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Statistical Properties of
a Convoluted Beta-Weibull Distribution

Jianan Sun

ABSTRACT

A new class of distributions recently developed involves the logit of the beta
distribution. Among this class of distributions are the beta-normal (Eugene et al. (2002));
beta-Gumbel (Nadarajah and Kotz (2004)); beta-exponential (Nadarajah and Kotz
(2006)); beta-Weibull (Famoye et al. (2005)); beta-Rayleigh (Akinsete and Lowe (2008));
beta-Laplace (Kozubowski and Nadarajah (2008)); and beta-Pareto (Akinsete et al.
(2008)), among a few others. Many useful statistical properties arising from these
distributions and their applications to real life data have been discussed in the literature.
One approach by which a new statistical distribution is generated is by the transformation
of random variables having known distribution function(s). The focus of this work is to
investigate the statistical properties of the convoluted beta-Weibull distribution, defined
and extensively studied by Famoye et al. (2005). That is, if X is a random variable having
the beta-Weibull distribution with parameters a4, 1, ¢, and yq, i.e. X~BW(aq, £1, €1, V1),
and Y has a beta-Weibull distribution expressed as Y ~BW(a,, 35, ¢2,72), what then is the
distribution of the convolution of X and Y. That is, the distribution of the random variable
Z =X+Y. We obtain the probability density function (pdf) and the cumulative
distribution function (cdf) of the convoluted distribution. Various statistical properties of
this distribution are obtained, including, for example, moment, moment and characteristic
generating functions, hazard function, and the entropy. We propose the method of
Maximum Likelihood Estimation (MLE) for estimating the parameters of the distribution.

The open-source software R is used extensively in implementing our results.
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1. INTRODUCTION

Distribution functions, their properties and interrelationships play significant roles in
modeling naturally occurring phenomena. For this reason, a large number of distribution
functions have been proposed and defined in the literature, which are found to be
applicable to many events in real life. Various methods exist in defining statistical
distributions. Many of these have risen from the need to model naturally occurring
events. For example, the normal distribution addresses real-valued variables that tend to
cluster at a single mean value, whereas the Poisson distribution models discrete rare

events. Yet few other distributions are functions of one or more distributions. For

example, a random variable T is said to have a t-distribution if T—\/—%/n , where Z has the

standard normal distribution, and W has the chi-squared distribution with n degrees of

freedom.

A new class of distributions recently developed involves the logit of the beta
distribution. Among this class of distributions are the beta-normal (Eugene et al. (2002));
beta-Gumbel (Nadarajah and Kotz (2004)); beta-exponential (Nadarajah and Kotz
(2006)); beta-Weibull (Famoye et al. (2005)); beta-Rayleigh (Akinsete and Lowe (2008));
beta-Laplace (Kozubowski and Nadarajah (2008)); and beta-Pareto (Akinsete et al.
(2008)), and a few others. Many useful statistical properties arising from these
distributions and their applications to real life data have been discussed in the literature.
One approach by which a new statistical distribution is generated is by the transformation
of random variables having known distribution function(s). Many useful properties of

statistical distributions are revealed by transformations of random variables. For example,



if X and Y are independent and identically distributed random variables having the

gamma distribution with parameters (a, s), and (J3, s) respectively, then a random variable

G defined by G = ﬁ is known to have the beta distribution with parameter a and f3.

The focus of this work is to investigate the statistical properties of the convoluted beta-
Weibull distribution, defined and extensively studied by Famoye et al. (2005). That is, if
X is a random variable having the beta-Weibull distribution with parameters
a1, P1,cand yy, ie. X~BW(ay,B1,¢1,71), and Y has a beta-Weibull distribution
expressed as Y~BW(a,, 35, ¢2,V2), what then is the distribution of the convolution of X
and Y. That is, the distribution of the random variable Z = X + Y. We obtain the
probability density function (pdf) and the cumulative distribution function (cdf) of the
convoluted distribution. Various statistical properties of this distribution are obtained,
including for example, moment, moment and characteristic generating functions, hazard
function, and the entropy. We propose the method of Maximum Likelihood Estimation
(MLE) for estimating the parameters of the distribution. The open-source software R is

used extensively in implementing our results.



2. The Literature Review

The beta distribution has been widely applied as a statistical distribution to address
various kinds of problems in reliability. According to Nadarajah (2002), a generalized
class of beta distribution has been introduced in recent years. Under this scheme, the
cumulative distribution function (cdf) for the generalized class of distribution for the
random variable X is generated by applying the inverse cdf of X to a beta distributed

random variable to obtain,

1 (FOO g .
6&) =505 Pre1(1 - ¢)fdt;  0<a, 0< B.

The corresponding probability density function (pdf) from G(x) is given by

g0 [FOO1™ 1 = FIF1F (),
where F'(x)=f(x) is the pdf of X.

We discuss, in what follows, summaries of some of the beta compounded distributions

that have been defined and studied in literature.

2.1 The beta-exponential distribution (BED)

The exponential distribution is perhaps the most widely applied statistical distribution
for problems in reliability. The beta-exponential distribution, defined and studied by
Nadarajah and Kotz (2006), is generated from the logit of a beta random variable. In the

paper, authors provide a comprehensive treatment of statistical properties of the beta-



exponential distribution. The paper also discusses and derives expressions for the
moment generating function, characteristic function, the first four moments, variance,
skewness, kurtosis, mean deviation about the mean, mean deviation about the median,

Renyi entropy, and the Shannon entropy.

The paper proposes a generalization of the exponential distribution with the hope that
it would attract wider applications in reliability. The generalization is motivated by the

following general class:

If G denotes the cdf of a random variable, then a generalized class of distribution can

be defined by
F(x) = I (a, b); a>0 and b>0,
where,

B, (a,b)

bab) =305

denotes the incomplete beta function ratio, and
y
B,(a,b) = f w1 —w)P~tdw
0

denotes the incomplete beta function.

The author defined the beta-exponential distribution by taking G to be the cdf of an
exponential distribution with parameterA. The cdf of beta-exponential distribution then

becomes,



F(x) = Li_exp-an (@, b);  x>0,a>0,b>0, >0,

and the corresponding pdf as obtained by Nadarajah and Kotz (2006) is,

A
B(a,b)

flx) = exp(—bAx) {1 — exp(—Ax)}*"1; x>0,a>0,b>0,1>0.

This distribution is the generalization of the exponentiated exponential distribution
defined by Gupta and Kundu (2003) when b=1. The beta-exponential distribution reduces

to the exponential distribution with parameter bA when a =1.

Besides its mathematical simplicity when compared to other beta compounded
distributions, the beta-exponential distribution can be used as an improved model for
failure time data. The distribution exhibits both increasing and decreasing failure rates,

and the shape of the failure rate function depends on the parameter a.

2.2 The beta-Gumbel distribution (BGD)

The Gumbel distribution is perhaps the most widely applied statistical distribution for
problems in engineering. The paper by Nadarajah and Kotz (2004) introduced and
defined the beta-Gumbel distribution from the logit of a beta random variable. The paper
provides a comprehensive treatment of the mathematical properties of the beta-Gumbel
distribution and discusses the analytical shapes of the corresponding probability density
function and the hazard rate function. Expressions for the moment generating function,
variation of the skewness and kurtosis, asymptotic distribution of the extreme order

statistics and estimation are also discussed in the paper.



In the essence of the logit of beta distribution, the cdf G(x) has the Gumbel

distribution defined by
G(x)=exp{—exp(—%)}; —00 < x <00, —00 < < 00,0>0.

