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Abstract 
 

Occurrence and Distribution of Multi-Antibiotic Resistant Bacteria from the Great 
Kanawha River, West Virginia 

 
April D. Keenan. Dept. of Biological Sciences, Marshall University, 1 John Marshall 
Drive, Huntington, West Virginia 25755 
 
During the spring and summer of 2004 subsurface mid-channel samples were collected 
from the Kanawha River and its five primary tributaries (New, Gauley, Elk, Coal and 
Pocatalico Rivers). The first two objectives of this study were to enumerate bacteria 
resistant to ciprofloxacin, erythromycin or tetracycline, and test them for multiple 
resistance to seven commonly used antibiotics. The third objective was to determine the 
Minimum Inhibitory Concentration (MIC) for seven antibiotics starting at concentrations 
20 times the published working concentrations for Gram-negative bacteria. The final 
objective of this study was to determine if a novel Impact Scoring system incorporating a 
current water quality indicator, fecal coliforms, and new indicators, antibiotic resistant 
bacteria could be applied to the Kanawha River. All of the isolates (n = 60) were resistant 
to 3 or more of the 7 antibiotics tested. Ninety-five percent were resistant to 4 or more, 
92% were resistant to 5 or more, 88% were resistant to 6 or more and 81% were resistant 
to all seven antibiotics. One-hundred percent exhibited resistance to tetracycline. Ninety-
eight percent exhibited resistance to ampicillin and sulfamethizole. Ninety-five percent 
exhibited resistance to ciprofloxacin and 93% were resistant to erythromycin, 
streptomycin, and virginiamycin. Isolates in non-industrialized regions exhibited 
sensitivity to some of the antibiotics tested. Isolates collected in industrial regions 
exhibited resistance to all seven antibiotics. These findings suggest that multiple 
antibiotic resistance (MAR) may be associated with industrialization on the river.  
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CHAPTER I 

Introduction 

Antibiotic Resistance 

Since before the discovery of penicillin by Alexander Fleming in 1929 and the 

implementation of antibiotics for the treatment of bacterial diseases in the 1940s, bacteria 

have been exhibiting natural mechanisms of antibiotic resistance. However in recent 

decades increased bacterial resistance to antibiotics has assumed an increasing 

importance with regard to its impact on both public and environmental health (1). At 

present, we are faced with a global increase in the incidence of antibiotic resistance, due 

to wide and often indiscriminate use of antibiotics in medical and veterinary practices, as 

well as the agricultural and domestic use of pesticides containing antibiotics and related 

compounds (3, 28, 29). Changes in the occurrence and levels of antibiotic resistance are 

not confined to particular bacterial populations and may reflect responses to increased 

exposure of bacteria to antimicrobial compounds over the past several decades (21). 

Studies by McArthur and Tuckfield suggest evidence that antibiotic resistance selection 

can also occur in the absence of antibiotic exposure in the environment (33).  

 The primary problem presented by the emergence of antibiotic resistant bacteria 

pathogenic to humans and animals is the difficulty in treating some potentially life-

threatening diseases (1, 13). Bacteria are resilient organisms with the ability to adapt to 

the harsh nature of their environment. Introducing antibiotics, metal compounds and 

other compounds into the environment via point source and non-point source 

contamination has selected for bacteria with many different mechanisms to withstand the 

toxic effects of antibiotics. These include molecular mechanisms: reduced drug uptake; 
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active drug efflux; modification of the drug target; increasing the concentration of the 

drug target and drug deactivation. Other modes of resistance include natural and acquired 

mechanisms. Acquisition of resistance can occur by horizontal gene transfer, as well as 

chromosomal mutations or intercellular transfer of resistance genes through conjugation 

(direct contact), transformation (indirect contact using surrounding medium) or 

transduction (bacteriophage) vectors (Appendix B � D). 

Currently little quantitative data can be found on the extent of the antibiotic 

resistance problem. The ecological consequences associated with the dissemination of 

resistant bacteria in the environment have been scarcely investigated (13, 29). Concern is 

growing about antimicrobials affecting water quality because they may be accelerating 

the selection for antibiotic resistant bacteria (30). Without a complete picture of the 

frequency and distribution of antibiotic resistance in the environment we may not be able 

to determine the quality of freshwater or anticipate and prevent future disease outbreaks 

associated with consuming contaminated water. Observing pH, Dissolved Oxygen, heavy 

metals, etc. may not be enough to determine the health of aquatic ecosystems which have 

the largest impact on all terrestrial communities from humans and animals to plants and 

insects. 

The term antibiotic is used most commonly to refer to a substance produced by, or 

a semi-synthetic substance derived from, a microorganism, such as a fungus or 

bacterium, and able in dilute concentrations to inhibit or kill other microorganisms (44). 

Antibiotics are substances that selectively inhibit the invading pathogenic organism 

without harming the host. Their selectivity is dependant on the mechanism used by the 

drug to damage the pathogen. Antibiotics show varying ranges of host toxicity, for 
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example the most selective drugs affect structures like the cell wall or functions like the 

production of folic acid which irreversibly and fatally damages the bacterial cell but does 

not harm the host cell. Less selective antibiotics, which may cause harm to the host cell, 

affect protein synthesis or nucleic acid synthesis which is essential to both prokaryotic 

and eukaryotic cells.   

According to a survey of commonly used antibiotics by NDC Health, Inc. (53) 

234.0 million antibiotic prescriptions were issued in 2003 alone (Appendix F). These 

antibiotics will not remain in the human or animal body for long and will ultimately be 

excreted and their residues will find there way into the water-table and ultimately into 

streams and rivers. According to a Danish survey, antibiotics and antibiotic resistant 

bacteria can and do survive waste water treatment and have the continued ability to pass 

on resistance to environmental isolates (13), even after the death of the bacterial cells. 

 

Multiple Antibiotic Resistance 

 Another problem that is arising in the environment is the presence of bacteria with 

resistance to multiple antibiotics. Guardabassi and Dalsgaard (13) discovered that 

antibiotic resistant bacteria occurring in raw sewage could survive treatment and reach 

natural aquatic environments via municipal sewage treatment effluents. They also found 

that the resistant bacteria could survive for relatively long periods and maintain their 

resistance properties in the natural aquatic habitats, and that resistant strains originating 

from sewage are able to transfer their resistance genes to bacteria living in non-polluted 

habitats. Improperly operating septic systems, poor well maintenance, surface application 

of waste waters and direct injection have led to contamination of ground water (6) which 
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will, over time, seep into the streams and river systems. Previous studies have found 

correlations between the occurrence and distribution of antibiotic resistant bacteria in the 

surface waters of Australia (4), urban waste water discharge (15) and heavy metal 

pollution (33). These findings suggest that antibiotic resistant bacteria could provide an 

important indicator of water quality (47). 

Even in the absence of antibiotics in the environment bacteria can exhibit 

resistance to antibiotics. In two independent studies it was discovered that genes 

encoding for antibiotic resistance were carried on the same plasmid encoded for metal 

resistance (51, 52). Another study suggests Multiple Antibiotic Resistance (MAR) may 

be the result of a single mar plasmid instead of multiple plasmids exhibiting resistance 

(12). However increased global usage of antibiotics may also be a contributing factor in 

the ever increasing resistance being observed in the environment. 

 

Antibiotics Selected in the Kanawha River Study 

In previous surveys on emerging contaminants in US streams five of the seven 

antibiotics tested in this study were found in freshwater systems along with other 

prescription and non-prescription drugs, hormones, wastewater products, etc (2, 20, 52). 

Ciprofloxacin was found in aquatic environments at ranges from 0.02 µg/L to 0.03 µg/L. 

Erythromycin was also found in aquatic environments ranging form 0.05 µg/L to 1.7 

µg/L. Tetracycline and sulfamethizole were found in aquatic environments at ranges from 

0.05 µg/L to 0.13 µg/L, and virginiamycin was found at 0.10 µg/L (20). With this 

knowledge data was collected to determine resistance of bacteria to ciprofloxacin, 

erythromycin and tetracycline from 25 predetermined sites (Figure 1, Table 1). This 
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information was used to determine multiple antibiotic resistance (MAR) and the spatial 

distribution of MAR on the Kanawha River. The information was also used to test a 

novel water quality index developed for the Ohio River that incorporates enumeration of  

antibiotic resistant and fecal coliform bacteria. 

 

Fecal Coliforms as Water Quality Indicators 

Current water quality testing uses fecal coliform counts and water chemistry 

analyses as a means of determining the health of aquatic systems. Microbial pollution of 

water in the United States is a growing crisis in environmental and public health (34) and 

needs to be studied extensively to determine its current and future impact on human 

health. According to Mara and Haran (32), the role of fecal indicator organisms is central 

to the reduction of this crisis which is occurring in all parts of the world. Fecal coliforms 

do not occur naturally in aquatic and terrestrial environments and are only found 

inhabiting the guts of warm-blooded animals. Due to their inability to survive in the 

environment for long periods of time, when found in the environment, fecal coliforms are 

indicative of recent fecal contamination. Sources of fecal contamination include domestic 

sewage, point source and non-point source runoff, containing the excretions (107 cells per 

gram of fecal matter (46)) of humans and animals. Coliforms are not the most abundant 

gut flora of humans and animals but they are easily cultivated and are useful indicators of 

recent fecal contamination (8, 46-48). Common factors contributing to fecal 

contamination include leaking of overflowing sewage collection systems, illegal 

homeowner sewage discharge by straight pipes or failing septic systems, and runoff from 

urban areas and agricultural lands. With knowledge of fecal coliforms as a documented 
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water quality indicator, samples were analyzed to determine if correlations could be 

found between the presence of fecal coliforms in the Kanawha River and antibiotic 

resistant bacteria. 

 

Study Area 

The Great Kanawha River is the 10th most commercially traveled river in the 

United States and, at 99.5 river miles in length, is the largest river to be wholly contained 

within the borders of West Virginia. The flow of the Kanawha takes it through 

industrialized and agricultural areas that have major impacts on its aquatic microbial 

communities. The Kanawha provides for both domestic and industrial use, and is an 

important recreation resource in the region. The Kanawha River and its tributaries supply 

an estimated 360,000 West Virginians (20% of the state�s population) with drinking 

water.  

Antibiotic resistance studies have been conducted on other aquatic habitats such 

as the Ohio River, but, prior to this study, had never been studied in the Kanawha River. 

Previous studies of the river primarily focused on benthic species, fish, mollusks and 

potentially hazardous vegetation (5, 9, 14, 19, 23, 25, 31, 40-42, 45, 49, 50).  Antibiotic 

resistance data from this study will provide valuable information to aid in future studies 

to determine the contributing agent(s) for antibiotic selectivity on the Kanawha River.  

 

Study Objectives 

 Objectives one and two of this study were to enumerate bacteria resistant to 

ciprofloxacin, erythromycin or tetracycline, and to test those isolates for multiple 
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resistance to commonly used antibiotics, including ampicillin, streptomycin, 

sulfamethizole, virginiamycin, ciprofloxacin, erythromycin and tetracycline. This 

information will be used to determine the spatial distribution of Multiple Antibiotic 

Resistance (MAR) on the mainstem of the Kanawha River. Spatial distribution 

information will be used to identify areas more susceptible to multiple antibiotic 

resistance. In this survey we are trying to determine if industrialized areas are more 

susceptible to MAR than the less industrialized areas. 

 Objective three of this study was to determine the Minimum Inhibitory 

Concentration (MIC) for the seven antibiotics tested starting at concentrations 20 times 

the published working concentrations for Gram-negative bacteria (46-48). This 

information will be useful in determining if antibiotic concentrations that are used in 

health care applications are relevant to resistance characteristics of environmental 

isolates.  

The final objective of this study was to determine if a novel Impact Scoring 

system originally developed for the Ohio River could be applied the Kanawha River. The 

Impact Scoring system includes a current water quality indicator, fecal coliforms, and 

new indicators, antibiotic resistant bacteria. The Impact Scoring system will be described 

in detail in Chapter 2, Materials and Methods. 

 

 

 

 

 



8 

CHAPTER II 

Materials and Methods 

Water Sample Collections 

 On April 5�6, 2004 subsurface, mid-channel water samples were collected in pre-

sterilized mason jars from the confluence of the New and Gauley Rivers, located in 

Fayette County, to Point Pleasant in Mason County every 5 river miles and from 5 

tributaries (99.5 river miles, 25 samples) (Figure 1). Samples were placed on ice and 

transported to the environmental microbiology lab at Marshall University for 

microbiological analyses. A complete description, including longitude and latitude, for 

each sample site can be found in Tables 1-2. Summer samples were collected July 12-13, 

2004 and August 5, 2004 following the same protocol as previously described.  

