree from base to canopy. 

Canopy Cover Portion of ground that is covered by trees in a 

specified area. 

Stem Density Number of plants in a specified area. 

Normalized Difference 

Vegetation Index 

Measure of “greenness” in vegetation  

 

 

4.5 Variable Extraction 

The first stage of this study was to complete the pre-processing steps that resulted 

in a stacked LiDAR and Landsat image. These resulting images are represented in Figure 

6.  The Fusion LDV 2.90 was used for the pre-processing steps for the LiDAR dataset.  

This software is a visualization system that transforms and analyzes LiDAR data while 

providing a viewer that displays LiDAR in its native form.  This step resulted in the 

percent canopy cover, canopy height model, and stem density raster datasets.  To obtain 

the resulting imagery raw LiDAR data were used in the first three steps of the data 

processing.  The output from FUSION LDV was viewed and stacked within Erdas 

Imagine to create one image.  Erdas Imagine 2010 is software used for advance remote 

sensing analysis.  The resulting stacked image was then segmented based on object 

oriented rules within the Berkeley Image Segmentation software. This software uses a 

“region merging technique to obtain a complete spatial partition of the input image 

pixels” (Clinton et al., 2010).  Once the image was segmented, each section was 

classified using random forest and supervised classification techniques.  
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In addition the bulk of the Landsat data pre-processing was conducted within 

Erdas Imagine software package.  Similar to the LiDAR data, the resulting stacked 

Landsat image was segmented within the Berkeley Image Segmentation software 

package then classified using random forest and supervised classification. 

First, a canopy height image was created to determine tree heights.  Canopy 

height is a 3D representation of a forest canopy with regard to height and shape for a 

High               Low 

0 600 1,200300
Meters

Figure 6: pre-processing images for the Landsat and LiDAR 

data.  Each image is rotated 15°. 

Canopy Height Canopy Cover 

NDVI Stem Density 
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resolution of 1 meter.  It was obtained by subtracting the ground elevations from the first 

returns within the LiDAR data (Reutebuch et al., 2005).  It was created from raw LiDAR 

data and a bare earth model.  The bare earth model allows the CHM to be used for the 

comparison of tree heights without the effect of elevation (McGaughey, 2010). 

Second, the stem density image is created to determine the percentage of 

vegetation present per 1 meter pixel, which is created by obtaining the amount of local 

maxima points in each cell.  Once this count is obtained the stem density algorithm 

assigns a percentage which is the relative density between the forestry stands.  A local 

maximum refers to a maximum point or height within a certain neighborhood.  

Essentially, the local maxima, which are generated from the CHM, will represent tree 

tops.  These tree tops are created by an algorithm similar to the work of  Popescu et al. 

(2002) and Popescu and Wynn (2004), which uses variable window sizes based on the 

CHM to detect local maximas (McGaughey, 2010).  The window size used changed 

based on forest stand and maturity level being analyzed.   

 Third, canopy cover is created to determine the percentage or density of the tree 

canopy present for each pixel.  This model uses the raw LiDAR data and the ground 

model to estimate these percentages using the Fusion LDV software.  The first-returns 

over a height break of 3 meters were parameters for the canopy cover model algorithm.  

The height break refers to the height at which all vegetation above the specified height is 

included in the analysis.  This height break was chosen to exclude any small brush which 

could potentially skew the resulting image.  In addition the pixel size for the canopy 

cover model is 15 meters.  According to McGaughey (2010), the pixel for the canopy 

cover algorithm must be wider than individual tree crowns. Smaller pixel values will 
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skew the output of the canopy cover model by placing more emphasis on areas with an 

absence of tree crowns and an area with an abundance of tree crowns. 

Last, the NDVI image estimates the percentage of vegetation cover from the 

reflective bands of the original Landsat TM image.  This index allows for the detection of 

vegetation throughout the pre-processing process.  It uses the near infrared and red bands 

of Landsat TM to find the difference in brightness values for vegetation.  The brightness 

values represent the abundance of vegetation present of a scale of -1 to 1 (Tucker, 1979).  

Pascual et al. (2010) reported that there is a correlation between LiDAR heights and 

NDVI.  This correlation allows for comparison between the Landsat and LiDAR imagery 

for the forest structure classification. 

Initially, the principal component analysis (PCA) was to be applied to the stacked 

LiDAR and Landsat imagery.  This process transforms a set of images into a new set that 

have less correlation between components.  The first component from the principal 

component analysis can be used to guarantee the highest amount of separability or 

variance between the image components (Ricotta et al., 1999).  But, according to Mutlu 

& Popescu (2006), PCA decreases the accuracy of remotely sensed data for classification.  