Thus, the cdf of the BGD is given by F(X)=lexp(-w)(a, b), where u=exp{-(x-p)/o}. The

corresponding pdf is

u exp(—auw){1—exp(—u)}P~1

f(x) = gB(a,b)

The above pdf has the equivalent form

_T(a+b)o (1D uexp{—(a+ k)u}
0 =5 Z KIT(b— k)

The beta-Gumbel distribution allows for greater flexibility of its tail, which enables
some real-life problems with tail features to be analyzed more accurately, leading to

better estimation and prediction of parameters.

2.3 The beta-Rayleigh distribution (BRD)

According to Akinsete and Lowe (2008), the problem of estimating the reliability of
components is of utmost importance in many areas of research, for example in medicine,
engineering and control systems. If X represents a random strength capable of
withstanding a random amount of stress } in a component, the quantity R=P(Y<X)

measures the reliability of the component. In the paper, the authors defined and studied



the beta-Rayleigh distribution (BRD) and obtained a measure of reliability when both X
and Y have the beta-Rayleigh distribution. Some properties of the BRD are discussed in
the paper, including, for example, special cases of the distribution, moments, and

parameter estimation.

By taking F(x) as the cdf of the Rayleigh distribution, the pdf for BRD can be written

as

2. a—1

g(x) _%(g)zﬂ (1 — e_%(g) ) i x>0.

_ X
~02B@p)’

Using the relationship between the incomplete beta function and the Gauss

Hypergeometric function, the cdf for BRD can be expressed as

2
e ‘%(%)

_&X\2
szl(O(,l —ﬁ;l +a;e 2(0) ),

Gx)=1-

where ,F; (a, b; c; z) is a second order hypergeometric function.

The above distribution is used in calculating the measure of reliability, which is vital in
many fields requiring safety. The reliability measure obtained from BRD is seen to
generalize the known Rayleigh reliability measure and addresses more cases of reliability

measures.



2.4 The beta-Weibull distribution (BWD)

The Weibull distribution has wide applications in many fields of studies. One
generalization of the Weibull distribution is the beta-Weibull distribution, defined by

Famoye et al. (2005).

The authors discussed some properties of a four-parameter beta-Weibull distribution.
The distribution is shown to have bathtub, unimodal, increasing, and decreasing hazard
functions. The distribution is applied to censored data sets on bus-motor failures, a

censored data set on head-and-neck-cancer clinical trial, and also to survival data.

By taking F(x) to be the cdf of a Weibull random variable X, the corresponding pdf for

the beta-Weibull random variable is expressed as:

_ T@+p) ¢ ¢=1[1 — e~/ Ja=1p=-Bx/1)*
9@ = rtiy /ML = e O e :

x>0,a>0,>0,c>0,y>0.

2.5The beta-Laplace distribution (BLD)

Motivated by the work of Eugene et al.(2002), Kozubowski and Nadarajah (2008)
introduced the beta-Laplace distribution generated from the logit of a beta random
variable. The basic theoretical properties of the distribution are discussed, including, for
example, modality and concavity of the density, moments and related parameters, and

stochastic representations that aid in random variate generation from the model.



By the usual method of the logit of the beta distribution, and using the cdf of the

Laplace distribution given by

%exp (%), if x<89,

G(x) = 1 -
1 —;exp (xT), if x>0,

—ww<fO<o,0>0.

The corresponding pdf of the beta-Laplace distribution is expressed as

|x — 6]

1
fapos(x) = 20B(ab) *P <— ) G ({1 - G}

We see from this function that 8 and o are location and scale parameters, respectively. In
a particular case where 8 = 0 and o = 1, the pdf becomes

1>a+b+1 F(a + ,3) {eax(z _ ex)b—l , ifx < 0‘

=) @@ e ifa o

2.6 The beta-Pareto distribution (BPD)

According to Akinsete et al. (2008), the family of the Pareto distribution is well known
in the literature for its capability in modeling the heavy- tail distribution, such as the data
on income distribution, city population size, and size of companies. Some other quantities
measured in the physical, biological, technological and social systems of various kinds

have been found to follow the Pareto distribution.

Different types of the Pareto distributions and their generalizations exist in the
literature. In the paper by Akinsete et al. (2008), a four-parameter beta-Pareto distribution

is generated and studied. Some properties are discussed in the paper, including the

9



unimodality of the distribution, the unimodal or decreasing hazard rate, the expressions
for the mean, mean deviation, variance, skewness, kurtosis, Renyi and Shannon entropies,

maximum likelihood estimates of the parameters and applications to real-life data.

A random variable Y is said to have the Pareto distribution if its pdf is given as

k6*
fO =i k>00>0y20

The Pareto distribution is skewed to the right and characterized by a shape parameter k
and a scale parameter 8. The density function f(y) is a decreasing function of y and

achieves its maximum when y is smallest.

The probability density function of the beta-Pareto distribution is given in Akinsete et

al. (2008) as

x —k}“—l x\—kB-1

g(x):#a,ﬁ){l_(g (5) ; x=6,0,B,0,k>0.

In the following chapter, we define a convolution of two beta-Weibull distributions.

Various properties of this distribution are obtained.

10



3. The Convoluted beta-Weibull Distribution

3.1 Definition, Density and Distribution Functions

According to Famoye et al. (2005), the pdf of a beta-Weibull random variable X is
expressed as

c

1
SO = s@py

(x/y)c_l[]_ — e_(x/y)c]a_le_ﬁ(x/)’)c ,

a>0,>0,c>0y>0x>0.

Assume X has the BWD with parameters a4, 81, ¢; and y;, and ¥ has the BWD with
parameters @y, B,, ¢, and y,. That is, X ~ BW(ay, B1,¢1,71) and Y ~ BW( @y, B4, €2, V2).
Let Z=X +Y be a random variable. By using the concept of convolution of the two

random variables, we may write the pdf of Z as,

f(@)

L&&—w&wwy

_nC17%1—1
— C1C2 fZ(Z _ y)cl—l (y)cz—l 1-— e_(%) ' X
B(a1,B1)B(az,82) V1122 0

cpya2—1 2\ € c
A

Let a; = a, = 1 for simplicity, so that

_ B1B2c1c2

f@ V11Y2 2

z AN Ve
f (z _y)c1—1 (y)cz_le_ﬁl(T) e_ﬁZ(E) zdy.
0

Again for computational simplicity, we set ¢; = ¢, = 1 to have,

11



dy
17Y2
B z B B
:,8132 e—y—iz f e(y—ll—y—;)ydy
Y1Y2 0

B B B z

_ B1B- e_)’_iz Y1Y2 [e (y_i_y_;)y]

Y1Y2 Biv2 = B2v1 0

B B1_B

= & e_Y_112 [e(y_i_y_;)z — 1]

B1Y2 — B2v1

_B2 B

:& (e Yzz—e V1Z>, (1)

B1Y2 — B2y1

where 8, > 0,8, >0, y; > 0,y, >0,z > 0,and 1y, # BV1 -

Equation (1) is the pdf of the random variable Z , a convolution of two independent and
identically distributed beta-Weibull random variables. We say that Z has a Convoluted

beta-Weibull Distribution (CBWD), and write for notational purpose;

Z~CBWD(B4, 2, Y1, V2)-

ThiS iS a SpeCial case Of CBWD(Cl, C2, 0(1, 0(2, ﬁl’ ﬁz, yl’ yz) With Cl = Cz = C{1 = az = 1.

In that case, Z~CBWD(1,1,1,1, 81, B2, Y1, V2)-

To show that Equation (1) is indeed a pdf, we require that

f f(z)dz = 1.
0
We show this as follows:

12



® s BlBZ —&z —&z
fo f(z)dz = llmf B (e 2 —e "1 )dz

t—ooo — B2v1
t

= lim [ B2v1 Z B1v2 e—%z

t—oo | B1V2—B2v1 ﬂﬂ/z—ﬂzh 0

B1v2 B2v1

= 0 0 — —

( + ) (51)/2—/”2]’1 B1v2—B2v1
:ﬁﬂ/z—ﬁzh

B1yv2—B2v1

=1, as excepted.