 

Enumeration of Total Cultivable Bacteria 
 

A sample bottle, stored on ice, was removed and mixed by inversion to re-suspend 

any sediment that may have settled out during transit to the laboratory. Aliquots (0.1 ml) 

of the sample were aseptically transferred to a sterile 9.9 ml dilution blank in a screw-cap 

test tube and mixed full speed on a vortex mixer for a minimum of 5 seconds. Aliquots 

(0.1 ml) of diluted sample were then aseptically transferred to each of three plates of 

Difco (Becton Dickinson, Sparks, MD) R2A agar plus 375 ng/ml fungizone. The diluted 

water sample was spread on the surface of the agar plates using a sterile glass spreading 

rod, a pre-sterilized inoculating loop, or five sterile glass beads (5 mm) until all of the 

liquid had been absorbed. The plates were then wrapped in parafilm, inverted and 

incubated at room temperature for one week prior to counting. After incubation the 

number of colony forming units (CFU) were counted on each plate and recorded. The 
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mean and standard deviation of CFU counts were determined and used to establish the 

CFU per ml of total cultivable bacteria in the original sample by multiplying the average 

CFU value by a dilution factor of 1,000 (accounts for the initial 10-2 dilution and the 

plating volume of 0.1 ml). 

 

Enumeration of Antibiotic Resistant Bacteria 
 

A sample bottle, stored on ice, was removed and mixed by inversion to re-

suspend any sediment that may have settled out during transit to the laboratory. Aliquots 

(0.1 ml) of undiluted sample were aseptically transferred to each of three plates of Difco 

(Becton Dickinson, Sparks, MD)  R2A agar plus 375 ng/ml fungizone, and ciprofloxacin 

(4 µg/ml), erythromycin (8 µg/ml), or tetracycline (12.5 µg/ml). The undiluted water 

sample was spread on the surface of the agar plates using a sterile glass spreading rod, a 

pre-sterilized inoculating loop, or five sterile glass beads (5 mm) until all of the liquid 

had been absorbed. Plates were clearly marked with sample number and date of 

inoculation. Each set of three plates were wrapped with parafilm and incubated inverted 

at room temperature for one week. After incubation the number of colony forming units 

(CFU) were counted on each of the replicate plates and recorded. The mean and standard 

deviation of CFU counts were determined and used to establish the CFU per ml of total 

cultivable bacteria in the original sample by multiplying the average CFU value by a 

dilution factor of 10 (for a plating volume of 0.1 ml).   
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Enumeration of Fecal Coliform Bacteria 

 Fecal coliforms were enumerated using the membrane filtration technique. 

Aliquots (1 ml, 5 ml, and 10 ml) were transferred into 100 ml of sterile distilled water 

and suspended cells were trapped on 0.45 µm pore size membrane filters (Fisher 

Scientific, cat. No. 09-740-30D) by vacuum filtration. The filters were then transferred to 

plates containing m-FC medium (Gelman Sciences, Ann Arbor, MI) and incubated for 24 

hours at 44.5û C. The typical blue colonies were counted (30-60) and the dilution (1 ml 

etc.) documented to estimate the number of CFU�s per 100 ml.  

 

Determination of Multiple Antibiotic Resistance 

 MAR (Multiple Antibiotic Resistance) was determined using samples from each 

site during summer collections. One colony from the most predominant colony 

morphology  on R2A plus antibiotic from each sample site was transferred into Mueller-

Hinton Broth (Difco) containing the antibiotic on which the strain was isolated. These 

isolates were then maintained by sub-culturing bi-weekly. The stock cultures were then 

transferred into Mueller-Hinton Broth (Difco) plus ampicillin (50 µg/ml), ciprofloxacin 

(4 µg/ml), erythromycin (8 µg/ml), streptomycin (25 µg/ml), sulfamethizole (128 µg/ml), 

tetracycline (12.5 µg/ml), or virginiamycin (16 µg/ml) and incubated 24 hours at 34.5 ± 

2.5û C. Each isolate was tested in triplicate against 6 antibiotics  in addition to the one on 

which it was isolated. The NCCLS (National Committee for Clinical Laboratory 

Standards) recommends the use of Mueller-Hinton Broth for antibiotic sensitivity testing 

due to its reproducibility (36).  
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Determination of Minimum Inhibitory Concentrations 

 The Microdilution broth technique (37) using plain Mueller-Hinton broth 

(PMHB) was used to determine the Minimum Inhibitory Concentration (MIC) for 

ampicillin (max conc. 990 µg/ml), ciprofloxacin (max conc. 70 µg/ml), erythromycin 

(max conc. 150 µg/ml), streptomycin (max conc. 490 µg/ml), sulfamethizole (max conc. 

2550 µg/ml), tetracycline (max conc. 240 µg/ml) and virginiamycin (max conc. 310 

µg/ml). Antibiotics were prepared using the Standard Operating Procedure (SOP) in 

Appendix G. The antibiotics were diluted in 2-fold serial dilutions from the maximum 

concentrations in sterile 96 well round bottom microtiter plates (Falcon) in 100µl aliquots 

(listed above concentration ranges are shown in Table 3). An inoculum of each isolate 

was prepared in plain Mueller Hinton broth, prepared according to manufacturer�s 

suggestions, and transferred in 10 µl aliquots into each of the wells containing the 

antibiotic. Antibiotic concentration ranges were then adjusted to reflect the addition of 

the inoculum.   Microtiter plates were covered and wrapped in parafilm and incubated at 

34.5 ± 2.5û C for 48 hours. MICs were determined visually by the development of 

turbidity compared to the control (no antibiotic). Each MIC range was tested in triplicate 

for each culture.  

 

Determination of Impact Scores 

The Somerville method (46) using percentile ranks was used to determine the 

relative water quality (Impact Score) of the Kanawha River at each sample site and at the 

mouths of 5 major tributaries. Data from the enumeration for fecal indicators and 

antibiotic resistant bacteria were entered into an Excel spreadsheet. For each population 



12 

(e.g.. fecal coliforms or ciprofloxacin resistant cells), the average count for a site within 

the entire population data set of all sites was ranked using the PERCENTRANK function.  

The PERCENTRANK output was multiplied by 100 to achieve a percentile score for 

each data point within the entire population data set. Boundaries were then chosen for the 

data.  For example, an IS90 score weights sites with population counts above the 90th 

percentile and below the 10th percentile.  An IS80 score weights sites with population 

counts above the 80th percentile and below the 20th percentile. IS85 to IS90 scores provide 

a useful signal to noise ratio in the index (C. Somerville, Personal Communication). A 

population score of 1 was assigned to all data points that fell above the upper percentile 

boundary. A population score of -1 was assigned to all data points that fell below the 

lower percentile boundary, and a population score of 0 was assigned to all data points that 

fell between the chosen boundaries. The determination of population scores was repeated 

for all microbial populations enumerated, i.e. for each antibiotic resistant population 

measured and for the fecal indicator population. The total impact score (IS) was 

determined by adding the population scores.  For studies that include three antibiotics and 

one fecal indicator, impact scores can range from -4 to +4.  Higher impact scores are 

indicative of a more impacted water source. Impact Score versus river mile is then plotted 

to get a visual representation of water quality variability relative to position. 

 

Data Analyses 

 All data were analyzed using Microsoft® Office XP program Microsoft® Excel® 

version 2002. 
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CHAPTER III 
 

Results 
 

Seasonal Variation in Antibiotic Resistance 

 Antibiotic resistance comparisons were made for each of the three antibiotics 

tested (ciprofloxacin, erythromycin and tetracycline) between seasons using the Students 

t-test with unequal variances.  A comparison of ciprofloxacin resistance between spring 

and summer seasons suggests a significant increase (P < 0.01) in resistant cells during the 

summer sampling season (Figure 2). In the tributaries the same trend occurred with mean 

ciprofloxacin resistance counts exhibiting an increase during the summer within four of 

the five tributaries (Figure 3).  The Coal River was the exception exhibiting an increase in 

resistance to ciprofloxacin during the spring sample season. 

Erythromycin resistance counts exhibited the same trend as ciprofloxacin 

resistance during the summer season on the mainstem and within the tributaries. Analysis 

indicates erythromycin resistant cells were significantly higher (P < 0.01) during the 

summer season when compared to samples collected during the spring season (Figure 4). 

In the five tributaries (Figure 5) all sites exhibited increased resistance to erythromycin 

during the summer compared to samples analyzed from the spring season (Table 4). 

Tetracycline resistance counts on the mainstem exhibited the same trend as 

ciprofloxacin and erythromycin resistance counts being significantly higher (P < 0.01) 

during the summer season compared to the spring (Figure 6). However only three of the 

five tributaries exhibited increased mean resistance during the summer season (Figure 7, 

Table 4). The Coal River continued to follow the same trend as ciprofloxacin resistance 

with a mean increase in tetracycline resistance during the spring season. The Elk River 
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also exhibited an increase in tetracycline resistance during the spring season not exhibited 

with erythromycin and ciprofloxacin resistance.  

 

Comparison of Fecal Coliform Counts to Seasonal Antibiotic Resistance  

 Due to a previously mentioned fecal coliform incubation error comparative 

analysis of spring fecal coliforms to summer fecal coliforms could not be performed on 

the mainstem in its entirety.  The mainstem of the Kanawha River was divided into Upper 

Kanawha, including KR95 to KR55 sites, and Lower Kanawha, which includes sites 

KR50 to KR00, the confluence of the Kanawha and Ohio Rivers. Statistical comparisons 

were made using a Students t-test with unequal variances on the mainstem of the river for 

each of the river divisions. The Upper Kanawha exhibited a significant increase in the 

presence of fecal coliforms enumerated during the summer season (P < 0.01). The same 

increase in fecal coliforms was also observed in the Lower Kanawha during the summer 

sample season (P = 0.01, Figure 8). Tributary data indicated mean increases in fecal 

coliforms counts in three of the five tributaries during the summer season compared to 

mean counts during the spring. Analysis indicated increases in mean fecal coliform 

counts during the spring sample season in the Gauley and Coal River tributaries (Figure 

9). 

 Statistical comparisons were also performed on fecal coliform counts to seasonal 

antibiotic resistance counts using the Students t-test with unequal variances. Fecal 

coliforms enumerated during the spring were compared to ciprofloxacin resistant cells 

enumerated during the same sample season. The analysis found a significant difference 

(P < 0.01) in fecal coliform cells versus ciprofloxacin resistant cells (Figure 10).  During 
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the spring season mean fecal coliform counts (1.6 CFU/ml) were lower for the spring than 

ciprofloxacin resistance counts (5.66 × 102  CFU/ml) for the same season. During the 

summer the same trend occurred between fecal coliforms and ciprofloxacin resistance; 

however due to the previously mentioned fecal coliform incubation error the statistical 

analysis between summer fecal coliforms and summer ciprofloxacin resistance could only 

be performed on the Lower Kanawha (KR50-KR00). For the summer season the mean 

fecal coliform count (0.5 CFU/ml) was significantly lower (P < 0.01) in the Lower 

Kanawha compared to ciprofloxacin resistance counts (2.07 × 103 CFU/ml) for the same 

season (Figure 11). The same trend was observed during the spring and summer 

comparison; however, statistical analysis was not performed on the individual tributary 

sites (Figures 12-13).  

 The same analytical methods used to compare seasonal fecal coliforms counts to 

ciprofloxacin resistance counts was used for the comparisons of seasonal fecal coliform 

counts to erythromycin and seasonal fecal coliform counts to tetracycline resistance. 

During the spring (P < 0.01) and summer (P < 0.01) fecal coliforms vs. erythromycin 

resistance followed the same trend as ciprofloxacin (Figure 14-15). The mean fecal 

coliform count (1..6 CFU/ ml) was significantly lower than mean the erythromycin 

resistant count (8.68 × 102 CFU/ml) during both seasons. This same trend was also 

observed in the five tributaries during both the spring and summer seasons (Figure 16-

17).  Tetracycline resistance compared to fecal coliforms followed the same trend as 

ciprofloxacin and erythromycin during the summer but behaved differently during the 

spring season. During the spring season analysis indicated that the mean fecal coliform 

count (1.6 CFU/ml) was not significantly lower (P = 0.49) than the mean tetracycline 
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resistance count (1.60 × 102 CFU/ml) (Figure 18). This was not the case for the summer 

sample season. During the summer fecal coliforms were significantly lower (P < 0.01) 

than tetracycline resistant cells collected concurrently on the mainstem (Figure 19). In the 

tributaries fecal coliform counts and tetracycline resistance counts were observed to be 

higher during the spring season decreasing during the summer season (Figure 20-21) with 

the exception of the Elk River during the summer which indicated an increase in 

tetracycline resistance.  