Therefore, the data reduction for this study was conducted by limiting the amount of 

Landsat bands and Landsat imagery being used in the analysis.  Rather than employing 

the PCA transformation, data reduction proceeded by limiting the amount of data applied 

to the stacked Landsat and LiDAR imagery.   
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4.6 Analysis 

4.6.1 Object Orientated Segmentation 

Once the pre-processing steps were completed, the object based image analysis 

was employed.  The object oriented segmentation process, developed by the Berkeley 

Environmental Technology, partitions an image into a set of objects that provide a visual 

representation in the form of a vector.  BerkeleyImageSeg utilizes the region merging 

technique for its segmentation algorithm (Clinton, 2010).  Region merging is the process 

of eliminating false boundaries and regions by combining neighboring objects of the 

same characteristics defined by decision rules.  This technique utilizes hypothesis testing 

for the probability that each region or object will statistically have similar distributions of 

intensity values (Harris et al., 1998).  Each image is segmented based on a set of 

predefined criteria which includes threshold, shape, and compactness. Threshold refers to 

the iteration of the merging cycles.  Essentially, the higher the threshold value the larger 

the objects will be due to the increased amount of merging. Shape refers to “a value that 

describes the improvement of the shape with regard to smoothness and compactness of an 

object’s shape” (Benz et al., 2004, p. 246).  Compactness refers to the texture of the 

image and its ability to maintain smooth edges for the segmentation process. 

Three parameter combinations were examined for threshold, shape and 

compactness: {10, 05, 05}, {30,05,05}, {50,05,05}, respectively.  The shape and 

compactness values remained the same for each segmentation process so the comparison 

of each combination would be solely on the size of each object.  The parameters for the 

segmentation process were chosen based on a visual inspection of size and scale.  Each 

segment resulted in objects that represent tree crowns, cleared areas, and sparse 
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vegetation.  Ultimately, the {30, 05, 05} segmentation gave the best representation of the 

area from a visual point of view. Representations of the segments are displayed in Figure 

7 and 8.  

  

4.6.2 Random Forest Analysis 

Succeeding the object oriented segmentation process, a random forest analysis 

was applied to the LiDAR and Landsat stacked and segmented images.  A random forest 

analysis is a classification and regression tree (CART) analysis which grows many 

classification trees versus one.  Random forest “reputably delivers considerable 

robustness to noise, outliers, and overfitting when compared to a single tree classifier” 

(Williams, 2009).  This algorithm is a non-parametric decision tree learning method.  

Decision trees are created by rules that are based on the variables in the training dataset.  

These rules are selected to obtain the best split amongst values to differentiate between 

observed classifications based on the dependent variables.  The random forest process 

 

Figure 7:  Object oriented 

segmentation of Landsat image 

overlaid on NAIP imagery.  Image 

zoomed in to show size and texture. 

 

Figure 8:  Object oriented 

segmentation of LiDAR image overlaid 

on NAIP imagery.  Image zoomed in to 

show size and texture. 
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stops when no further splits can be detected.  Each decision tree has a series of child and 

terminal nodes which are used to reflect the recursive nature of the classification process. 

Each terminal node contains one class which is defined by the rules created.   

To obtain the random forest classification a set of parameters were defined to 

analyze the dataset.  The number of tress, number of variables, and sample size are 

parameters used in the analysis.  According to Williams (2009), five hundred decision 

trees are an efficient amount and still avoids over-fitting.   The sample size was 

determined by a random sampling of one third of the dataset.   

 

4.6.3 Supervised Classification 

 To compare the accuracy of the random forest algorithm a supervised 

classification was employed.  This classification method extracts quantitative information 

from remotely sensed images (Richards, 1993; Strahler, 1980).  This process uses priori 

knowledge to generate representative parameters or areas of interest for each class.  

Creating these areas of interest is referred to as training.  The maximum likelihood 

algorithm was used to statistically analyze the LiDAR and Landsat data in order to 

provide a correct classification.  The maximum likelihood algorithm is a usual method for 

classification in remote sensing.  This method assumes that each class in each band is 

normally distributed, which allows for each pixel to be assigned a probability that it 

belongs to a class.  Each pixel is assigned to the class with the highest probability 

(Richards, 1993).  The training for each class was obtained by locating spectral signatures 

within segments which were digitized based on priori knowledge.  This knowledge is a 
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form of empirical knowledge which is defined by observation (Barthelemy, 1985).  This 

method minimizes a potential problem associated with speckle amongst classes. 