The corresponding cdf of a convoluted beta-Weibull distribution is defined as

F(z) = P(Z < z). Using Equation (1), we have,

F(z) =f f(t)dt
0

z Bz ﬂ1
= & (e Vz -e Y1 )dt
o B1Y2 — B2v1
z B _B1
=£ (e Vzt—e Y1t)dt
B1v2— B2v1 Jo
B Bz, 1%
B1B- ﬁ —y—it _Qe—y—;t

- Biv2 — Bav1 [B1 ) B> 0

P10 Y1 B, Y1 V2 b2, Y2
= Y1 Y2
B1Y2 — B2v1

B B —
_ ; y513; - [ﬁe—y—llz —%e_y_jz +B1V2 32)’1]
1Y2 — P27

13



B2v1 B, B1v2 B2,
- e N —-——0p 2
B1v2 — B2v1 B1Y2 — B2v1

We see immediately that

lim F(z) = 1.

Z—00

The graph of the cdf of the convoluted beta-Weibull distribution for §; = 2,3, =

3, Y1 = 2,¥2 = 4 is shown in Figure (1).

1.0

08

cdf(z)

04

02
I

Fig. 1. The graphof cdf (B =2, =3, y1 =2,¥, = 4)

From the graph, the cdf increases when z increases, and approaches 1 when z becomes

large, as excepted.

14



3.2 Shape of the PDF
We investigate the shape of the CBWD in what follows:

Given,

ﬂlBZ BZZ Bl
= — Y - Y
f(Z) B1y2—B271 (e ’ e )

Differentiate the equation above with respect to zand set equal to zero to have,

’ _ BB B1 B, _ B2 —&Z> _
f (Z) N B1v2—B2v1 (V1 en Y2 e =0.

The above may be written as

B _ Ban
V1) Z] - Bivz

exp[(
Solving for z finally gives,

V1Y
ﬂzhl ;1]/ [ln(ﬁzh) ln(ﬁlyz )] > 0, where 172, # L2V

This value shows that the distribution is unimodal.

By choosing different values for parameters [, ,,y1 and y, in the distribution,

corresponding shapes of the distribution are shown in the graph below:

15



06
L

— b1=3b2=1,1=4,2=3
--=- b1=4,02=1,1=32=2
........ b1=3,b2=4r1=2,2=3

05
I

04

pdf
03
l

02

0.1

00

Fig. 2. The graph of pdf for different parameters values (b = ,r =vy)

It is interesting to note that all parameters in the CBWD are scale parameters. They
affect the graph of pdf in different directions and different rates. Among the parameters,
the bigger y; and y, are, the more spread out the graph is, but the bigger £, and S, are,

the more concentrated the graph is.

16



4. The Hazard Function

The hazard function is a measure of the tendency of a component to fail. And the
greater the value of the hazard function is, the greater the probability of impending failure
is. Technically, the hazard function is the probability of failure in a very small time
interval. Mathematically, the hazard function for random variable X is defined as

f)

h(X) = 1——F(x)

Hence the hazard rate function h(z) associated with Equation (1) is given as,

_ f@
RO
[ B B ]
B1B> I e 2l —e n’ [
31}’2 B2v1 B2v1 B, P1Y- B2, }
[1 ﬁlyz — B2v1 en _ﬁlyz — B2v1 e + 1)
-%z -%z
= (8152 eﬁz - B, | (2)

B1v2€ ve” — B2v1€ "

We consider the behavior of the hazard function as z approachs and as z approaches

infinity as follows:

Taking the limit of Equation (2) as z — 0, we have,

B2y _P1
. e on—e Vio
il_r)r(l) h(Z) —3132 _& _ﬁ

B1v2e v’ — B2rv1€ n’

17



1-1
= B1p-

Also,

B1Y2 — Bara

B1

-1z

_B2
Z—e Y1

e V2

hm h(Z) = llm BIBZ
Z—00 Z—00

B2

B1

——Z Z
Pivze 2 — Boyie M

(ﬁ B2
) 1-e 71 V2
- Zh_)rgﬂlﬂz —(&—&)Z
P1Y2 — B2yie M1 Y2
N
_JnNn Y2 "
b BB
Y2 Y2 "N

Figure (3) shows the graph of hazard rate function.

From the graph, we can see that the value of the hazard function increases when z
increases. It comes close to a constant value as the value of z increases. The implication
of this behavior explains that the convoluted beta-Weibull distribution may be
appropriate in modeling age-dependent events, where risk or hazard increases with age.

Many examples are found in systems of components that fail as a result of the age of

those components.

18



The Hazard Rate Function (h(z))

06

04

02

00

Fig. 3. The Graph of the Hazard Rate Function
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5. Moments and Generating Functions

5.1 Generating Functions

We derive the moment generating function and characteristic function for a random
variable Z having the CBWD density function given in Equation (1) as follows:

By definition, the moment generating function of a random variable Z is defined as
M, (t) = E[exp(tZ)], where |t]| < 1.

Using Equation (1), we have,

Mz(t) =

o B B
B1B2 f [e(t—y—j)z e | dz
0

B1Y2 — B2v1

B B x
= lim P12 [ v (c-4)e _Le(t—y—;)z]
x>0 1Y, — ¥ |tV2 — B2 tys — b1 0

_ B1B> P £ V1
"~ Buva— Bana <0 0 ty, — B * ty1 — ﬁ1>

_ B1B- <,31V2 — ty1V2 — B2v1 + iy )
B1Y2 — B2V1 (ty, — B(ty2 — B2)

_ B1B2
(B1 — ty1) (B2 — tyz2)

= [ —V—itxl —y—ztn—l. 3)

It follows from the above that the characteristic function of Z defined by

02(t) = E[ex p(itZ)],
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may be written as
0,0 = [(1-Tind - 2in]™
B1 B2

From the above representation of the moment and characteristic generating functions,
we may generalize that if X; , j=1,2,...k, are independent identically distributed random
variables, each with density function given in Equation (1), the characteristic generating

function @y (t) of R=X; + X, + -+ + X}, may be expressed as,

k
DR(t) = 1_[(1 — %it)‘l.
j=1 /

5.2 Moments

The moment generating function (3) can also be expressed as
Mz (t) = B1f3z (tyr — Bty — B2) 7 (4)

By definition, the k ® raw moment of the random variable Z is expressed as,

k

d
E(Z*) = ﬁMz(t)h:O-

Taking the derivative of Equation (4) with respect to t, we have,

Mz () = [=v2(tys — B (tyy — B2) ™2 — ya(tys — B) 2ty — B2) "M BiBa2

from where we obtain,

’ Y2 Y1
E(Z) =M, (0) =|——s+ ——
A=t ﬁﬁf+mwjm&
n.on
=58 )
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The table below shows the mean of the CBWD with different parameters.