 

Multiple Antibiotic Resistance Distribution  

 Multiple antibiotic resistance distributions were estimated on mainstem bacterial 

isolates by testing seven antibiotics (ampicillin, ciprofloxacin, erythromycin, 

streptomycin, sulfamethizole, tetracycline and virginiamycin at minimum inhibitory 

concentrations (MICs) appropriate for Gram-negative cells. Multiple resistance was not 

limited to one section of the mainstem but was distributed over the entire length of the 

river. Areas showing the most frequent sensitivity to antibiotics occurred in the Upper 

Kanawha and the most resistant sites occurring in the Lower Kanawha (Figure 22). 

Isolates from the most resistant sites were resistant to all seven antibiotics tested. In the 

tributaries, the Pocatalico River was the only tributary exhibiting resistance to all seven 

antibiotics (Figure 23). 

 

Mainstem Cumulative Multiple Antibiotic Resistance Percentages 

Tributary data were not included in determining the percent of isolates that were 

resistant to the seven antibiotics tested. Cumulative data (n = 60) from the mainstem 
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cultures indicate that 100% of the isolates were resistant to 3 or more of the seven 

antibiotics tested.  Ninety-five percent of the isolates were resistant to 4 or more, 92% 

were resistant to 5 or more, 88% were resistant to 6 or more and 81% were resistant to all 

7 antibiotics tested. 

On the mainstem (n = 60) 100% of the isolates were resistant to tetracycline. 

Ninety-eight percent of the isolates were resistant to ampicillin and sulfamethizole, 93% 

were resistant to erythromycin, streptomycin and virginiamycin and 95% were resistant 

to ciprofloxacin (Figure 24). 

 

Mainstem Minimum Inhibitory Concentrations 

The 48-h MICs of the seven antibiotics tested at each of the mainstem sites are 

shown in Tables 5 through 28.  One-hundred percent of the cultures isolated on 

ciprofloxacin (4 µg/ml) were resistant to ampicillin at concentrations ranging from 

0.9667 µg/ml through 247.5 µg/ml and 95% grew in the presence of ampicillin at 

concentrations from 495 µg/ml to 990 µg/ml (Table 5). One-hundred percent of the 

cultures isolated on erythromycin (12.5 µg/ml) were resistant to ampicillin at 

concentrations ranging from 0.9667 µg/ml through 30.94 µg/ml and 95% were resistant 

at concentrations from 61.88 µg/ml through 990 µg/ml (Table 6). One-hundred percent of 

the cultures isolated on tetracycline (12.5 µg/ml) were resistant to ampicillin (Table 7) at 

all concentrations.  

Ninety-five percent of the cultures isolated on ciprofloxacin (4 µg/ml) were 

resistant to ciprofloxacin at concentrations ranging from 8.75 µg/ml through 70 µg/ml 

and 100% of isolates were resistant at ciprofloxacin concentrations less than 8.75 µg/l 
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(Table 8). One-hundred percent of the isolates initially resistant to erythromycin (8 

µg/ml) and tetracycline (12.5 µg/ml) were resistant to ciprofloxacin (Tables 9-10) at all 

concentrations.  

Ninety-five percent of cultures isolated on ciprofloxacin were resistant to 

erythromycin at concentrations ranging from 0.1465 µg/ml through 0.5859 µg/ml, 85% at 

2.344 µg/ml, 80% at 4.688 µg/ml through 18.75 µg/ml and 75% were resistant at 37.5 

µg/ml through 150 µg/ml (Table 11). Ninety-five percent of cultures isolated on 

erythromycin (8 µg/ml) were resistant to erythromycin at 9.375 µg/ml through 150 µg/ml 

(Table 12). Isolates initially resistant to tetracycline (12.5 µg/ml) were resistant to 

erythromycin (Table 13) at all concentrations. 

One-hundred percent of cultures isolated on ciprofloxacin (4 µg/ml) grew in the 

presence of streptomycin at concentrations ranging from 0.4785 µg/ml through 30.625 

µg/ml, 90% grew at 61.25 µg/ml and 80 % grew at 122.5 µg/ml through 490 µg/ml 

(Table 14). One-hundred percent of cultures isolated on erythromycin grew at 

streptomycin concentrations ranging from 0.4875 µg/ml through 15.313 µg/ml, 90% 

grew at 30.625 µg/ml and 85% grew at ranges 245 µg/ml through 490 µg/ml (Table 15). 

The cultures isolated on tetracycline (12.5 µg/ml) were resistant to streptomycin at all 

concentrations (Table 16). 

One-hundred percent of cultures isolated on ciprofloxacin (4µg/ml) were resistant 

to sulfamethizole at concentration ranges from 2.492 µg/ml through 39.844 µg/ml, 95% 

grew at 79.688 µg/ml through 159.375µg/ml, 90% grew at 318.75 through 1275 µg/ml 

and 85% grew at 2550 µg/ml (Table 17). All (100%)  cultures isolated on  erythromycin 
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(8 µg/ml), and tetracycline (12.5 µg/ml) grew in the presence of sulfamethizole at all 

concentrations (Tables 18-19). 

One-hundred percent of the cultures isolated on  ciprofloxacin (4 µg/ml) were 

resistant to tetracycline at concentrations ranging from 0.2344 µg/ml through 1.875 

µg/ml, 90% grew at 3.75 µg/ml through 7.5 µg/ml, 85% at 15 µg/ml through 30 µg/ml, 

and 80% at 60 µg/ml through 240 µg/ml (Table 20). One-hundred percent of cultures 

isolated on erythromycin (8 µg/ml) were resistant to tetracycline at 0.2344 µg/ml through 

30 µg/ml, and 90% grew at 60 µg/ml through 240 µg/ml (Table 21). One-hundred percent 

of the cultures isolated on tetracycline (12.5 µg/ml) also grew in the presence of 

tetracycline (Table 22) at all concentrations. 

One-hundred percent of cultures isolated on  ciprofloxacin (4µg/ml) were 

resistant to virginiamycin at concentration ranges 0.3027 through 1.2109, 85% were 

resistant at 2.422 µg/ml, 80% at 4.844 µg/ml through 9.688 µg/ml, 75% at 19.375 µg/ml, 

and 65% 38.75 µg/ml through 310 µg/ml (Table 23). One-hundred percent of the isolates 

initially resistant to erythromycin were resistant at 0.3027 µg/ml through 2.422, 95% 

grew at 4.844 µg/ml through 19.375 µg/ml, and 90% from 38.75 µg/ml through 310 

µg/ml (Table 24). All isolates (100%) initially cultivated on tetracycline (12.5 µg/ml) 

were resistant to virginiamycin (Table 25) at all concentrations. 

MIC values were different for each of the cultures isolated on ciprofloxacin, 

erythromycin and tetracycline. MIC values were determined at each river mile when the 

value was within the minimum and maximum concentration ranges for that site.  Site 

specific MIC values for the mainstem are shown in Tables 26-28.  
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An individual MIC value could not be determined for ampicillin using the 

cultures isolated on  ciprofloxacin, erythromycin or tetracycline. MIC values were 

different for each isolate and were determined by site when a value was established. The 

MIC for ampicillin (Table 26) cultivated from the ciprofloxacin resistant isolate could 

only be determined using the isolate from KR85. At KR85 the MIC for ampicillin  was 

determined to be 495 µg/ml and for the erythromycin resistant isolate the MIC value 

could only be determined from the isolate collected from KR05 (Table 27). At KR05 the 

MIC value for ampicillin was 61.88 µg/ml. MICs for ampicillin could not be determined 

for the other sample sites. The other sample site values for ampicillin were greater than 

the highest antibiotic concentration tested (>990 µg/ml) (Tables 26-28).  

Ciprofloxacin MIC values could not be determined using the cultures isolated on 

ciprofloxacin (4 µg/ml) or erythromycin (8 µg/ml). All of these cultures (100%) were 

resistant to ciprofloxacin at all concentrations (Table 26-27). 

Using the cultures isolated on ciprofloxacin (4 µg/ml) MICs were determined at 

sites KR95-90, KR80 and KR60 for erythromycin. At KR95 the MIC value for 

erythromycin was determined to be 2.344 µg/ml and at KR95 the MIC value was 

determined to be 0.2930 µg/ml. At KR80 the MIC for erythromycin was determined to be 

4.688 µg/ml and at KR60 the MIC was 37.5 µg/ml (Table 26). Using the cultures isolated 

on  erythromycin only KR80 sample site developed a MIC value. The MIC value of 

erythromycin at KR80 was determined to be 9.375 µg/ml.  All other isolates tested had 

values greater than the highest concentration of erythromycin tested (> 150 µg/ml) (Table 

27). 
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Cultures collected from KR90-80 and KR35 were the only isolates that produced 

MIC values for streptomycin tested with the cultures isolated on  ciprofloxacin. At KR90 

and KR80 the MIC value was determined to be 61.25 µg/ml and at sites KR85 and KR35 

the MIC value was determined to be 30.625 µg/ml for streptomycin (Table 26). Using the 

cultures isolated on  erythromycin sites KR95, KR85 and KR70 produced the only MIC 

values for streptomycin. At KR95 and KR85 the MIC values were determined to be 

30.625 and at KR70 the MIC value was determined to be 245 µg/ml for streptomycin 

(Table 27).   

Sulfamethizole developed MIC values at KR60 and KR35 using the cultures 

isolated on  ciprofloxacin. At KR60 the MIC value for sulfamethizole was determined to 

be 637.5 µg/ml and at KR35 was 79.688 µg/ml (Table 26). A MIC value was not 

developed at any site using the cultures isolated on  erythromycin (Table 27) all isolates 

(100%) were resistant to sulfamethizole at the highest concentration (> 2550) tested.  

MIC values were developed for tetracycline using the cultures isolated on  

ciprofloxacin and erythromycin. The ciprofloxacin isolate produced MIC values at 

KR95-KR90, KR80 and KR60. At KR95 the MIC value was determined to be 3.75 

µg/ml, at sites KR90 and KR80 the value was determined to be 15 µg/ml and at KR60 the 

value was determined to be 60 µg/ml for tetracycline (Table 26). Using the cultures 

isolated on erythromycin MIC values were developed at sites KR85 and KR75. At both 

KR85 and KR75 the MIC values were determined to be 60 µg/ml.  MIC values could not 

be developed for the other sample sites, all isolates were resistant to tetracycline at the 

highest concentration ((> 240 µg/ml) tested.  
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Virginiamycin expressed the largest number of MIC values using the cultures 

isolated on  ciprofloxacin. MIC values were developed at KR95-80, KR65-KR60 and at 

KR35. At KR95 and KR60 the MIC values were determined to be 38.75 µg/ml, at KR90 

and KR80 the value was 2.422 µg/ml, at KR85 the value was 310 µg/ml, at KR65 the 

value was 4.844 µg/ml and at KR35 the value was determined to be 19.375 µg/ml for 

virginiamycin (Table 26). Two sample sites, KR95 and KR85, produced MIC values for 

virginiamycin using the cultures isolated on  erythromycin. At KR95 the MIC value was 

determined to be 38.75 µg/ml and at KR85 the value was 4.844 µg/ml for virginiamycin 

(Table 27).     

MIC values could not be determined for the seven antibiotics tested using the 

cultures isolated on tetracycline (12.5 µg/ml). All isolates (100%) grew in the presence of 

all seven antibiotics at there highest concentrations (Table 28). 

 

Tributary Minimum Inhibitory Concentrations 

Following the same format as with the mainstem, MIC values were developed 

using each of the five tributaries samples. The 48-h MIC values of the seven antibiotics 

tested at each of the tributaries are shown in Tables 5 through 25 and Tables 29 through 

31. One-hundred percent of the cultures isolated on ciprofloxacin (4 µg/ml) grew in the 

presence of ampicillin at concentration ranges 0.9667 µg/ml through 3.867 µg/ml, and 

80% grew in the presence of ampicillin at ranges 7.734 µg/ml through 990 µg/ml (Table 

5). One-hundred percent of the cultures isolated on erythromycin (8 µg/ml) and 

tetracycline (12.5 µg/ml) grew in the presence of ampicillin at all concentrations (Tables 

6-7).  
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All (100%) of the cultures isolated on  ciprofloxacin (4 µg/ml), erythromycin (8 

µg/ml) and tetracycline (12.5 µg/ml) were resistant to ciprofloxacin at all concentrations 

tested (Tables 8-10). 