4.6.4 Accuracy Assessment  

An accuracy assessment compares derived classifications with ground-truth or 

reference data.  This method is accomplished by evaluating how well the classifications 

represent “the real world.”  The accuracy assessment allows a classified map to be used 

for more than a reference image.  The accuracy of the random forest analysis and 

supervised classification were evaluated with error matrices.  An error matrix is a 

common procedure for the accuracy assessment for imagery classification.    It depicts 

the usefulness of a classification by assessing the user’s, producer’s, and overall 

accuracy.  The user’s accuracy refers to the error of commission.  This error investigates 

the usefulness of the classified map from the perspective of the user. This error represents 

the amount of pixels that are dedicated to an incorrect class.  In addition, the producer’s 

accuracy refers to the error of omission.  This error investigates the usefulness of the 

classified map from the perspective of the map maker.  This represents the number of 

pixels that are labeled correctly on the map.  Also, the overall accuracy represents the 

average between user's and producer's accuracy. These accuracies are presented in an 

error matrix which clearly displays the classes which correctly and incorrectly identified 

pixels (Rossiter, 2004). 

To perform the accuracy assessment analysis a systematic sampling method was 

employed.  With the systematic sampling method there is a possibility of missing sites 

due to the evenly spaced pattern.  However, this method avoids the issue of low sample 

concentration when compared to random sampling methods.  For this technique, a 
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uniform grid of 1850 sample points with a spacing of 100 meters was created.  

Traditional approaches to sample size suggest mathematical solutions which yield 

enormous sample sizes and require additional effort.  Congalton & Green (1999) suggest 

collecting a minimum of 50 samples for each class.  This study exceeded the minimum 

sample size to ensure that each class was represented homogeneously.  The amount of 

points per classification varies due to the difference in each reference image.  The 

resulting grid was overlaid on the classified Landsat and LiDAR  

4.7 Reference Images 

A set of reference images were created by utilizing criteria proposed by studies such as 

Photoscience (2011), Sullivan (2008),  and Roy et al. (1996).  This method was 

implemented due to a lack of primary data which would provide a source of ground-

truthing.  The use of reference imagery is a form of secondary data which is not 100% 

accurate.  This disadvantage has the ability to decrease the overall accuracies which are 

presented in this study.  If any errors are present in reference imagery then any correctly 

classified pixels may be incorrectly assigned.   In addition, the use of reference imagery 

could introduce a conservative estimate of the classification accuracy.  This error is 

attributed to cell size and what a cell truly represents on the ground.  These cells only 

represent one class whereas it may represent many classes at a smaller scale (Verbyla and 

Hammond, 1995). 

4.7.1 Reference Image 1 

The first reference image was created utilizing the criteria presented by 

PhotoScience (2011) and applied to the 2007 LiDAR dataset for the Monongahela 

National Forest established plot information for the study area.  Photoscience (2011) 
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provided a baseline for the composition and canopy characteristics for the Monongahela 

National Forest.  The parameters for the variables given were applied to the LiDAR 

imagery to create a guideline for the accuracy assessment. A series of conditional 

statements was used to create reference image 1.  Appendix 1 includes detailed 

information regarding the habitat variables. The West Virginia Northern Flying Squirrel 

(WVNFS) Vegetative Habitat project analyzed 5 million acres for forest cover type, size 

class, canopy cover, and crown condition.   Each plot was analyzed using 2003 leaf off 

aerial photographs.   

To define the habitat types forest cover, size class, canopy cover, and crown 

condition was measured.  Forest cover represents spruce, northern hardwoods-conifer, 

conifer, and other vegetative types.  Size classes refer to seedlings/saplings, pole-timber, 

saw-timber, and mature trees.  Canopy cover describes the percentage of the canopy 

covering the minimum mapping unit of 5 acres. The values for canopy cover are grouped  

into intervals that are less than 10%, 10-29.9%, 30-59.9%, 60-79.9%, and 80-100%.   In 

addition, the tree condition for the minimum mapping unit is described by less than 15% 

of tree mortality, between 15% and 20% tree mortality, and over 50% tree mortality 

(PhotoScience, 2011). For this study, canopy cover, canopy height, and size classes were 

used and translated into the existing variables.  The variables that were measured for each 

plot were used in the classification criteria for this thesis research. 