Mean(2)
b1=2 b1=3 bl=4
b2 b2 b2
1 2 3 1 2 3 1 2 3
1.50 | 1.00 | 0.83 | 1.33 | 0.83 | 0.67 | 1.25 | 0.75 | 0.58
250|150 1.17 | 2.33| 1.33 | 1.00 | 2.25 | 1.25 | 0.92
3.50| 2.00 | 1.50 | 3.33 | 1.83|1.33|3.25| 1.75| 1.25
450 250|1.83| 433|233 | 1.67 | 4.25 | 2.25 | 1.58
2.00| 150|133 |167| 1.17| 1.00 | 1.50 | 1.00 | 0.83
3.00| 2.00]| 1.67 | 2.67 | 1.67 | 1.33 | 2.50 | 1.50 | 1.17
4.00| 2.50| 2.00| 3.67 | 2.17 | 1.67 | 3.50 | 2.00 | 1.50
5.00 | 3.00 | 2.33 | 4.67 | 2.67 | 2.00 | 4.50 | 2.50 | 1.83
250|200 1.83|200| 1.50| 1.33 | 1.75| 1.25 | 1.08
3.50 | 250 | 2.17 | 3.00 | 2.00 | 1.67 | 2.75 | 1.75 | 1.42
450 3.00 | 2.50 | 4.00 | 2.50 | 2.00 | 3.75 | 2.25 | 1.75
5.50 | 3.50 | 2.83 | 5.00 | 3.00 | 2.33 | 4.75 | 2.75 | 2.08
3.00| 250 2.33 | 2.33|1.83|1.67|2.00| 1.50 | 1.33
4.00| 3.00| 2.67 | 3.33 | 2.33 | 2.00 | 3.00 | 2.00 | 1.67
5.00 | 3.50 | 3.00 | 4.33 | 2.83 | 2.33 [ 4.00 | 2.50 | 2.00
6.00 | 4.00 | 3.33 | 5.33 | 3.33 | 2.67 | 5.00 | 3.00 | 2.33

1
N

ri=1

rl=2

HIWINIRP|[RIWIN|RP|IP|WIN|R (W[N]

Table 1. The Mean of the CBWD with different paramenters (r=y, b=[3)

From Table 1, the mean of the CBWD increases when y; and y, increase, while the
mean of the CBWD decreases when ; and f, increase.
According to Famoye et al. (2005), the r*" raw moment of the beta-Weibull

distribution is given by

['(a + B)Fé + DY O ()R8 + k)~ R/

EXT) = r(g) L KT(a—k)

Setting a = ¢ = 1 as we have in our model, the above can be shown to become, for

r=1,
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_Y
EX) = 5

This result coincides with Equation (5) for corresponding random variables X; and X,.
Further, if B = 1, we have the mean of the Weibull distribution.

The result shows that the mean of the sum of independent beta-Weibull distribution is
the sum of individual means.

In that case, given that R=X; + X, + --- + X},

k Vi
ER)= ) 2.
=t

Expressions for other higher moments are calculated as follows:
Mz" (&) = BBz (=V2[=v1(tyr = B T2 (ty2 — B2) 72 = 2v2(tys — B (tv2 = B2)°]
= v1[=v2(tyr — B2 (ty2 — B2) 72 = 211 (tys — B> (tv2 — B) 7'}
= B1Ba {[yava(tys — B2 (tyz — B2) 72 + 2727 (tyr — B (ty2 — ) 1 +
[V1v2(tys — B2 (@tya — B) 72 + 2y 2(tys — B) 2 (tv2 — B2) 7'}
= B1Bal2y1y2(tyr — B2 (ty2 — B2) ™2 + 21,2 (tys — ) Mty — B) 3 +

2y,2(tyy — B) 3ty — B) 7]

E(Zz) = MZ”(O)
= B1B> [(Y1)’zﬂ1_232_2 + 2]/2251_132_3) + (2B B R+ 2]/1251_3,82_1)]
2

= Vl)’zﬂl_lﬂz_l + 2]/2252_2 + V1V2,81_132_1 + 2y42B1”

= 2)’1)’231_1,82_1 + 2]/22,82_2 + 2]/1251_2
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M7 () = BB, (2v1va[—2v1(tyr — B 3 (tys — B2) ™% = 2y, (tys — B1) 2(ty, — B2) 3] +

2y,%[ =3y, (tys — B) 1ty — B2)™* — va(tyr — B) 2 (ty, — B2) 31 +

2y1%[=3y1(tys — B)™*(tyz — B) ™ = va(ty:s — B) 2 (ty2 — B2) 1}

E(Z%) = M;"(0)

=B1B2 (47,2¥, By OByt 4y, v, 2B, B, T+ 6y, 38, T B, T 2y, v,2B, B, +
6y, B, B, + 2v, 2y, BB, )

=4y, 2y, B, B, 4y v, 2B T By 61,38, 2y, v, 2B T B, T+ 6y B T+
2y.%v, B, B,

il 1, -2 -3 3, —3
=6Y,°Y, By By T 6vi V2B, B, 6y, B, + 6y, 7B,

M;P @) = 68,8, [3)/13)/2 (tyr — Bty — B) 2 + 2)/12)/22 (tyr = B3y, — )73
+3y1y23 (tyn — B 2 (ty2 — B) ™+ 27,2y, % (tys — B) 3 (ty, — Bo) 3
+ 4yt (tys — B) T (tv2 — B) T+ ¥, Y, (tyn — B H(ty, — B2) 7P

+ 4y, (tyr — B) Mty = B) T+, V23 (ty1 — B2 (ty2 — B2) 7]
- [V13V2 (Wl - 31)_4(“’2 - ﬁz)_z + Vlyzg(tyl - ﬁ1)_2(t7’2 - ﬂz)_4 +
Y12Y2° (th - .31)_3(t)’2 - ﬁz)_g + y14(ty1 - :31)_5(”’2 - ﬁz)_l +

V24(t7’1 - ﬁ1)_1(tyz - ﬁz)_s]
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E(z*) = M, (0)

=24B1B, (132 B B+ v v2 2B B T A B B T A B TR T +
V24:31_1,32_5)

=24(y.%y, By B A v v B B A vt B B vt B v B )

It is not difficult to see that the n-th moment of Zcan be written in general as:
n
E(Z™) =n! Z Yy, B T B Y.
i=0

Using the above results, we obtain expressions for the variance, the third and fourth
central moments, from which expressions for the skewness and kurtosis are calculated.
For the variance, we have,

Var(Z) = E[Z — E(2)]?
=E@Z*») - [E@D)
=2Y172 51_1,82_1 + 2)’1231_2 + 2]/22,82_2 - V1231_2 - szﬁz_z -

2y172 ﬁl_lﬁz_l

_ (%)2 + (%)2 (5"

Table 2 shows the variance of the CBWD for various parameter values. It is clear from
this table that the variance of the CBWD increases when y; and y, increase, and the
variance of the CBWD decreases when f; and f, increases. The same behavior exists in

the case of the mean.
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Variance(Z)
b1=2 b1=3 bl=4
b2 b2 b2
1 2 3 1 2 3 1 2 3
1.25| 0.50{ 0.36| 1.11| 0.36| 0.22| 1.06| 0.31| 0.17
4.25| 1.25| 0.69] 4.11| 1.11| 0.56| 4.06] 1.06| 0.51
9.25| 2.50| 1.25( 9.11| 2.36| 1.11| 9.06| 2.31| 1.06
16.25| 4.25| 2.03|16.11| 4.11| 1.89| 16.06| 4.06| 1.84
2.00( 1.25( 1.11| 1.44| 0.69] 0.56| 1.25| 0.50| 0.36
5.00| 2.00| 1.44| 4.44| 1.44| 0.89| 4.25| 1.25| 0.69
10.00| 3.25| 2.00( 9.44| 2.69| 1.44| 9.25| 2.50| 1.25
17.00| 5.00| 2.78|16.44| 4.44| 2.22|16.25| 4.25| 2.03
3.25| 2.50| 2.36( 2.00| 1.25| 1.11| 1.56| 0.81| 0.67
6.25| 3.25| 2.69| 5.00( 2.00| 1.44| 4.56| 1.56| 1.01
11.25| 4.50| 3.25[10.00| 3.25| 2.00| 9.56| 2.81| 1.56
18.25| 6.25| 4.03| 17.00| 5.00| 2.78|16.56| 4.56 2.34
5.00| 4.25| 4.11| 2.78| 2.03| 1.89| 2.00| 1.25 1.11
8.00| 5.00| 4.44( 5.78| 2.78| 2.22| 5.00| 2.00| 1.44
13.00| 6.25| 5.00|10.78| 4.03| 2.78|10.00| 3.25( 2.00
20.00| 8.00| 5.78|17.78| 5.78| 3.56| 17.00| 5.00| 2.78

ﬁ
N

ri=1

ri=2

rl=4

HIWINIR|IPIWIN[(RIPIWIN|R|P[WIN|F-

Table 2. Variance of the CBWD with different parameters(r=y, b=3)

E[Z-E@)J

— E(Z3%) - 3E(Z)E(Z2) + 2E(Z )?