Eighty percent of the cultures isolated on ciprofloxacin (4 µg/ml) grew in the 

presence of erythromycin at concentrations of 0.1465 µg/ml through 0.2930 µg/ml and 

60% grew at concentrations ranging from 0.5859 µg/ml through 150 µg/ml (Table 11). 

One-hundred percent of the cultures isolated on erythromycin (8 µg/ml) grew in the 

presence of erythromycin at concentrations ranging from 0.1465 µg/ml through 4.688 

µg/ml and 80% grew in the presence of erythromycin at concentrations ranging from 

9.375 µg/ml through 150 µg/ml (Table 12). Cultures isolated on tetracycline (12.5 µg/ml) 

were resistant to erythromycin at all concentrations (Table 13).  

One-hundred percent of the cultures isolated on ciprofloxacin (4 µg/ml) were 

resistant to streptomycin a concentration ranges from 0.4785 µg/ml through 3.828 µg/ml, 

60% grew in the presence of ciprofloxacin at concentration ranges 7.656 µg/ml through 

245 µg/ml and 40% grew at 490 µg/ml (Table 14). One-hundred percent of the cultures 

isolated on erythromycin (8 µg/ml) and tetracycline (12.5 µg/ml) were resistant to 

streptomycin at all concentrations (Tables 15-16). 

One-hundred percent of the cultures isolated on ciprofloxacin (4 µg/ml), 

erythromycin (8 µg/ml) and tetracycline (12.5 µg/ml) were resistant to sulfamethizole at 

all concentrations (Tables 17-19).  

The cultures isolated on  ciprofloxacin (4 µg/ml) grew in the presence of 

tetracycline at concentration ranges 0.2344 µg/ml through 7.5 µg/ml. Eighty percent grew 

in the presence of tetracycline at range 15 µg/ml, 60% at 30 µg/ml through 60 µg/ml and 
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40% grew at 120 µg/ml through 240 µg/ml (Table 20). One-hundred percent of the 

cultures isolated on erythromycin (8 µg/ml) grew in the presence of tetracycline at ranges 

0.2344 µg/ml through 60 µg/ml and 80% grew at 120 µg/ml through 240 µg/ml (Table 

21). All cultures isolated on tetracycline at 12.5 µg/ml were resistant to tetracycline at all 

concentrations (Table 22). 

In the presence of virginiamycin the cultures isolated on  ciprofloxacin (4 µg/ml) 

were resistant at concentration ranges 0.3027 µg/ml through 2.422 µg/ml. Sixty percent 

grew in the presence of virginiamycin at 4.844 µg/ml through 38.75 µg/ml and 40% grew 

at 77.5 µg/ml through 310 µg/ml (Table 23).The cultures isolated on  erythromycin at 8 

µg/ml and tetracycline at 12.5 µg/ml were resistant to virginiamycin at all concentrations 

(Table 24).  

MIC values were not developed in the tributaries for sulfamethizole and 

ciprofloxacin using the cultures isolated on ciprofloxacin at 4 µg/ml. All isolates grew in 

the presence of sulfamethizole (> 2550 µg/ml) and ciprofloxacin (> 70 µg/ml) at the 

highest concentrations testes. An MIC value (0.5859 µg/ml) was developed for 

erythromycin using the isolate, recovered from the Coal River, cultivated from 

ciprofloxacin (4 µg/ml). The MIC values for tetracycline were developed from the 

isolates recovered from the New, Elk and Coal Rivers. The MIC of tetracycline from the 

Elk River was determined to be 120 µg/ml, from the Elk River 30 µg/ml and from the 

Coal River 7.5 µg/ml. Ampicillin produced one MIC value developed from the isolate 

recovered from the New River. The MIC of ampicillin from the New River was 

determined to be 7.5 µg/ml. In the presence of streptomycin three values were developed 

from the New, Elk and Coal Rivers. The MIC value of streptomycin was determined to 
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be 7.5 µg/ml for both the New and Coal Rivers and 490 µg/ml for the Elk River. In the 

presence of virginiamycin the isolate also produced MIC values from the New, Elk and 

Coal Rivers. In the New River the MIC value was determined to be 77.5 µg/ml and in the 

Elk and Coal Rivers the MIC value for both was determined to be 4.844 µg/ml (Table 

29). 

Using the cultures isolated on erythromycin (8 µg/ml) MIC values could only be 

developed for erythromycin, tetracycline and streptomycin from the Gauley River. The 

MIC for erythromycin from the Gauley River was determined to be 9.375 µg/ml, for 

tetracycline 120 µg/ml and for streptomycin 61.25 µg/ml (Table 30). 

MIC values were not developed for the seven antibiotics tested using the cultures 

isolated on tetracycline at 12.5 µg/ml. All isolates grew in the presence of the seven 

antibiotics at concentrations greater than the highest concentration tested for each 

antibiotic (Table 31). 

 

Impact Scores 

Due to an incubation error, samples collected during the spring sampling could 

not be compared over the entire river against the summer data. Summer samples were 

collected during July (Lower Kanawha, KR55-00) and August (Upper Kanawha, KR95-

50). Sampling must be done consistently during the same day and under the same flow 

regime. Only KR50 � KR00 River miles were used to compare the water quality of the 

main stem during the spring to the summer samples collected concurrently in July. 

However an assessment of water quality for individual seasons, without comparison, was 

made for each sample season for the entire mainstem. (Figures 25, 26). 
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Average counts for fecal coliforms, ciprofloxacin resistant, erythromycin resistant 

and tetracycline resistant bacteria were calculated for each river mile and for each 

tributary using Microsoft Excel for each season (Appendices O-P). Using the average 

counts for the fecal coliform and antibiotic resistant bacteria a site impact score (IS) was 

determined for each site and tributary. An impact score was determined for the spring and 

summer at three boundary levels: IS85 (Appendices L-N), IS90 (Appendices H-K), and 

IS95 (Table 32, Figures 25-28), The IS95 provides the best signal to noise ratio for these 

data. 

A comparison of all main stem sites (n = 20) from the Kanawha River was made 

during the spring (Table 32, Figure 25) sample season and for the summer (Table 32, 

Figure 26) sample season using IS95. Spring Impact Scores (ranged -1 to +1) using the 

95th percentile boundary the most impacted areas (IS95 = +1) occurred in the more 

industrial regions of the river (Lower Kanawha). The less impacted area of the river 

occurs in the Upper Kanawha (range -1 to 0) were there is little or no industrialization. 

The Upper Kanawha is a  predominantly rural area with few industrial facilities, with the 

exception of Alloy Plant near KR90 (IS95 = -1) and an Appalachian Power facility 

(between KR80 (IS95  = -1) and KR75 (IS95  =  0).  

Summer Impact Scores using the 95th percentile boundary (range -3 to +3)  

indicate that the most impacted areas occurred in the more industrial regions of the Lower 

Kanawha (Table 32, Figure 26). The most impacted area (IS95 = +3) during this season 

occurred at KR55 downstream of Union Carbide Island. Comparison of the Upper 

Kanawha�s water quality to the Lower Kanawha indicates the Lower portion of the river 
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has generally larger populations of the tested water quality indicators, antibiotic 

resistance and fecal coliforms, than the Upper Kanawha.  

Analysis of Impact Score comparison between seasons could only be done in the 

Lower Kanawha, which has the most industrial plants. Impact Scores (range -3 to +3) 

using the 95th percentile boundary indicate that KR50-40 are the most impacted areas of 

the river for both spring and summer (Table 32, Figure 27). During the spring KR25 � 

KR20 indicated impact that leveled off during the summer season.  

Comparison of summer and spring Impact Scores (range -4 to +4) using the 95th 

percentile boundary for the tributaries indicate that the Pocatalico was more impacted 

during the spring (IS95 = +3) improving (IS95 = -3) during the summer sample season 

(Table 32, Figure 28). During both sample seasons the New and Gauley Rivers, primarily 

recreational waters, had the least impacted water (IS95 = -1 for spring and 0 for summer in 

both rivers). The Elk (IS95 = 0) and Coal Rivers (IS95 = 0) remained consistent during 

both sample seasons. 
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CHAPTER IV 

 
Discussion  

 
Seasonal Antibiotic Resistance 
 
 Analysis of mainstem and tributary antibiotic resistance using the Students t-test 

indicates significant increases in resistance to the three antibiotics tested during summer. 

The difference was most noticeable at sites on the mainstem (KR55-KR30) flowing 

through the industrial portion of the river, which showed an observable increase in mean 

resistance to erythromycin and tetracycline. However, ciprofloxacin only exhibited an 

observable increase at KR55 located directly behind an industrial plant. Although there 

were no significant differences in the spatial distribution of antibiotic resistance in this 

study, isolates from KR55-KR30, which were within close proximity to industrial 

activities, exhibited high levels of antibiotic resistance. According to previous studies, 

high levels of antibiotic resistance have been discovered in heavy metal polluted waters 

(3, 33). The level and frequency of antibiotic resistance in the Kanawha River suggests 

that heavy metals present in the river may be impacting the bacterial communities. Biyel 

(3) speculates there may be a link between heavy metal polluted waters and antibiotic 

resistance as a result of genes that may be linked resulting in co-selection of linked 

genetic markers. Genes that code for metal resistance are often carried on the same 

plasmids or mobile genetic elements (33).  This leads researchers to believe that the link 

in genetic markers may have led to the selection and spread of antibiotic resistance 

among bacterial communities, even without exposure to antibiotics in the environment. 

According to McArthur and Tuckfield (33) metal tolerance and antibiotic resistance 
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increases proportionally along industrial contaminated gradients. Future studies of the 

Kanawha river should incorporate water chemistry analyses with antibiotic resistance 

analyses to determine if a link can be found between heavy metal pollution and antibiotic 

resistance in river water sampled.  

 

Seasonal Fecal Coliforms vs. Seasonal Antibiotic Resistance 

During the summer sampling season fecal coliform samples and antibiotic 

resistance samples were collected on different days under different environmental 

conditions and flow regimes. Upper Kanawha samples were collected during July and 

Lower Kanawha samples were collected during August due to a fecal coliform incubation 

error. Fecal coliforms must be incubated at 44.5 ± 2° C; however the original samples 

were incubated at 35.5 ± 2° C. When conducting multi-seasonal analyses it is important 

that samples are collected under the same flow regime and environmental conditions.  If 

samples are not collected during the same environmental conditions statistical analysis 

can not be performed. Any variability in environment, such as heavy rain or drought 

conditions during sampling days, can skew analytical results. One advantage of sampling 

from the Kanawha River is its relatively small size compared to rivers like the Ohio and 

Mississippi. The Kanawha River is 99.5 river miles long and the size makes it possible to 

sample the entire river during one full day, or over two-consecutive days if necessary, 

unlike the Ohio River which must be sampled over several days due to its large size.  

The data indicate that fecal coliform levels during the spring were lower than 

fecal coliform counts in the summer samples. The use of fecal coliforms as a water 

quality indicator assumes that a majority of fecal coliforms do not occur naturally in 
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aquatic and terrestrial environments. Fecal coliforms are only found inhabiting the guts of 

warm-blooded animals and, when found in the environment, are indicative of fecal 

contamination due to their inability to survive in the environment for long periods of 

time. The presence of fecal coliforms in the environment is taken to indicate recent input 

from an unknown source. Some sources of fecal contamination include domestic sewage, 

point source and non-point source runoff.  Our data indicate significant increases in fecal 

coliform counts during the summer in the Upper Kanawha River, however in the Lower 

Kanawha there was no observable increase in the presence of fecal coliforms with the 

exception of two sample sites (KR75 and KR55) both located on the downstream side of 

river islands (Figure 8). During August a light rain event occurred during sample 

collections indicating runoff probably contributed to the observed increases at these sites. 

In the tributaries (Figure 9) mean fecal coliform counts were higher during the summer in 

3 of the 5 tributaries sampled. Statistical analysis was not performed on the tributaries 

due the low number of isolates. Visual observation and mean values were used to assess 

the presence of fecal coliforms during the two seasons. The Pocatalico and Elk Rivers 

both exhibited apparent increases in fecal coliform cells during the summer.  