The parameters from the study above were combined with the naming convention 

presented by Sullivan (2008) and the canopy heights which are depicted in McGaughey 

(2010).  The parameters are as follows: 
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Mature/ Old Growth: 

  Vegetation density >25 percent  

  Canopy height >70 feet 

  Canopy density >50 percent  

 

 Young/Understory 1: 

  Vegetation density <25 percent  

  Canopy height >20 and <70 feet 

  Canopy density<50 percent  

 

Young/Understory 2: 

  Vegetation density <25 percent  

  Canopy height >1and <20 feet 

  Canopy density<50 percent  

  

Thinned/Clearcut: 

 Vegetation density <25 percent  

  Canopy height <4 feet 

  Canopy density<25 percent  

 

4.7.2 Reference Image 2 

 The second reference image was created by utilizing criteria proposed by Roy et al., 

(1996).  This criterion was applied to Landsat thematic mapper imagery captured in 

November of 2003.  The Stratification of density in dry deciduous forest using satellite 

remote sensing digital data analyzed a central part of India, which is a hot and dry 

climate. This climate is different from the temperate climate of West Virginia. Because of 

the differences in climate, the spectral reflectances will differ. However, the imagery 

used for the Roy et al., (1996) was leaf off and both forests have the same structural 

elements.  Thus, the same criteria can be used.   They utilized Landsat thematic mapper 

data from January 1990.  They presented a model which utilized many vegetation indices 

which are:  advanced vegetation index (AVI), bare soil index (BI), canopy shadow index 

(SI), middle infrared, and normalized vegetation index (NDVI).    These indices were 

used to classify landcover based on a stratification of density.  Only the SI and AVI were 
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utilized for forest density. To have continuity between both reference images, the same 

naming convention was applied.   The following criteria for a rule-based approach for 

forest density classifications are as follows: 

 If SI is between 177-192 and 

 AVI is between 0-22, then non vegetated 

 AVI is between 23-31, then fallow 

 AVI is between 32-40, then grass                             

 AVI is between 41-69, then crop                            Thinned/Clearcut 

 

   If SI is between 193-203 and 

AVI is between 21-53, then grassland 

  AVI is between 59-93, then crop 

 

 If SI is between 204-214 and 

 AVI is between 19-37, then scrub                          Young/Understory 2 

AVI is between 38-55, then forest 10-20% 

 

AVI is between 56-66, then forest 20-40% 

 AVI is between 67-135, then forest 40-60%          Young/Understory 1 

 

 If SI is between 215-224 and  

 AVI is between 17-56, then forest 60-80%            Thinned/Clearcut  

 AVI is between 56-128, then forest > 80% 
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CHAPTER 5 

Results and Discussion  

 

This study resulted in a set of classified maps which can be compared to 

determine the best process possible for characterizing the structure of a forest. Four 

different classification approaches were implemented.  The results are presented in Figure 

9.  A maximum likelihood and a random forest classification were applied to Landsat and 

LiDAR imagery.  Each resulting image produced the same classification scheme but, 

differences in resolutions and sensor types resulted in different classification accuracies.  

In addition, the results for both LiDAR datasets were resampled to better compare it with 

the Landsat imagery. This process revealed that the random forest classification process 

is more robust when compared to the supervised classification.  In addition, these 

classification processes have revealed a notable difference between the classification 

accuracies of the Landsat and LiDAR imagery.  

5.1 Classification Results of Supervised Classification 

 

Initially, a visual inspection of the supervised classification results for both 

Landsat and LiDAR data were conducted.  The resulting LiDAR image depicts more 

detail in the clearcut/thinned class by deciphering roads in the study area.  Also, this 

image displays more “speckle” within each class.  Speckle is a type of noise which 

degrades the quality of the data.  In contrast, the resulting Landsat imagery depicts less 

detail but displays fewer speckle within each class. Both images have the same general 

placement of young 1 and young 2 classes but the Landsat image embellished the 
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quantity available.  Overall, the differences in the Landsat and LiDAR supervised 

classifications can be attributed to the difference in cell size and the nature of the 

supervised classification being a pixel by pixel classifier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random Forest: LiDAR Imagery 

Old Young 1 Young 2 Thinned/Clearcut

Random Forest: Landsat Imagery 
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Supervised: LiDAR Imagery 

 

Supervised: Landsat Imagery 

 

Figure 9: Supervised and random forest classification of LiDAR and Landsat data.  Each 

image is rotated 15°. 
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5.2 Classification Results of Random Forest Classification 

 

Similarly, the resulting images of the random forest classification were visually 

inspected. These images depict less detail when compared to the supervised classification 

method.  The decrease in detail is attributed to the object oriented segmentation.  This 

segmentation process used on the LiDAR and Landsat imagery did not distinguish 

smaller features, such as roads.  In addition, the object oriented segmentation process 

resulted in different size segments for each type of data.  This error can be attributed to 

cell size but, the nature of how the data are collected and portrayed is the biggest 

contributing factor.  The Landsat imagery was collected via a NASA Satellite using the 

electromagnetic spectrum.  This imagery gives a varied digital number for any surface.  