=6V, 2V, By B, + 61 ¥, 2B, By 6y, 3B, + 6y B T =3 (v BT
V2B, (2r1,B 7 B, 21,28, 4 228 ) (0 B T, B

= 61,27, By B, 6y, ¥, 2B By 6y, 3B, + 6y, B T — 6y 2y, BB, —
617,281 Byt =6V, 3By " — 6y, 2y, By By + 203y 2y, '8 By +

-1, -3 -3 -3
3]/1 y23'81 Bz +]/23,82 + )/13,81 )

-2|(%) + (@) 5™
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E[Z - E@2))"
— E(Z*%) — 4E(Z)E(Z?) + 6E(Z )*E(Z2) — 3E(Z)*
:24()/13)/2 ﬂl_3ﬂ2_1 +71 V2331_1ﬂz_3 + V12V2231_232_2 + Y14ﬁ2_4 + V24ﬂz_4) -
24(y1 B+ 12 B )Py BB T A v B B+ v T + vt ) +
6(Y12ﬁ1_2 + Yzzﬁz_z + 2y17, ﬂ1_1ﬁ2_1)(2)/1)/2ﬁ1_1ﬁ2_1 + 2Y22ﬁ2_2 + 2)/12ﬁ1_2) -
30y By Ay, By B, 6 Y8y By Ay v, BT By Y, B
=24y1%Y, B BT+ 24y1 V22 By B 4 2411222 By + 24yt BT + 247,06, -
24y:°y, ﬁ1_3ﬁ2_1 — 247, Y23ﬁ1_1ﬁ2_3 - 24Y12Y2231_2ﬂ2_2 - 24V14ﬂ2_4 - 24)/24ﬁ2_4
24,2728 2B T = 241 v 2B B T = 24y BB+ 12ty BB T +
12Y12Y22ﬁ1_2ﬁ2_2 + 12Y24ﬁ2_4 - 3)/14ﬁ2_4 — 12y:%y; ﬂfgﬁz_l - 18Y12V2231_2ﬁ2_2 -
121172 B B2 70 = 31 B 1211 1B T B T + 12108, + 12117y, B OB T +
24y1 v, B + 242y, BB
=9y 4B+ 6V1 2122 B B 9 BT
Using corresponding results above, expressions of measures of skewness and kurtosis

are given respectively as,

E[Z-EQ)]? — V2B + vi3B

Sk 7) =
(V1 B1 “+ V2B )
E[Z —E(2)]*
Kurtosis(Z) = [—()]

Var(Z)?

_ R T <) P P P S B A M
(V1231_2 + szﬁz_z)z

Table 3 and Table 4 show values for the skewness and kurtosis for various values of

the parameters.
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Skewness(Z)

1
N

b1=2

b1=3

bl=4

b2

b2

b2

1

2

3

1

2

3

1

2

3

rl=1

1.61

1.41

1.49

1.77

1.49

1.41

1.85

1.61

1.46

1.85

1.61

1.46

1.93

1.77

1.61

1.96

1.85

1.73

1.93

1.77

1.61

1.97

1.88

1.77

1.98

1.93

1.85

1.96

1.85

1.73

1.98

1.92

1.85

1.99

1.96

1.91

1.41

1.61

1.77

1.49

1.46

1.61

1.61

1.41

1.49

1.61

1.41

1.49

1.77

1.49

1.41

1.85

1.61

1.46

1.77

1.49

1.41

1.88

1.66

1.49

1.93

1.77

1.61

1.85

1.61

1.46

1.93

1.77

1.61

1.96

1.85

1.73

r1=3

1.49

1.77

1.88

1.41

1.61

1.77

1.46

1.49

1.66

1.46

1.49

1.66

1.61

1.41

1.49

1.73

1.46

1.42

1.61

1.41

1.49

1.77

1.49

1.41

1.85

1.61

1.46

1.73

1.46

1.42

1.85

1.61

1.46

1.91

1.73

1.56

rl=4

1.61

1.85

1.93

1.46

1.73

1.85

1.41

1.61

1.77

1.41

1.61

1.77

1.49

1.46

1.61

1.61

1.41

1.49

1.49

1.46

1.61

1.66

1.42

1.46

1.77

1.49

1.41

PIWINIR[PIWIN[R|P|WIN|(R|P[WIN|F

1.61

1.41

1.49

1.77

1.49

1.41

1.85

1.61

1.46

Table 3. Skewness of the CBWD with different parameters(r=y, b=)

Kurtosis(Z)

_‘
N

b1=2

b1=3

bl=4

b2

b2

b2

1

2

3

1

2

3

1

2

3

7.44

8.25

10.76

8.10

8.15

10.50

8.43

8.16

9.73

ri=1

4.38

4.56

5.56

4.43

4.46

4.92

4.46

4.44

4.65

3.01

3.15

3.60

3.00

3.05

3.24

3.00

3.02

3.11

2.28

2.39

2.65

2.26

2.31

2.42

2.26

2.28

2.34

8.25

12.84

15.21

8.15

13.61

18.60

8.16

12.75

19.38

rl=2

4.56

7.13

10.33

4.46

5.99

9.38

4.44

5.28

7.89

3.15

4.42

6.75

3.05

3.65

5.27

3.02

3.33

4.32

2.39

3.12

4.64

2.31

2.63

3.48

2.28

2.45

2.92

10.76

15.21

16.63

10.50

18.60

22.50

9.73

19.38

26.17

5.56

10.33

13.50

4.92

9.38

14.64

4.65

7.89

13.59

rl=3

3.60

6.75

10.19

3.24

5.27

9.00

3.11

4.32

7.28

2.65

4.64

7.53

2.42

3.48

5.80

2.34

2.93

4.47

12.84

16.30

17.20

13.61

21.54

24.28

12.75

24.36

29.79

rl=4

7.13

12.66

15.17

5.99

13.02

18.42

5.28

11.63

18.96

4.42

9.14

12.60

3.65

7.68

12.83

3.33

6.12

11.25

PIWINIRP|PWIN[(RP[AR[WINIR|R|W[IN|F

3.12

6.56

12.12

2.63

4.91

8.81

2.45

3.84

6.97

Table 4. Kurtosis of the CBWD with different parameters(r=y, b=[3)
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5.3 Cumulant generating function

In probability theory and statistics, the cumulants K,, of a probability distribution are a

set of quantities that provide an alternative approach for calculating the moments of the
distribution. The moments determine the cumulants, and vice-versa, in the sense that any
two probability distributions whose moments are identical will have identical cumulants
as well. In some cases, theoretical treatments of problems in terms of cumulants are

simpler than those using moments.
The cumulants K, of a random variable X are defined via the cumulant-generating

function

c@o) = Z Ko
n=1
If M,(t) is the moment generating function of the random variable Z, the cumulant
generating function is basically the natural logarithm of M, (t).

The cumulants of a distribution are closely related to the distribution's moments. For

example, if a random variable X admits an expected value u = E(X) and a variance 62 =
E[(X — 1)?], then the first two cumulants: k; = uand k, = o*.

Generally, the cumulants can be extracted from the cumulant generating function by
differentiating C(t) and set t = 0. In other words, the cumulants appear are the

coefficients in the Maclaurin series of C(t).