 Comparisons of fecal coliforms to antibiotic resistance indicated mean fecal 

coliform counts were consistently lower during both seasons in the mainstem and within 

the tributaries than mean antibiotic resistance counts (Figures 10 � 21). This suggests that 

antibiotic resistant bacteria are not subsets of fecal coliform populations. According to 

this study the enumerated bacterial cells resistant to ciprofloxacin (4 µg/ml), 

erythromycin (8 µg/ml) and tetracycline (12.5 µg/ml) are independent bacterial 

populations and were not found to be influenced by increases or decreases in fecal 
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coliform cells, providing further evidence that the distribution of antibiotic resistance is 

not determined by antibiotic selection in human and animal guts, and that another source 

is controlling selection on the Kanawha River and its 5 tributaries.  

 

Minimum Inhibitory Concentrations and Antibiotic Susceptibility 

The behavior of environmental isolates and their selectivity for antibiotic 

resistance is scarcely understood. Due to limitations on the ability to cultivate 

environmental isolates it is difficult to study their reaction when in the presence or 

absence of antibiotics. These data further confirm these statements. No single MIC could 

be determined for the seven antibiotics surveyed on the mainstem or from within its 

tributaries. This may be attributed to many different factors effecting selectivity for 

resistance. Do environmental isolates behave in vivo as they do in their natural 

environments? What components in their environments allow them to express resistance?  

Unless extensive research is performed on the aquatic habitat prior to sampling it will be 

difficult to duplicate an �optimal environment� that will induce isolates to grow. It is 

possible that the uncultivable isolates may hold all the answers.  

 As bacteria exhibit naturally occurring mechanisms of resistance it was expected 

that resistance would occur within the isolates, however the extent of resistance and 

spatial distribution on the Kanawha River was not expected. All 75 isolates (100%) from 

the mainstem and its tributaries were resistant to 3 or more of the seven antibiotics tested 

(chosen from a list of emerging contaminants (26)). Isolates exhibiting the most 

resistance, resistance to all 7 antibiotics, occurred in the more industrial regions of the 

river. This suggests that industry may be playing a role in the dissemination and 
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acquisition of resistance. Previous studies have also indicated industrialization may be 

playing a role in antibiotic resistance (4, 6, 15, and 22). Industrial plants, waste water 

treatment facilities, etc. are permitted by the Environmental Protection Agency under the 

Clean Water Act to pump treated effluents into surface waters. These treated and 

untreated (not being monitored) effluents may hold components that provide the 

conditions that select for resistance. The long-term impacts of effluents may compromise 

the intended uses of aquatic habitats for many generations. 

 The isolates tested were selected based on the most abundant colony morphology 

growing on the R2A based media. Due to lack of funding the isolates could not be 

identified to genus and species. Without knowing the identity of the isolates tested there 

is no way of knowing whether the same isolates were being tested at each site. Future 

studies need to address this issue and incorporate species identification with MIC 

determination. This information will be useful to determine if the same species are 

showing resistance at equivalent concentration ranges, and may also determine the spatial 

distribution of the most resistant bacteria. 

 

Impact Scores 

 The Impact Scoring system used in this survey was first developed for use on the 

Ohio River. The system was developed by Dr. Charles Somerville in the Environmental 

Microbiology Research Laboratory at Marshall University. Part of this study was to 

determine if this novel Impact Scoring system could be used on a smaller river, compared 

to the Ohio Rivers size, and its tributaries.  The system incorporates a traditional water 

quality indicator, fecal coliforms, along with potentially new indicators, antibiotic 
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resistant bacteria. The antibiotics used were chosen based on a previous survey of 

emerging contaminants in U.S. waters (26). 

 Impact was determined for the spring and summer samples from the Kanawha 

River using the 95th percentile boundary which provides a good signal to noise ratio for 

this data set. Due to an incubation error of fecal coliforms spring and summer impact 

comparisons could not be made for the entire mainstem, however assessments were made 

of individual seasons and a comparison of spring to summer impact was made for the 

Lower Kanawha. 

 Impact scores ranged -4 to +4 for both sample seasons. The data indicate impact 

occurring in areas with industrialization beginning near KR55, Union Carbide Island, and 

leveling off in the lower portion of the river. Increased Impact Scores at these sites may 

be associated with spikes in fecal coliforms that resulted from a prior rain event. During 

the spring a heavy rain event had occurred prior to sampling and at the time of the second 

summer samples light rain fall had occurred during sampling. Weather conditions have a 

major effect on sampling and runoff as a result of rain has an effect on bacterial 

populations from point source and nonpoint source runoff. Impact throughout both 

seasons remained localized in the mid-portion of the river. Conditions in the Upper 

region and Lower regions appeared to be less impacted compared to the middle region. 

This indicates an effect is occurring near industry; however the definitive source is still 

unknown.  
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CHAPTER V  
 

Conclusions 
 

The objectives of this study were to determine the occurrence and distribution of 

multi-antibiotic resistant bacteria, determine Minimum Inhibitory Concentrations (MICs) 

of seven antibiotics identified from a USGS survey (26) and to determine if a novel 

Impact Scoring system originally developed for the Ohio River could be applied to a 

smaller body of water such as the Kanawha River.  

The first two objectives were accomplished by analyzing microbiological data 

from 20 main stem sites and from 5 primary tributaries from the Great Kanawha River. 

Isolates exhibiting resistance to ciprofloxacin, erythromycin, and tetracycline were tested 

against seven antibiotics: ampicillin, streptomycin, sulfamethizole, virginiamycin, 

ciprofloxacin, erythromycin, and tetracycline. Analysis confirmed multiple antibiotic 

resistance was occurring at every sample site on the river�s mainstem and from its 

tributaries. From each of the 75 samples, isolates exhibited resistance to 3 or more 

antibiotics. Multiple antibiotic resistance is defined as resistance to more than one 

antibiotic (44). None of the sample isolates from the mainstem or tributaries exhibited 

resistance to only one antibiotic. The occurrence of resistance to all seven antibiotics was 

more prevalent in areas known for industrialization, leading to the conclusion that 

industrial sites are affecting the selective pressure for antibiotic resistance. Samples 

collected near industrial sites exhibited a higher prevalence of resistance to 5 or more of 

the seven antibiotics used in this survey. These data provide evidence that 

industrialization is having an effect on the occurrence of antibiotic resistance as well as 

MAR (Multiple Antibiotic Resistance) within the Kanawha River. 



35 

The third objective was accomplished by increasing the concentrations of the 

seven antibiotics (ampicillin, streptomycin, sulfamethizole, virginiamycin, ciprofloxacin, 

erythromycin, and tetracycline) to 20 times their known working concentration 

(Appendix A) for Gram negative bacteria based on the knowledge that cultivable 

environmental isolates are predominantly Gram negatives. MICs could not be determined 

for the entire mainstem or for all five tributaries. MICs were only developed for areas of 

the river where little or no industrialization had occurred. Isolates sampled from areas 

that are heavily industrialized exhibited resistance greater than the highest concentration 

of each of the seven antibiotics. This may be another indication that industrial practices 

are affecting the occurrence of resistance on the Kanawha River; however original 

antibiotic concentrations were based on information from clinical settings. Antibiotic 

concentrations used in clinical settings may not be applicable for use on environmental 

isolates. Further studies to determine MIC values for environmental isolates need to be 

conducted in order to eliminate question of relevance with regard to antibiotic 

concentrations.  

A final objective was to determine if an Impact Scoring system originally 

developed for the Ohio River could be applied to the Kanawha River. This was 

accomplished by analyzing the site impact scores for each of the 20 mainstem sites. The 

Impact Scoring system includes a current water quality indicator, fecal coliforms, and 

new indicators, antibiotic resistant bacteria. The Impact Scoring system results supported 

previously discussed microbiological analysis indicating industry is affecting water 

quality in the form of antibiotic resistance.  
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 In conclusion, the spatial distribution of multiple antibiotic resistance is found at 

each of the 20 mainstem and from each of the 5 tributary sites sampled. The prevalence 

of resistance to 5 or more of the seven antibiotics was found most frequently in the 

industrial regions of the river. According to this study industry may be having an adverse 

affect on the occurrence and distribution of MAR bacteria in the Kanawha River. 

Therefore; industrial rivers may be an important environmental reservoir for MAR 

resistant bacteria. 
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Table 1. Sample site locations along the mainstem from KR55-KR00 
       
Site  Latitude  Longitude  Site Description 
       

KR00  38.50'14"N  82.8'21"W  
Located on the Kanawha River Upstream of 
Rt. 2 bridge at the mouth of the Kanawha 
emptying into the Ohio River. 

       

KR05  38.48'18"N  82.3'31"W  
Located on Kanawha River. Near ambrosia 
near Rockcastle Creek, 5.0 miles from the 
mouth. 

       

KR10  38.46'15"N  81.59'7"W  
Located on the Kanawha River. Near 
confluence with Ten Mile Creek 10.0 miles 
from the mouth. 

       

KR15  38.42'30"N  81.57'6"W  Located on the Kanawha River. Near Arbuckle 
15.0 miles from the mouth. 

       

KR20  38.38'17"N  81.58'7"W  
Located on the Kanawha River. Site is 1.5 
miles downstream of the Buffalo boat launch 
20.0 miles from the mouth 

       

KR25  38.34'57"N  81.59'58"W  Located on the Kanawha River. Near Frazier�s 
Bottom 25.0 miles from the mouth. 

       

KR30  38.31'42"N  81.55'52"W  
Located on the Kanawha River. Site is 1.2 
miles downstream from the Winnfield Locks 
30.0 miles from the mouth 

       

KR35  38.31'52"N  81.511'20"W  

Located on the Kanawha River. Site is 4.0 
miles below the Pocatalico River and 3.6 miles 
upstream of the Winfield Locks, 35.0 miles 
from the mouth 

       

KR40  38.27'37"N  81.49'13"W  
Located on the Kanawha River. Site is 1 mile 
upstream from the Pocatalico River, 40.0 miles 
from the mouth. 

       

KR45  38.23'53"N  81.50'34"W  
Located on the Kanawha River. Site is 400 
meters downstream from the Coal River, 45.0 
miles from the mouth. 

       

KR50  38.21'59"N  81.45'41"W  Located on the Kanawha River. Site is near 
Dunbar, 50.0 miles  from the mouth 

       

KR55  38.22'20"N  81.41'33"W  

Located on the Kanawha River. Site is on the 
downstream side of Union Carbide island, 3 
miles downstream of the Elk River, 55.0 miles 
from the mouth 
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Table 1 (Continued).  Sample site locations along the mainstem from KR95-KR60 

Site  Latitude  Longitude  Site Description 

KR60  38.20'3"N  81.36'411"W  
Located on the Kanawha River. Site is in 
Charleston near the capital, 60.0 miles from 
the mouth. 

       

KR65  38.17'13"N  81.34'3"W  
Located on the Kanawha River. Site is 2.5 
miles downstream of the Marmet Locks 
near Rand, 65.0 miles from the mouth. 

       

KR70  38.13'38"N  81.32'19"W  
Located on the Kanawha River. Site is 2.5 
miles upstream of the Marmet Locks, 70.0 
miles from the mouth. 

       

KR75  38.12'20"N  81.27'56.22"W  
Located on the Kanawha River. Site is 1.6 
miles upstream of the Chelyan Bridge at 
Goat Island. 

       

KR80  38.12'25"N  81.23'57"W  
Located on the Kanawha River. Site is in 
the town of Riverside, 80.0 miles from the 
mouth. 

       

KR85  38.12'56"N  81.19'53"W  
Located on the Kanawha River. Site is <1 
mile downstream of the Montgomery 
bridge, 85.0 miles from the mouth. 

       

KR90  38.8'0"N  81.16'43"W  
Located on the Kanawha River. Site is 
behind Alloy plant in Alloy, 90.5 miles 
from the mouth. 

       

KR95  38.8'48"N  81.12'39.7"W  
Located on the Kanawha River. Site is on 
the right descending bank below island near 
Kanawha Falls. 
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Table 2.  Sample site locations of the Kanawha Rivers 5 main tributaries 

Elk River  38.21'21.5"N  81.38'35.4"W  
Tributary. On Elk River, one tenth of 
a mile from the mouth, on the left 
descending bank 

       

Gauley River  38.9'12.3"N  81.50'24.7"W  Tributary. Two miles upstream of 
Kanawha Falls on the right bank. 

       

New River  38.9'12.3"N  
81.10�53.1�W 

Tributary. Site is approximately 1/4 
mile up the channel out of the mixing 
zone. 

       

Pocatalico  38.28'40.9"N  81.48'48.1"W  Tributary. Left bank of Pocatalico 
River, just above WV-62 bridge. 