In contrast, the LiDAR imagery was collected via an airborne sensor, which provides the 

LiDAR data with very dense information which has the ability to capture heights.  For 

this thesis research, the object oriented segmentation process produced better segments 

for the LiDAR imagery because of its ability to provide data for smaller areas on earth, as 

well as its ability to capture heights which directly correlates to structures involving 

height.  

Naturally, the random forest classification process resulted in a more aesthetically 

pleasing image for the LiDAR dataset opposed to the Landsat. The success of the random 

forest process depends on the success of the object oriented segmentation.  Because, the 

LiDAR imagery produced smaller amounts a more diverse set of classifications could be 

produced, thus providing higher classification results.  

5.3 Resampling of LiDAR  
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 To better compare both datasets, the LiDAR imagery was resampled to 30 meters 

to match the Landsat imagery, which allows for a direct comparison.  The image was 

resampled with a bi-linear method. This resampling method uses a weight average of a 

group of pixels to create a new image. According to Suwendi and Allebach (2008), the 

bilinear method results in a sharper image without the blocky appearance that is a result 

of the nearest neighbor resampling method. The resulting resampled images produced 

more generalized results.  Figure 10 depicts the resampling of each image.  

 

 

5.4 Accuracy Assessment 

 

The classification accuracy for forest structures was analyzed using an error 

matrix for each resulting image.  First, an accuracy assessment was performed on all of 

Old Young 1 Young 2 Thinned/Clearcut

0 0.5 10.25
Miles

Supervised Classification 

Figure 10:  Images of resulting resampling of LiDAR data to 30 meters.  Each image is 

rotated 15° 

Random Forest Classification 
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the imagery using both reference images.  This process defines which reference image 

best represents the study area.  The accuracy results, presented in Table 4, revealed that 

the random forest classification with the object oriented segmentation better distinguished 

between the forest cover classes. Furthermore, the LiDAR imagery presented higher 

accuracies for both reference images and classification techniques.  “Current techniques 

used for forest stand delineation are variable across landowners and are expected to 

produce accuracies of about 80% to 90%” (Sullivan, 2008).   The accuracies for reference 

image 1 range from 31.3% to 80.1% whilst the accuracies for reference image 2 range 

from 26.8% to 32.0%.  In addition, the overall accuracies for the LiDAR imagery range 

from 26.8% to 80.1%, whereas the overall accuracies for the Landsat imagery range from 

30.0% to 50.2%.   

The resampled LiDAR image provided better results for the supervised imagery, 

whilst the percentages decreased for the random forest image.   These results prove that 

resampling an image does favor the pixel based classifier versus the object oriented 

segmentation classifier.  The bi-linear resampling method combines pixels into groups.  

The object oriented segmentation already grouped the similar pixels, so the resampling 

method grouped pixels that were drastically different, thus resulting in lower accuracies.  

This series of accuracies is intended to provide a baseline for the comparison of 

imagery for classification, reference imagery, and classification techniques.  Differences 

in each classification method were expected due to the differences in each remote sensing 

datasets.  The differences in classification accuracies for each reference image were 

highly variable.  In fact, there is a 48.1% difference between the highest accuracies of 

each reference image.   
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Table 4:  Results of confusion matrix which represents the percentage of points in the 

accuracy assessment grid that was accurately and in-accurately classified during each 

method. 

Reference Image 1 

 LiDAR Landsat 

 Supervised Random Supervised Random 

 Producer User Producer User Producer User Producer User 

Oldgrowth 60.5 51.7 69.8 83.7 24.0 60.1 54.7 72 

Young 1 53.7 55.1 80.2 79.2 26.5 16.6 3.8 44.2 

Young 2 51.8 58.3 87.4 78.9 33.7 42.4 90.5 46.5 

Clear-

cut/Thinned 57.4 49.4 

 

71.8 

 

82.4 

 

46.1 

 

34.0 5.6 

 

42.9 

Overall 54.7 80.1 31.3 50.2 

 

Reference Image 2 

 LiDAR Landsat 

 Supervised Random Supervised Random 

 Producer User Producer User Producer User Producer User 

Oldgrowth 19.9 60.0 41.0 85.7 62.9 59.1 87.2 59.2 

Young 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Young 2 2.6 30.9 1.3 21.8 0.0 0.0 3.7 0.1 