The cumulant generating function of the CBWD can be obtained as

C,(t) = log[M,(1)]

-5 -] )
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= —log(l—%t) —log(l—%t)

V1 t*
2 3 4_
ﬂlH(ﬂ) (B) (B) +-
Y2 v2\2t?  (v2\3t® oy, t?
+Et+<ﬂ2> 7 +(,82) @ T

- (34 ;z>t+[ 56 @5

I
ﬁ
+

[ —2+m[<£>3+<%>32—?

=Z<"—1>'[( )n (@ T

By the definition of cumulants, the cumulants K,, of are the coefficients of

-e=o|(3) ()]

The first four cumulants are given by,

m C,(t).

That is,

=u= ;—11 + ;—2 (ref. Equation(5))
2 2
K, = o° = (;—1) + (;—2) , (ref.Equation(5))
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3 3
K3 =2 K;—i) + (;—Z) ] , (ref. Equation(5™))

and

5.4 Mean Deviations

The amount of scatteredness in a set of data is measured to some extent by the
deviations from the mean and median. The mean deviation about the mean and the mean

deviation about the median are defined by

8,(4) = E|Z — pl = f |z - plf (2)dz
0

and

6,(M) =E|Z — M| =f |z — M|f(z)dz
0

respectively, where u = E(Z) and M denotes the median. These measures can be

calculated using the relationships that,
u ©
6w = [ w-2f@dz+ | @-wf@
0 u

I o I
- f = D@ da| f @z - Wf(@)dz - f (z - Wf (2)dz]
0 0 0

u
=2 [uF(u) _ f zf(z)dz], ©)
0

and
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M o)
6,(M) =f (M—Z)f(z)dz+f (z—-M)f(2)dz
0 M
M (o)
=2MF(M) - M —f Zf(z)dz+f zf(z)dz
0 M

M
— E(Z) + 2MF(M) — M — zf o
0

The integral term in Equation (6) is obtained as

u
fzf(z)dz
0
u :31[32 < Bz ﬂ1>
= z— | e v2” -e N dz
B1Y2 — B2v1
Iz B B
=&f z (e_V_;Z—e_Y_iZ>dZ
B1Y2 — B2v1 Jo
e B LB
=& f ze Vj dz—f ze Yll dz]
B1Y2 — B2v1 |Jo 0
[ U
:& ﬁf __f Zde ']/2 l
B1Y2 — B2v1 |B1 )

P15 _V1 ( b, kB, ) V2 < B2, kB
=——Ze1’1|”—feyldz——ZeY2|”—er2dZ
B1Y2 — B2v1 _31 0 0 B 0 0

B1B- V4 ( B, i B, Y2 B2, Y2 B2,
=——— |Zlzen b+ e b |-Z(ze 2 h+Ze 2 |V )] (7)
B1vz2 — B2v1 B2 o B 0 B B 0
Substituting Equation (5) (1 = 2+ + Vz) into Equation (7), we have,

B1
B B B B
B10- V1< y—iz |5+V_1€—y—iz |g>_ﬁ<ze—y—§z |g+}’_ze—y—§z|g>]
B1Y2 — B2v1  |P1 B1 B B
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B1B2 vil/va  va\ -1-Bir ( _Bive )]
= B2v1 T By —
B1y2 — B2v1 {Bl [<31 * ,32> ¢ "tg ! 1

ﬁ 1% B2y
g p s g
2 1 \P1 2
__Birs _,_ By
PP In <2£ R ﬁ)
B1v2 — B2v1 |P1 p1 B B1
B2y B2y
_V_z<zﬁe o R _V_z)]
B2\ B B1 2
By By 2 2 B2y
= & ( ]/1 e Bovs + 63 e B VLZ — zyize_l_ A
B1Y2 — B2v1 ,31 P10 b1 B>
"V —1 % n VLZ
TR B,’
2 By B2y Byy. B2y
_ B1B2 SV gy ZVL B + A2 ( gy Ry,
_— > +
B1v2 —B2v1 | By B2 B1B-

(G R E-7)

2 _1_Bv2 2 __Bin _1_Bra _q1_Bv1
=—ﬁ1ﬁ2 (h -Gy Y2 e Bi)é)-p—ylyz <e - By . Bi]é) (V1+)’2>
— 2
B1Y2 — B2v1

B’ B> Br B2/

152

Similarly, substituting M in place of u into Equation (7), we can obtain
M
f zf(z)dz
0
_B1 _B1 _B2 _B2
= & ﬁ(ze 77 o L, 7? g’) —Q<ze T [ + 1z, Vo |1(‘)/’)]
B1v2 — B2v1 |P1 B

B 2 B 2 B2 2 By 2
B1B2 hMe i +VL3 M _VL_Y_ZMe v —yize 7" +yi

B ﬁl)/Z - .82]/1 E ﬂlz ﬂlz .82 ﬁz ﬂz

_ BaviM + Boyi? /By e—%M _ B1y2M + Pry2%/Ba e—%M Vi, V2
B1va = Bav1 B1va = Bav1 :3 B2’
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It follows that the expressions for the mean deviation about the mean and the mean

deviation about the median may be written respectively as

u
o (uw) =2 [uF(u) - f Zf(Z)dZ]
0

B1v2 B2v1

B2v1 -1- B1v2 -1- 2B1B>

2[ )/2 ( e B2¥y1 — —————p Bivz + 1) _—
B1y2—B2v1 B1v2—B2v1 B1v2—B2v1

2 Biv2 2 _4_B2ra _4_Biy2 _4_B2v1
(Lze -1- B2v1 — Y_e 1 B1v2 ) — ﬂ(e 1 B2v1 — g 1 B1v2 ) — ()/1 + iz )]
B1 B2* B1B2 B1 B2

{ Biv1¥z2 — B2v1® V1Vzl —1—2,1# B2v1¥2 — Biv2® )/1}/2] —1—M}
= e 2¥1 — — e Biv2 ,
b1 (:81]/2 = B211 ) B1B- B- (:81]/2 = B211 ) B1B2

and

8, (M)

M
=E(Z) 4+ 2MF(M) —M—2f zf(z)dz
0

_B1 B2

=ﬁ+y—2+2M< B2v1 oM _ B1v2 o V2M+1>—M

B1 B B1Y2 — B2v1 B1Y2 — B2v1

) B2 Y1M+BZBY112 By 51Y2M+Bf8y22 _32
— [ & S Y _— P2

B1v2—B2v1 en B1V2—B2v1 € + B + 32
- M- (V1 [ ,82)’12 e—%M _ ,81]/22 e—%M]
B p1 (:311/2 = B2v1 ) B (ﬁﬂ’z = B211 )
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6. Entropy and Asymptotic Behaviors

6.1 Rényi entropy

The Rényi entropy of a random variable Z is one of a family of functions for
quantifying the uncertainty or randomness in a system. The Rényi entropy has been used

in various situations in science and engineering. Rényi entropy is defined by,

R(s) =

1
—log[f*(2)dz],

where s > 0 and s # 1.

For the pdf of the CBWD given by Equation (1), we have,

el [ i (-]
U (.31)’21 B;q) <_B )dzl
iSlog[(ﬁn/zliﬁ;:yl) f <e L ) dz]
e {l‘)g [(ﬁlyziﬁéyl y e fom (ﬁ_ e ) d”

- jstog <%) +log | OOZ; (5) - (J‘) (e_%z>idz”

-5 :
1 o i _Bz(s—i) _@
= S log <£> + ]Og Z (f) f (_l)le Y2 Z e "N Z il
; 0

R(s) =

L
N e’

1-s B1Y2 — B2v1
1 B1B2 ) f _Bz(s ) Bll)z
= slog| ——— |+ 1o (-D'le Y2 7/ dz
1-s 8 (51]/2 = B211 g
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Y1Y2

Y2 Y1

1 \ .
— s{log; (f) [(_1)l ' B2v1S —

+ s log ﬁlﬁz
,81)’2 Bzh
— 1 ,8132 _1)\i+1
T 1-s Slog(ﬁﬂ/z ﬁ2V1>+logZ (-1
_ 1 BiBs ANV
= s log <—,31)/2 e ) + log 2, (l) (-1)

6.2 Asymptotic Behaviors

; e
B2v1l + Pyl

_(ﬁz (s—i)+@)z r
0

Y1Y2
B2v1S — B2yl + P1Y2i

o

Y1Y2

},s * 1.