       

Coal River  38.23'4.38"N  81.50'24.7"W  
Tributary. Site is approximately 1/4 
mile up the channel out of the mixing 
zone. 
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Table 5.  Growth of Ciprofloxacin (4 µg/ml) resistant isolates from the Kanawha 
River and its tributaries exposed to varying concentrations of ampicillin. 

  
                

Ampicillin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
990  4 (*80) 19 (*95)  
495  4 (80) 19 (95)  

247.5  4 (80) 20 (100)  
123.75  4 (80) 20 (100)  
61.88  4 (80) 20 (100)  
30.94  4 (80) 20 (100)  
15.469  4 (80) 20 (100)  
7.734  4 (80) 20 (100)  
3.867  5 (100) 20 (100)  
1.934  5 (100) 20 (100)  
0.9667  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant  at the given concentration 

 
 
 
 

Table 6.  Growth of Erythromycin (8 µg/ml) resistant isolates from the Kanawha 
River and its tributaries exposed to varying concentrations of ampicillin. 

  
                

Ampicillin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
990  5 (*100) 19 (*95)  
495  5 (100) 19 (95)  

247.5  5 (100) 19 (95)  
123.75  5 (100) 19 (95)  
61.88  5 (100) 19 (95)  
30.94  5 (100) 20 (100)  
15.469  5 (100) 20 (100)  
7.734  5 (100) 20 (100)  
3.867  5 (100) 20 (100)  
1.934  5 (100) 20 (100)  
0.9667  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant  at the given concentration 
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Table 7.  Growth of Tetracycline (12.5 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of ampicillin. 

  
                

Ampicillin conc. (µg/ml)   
No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
990  5 (*100) 20 (*100)  
495  5 (100) 20 (100)  

247.5  5 (100) 20 (100)  
123.75  5 (100) 20 (100)  
61.88  5 (100) 20 (100)  
30.94  5 (100) 20 (100)  
15.469  5 (100) 20 (100)  
7.734  5 (100) 20 (100)  
3.867  5 (100) 20 (100)  
1.934  5 (100) 20 (100)  
0.9667  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant  at the given concentration 

 
 
 

Table 8.  Growth of Ciprofloxacin (4 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of ciprofloxacin. 

  
                

Ciprofloxacin  conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
70  5 (*100) 19 (*95)  
35  5 (100) 19 (95)  

17.5  5 (100) 19 (95)  
8.75  5 (100) 19 (95)  

4.375  5 (100) 20 (100)  
2.188  5 (100) 20 (100)  
1.094  5 (100) 20 (100)  
0.5469  5 (100) 20 (100)  
0.2734  5 (100) 20 (100)  
0.1367  5 (100) 20 (100)  
0.0684  5 (100) 20 (100)  

        
 
 
        

∗ indicates the percentage of isolates resistant at the given concentration 
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Table 9.  Growth of Erythromycin (8 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of ciprofloxacin. 

  
                

Ciprofloxacin  conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
70  5 (*100) 20 (*100)  
35  5 (100) 20 (100)  

17.5  5 (100) 20 (100)  
8.75  5 (100) 20 (100)  

4.375  5 (100) 20 (100)  
2.188  5 (100) 20 (100)  
1.094  5 (100) 20 (100)  
0.5469  5 (100) 20 (100)  
0.2734  5 (100) 20 (100)  
0.1367  5 (100) 20 (100)  
0.0684  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 10.  Growth of Tetracycline (12.5 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of ciprofloxacin. 

  
                

Ciprofloxacin  conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
70  5 (*100) 20 (*100)  
35  5 (100) 20 (100)  

17.5  5 (100) 20 (100)  
8.75  5 (100) 20 (100)  

4.375  5 (100) 20 (100)  
2.188  5 (100) 20 (100)  
1.094  5 (100) 20 (100)  
0.5469  5 (100) 20 (100)  
0.2734  5 (100) 20 (100)  
0.1367  5 (100) 20 (100)  
0.0684  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 
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Table 11.  Growth of Ciprofloxacin (4 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of erythromycin. 

  
                

Erythromycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
150  3 (*60) 15 (*75)  
75  3 (60) 15 (75)  

37.5  3 (60) 15 (75)  
18.75  3 (60) 16 (*80)  
9.375  3 (60) 16 (80)  
4.688  3 (60) 16 (80)  
2.344  3 (60) 17 (*85)  
1.172  3 (60) 18 (*90)  
0.5859  3 (60) 19 (*95)  
0.2930  4 (*80) 19 (95)  
0.1465  4 (80) 19 ( 95)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 
 
 

Table 12.  Growth of Erythromycin (8 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of erythromycin. 

  
                

Erythromycin conc. 
(µg/ml)   No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
150  4 (*80) 19 ( 95)  
75  4 (80) 19 ( 95)  

37.5  4 (80) 19 ( 95)  
18.75  4 (80) 19 ( 95)  
9.375  4 (80) 19 ( 95)  
4.688  5 (*100) 20 (*100)  
2.344  5 (100) 20 (100)  
1.172  5 (100) 20 (100)  
0.5859  5 (100) 20 (100)  
0.2930  5 (100) 20 (100)  
0.1465  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 
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Table 13.  Growth of Tetracycline (12.5 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of erythromycin. 

  
                

Erythromycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
150  5 (*100) 20 (*100)  
75  5 (100) 20 (100)  

37.5  5 (100) 20 (100)  
18.75  5 (100) 20 (100)  
9.375  5 (100) 20 (100)  
4.688  5 (100) 20 (100)  
2.344  5 (100) 20 (100)  
1.172  5 (100) 20 (100)  
0.5859  5 (100) 20 (100)  
0.2930  5 (100) 20 (100)  
0.1465  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 
 
 

Table 14.  Growth of Ciprofloxacin (4 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of streptomycin. 

  
                

Streptomycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
490  2 (*40) 16 (*80)  
245  3 (*60) 16 (80)  

122.5  3 (60) 16 (80)  
61.25  3 (60) 18 (*90)  
30.625  3 (60) 20 (*100)  
15.313  3 (60) 20 (100)  
7.656  3 (60) 20 (100)  
3.828  5 (*100) 20 (100)  
1.914  5 (100) 20 (100)  
0.9570  5 (100) 20 (100)  
0.4785  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 



80 

 
 
 
 

Table 15.  Growth of Erythromycin (8 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of streptomycin. 

  
                

Streptomycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
490  4 (*80) 17 (*85)  
245  4 (80) 17 (85)  

122.5  4 (80) 18 (*90)  
61.25  4 (80) 18 (90)  
30.625  5 (*100) 18 (90)  
15.313  5 (100) 20 (*100)  
7.656  5 (100) 20 (100)  
3.828  5 (100) 20 (100)  
1.914  5 (100) 20 (100)  
0.9570  5 (100) 20 (100)  
0.4785  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 
 

Table 16.  Growth of Tetracycline (12.5 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of streptomycin. 

  
                

Streptomycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

  Tributaries (n=5) Main Stem (n=20)  
490  5 (*100) 20 (*100)  
245  5 (100) 20 (100)  

122.5  5 (100) 20 (100)  
61.25  5 (100) 20 (100)  
30.625  5 (100) 20 (100)  
15.313  5 (100) 20 (100)  
7.656  5 (100) 20 (100)  
3.828  5 (100) 20 (100)  
1.914  5 (100) 20 (100)  
0.9570  5 (100) 20 (100)  
0.4785  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 
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Table 17.  Growth of Ciprofloxacin (4 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of sulfamethizole. 

  
                

Sulfamethizole conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
2550  5 (*100) 17 (*85)  
1275  5 (100) 18 (*90)  
637.5  5 (100) 18 (90)  
318.75  5 (100) 18 (90)  
159.375  5 (100) 19 (*95)  
79.688  5 (100) 19 (95)  
39.844  5 (100) 20 (*100)  
19.922  5 (100) 20 (100)  
9.961  5 (100) 20 (100)  
4.981  5 (100) 20 (100)  
2.490  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 
 

Table 18.  Growth of Erythromycin (8 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of sulfamethizole. 

  
                

Sulfamethizole conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
2550  5 (*100) 20 (*100)  
1275  5 (100) 20 (100)  
637.5  5 (100) 20 (100)  
318.75  5 (100) 20 (100)  
159.375  5 (100) 20 (100)  
79.688  5 (100) 20 (100)  
39.844  5 (100) 20 (100)  
19.922  5 (100) 20 (100)  
9.961  5 (100) 20 (100)  
4.981  5 (100) 20 (100)  
2.490  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 
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Table 19.  Growth of Tetracycline (12.5 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of sulfamethizole. 

  
                

Sulfamethizole conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
2550  5 (*100) 20 (*100)  
1275  5 (100) 20 (100)  
637.5  5 (100) 20 (100)  
318.75  5 (100) 20 (100)  
159.375  5 (100) 20 (100)  
79.688  5 (100) 20 (100)  
39.844  5 (100) 20 (100)  
19.922  5 (100) 20 (100)  
9.961  5 (100) 20 (100)  
4.981  5 (100) 20 (100)  
2.490  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 

Table 20.  Growth of Ciprofloxacin (4 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of tetracycline. 

  
                

Tetracycline conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
240  2 (*40) 16 (*80)  
120  2 (*40) 16 (80)  
60  3 (*60) 16 (80)  
30  3 (60) 17 (*85)  
15  4 (*80) 17 (85)  
7.5  5 (*100) 18 (*90)  
3.75  5 (100) 18 (90)  

1.875  5 (100) 20 (*100)  
0.9375  5 (100) 20 (100)  
0.4688  5 (100) 20 (100)  
0.2344  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 
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Table 21.  Growth of Erythromycin (8 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of tetracycline. 

  
                

Tetracycline conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
240  4 (*80) 18 (*90)  
120  4 (80) 18 (90)  
60  5 (*100) 18 (90)  
30  5 (100) 20 (*100)  
15  5 (100) 20 (100)  
7.5  5 (100) 20 (100)  
3.75  5 (100) 20 (100)  

1.875  5 (100) 20 (100)  
0.9375  5 (100) 20 (100)  
0.4688  5 (100) 20 (100)  
0.2344  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 
 

Table 22.  Growth of Tetracycline (12.5 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of tetracycline. 

  
                

Tetracycline conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
240  5 (*100) 20 (*100)  
120  5 (100) 20 (100)  
60  5 (100) 20 (100)  
30  5 (100) 20 (100)  
15  5 (100) 20 (100)  
7.5  5 (100) 20 (100)  
3.75  5 (100) 20 (100)  

1.875  5 (100) 20 (100)  
0.9375  5 (100) 20 (100)  
0.4688  5 (100) 20 (100)  
0.2344  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 
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Table 23.  Growth of Ciprofloxacin (4 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of virginiamycin. 

  
                

Virginiamycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
310  2 (*40) 13 (*65)  
155  2 (40) 13 (65)  
77.5  2 (40) 13 (65)  

38.75  3 (*60) 13 (65)  
19.375  3 (60) 15 (*75)  
9.688  3 (60) 16 (*80)  
4.844  3 (60) 16 (80)  
2.422  5 (*100) 17 (*85)  
1.2109  5 (100) 20 (100)  
0.6055  5 (100) 20 (100)  
0.3027  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 

 
 
 
 
 
 
 
 
 
 

Table 24.  Growth of Erythromycin (8 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of virginiamycin. 

  
                

Virginiamycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
310  5 (*100) 18 (*90)  
155  5 (100) 18 (90)  
77.5  5 (100) 18 (90)  

38.75  5 (100) 18 (90)  
19.375  5 (100) 19 (*95)  
9.688  5 (100) 19 (95)  
4.844  5 (100) 19 (95)  
2.422  5 (100) 20 (*100)  
1.2109  5 (100) 20 (100)  
0.6055  5 (100) 20 (100)  
0.3027  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration 
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Table 25.  Growth of Tetracycline (12.5 µg/ml) resistant isolates from the Kanawha River 
and its tributaries exposed to varying concentrations of virginiamycin. 

  
                

Virginiamycin conc. 
(µg/ml)   

No. of Isolates growing on Mueller-Hinton Broth 

   Tributaries (n=5) Main Stem (n=20)  
310  5 (*100) 20 (*100)  
155  5 (100) 20 (100)  
77.5  5 (100) 20 (100)  

38.75  5 (100) 20 (100)  
19.375  5 (100) 20 (100)  
9.688  5 (100) 20 (100)  
4.844  5 (100) 20 (100)  
2.422  5 (100) 20 (100)  
1.2109  5 (100) 20 (100)  
0.6055  5 (100) 20 (100)  
0.3027  5 (100) 20 (100)  

        
* indicates the percentage of isolates resistant at the given concentration
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Table 29. 