Clear-

cut/Thinned 87.4 13.1 

 

99.1 

 

7.2 

 

100.0 

 

18.4 1.6 

 

92.6 

Overall 26.8 32.0 30.0 30.5 

  

LiDAR Resampled  

 Reference Image 1 Reference Image 2 

 Supervised Random Supervised Random 

 Producer User Producer User Producer User Producer User 

Oldgrowth 71.6 70.7 56.0 64.0 72.1 28.0 84.8 39.6 

Young 1 71.8 70.0 61.8 60.6 0.0 0.0 0.0 0.0 

Young 2 75.4 76.9 75.2 63.8 26.4 1.9 18.9 1.1 

Clear-

cut/Thinned 58.8 59.6 33.5 

 

64.3 12.6 95.7 6.8 

 

98.2 

Overall 69.3 59.9 39.6 31.2 
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5.4 Discussion 

 

The methods outlined in this thesis research are intended to be applied to aerial or 

airborne remote sensing imagery to produce products which depict vertical structures of a 

woody vegetated area.  The final maps will be used to determine which classification 

method and which remote sensing dataset are better suited for identifying structural 

elements of a forest.  In addition, the resulting images are intended to be used for 

planning and management purposes.  

The user’s accuracy impacts the overall quality of the product from the end user’s 

perspective.  Overall, most of the user’s accuracies were below the industry standard of 

80%.  However, all of the supervised classification accuracies were below this 

percentage.  In addition, all of the classification accuracies for reference image 2 were 

below the industry standard.   Similar to Chen (1999), the speckled imagery that resulted 

from this classification method is a contributing factor to the low user’s accuracies. This 

is due to the nature of the object oriented segmentation.  The segmentation allows for the 

classification of a group of pixels versus individual pixels.  

In addition, the young 1 and young 2 classes were the hardest classes to decipher 

amongst both classification methods.  According to Sullivan (2008), the confusion 

between the “young 1” and “young 2” classifications are attributed to presence of gaps 

each study area as well as the similarity between the two classes.   Both of these classes 

represent the mid-story of the forest but symbolize different heights.  This is a 

contributing factor to the low accuracies for these classes.  Conversely, if the two classes 

are combined into one “young” class the accuracies dramatically increase.  For reference 
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image 2, the accuracies of the new “young” class did not increase.  Conversely, the 

accuracies for reference image 1 yielded accuracies ranging between 76.1 to 94.2%.   

 Overall, the user’s accuracies were higher for the random forest classification of 

the LiDAR imagery. In addition, LiDAR provides information which is directly 

attributed to height, which is a key element in classifying structural elements.  This 

element directly attributes the higher accuracy of LiDAR when compared to Landsat.  

Furthermore, the percentages of old growth detected in each image ranges from 2.4 to 

17.2%.  The LiDAR random forest image had the highest percentage.  With that being 

said, the LiDAR Imagery with the random forest classification and the object oriented 

segmentation yields higher results and provides a better process for forestry management.  

In addition, reference image 1 yields higher results for both Landsat and LiDAR imagery.   

The resolutions vary for each dataset and contribute to the differences in sizes for 

each class within the classification.  The overarching disparity is the availability of true 

height data in each dataset.  LiDAR data does capture true heights which correlate to the 

resulting imagery.  In contrast, the Landsat dataset provides density information which is 

based off of the reflectance of the vegetation, but this cannot provide true heights.  The 

essence of classifying structural elements of the forest is combining variables which 

depict density and height.   
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CHAPTER 6 

Conclusion 

 

The research presented in this study contributes to the overall knowledge of 

LiDAR and forestry. The primary objectives of this thesis research were to determine if 

LiDAR data can classify structural elements of a forest when compared to Landsat 

imagery, as well as determining which classification method was more robust. The utility 

of the LiDAR data collected show the ability to extract variables which directly correlate 

to tree structures.  The result of the supervised and the random forest classification shows 

that there is a significant difference between the use of LiDAR and Landsat data in 

forestry.  The clustering of the young 1 and young 2 classes increased the overall 

accuracies of the datasets.  When using the object oriented segmentation, the clusters of 

the Landsat imagery were not formed well during this process.  It should be noted that the 

object oriented segmentation does fare well for the red and near-infrared bands used for 

the Landsat imagery. For the purpose of classifying forest structures from remote sensing 

imagery, using variables derived from LiDAR showed the best classification accuracies.  