B2y15+(B1Y2-B2v1)i

The asymptotic properties of the convoluted beta-Weibull distribution are investigated by

considering the behavior of lim,_, f(2) and lim,_,, f(2) as follows:

Considering the situation when z = 0 and z — oo respectively in Equation (1), we have,

3132 ﬂz ﬂ1
11m Z)=lim————— (e 72" -e "~
/@) z-0 81V, — P2V ( )
B2, _B1,
:& lim(e V2" —e 1 )
B1V2 — B2y1 z-0
__ BB
B1Y2 — B271
=0,
and
:8132 Bz ﬂ1
lim f(z) = lim—————— (e V2" -¢ 1"~
Z—’°°f( ) z-0 B1Y, — Bay1 ( )
B B
=& lim (e V_jz—e Yllz)
P1V2 — B2y1 zow
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P1b2

B B1Y2 — B2y1 0-0)

= 0.
These results are in agreement with the unimodality of the distribution as shown in

Figure (2).
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7. Parameter Estimation

We consider the process of estimation of the parameters of CBWD in this section by
the method of maximum likelihood estimation. Let z;, z,, Z3 ... Z, be a random sample
from n independent and identically distributed random variables each with density
function given in Equation (1). Then the likelihood function for the random variables is

given as

L(Z|B1» B2, Y1, Y2 ) (Blyflﬁ,zl?z]/l 1_[ [ €xp (_ _Z]> €xp (‘ f_zj)]' 8)

The values of the parameters that maximize the likelihood function also maximize the

log likelihood. Taking the logarithm of Equation (8), we have

t= logL(ZWLﬁz’Vsz )
=nlog <B1)/2,81ﬁ232)/1 ) Z log [exp (— — Z; ) exp (—f—z )]

= nlog($.5, ) — nlog(Bay> — favr ) + Z g [exp (<25) -exp (- 25)]-
j=1

Now taking the partial derivatives of this Equation (9) with respect to 81, f2, y1and y,

respectively to have,

_B )
ﬁ _ nﬂﬂ/z — B2v1 B2 (ﬁﬂ/z B2v1 ) ﬁ1ﬁ2 Y2 Zn: A ( 141 g
0P BB, (31)/2 ﬁ2V1 j=1[exp <——Z]) exp <—&21>] V1
1 , n Zj exp (— %Z])
—n——n—"_ 4 . (10)
B B1v2 = B2v1 Z [exp (_ &Z]) exp <_ —Z]>] Y1
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. exp( =Pz )
0 Piva—Pana Bi(Bry2 = B2vi) = BiBa 11 B : exp( Y, %

6_,82 - BB (31)/2 — B2 )2 = [exp( ba 1) exp (—%Zj)] Y2

B i_ y ~ n zj exp(—&zj>

=8 "B B ]Z[exp (G)-eo(-Ba)|ra an
ﬁ _ np, _ N 'Ble eXp (_%Zj) ) (12)
dy1  Biv2 — Bana = [exp (_ %Zj) —exp (_ %Z])] V12
and
o ____mh LN ) (13)

Yy» B1Y2 — B2v1 = [exp (— &zj) exp (— —Z,)] Y22

The maximum likelihood estimates f3;, B,, 71 and 7, are solution of Equations (10) -
(13) when equated to zero.

For interval estimations of the set of (S, 52,71, V2 ), and their tests of hypotheses, the
Fisher information I,,(-) symmetric matrix is required. The elements of this matrix consist

of the excepted values of the second partial derivatives of the negative log likelihood.

That is,

Ih(B1, B2 V1, ¥2) =
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Continue from the first derivatives in Equation (10)-(13), the corresponding second

partial derivatives are obtained as follows:

o gacmClml ) piol by

_ -2
—np; 2+ nyzz(ﬁﬁ/z — B211 )

, _(Pr B2,
==ty (Brya = fova) - ;7?_122 [exp (eji Zj<) - e:P (>_Z[;_Lf>r
Y2 V1

02¢
0%,

ool fn) en( o) fren( o)

= & [exp (—&Zj) exp (——z)

_ -2
—np 2+ nV12(ﬁ1V2 = B2v1 )

n Pr B2\,
=-np, * + nle(ﬂﬂ/z — Ba2v1 )_2 — Z i P [ (V Vi) Z]]

j=1 v2" [exp (— &z]) exp (— %zj)r
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0%¢

0%y,
n {2yexp (— b, ) exp (—&Z )] V12 exp (—5—2 )ﬁlzﬂfl 2} exp (— b, )
Z B1z s (_ &Zj) exp (_ B1 Z]>] vt
exp (— zj) B17;y1 % [exp (— &Z]> exp (— &zj)]y ng,?
Zﬁﬂ [exp( B ) eXp< b )] r* ' (ﬁlyz - By, )2
g, Bl e )
(ﬁﬂ’z —Ban1 )2 =1 ! [exp (__Z]) exp (__Z]>] vit

i {2)/2 [exp (—ﬁzzj) exp (—&zj)] + y,% exp (—g—Z]>ﬂZZ]]/2 }exp (—&zj)

= o (-5)-ox0 (-2 v

Sl )l i
[eXp( Bz ) exp( b )] Y2t (/31)/2 —ﬁzyl)
B nB,? n (Bozj — 2y2) exp[— ('Bi €2>zj] + 2y, exp (—ﬁzj)
- (31)/2 —lﬂzh )2 +;ﬁ22j [exp( ﬂz ) exp <—&21>] vt . .
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"y exn(—PLy -
zzw[exp(—%zj)—exp (—%Z])] Zexp(—%zj);——nh}’z(ﬁlyz B2v1)7?

n_ exp—[(Pr 4 B2) . i}
DEE S EHWERRNES ——
j=1

9%¢

0,0y,

" exp (_B_Z]) B1zjy1~ [exp( Be ]> exp (—’%zj)]yl

Zj

j=1 Y1%[exp ("32 Z;) exp (‘%%‘)]2

ol enl i) en (i) monl b
Z;
f ot (Ba)-oo (o)

[y

-

—nyY2B2(B1vz — Bavi)~?

" (Biziya Tt = 1) jexp Be zj]{ + exp 2ﬁ1
S B A S -

9%¢
6.316}’2
. zj exp ( y Zj) B, -2
- S () ()] (L)
= 41 V2 1

nﬁlyz — B2v1 — B1y2
(ﬁﬂ/z = Bar1 )2
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— i .BszZZ exp[— (ﬁ + ﬁ—j) Zj][eXp <_%Zj) -exp (— %Zj)]_z o B2v1

(Biy2 — By )?

a%¢
0B20y4
"\ zj exp (—%Zj)
= —Z [exp (——z]>—exp (——Zj>]_ exp (— Z]>Blz]y1
= V1

.81)/2 - .82)/1 + .82)/1
By, — B,yy)

- e G afon(fen)-on(fen)]n L

j=1 2 2 1 (.31)’2 - Bora )2 l

zn: exp (‘ %Zj) ﬁzzjyz‘z[exp (‘ & ) exp (_ %Zj>])’2
=— ) z
j=1 : v22[exp (—&zj> exp (—&zj)]

il ) [l ) i ) e ) o

j=1 Y22[exp (—&Zj) exp (—&zj>]

—ny1B1(Brv2 — B2vi)~?

zn: (1—ﬁzzjy2‘1){exp (ﬁl ,32) ]} exp( 2,32 )
=1

Yi Y2 %
and

o fon( ) o ()]
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=7

_ i . B1zjexp (2_)/_121'> [exp (_ %Zj> I (—&zj)] exp <_%Zj)ﬁzzj 2

Y1

_ nBip
(Bry2 — B2v1)?