Minimum Inhibitory Concentrations for 7 antibiotics using one 
ciprofloxacin (4 µg/ml) resistant isolate recovered from each of the five 
primary tributaries of the Great Kanawha River. 

 
  

 

                
 New Gauley Elk Coal  Pocatalico  Antibiotic (µg/ml) 
              

        

Erythromycin  >150 >150 <0.1465 0.5859 >150  

Tetracycline  120 >240 30 7.5 >240  

Ampicillin  7.5 >990 >990 >990 >990  

Streptomycin  7.5 >490 490 7.5 >490  

Virginiamycin  77.5 >310 4.844 4.844 >310  

Sulfamethizole  >2550 >2550 >2550 >2550 >2550  

Ciprofloxacin  >70 >70 >70 >70 >70  
        
 
 

* Fields highlighted in bold print indicate a Minimum Inhibitory 
Concentration.  

 

** Fields not highlighted indicate the Minimum Inhibitory concentration 
was greater than the highest antibiotic concentration tested. 
 
 
 

Table 30. 

Minimum Inhibitory Concentrations for 7 antibiotics using one 
erythromycin (8 µg/ml) resistant isolate recovered from each of the five 
primary tributaries of the Great Kanawha River. 

 
  

 

                
 New Gauley Elk Coal  Pocatalico  Antibiotic (µg/ml) 
              

        

Erythromycin  >150 9.375 >150 >150 >150  

Tetracycline  >240 120 >240 >240 >240  

Ampicillin  >990 >990 >990 >990 >990  

Streptomycin  >490 61.25 >490 >490 >490  

Virginiamycin  >310 >310 >310 >310 >310  

Sulfamethizole  >2550 >2550 >2550 >2550 >2550  

Ciprofloxacin  >70 >70 >70 >70 >70  
        
 
 

* Fields highlighted in bold print indicate a Minimum Inhibitory 
Concentration.  

 
** Fields not highlighted indicate the Minimum Inhibitory concentration 
was greater than the highest antibiotic concentration tested. 
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Table 31. 

Minimum Inhibitory Concentrations for 7 antibiotics using one tetracycline 
(12.5 µg/ml) resistant isolate recovered from each of the five primary 
tributaries of the Great Kanawha River. 

 
  

 

                
 New Gauley Elk Coal  Pocatalico  Antibiotic (µg/ml) 
              

        

Erythromycin  >150 >150 >150 >150 >150  

Tetracycline  >240 >240 >240 >240 >240  

Ampicillin  >990 >990 >990 >990 >990  

Streptomycin  >490 >490 >490 >490 >490  

Virginiamycin  >310 >310 >310 >310 >310  

Sulfamethizole  >2550 >2550 >2550 >2550 >2550  

Ciprofloxacin  >70 >70 >70 >70 >70  
        
 
 

* Fields highlighted in bold print indicate a Minimum Inhibitory 
Concentration.  

 

** Fields not highlighted indicate the Minimum Inhibitory concentration 
was greater than the highest antibiotic concentration tested. 
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Table 32. Spring vs. Summer Impact Scores (range -4 to 4) using the 95th Percentile 
(IS95).  

 
River Mile 

or 
Tributary 

a Site Designation
b, c Spring 

IS95 
b, c Summer 

IS95 

New River T -1        -3 
Gauley T -1 0 

95  U 0 0 
90 U -1 0 
85 U -1 0 
80 U -1 0 
75 U 0  1 
70 U -1 0 
65 U 0 0 
60 U 0 0 
Elk T 0 2 
55 U 0 3 
50 L  1 0 

Coal T 0 0 
45 L 1 2 

Pocatalico T 3 0 
40 L 0 0 
35 L 0 -1 
30 L 0 -1 
25 L 1 -1 
20 L 1 -2 
15 L -1 -1 
10 L 0 -2 
5 L 0 0 
0 L 0 0 

 
 
a Designation of U (Upper Kanawha), L (Lower Kanawha), or T (Tributary) indicates the region of the 
River or Tributary entering the river.  
b Fields highlighted in red indicates an impacted area. 
c Fields highlighted in blue indicates less impact. 
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APPENDIX A 

ANTIBIOTIC DESCRIPTIONS 

 
1. Ampicillin  

 
A penicillin class of antibiotic with extended spectrum activity against Gram 
negative species.  These are β-lactamase antibiotics that contain penicillin binding 
proteins that bind to the penicillin binding proteins in the bacterial cell wall to 
inhibit peptidoglycan synthesis which results in cell death. This action makes β-
lactamase antibiotics bactericidal. 
 

 
2. Ciprofloxacin 

 
A quinilone class of antibiotic with broad-spectrum activity against Gram 
negative and Gram positive bacteria. Quinilones are synthetic chemotherapeutic 
agents that inhibit DNA gyrase or topoisomerases that are required for replication, 
recombination and repair. As a result nucleic acid synthesis is inhibited. 
Ciprofloxacin is a fluoroqunilone (newer quinilones) derived by alteration of the 
two ring quinilone nucleus.  
 

 
3. Erythromycin 

 
A macrolide class of antibiotic that is bacteriostatic with a broad-spectrum of 
activity against Gram-positive and some Gram-negative bacteria (e.g. Neisseria, 
Legionella, Mycoplasma, Chlamydia, Chlamydophila, Treponema, and Rickettsia. 
Developed from Streptomyces erythreus).  Macrolides work by reversible binding 
to the 50s ribosomal subunit, which blocks polypeptide elongation. 
 

 
4. Streptomycin 

 
An aminoglycoside class of antibiotic primarily used to treat infections with 
Gram-negative bacilli. Developed from the Streptomyces spp... These antibiotics 
act by passing through the bacterial outer membrane (in Gram-negative bacteria), 
cell wall, and cytoplasmic membrane to the cytoplasm where they inhibit protein 
synthesis by irreversibly binding to the 30s ribosomal subunit. Attachment causes 
misreading of the messenger RNA (mRNA) and interruption of protein synthesis 
by causing the premature release of the ribosome from mRNA. The action of 
irreversible binding makes the antibiotic bacteriocidal.  Streptomycin has been 
used for the treatment of tuberculosis, tularemia, and streptococcal or 
enterococcal infections (in combination with penicillin). 

5. Sulfamethizole 
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A sulfonamide class of antibiotic known as an antimetabolite (a substance which 
competitively inhibits the utilization, by an organism, of an exogenous substrate 
or endogenous metabolite (Singleton et al, 2002)). These antimetabolites compete 
for p-aminobenzoic acid (PABA) preventing folic acid synthesis. Sulfonamides 
are similar in structure to PABA tricking the bacteria into taking it (sulfonamide) 
up and inhibiting folic acid synthesis. They are effective against a wide range of 
Gram negative and Gram positive bacteria as well as various protozoa (e.g. 
Plasmodium spp.). In combination with other folic acid antagonists can be used to 
treat urinary tract infections, Malaria, etc. 

 
 

6. Tetracycline 
 

A tetracycline class of antibiotic that is bacteriostatic and has broad-spectrum 
activity which inhibits protein synthesis in bacteria by binding reversibly to the 
30s ribosomal subunits blocking the binding of aminoacyl transferase. Is effective 
in the treatment of infections caused by Chlamydia, Mycoplasma, Rickettsia, and 
other selected Gram-positive and Gram-negative bacteria. 
 

 
7. Virginiamycin 

 
A streptogramin class of antibiotic made up of two antibiotic molecules that act 
synergistically to prevent protein synthesis. Primarily a Gram-positive 
antibacterial. Has been in use for 30 years on poultry, cattle and swine to prevent 
and control infections and outbreaks of intestinal diseases. It is not absorbed by 
the systemic circulation of the animals, but remains in the gut.  
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APPENDIX B 

 

Selective Antibiotic Actions 

 

Guardabassi and Dalsgaard, 2002 
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APPENDIX C 

Molecular mechanisms of antibiotic resistance. Modified from Hayes and Wolf, 1996. 

 

 

Guardabassi and Dalsgaard, 2002 
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APPENDIX D 
 

 Mechanism of genetic transfer: a. conjugation; b. transduction; 
c. transformation 

 

 

Levy, 1998 
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APPENDIX E 

 Sources and distribution of antibiotics in the environment. 

 

 

 

 

                                                                           Kümmerer, 2003 
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APPENDIX F 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top Antimicrobials Prescribed in 2003 
Brand/Generic Name   No. prescriptions written 
zithromax erythromycin 39,535,047 
amoxicillin penicillin 35,768,145 
cephalexin cephalosporin 21,075,715 
trimox penicillin 15,103,044 
amox tr/potassium clavulanate penicillin 14,194,827 
levaquin quinolone 12,642,583 
* diflucan   10,733,924 
penicillin vk penicillin 9,724,240 
cipro quinolone 7,983,181 
amoxil penicillin 7,060,402 
** cotrim/sulfamethoxazole   6,892,585 
biaxin XL erythromycin 4,848,527 
omnicef cephalosporin 4,699,656 
*** macrobid   4,576,805 
doxycycline hyclate tetracycline 4,489,152 
cefzil cephalosporin 4,022,708 
bactroban   3,897,112 
biaxin    erythromycin 3,584,713 
ciprofloxacin HCL quinolone 3,582,316 
avelox   3,042,473 
tobradex aminoglycoside 2,772,278 
cefuroxime cephalosporin 2,568,759 
augmentin XR penicillin 2,463,014 
ciloxin quinolone 2,273,065 
banzaclin erythromycin 2,262,848 
tequin quinolone 2,196,606 
tetracycline tetracycline 21,663,544 
Total   234,060,079 
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APPENDIX G 
 
 

STANDARD OPERATING PROCEDURES (SOPS) 
 
 

Antibiotic Stock Solutions 
 
1. The antibiotics, solvents, and concentrations used are shown in Table 1. 
 
 
Table 1.  Antibiotics used and recommended concentrations. 

Antibiotic Catalog No. Solventa Stock Conc. Working 
Conc. 

Fungizone BioWhitaker          
17-836R 

N/A 250 µg/ml 375 ng/ml 

Ampicillin Sodium Salt Fisher BP1760-
25 

H2O 50 mg/ml 50 µg/ml 

Ciprofloxacin Cellgro 61-277-
RF 

DMSO 4 mg/ml 4 µg/ml 

Erythromycin Fisher BP920-25 EtOH:H2O 8 mg/ml 8 µg/ml 

Streptomycin Sulfate Fisher BP910-50 Water 25 mg/ml 25 µg/ml 

Sulfamethizole Fisher 
ICN15671125 

DMSO 128 mg/ml 128 µg/ml 

Tetracycline 
Hydrochloride 

Fisher BP912-
100 

EtOH:H2O 12.5 mg/ml 12.5 µg/ml 

Virginiamycin Fisher 50-213-
730 

DMSO 16 mg/ml 16 µg/ml 

a Fungizone is purchased as a stock solution, it is stored frozen and thawed before use.  DMSO = 
dimethylsulfoxide (Certified ACS).  EtOH:H2O = a mixture of equal parts ethanol (100% USP) and 
reagent grade water (18 MΩ ). 
 
 
2. Using an analytical balance, weigh out sufficient antibiotic to make a 10 ml stock (see Table 1 

and note below) and transfer the antibiotic powder to a sterile 15 ml plastic centrifuge tube 
(Falcon 2095; Becton Dickinson, Sparks, MD or equivalent). 
 
Note � for determining amount of antibiotic powder to use 
 
a. Be sure to account for the purity of the antibiotic powder by dividing the weight of pure 

antibiotic required by the purity.  For example, ciprofloxacin may be provided as a powder 
that contains 803 mg ciprofloxacin per gram.  To achieve a stock concentration of 4 mg 
ciprofloxacin per ml, it is necessary to add 4.98 [or 4.0 mg cipro x (1000 mg powder / 803 
mg cipro)] mg powder per ml of stock solution. 

 
3. Add 10 ml of the appropriate solvent (see Table 1) to the tube, and vortex to mix. 
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4. In some cases (e.g. when making stock solutions of ciprofloxacin) the tube can be placed in a 

bath sonicator to facilitate dissolution of the solute.  Take care to be certain that all of the 
antibiotic has gone into solution. 

 
5. Draw the antibiotic solution into a sterile 10 ml syringe, and sterilize by forcing the solution 

through a sterile, 0.2 µm syringe filter (Fisher Scientific cat. no. 09-719C or equivalent) into a 
second sterile plastic centrifuge tube.  Do not filter sterilize antibiotics dissolved in DMSO. 