In addition, the random forest classification with the object oriented segmentation proved 

to be the best classification method.  

The outcome of this study warrants future research.  The conceptual model and 

methodology presented allows for this study to be repeated for multiple remote sensing 

images. In addition, the study can be repeated for different forest types. This model 

consisted of 4 main stages:  conversion, segmentation, reduction, and the classification of 
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the data. Also, the fusion of variables from LiDAR and Landsat can also be explored.  

This would allow information about height and density to be coupled with information 

from the electromagnetic spectrum.  In addition the use of the intensity values captured 

during the LiDAR acquisition could provide additional information which could further 

aid in the classification of forest structures.   

Although this study has reached its objectives, there were unavoidable limitations.  

The reference imagery being used for the accuracy assessment was created in an 

unconventional method.  Both reference images used in this study were created with the 

current LiDAR dataset and a different Landsat dataset using parameters derived by 

another study.  Initially, a set of ground truthed points were to be provided by the USFS 

and the WVDNR.  Unfortunately, these points were not acquired due to the lack of 

information from both agencies.  To combat this limitation, future research will create a 

new reference image based on field data.  The importance of new reference imagery is 

eminent, because it allows for the repeatability of the proposed methodology with ground 

truthed data.  

The additional limitation refers to the temporal and spatial difference between the 

LiDAR and Landsat data.  First, the data were collected at significantly different 

resolutions.  These spatial difference contributes to how detailed the imagery will be.  

Secondly, the images were collected during different seasons.  There is a four-month 

difference, which resulted in the LiDAR imagery being collected in mid-winter and the 

Landsat imagery in early spring. The differences in temporal resolutions could contribute 

to the difference in density of vegetation due to the time in which deciduous trees 

regaining their leaves.  
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 Although there have been many research studies in the realm of LiDAR and its 

uses in forestry, little research focuses on classification of the structure of these forests.  

As forests become more threatened by climatological factors, there will be a need for 

speedy analysis of these forests using remote sensing technologies.  The monitoring of 

these montane forests is important for the preservation and conservation of beautiful old-

growth trees.  

. 
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Appendix 

 

MONONGAHELA NATIONAL FOREST  

 

WEST VIRGINIA NORTHERN FLYING SQUIRREL (WVNFS) VEGETATIVE 

HABITAT 

 

February 5, 2011 

 

 

The PhotoScience Red Spruce mapping project involved mapping Forest Service lands 

falling within eight 5
th
 level hydrologic units that fall on or intersect with the 

Monongahela National Forest (MNF) for four forest types as correlates with West 

Virginia Northern Flying Squirrel habitat.  These forest types are spruce (SP), northern 

hardwoods-conifer (NC), conifer-other (CO), and other (OT).  The study area 

encompasses approximately 780,000 total acres of which 500,000 acres fall within Forest 

Service ownership.  The project 

primarily maps those 500,000 acres of 

high-elevation Forest Service lands 

(greater than 2,500 feet) within the 

Forest boundary. Due to funding 

constraints the 280,000 acres of non-

Forest Service land were not 

consistently mapped. 

 

 

OBJECTIVES 

 

This project’s  primary objective was to 

map the identified forest cover types 

and through the use of physiognomic 

modifiers to further refine the habitat 

classification.  The four forest types 

include spruce (SP), northern 

hardwoods-conifer (NC), conifer-other 

(CO), and other (OT).  Physiognomic 

modifiers included size class, coverage 

density, and crown 
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condition for all forest types with the exception of the “other” category.   This work 

facilitates the identification of West Virginia Northern Flying Squirrel habitat across the 

Forest. 

 

 

 

 

 

STANDARDS AND SPECIFICATIONS 

 

The minimum standards for delineating the vegetative polygons are: 

 The polygons should be generally homogeneous in species, size class, canopy 

cover, and crown condition.  

 The minimum mapping unit for non-riparian polygons is five acres. 

 A two- acre minimum mapping unit will be applied to polygons with riparian 

vegetation along streams or wet areas.   

Polygons are delineated based on identifiable characteristics as seen on digital ortho-

photographs, satellite imagery, or aerial photography.  Polygon boundaries are drawn 

around homogenous vegetation conditions and obvious changes in the delineation 

criteria.  Delineation criteria can be subtle, but most often are readily seen on a stereo 

view of the photo.   