BB B N (B Np o (B B\ . BB
_j=1 V1i? v2® [exp( 14 ZJ) eXp( 14 Zj)] = (V1+V2>Z]] (Brvz2 — Bav1)?*

The expressions for the Fisher Information matrix are not simple analytically, and we
do not intend to pursue this further. In the next chapter, we discuss the method of
simulation by the Markov Chain Monte Carlo. And an attempt is made to generate

random variates from the convoluted beta-Weibull distribution.
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8. Simulation

Markov Chain Monte Carlo (MCMC) methods encompass a general framework of
methods introduced by Metropolis et al. (1953) and Hastings (1970) for Monte Carlo

integration. The Monte Carlo integration estimates the integral
f gt)dt
A

with a sample mean by restating the integration problem as an expectation with respect to
some density function f(-). The integration problem then is reduced to find a way to
generate samples form the target density f (). According to Maria (2008), the MCMC
approach to sampling from f(-) is to construct a Markov chain with stationary
distribution f(+), and run the chain for a sufficiently long time until the chain coverges to

its stationary distribution. Simply, the Monte Carlo estimate of

E[g(6)] = f 9(8) fox(6)d6

is the sample mean

m
1
g= EZ g(x;)
i=1

where x4, X3, **+, X, is a sample from the distribution with density fg)s.

The Metropolis-Hastings (M-H) algorithms are a class of MCMC methods, one of
which is the Metropolis sampler. The main idea is to generate a Markov Chain {X; |t =
0,1,2---} such that its stationary distribution is the target distribution. The algorithm
must specify, for a givenX;, how to generate the next state X;,. In all of the Metropolis-
Hastings sampling algorithms, there is a candidate point ¥ generated from a proposal
distribution g (- | X;). If this candidate point is accepted, the chain moves to state ¥ at

45



time ¢+1 and X;,; =Y ; otherwise the chain stays in state X; and X;,; = X;. The choice
of proposal distribution is very flexible, but the chain generated by this choice must
satisfy certain regularity conditions. The proposal distribution must be chosen so that the
generated chain will converge to a stationary distribution- the target distribution.
The algorithms or steps required in generating a Markov chain {Xy, X1, X5 :--} by the
Metropolis-Hastings sampler are as follows, (See Maria (2008)):
1) Choose a proposal distribution g(- |X;) (subject to regularity conditions stated
above).
2) Generate X, from a distribution g.
3) Repeat (until the chain has converged to a stationary distribution according to
some criterion):
(a) Generate ¥ from g(- |X¢).
(b) Generate U from Uniform (0,1).
(c) If

fX)gX,|Y)
T fXDg(Y|Xe)

accept ¥ and set X;,; =Y ; otherwise set X;,; = X;.
4) Increment ¢.

Following the procedure described above, we generated a simulation of the
convoluted beta-Weibull distribution with parameters §; = 1,5, = 4,y; = 3,7, = 2.
The histogram of the simulated data and the curve of empirical density function of the
CBWD with same parameters are shown in Figure (4). Also, the R script for MCMC

samples of CBWD is provided in the Appendix.
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Fig 4. The histogram of the simulated CBWD and PDF of the CBWD
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9. Conclusion

The convoluted beta-Weibull distribution was defined and studied in this work.
Various properties of the distribution were discussed. These include the moment
generating function, characteristic function, mean, variance, shewness, kurtosis, the
mean deviation about the mean, and the mean deviation about the median. Also
discussed are the Rényi entropy, asymptotic behaviors, estimation of parameters by
the method of maximum likelihood. A simulated random variates of the distribution
were generated by the method of Markov Chain Monte Carlo (MCMC). R statistical

software program was used in the implementation of our results.
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Appendix

The code in R program to generate the graph of CDF of the convoluted beta-
Weibull distribution with paramenters §; = 2,6, =3, 71 = 2,7, = 4.

bl1=2

b2=3

ri=2

r2=4

z=seq(0,15,.01)
K=(b1*b2/(b1*r2-b2*rl))
cl=(b2*r1)/(b1*r2-b2*r1)
c2=(b1*r2)/(b1*r2-b2*r1)
cdf=function(x){
cl*exp(-(b1/r1)*z)-c2*exp(-(b2/r2)*z)+1}
plot(z,cdf(z),type="1",xlab="2 ")

The code in R program to generate the graph of PDF of the convoluted beta-

Weibull distribution for different parameters values of 1, B2, v1, ¥2 (f1 =
3B:=1Lvi=4v2=3;p1=4P=L11=3v.=2;1=3p=

4;)/1:2; y2=3)

b1=3

b2=1

r2=3

x=seq(0,10,.01)
bwl.pdf=function(x,b1,b2,r1,r2){
k=b1*b2/(b1*r2-b2*rl)
f=k*(exp(-b2/r2*x)-exp(-b1/r1*x))
b
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il.

iv.

plot(x,bw1.pdf(x,3,1,4,3),type="l',ylim=c(0,.6),xlab="2",ylab=
"pdf*)

lines(x,bw1l.pdf(x,4,1,3,2),lty=2)
lines(x,bw1l.pdf(x,3,4,2,3),lty=4)
legend("topright",inset=0.02,legend=c("b1=3,b2=1,r1=4,r2=3
","bl=4,b2=1,r1=3,r2=2","b1=3,b2=4,r1=2,r2=3"),lty=1:2:4)

The code in R program to generate the graph of hazard rate function of the
convoluted beta-Weibull distribution with parameters f; = 2,0, =3, y1 =

2,)/2 = 4‘

bl1=2

b2=3

ri=2

r2=4

x=seq(0,15,.01)

cl=(b2*rl)/(b1*r2-b2*rl1)

c2=(b1*r2)/(b1*r2-b2*rl1)

hrf=function(x){
(b1*b2)*(exp((-b2/r2)*x)-exp((-b1/r1)*x))/(b1*r2*exp((-
b2/r2)*x)-b2*ri1*exp((-b1/r1)*x))}
plot(x,hrf(x),type="1",xlab="2",ylab="The Hazard Rate
Function (h(z))")

The code in R program to generate a histogram of the simulated CBWD and

PDF of the CBWD with parameters f;, =1,8, =4, vy, =3,7, =2

K=(b1*b2/(b1*r2-b2*r1))
cl=(b2*r1)/(b1*r2-b2*r1)
c2=(b1*r2)/(b1*r2-b2*r1)
f=function(x,b1,b2,r1,r2){
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if(any(x<0)) return(0)
stopifnot(b1>0,b2>0,r1>0,r2>0)
return(K*(exp(-(b2/r2)*x)-exp(-(b1/r1)*x)))
b

m=10000

bi=1

b2=4

ri=3

r2=2
x=numeric(m)
x[1]=rrayleigh(1,1)
k=0

u=runif(m)

for(i in 2:m){

xt=x[i-1]

z=rrayleigh(1,xt)
num=f(z,bl,b2,r1,r2)*drayleigh(xt,z)
den=f(xt,b1,b2,r1,r2)*drayleigh(z,xt)
if(u[i]<=num/den) x[i]=z else{
x[i]=xt

k=k+1

b

b
print(k)

b=1001

z=x[b:m]
hist(z,breaks="scott",freq=F,xlim=c(0,20),ylim=c(0,.25),xlab=
"Z - value")

t=seq(0,18,0.01)
lines(t,K*(exp(-(b2/r2)*t)-exp(-(b1/r1)*t)),type="1")
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