 

DELINEATION CRITERIA 

Black and white aerial photographic prints, at the 1:15840 scale and dated from the 

spring of 2001, were originally used as stereo pairs to determine polygon characteristics 

for the initial phase of the three-phase project. Subsequent work incorporated the use of 

spring, 2003 leaf-off aerial photography shot at the 1:4800 scale and converted to raster 

imagery.  Delineation criteria are based on a map unit code (i.e., forest cover type) and 

physiognomic modifiers.      
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The Forest Cover Type represents one of four vegetative types:  spruce, northern 

hardwoods-conifer, conifer-other, and other.  The spruce type (SP) is made up of red 

spruce that comprises a plurality of stocking (greater than 50%) with potential minor 

components of hemlock, norway spruce, balsam fir, and hardwood species.  The northern 

hardwoods-conifer type (NC) of sugar maple,beech, and birch which exist singularly or 

in combination and comprise the plurality of the stocking (greater than 50%) with 

potential minor subcomponents of conifer (greater than 10%).  The conifer-other type 

(CO) is composed of white pine, hemlock, red pine which exist singularly or in 

combination and comprise a plurality of stocking (greater than 50%) with a 

subcomponent of spruce and/or hardwood species.  The other type (OT) is a stand which 

is predominantly hardwood, but may contain a minor components of conifer species (less 

than 10%). 

The map unit code represents the Forest Cover Type for a particular polygon.  The map 

unit code is made up of two alpha characters.  

 

Physiognomic Modifiers 

 

The first physiognomic modifier code represents the Size Class.  The size classes 

for trees are seedlings/saplings, poletimber, sawtimber, and mature based on 

diameter of the stem at breast height (DBH).   

Record the sizes of tree using the tree size classes in the Table below.  The 

diameters associated with each size class are interpreted from the height and 

crown structure, unless measured in the field.  Do not include seedlings unless 

they are the dominant vegetation.  This modifier is a one-character alpha code and 

follows the forest type.   

 

 

 

 

 

The second physiognomic code represents Canopy Cover.  The canopy cover 

describes the plurality of canopy cover based on the dominant species.  The 

modifier is a single numeric code from one (1) through five (5).  All vegetation 

map unit codes receive this modifier. 

 

 

Code Size Class (dbh) Description 

E 0 – 4.99” Seedlings/saplings 

P 5 – 8.99” Poletimber 

S 9 – 21.99” Sawtimber 

M 22” or greater Mature 
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The third physiognomic modifer represents the Crown Condition of the polygon.    

The polygon must contain greater than 15% crown damage to qualify for a 

damaged crown condition of D (containing over 15% and less than 50% dead 

crowns) or T (containing over 50% tree mortality).  This modifier is a two-

character alpha code. 

Code Crown Condition 

A Signs of declining crowns absent, less than 15% of the component 

D Dead crowns comprise 15 – 50% of the component 

T Tree mortality, over >50% of the component 

Code Canopy Cover 

1 Less than 10%, sparse vegetation 

2 10 – 29.9%, canopy cover 

3 30 – 59.9%, canopy cover 

4 60 – 79.9%, canopy cover 

5 80 – 100%, canopy cover 
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ACCURACY  

 

The vegetation maps was based on the National Map Accuracy Standards for positional 

accuracy with a minimum class accuracy goal of 80 percent. 

 

 

ACCURACY ASSESSMENT  

 

A partial ground-based accuracy assessment was completed to validate and verify the 

classification.  Sample points were randomly selected from the classified type, located 

using GPS technology, evaluated for typing criteria, photographed for illustrative 

purposes, and digitally mapped in GIS.   

 

 

TO BE PROVIDED BY MNF 

 

 Project validation sites (100+)  

 Red Spruce vegetation layer 

 Forest Visitor Map (digital and hardcopy) 

 Forest stands layer with CDS forest type attribute 

 Digital SAMB 2003 leaf-off, spring true color 2-foot digital orthophotography 

 NAIP summer 2007 leaf-on true color 1-meter digital orthophorography 

 Forest ownership 

 Road + trail layers 

 Stream network (from NHD) 

 Digital elevation models (30-meter) 

 Digital raster graphics (DRG) or 1:24000 scale topographic quadrangles.  

 

 

CONTRACTOR DELIVERABLES  

 

The following deliverables were required: 

 

 Digital classified forest type layer in ArcGIS geodatabase/coverage format with 

polygon modifiers. 

 Modifier data entered, delivered, and  provided as attribues in the ArcGIS 

geodatabase/coverage 

 FGDC-compliant metadata for coverage 

 Maps in both hard-copy and digital format.  

 All field data will be provided in a digital database management system (DBMS). 

 Photographs of accuracy assessment locations. 

 Map accuracy verification (including error matrix). 
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