 
6. Store the antibiotic stocks at -20°C until used.  Replace antibiotic stocks each month. 
 
Media Preparation 
 
1. Suspend 9.1 grams Difco R2A agar (Becton Dickinson, Sparks, MD; cat no. 218263) in 500 

ml of purified water in a 1,000 ml capacity glass Erlenmeyer flask. 
 
2. Add a magnetic stir bar, cover the flask with aluminum foil, place and piece of autoclave tape 

on the foil, and mark the name of the antibiotic to be added (if appropriate) on the foil. 
 
3. Swirl the flask to evenly hydrate the suspended powder, and autoclave at 121°C and 15 psi 

for 20 minutes on a slow exhaust cycle. 
 
4. Move the medium from the autoclave to a 48°C water bath, and hold for at least 30 minutes 

but not more than 4 hours. 
 
5. While the medium is cooling, remove the appropriate antibiotic stock solutions from the 

freezer and thaw on ice (all antibiotics except ciprofloxacin) or at room temperature 
(ciprofloxacin). 

 
6. Place the flask on a magnetic stir plate and stir gently until the medium is well mixed.  Be 

careful not to introduce bubbles.  Test the temperature of the medium by touching the side of 
the flask briefly with your bare hand.  It should be warm, but not hot.  If the flask is hot to the 
touch, return it to the water bath until it has cooled enough to be handled comfortably.  Do not 
allow the medium to cool below 48°C. 

 
7. Wear disposable latex gloves for the remaining steps of media preparation.  When properly 

tempered, again move the medium to the magnetic stirrer.  While stirring gently, aseptically 
add 750 µl of fungizone stock. 

 
8. Continue stirring for 15 to 30 seconds after the addition of the fungizone to the medium.  Tilt 

the flask to insure that all the fungizone stock solution is transferred to the medium. 
 
9. If you are preparing R2A plus fungizone for the enumeration of total cultivable bacteria, 

aseptically pour 25 ml per plate into pre-sterilized 100 x 15 mm Petri dishes (Falcon 1029, 
Becton Dickinson, Sparks, MD or equivalent).   

 
10. If you are preparing R2A plus fungizone and an additional antibiotic for the enumeration of a 

particular resistant population, aseptically add 500 µl of the appropriate antibiotic stock to 
the flask.  Stir gently for an additional 15 seconds and tilt the flask to insure that all the 
antibiotic stock is transferred to the medium. 

 
11. Pour the plates as described in step 9. 
 
12. Clearly mark the plates to indicate media content.  E.g. �R2Af � can be used to indicate R2A 

agar plus fungizone, and �R2Afc� to indicate R2A agar plus fungizone and ciprofloxacin, etc. 
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13. Allow plates to cure at room temperature for at least 48 hours before use.  Plates should be 
inoculated no later than seven days after pouring. 

 
 
Sample Collection 
 
1. Whole water samples must be collected in sterile containers with secure, leak-proof lids.  

Containers must be clearly labeled with a sample number, and the sample number must be 
recorded in a notebook in which the location, date and time of sampling are clearly and fully 
described.  If available, include additional information such as: latitude and longitude, air 
temperature, water temperature, weather conditions, turbidity, level of boating activity, land 
use patterns, etc. 

 
2. The container should be opened so that the opening is pointing downward, and the inside of 

the lid does not come into contact with any non-sterile surfaces.   
 
3. Continue holding the opening downward while passing the container through the surface 

tension layer.   
 
4. When the container is fully submerged, invert it so that it fills with water. 
 
5. Pour off enough water to leave approximately a 10% air headspace. 
 
6. Seal the container and place on ice.  Samples should be cultivated within 6 hours of 

collection. 
 
 
Enumeration of Total Cultivable Bacteria 
 
1. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any sediment 

that may have settled out during transit. 
 

2. Aseptically transfer 0.1 ml of sample to a sterile 9.9 ml dilution blank in a screw-cap test tube. 
 
3. Tightly cap the tube and mix at full speed on a vortex mixer for at least 5 seconds. 
 
4. Aseptically transfer 0.1 ml of diluted sample to each of three plates of Difco R2A agar plus 

375 ng/ml fungizone.   
 
5. Spread the diluted water sample on the surface of the agar plates using a sterile glass 

spreading rod, a pre-sterilized inoculating loop, or five sterile glass beads (5 mm; see note) 
until all of the liquid has been absorbed. 

 
Note � for use of sterile glass beads 
 
a. Place six glass beads (Fisher Scientific cat no. 11-312C) into a 1000 ml pipette tip (Biolog 

cat no. 3001; other tips should be tested for suitability).  One set of beads is required for 
each plate inoculated. 

 
b. Place the tip with beads into the original pipette box, cover all the tips with a sheet of 

aluminum foil, place the cap on the box, place a piece of autoclave tape on the box, and 
autoclave at 121°C and 15 psi for 15 minutes. 

 
c. When plating � open the pipette tip box, roll back the aluminum foil to expose a single 

row of pipette tips, remove one tip at a time, lift the lid of an inoculated plate, and pour the 
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sterile beads onto the agar surface.  Normally, one bead remains stuck in the bottom of 
the tip. 

 
d. Repeat step c for all replicate plates.   

 
e. Cover the plates and stack them.  Then shake the plates by moving them in a quick back 

and forth motion while keeping the bottom plate in contact with the bench top - it is 
important to avoid allowing the beads to run in a circular motion around the outer edge of 
the plate.  Shake five times, then rotate the plates by one-quarter turn and shake again 
five times.  Repeat shaking and turning the plates a total of five times.   

 
f. Invert the plates and collect the used beads in a beaker containing 70% ethanol. 

 
6. Plates must be clearly marked with sample number and date of inoculation. 
 
7. Wrap each set of three plates with parafilm and incubate inverted at 25°C for one week (see 

note) 
 

Note � for incubation of R2A plates 
 
a. R2A agar plates inoculated with river or lake water will continue to develop new 

microcolonies for 5 to 6 days after inoculation.  Therefore, incubation for at least seven 
days is recommended.  Incubation at temperatures above 25°C is not recommended as it 
may reduce the number of colony forming units. 

 
8. After incubation, count the number of colony forming units (CFU) on each plate and record in 

a laboratory notebook. 
 
9. Determine the mean and standard deviation of CFU counts on replicate plates and record in 

a laboratory notebook. 
 
10. Determine the CFU per ml of total cultivable bacteria in the original sample by multiplying the 

average CFU value by a dilution factor of 1,000 (accounts for the initial 10-2 dilution and the 
plating volume of 0.1 ml).  Record this value in the laboratory notebook. 
 
 

Enumeration of Antibiotic Resistant Bacteria 
 
1. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any sediment 

that may have settled out during transit. 
 

2. Aseptically transfer 0.1 to 0.2 ml (see note) of undiluted sample to each of three plates of 
Difco R2A agar plus 375 ng/ml fungizone, plus the appropriate concentration of a single 
antibiotic (see Table 1).  

 
Note � for selection of plating volume  
 
a. Preliminary tests to determine the volume of sample to be plated are recommended.  A 

plating volume of 0.1 ml is the default volume, but if the number of antibiotic resistant 
colony forming units is consistently less than 30 per plate, the volume should be 
increased to 0.2 ml 

 
3. Spread the undiluted water sample on the surface of the agar plates using a sterile glass 

spreading rod, a pre-sterilized inoculating loop, or five sterile glass beads (5 mm; see note 
above) until all of the liquid has been absorbed. 
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4. Plates must be clearly marked with sample number and date of inoculation. 
 
5. Wrap each set of three plates with parafilm and incubate inverted at 25°C for one week (see 

note above). 
 
6. After incubation, count the number of colony forming units (CFU) on each plate and record in 

a laboratory notebook. 
 
7. Determine the mean and standard deviation of CFU counts on replicate plates and record in 

a laboratory notebook. 
 
8. Determine the CFU per ml of total cultivable bacteria in the original sample by multiplying the 

average CFU value by a dilution factor of 10 (for a plating volume of 0.1 ml) or 5 (for a plating 
volume of 0.2 ml).  Record this value in the laboratory notebook. 

 
 
 
Enumeration of Fecal Coliform Bacteria 
 
1. Label the 47 mm Petri dishes with absorbent pads (Millipore, cat. no. PD1004705) and 

****the prepared m-E plates with media type (i.e. mFC), date, sample ID, and aliquot amount 
to be sampled. 

 
2. Place the m-FC Medium with Rosolic Acid, 2 ml plastic ampules (Cat. No. M00000P2F, 

Millipore) on ice and set aside until step 6 
 
3. Pour sterile tap water into a 100 ml capacity analytical test filter funnel with 47mm cellulose 

nitrate membrane, 0.45µm pore size (Fisher Scientific, cat. no. 09-740-30D or equivalent) 
until the membrane is covered to an approximate depth of 5-10 mm. 

 
4. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any sediment 

that may have settled out during transit. 
 
5. Aseptically transfer 0.1 to 50 ml (see note) of undiluted sample to the sterile tap water in the 

analytical filter funnel, swirl gently to evenly distribute the sample, and filter the water through 
the funnel. Rinse the sides of the funnel with sterile tap water at least two times and filter 
through membrane. 
 
Note � for selection of plating volume  
 

a. Preliminary tests to determine the volume of sample to be plated are recommended.  
Plating volumes of 0.1 ml, 0.5 ml, and 1.0 ml are the default volumes for triplicate 
sampling.  However, if the number of colony forming units does not consistently fall 
within the 20-60 colonies per membrane standard, the volume should be adjusted 
accordingly. 

 
6. Open m-FC Medium with Rosolic Acid, 2 ml ampule and squeeze contents onto the 

absorbent pad in the pre-labeled corresponding 47 mm Petri dish with absorbent pad. 
 
7. Remove the disposable funnel wall and aseptically transfer the membrane (using 95% ethyl 

alcohol flame-sterilized flat forceps) to the pre-labeled corresponding 47 mm Petri dish with 
absorbent pad soaked with the appropriate medium. 

 
8. Incubate the plates as follows:  m-FC (44.5 ± 0.2°C for 24 hours). 
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9. After incubation, count the number of colony forming units (CFU) on each plate and record in 
a laboratory notebook.  For the m-FC plates, count only the blue colonies.   

 
10. Determine the mean and standard deviation of CFU counts on replicate plates and record in 

a laboratory notebook. 
 
11. Determine the CFU per 100 ml of fecal coliform and total coliform bacteria in the original 

sample by multiplying the average CFU value by a dilution factor (i.e. DF of 1000 for a filter 
volume of 0.1 ml of water sample).  Record this value in the laboratory notebook. 

 
 
Determination of Impact Scores 
 
1. Enter enumeration data for fecal indicators and antibiotic resistant bacteria into an Excel 

spreadsheet. 
 
2. For each population (i.e. fecal coliforms or ciprofloxacin resistant cells), rank the average 

count for a site within the population data set of all sites using the PERCENTRANK function.  
Multiply the PERCENTRANK output by 100 to achieve a percentile score for each data point 
within the entire population data set (see note). 

 
Note � on determining percentile scores 
 
a. The PERCENTRANK function in Excel can not simply be copied and pasted from cell to 
cell.  If the function is transferred it will carry the original array size, but the array will be offset 
and the function will calculate an inappropriate rank.  Therefore, you must set the array to 
contain the entire population data set for each individual data point. 

 
3. Choose the boundaries that you wish to apply to the data.  For example, an IS90 score 

weights sites with population counts above the 90th percentile and below the 10th percentile.  
An IS80 score weights sites with population counts above the 80th percentile and below the 
20th percentile.  In our hands, IS85 to IS90 scores provide a useful signal to noise ratio in the 
index. 

 
4. Assign a population score of 1 to all data points that fall above the upper percentile boundary. 
 
5. Assign a population score of -1 to all data points that fall below the lower percentile boundary. 
 
6. Assign a population score of 0 to all data points that fall between the chosen boundaries. 
 
7. Repeat the determination of population scores for all microbial populations enumerated, i.e. 

for each antibiotic resistant population measured and for the fecal indicator population. 
 
8. Determine the total impact score (IS) by adding the population scores.  For studies that 

include three antibiotics and one fecal indicator, impact scores can range from -4 to +4.  
Higher impact scores are indicative of a more impacted water source. 

 
9. Plot IS versus river mile to get a visual representation of water quality variability. 
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APPENDIX H 
 

1. Mainstem relative impact scores for spring using the 90th percentile. 
 
 

Kanawha River Spring Relative IS90
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2.  Mainstem relative impact scores for summer using the 90th percentile. 
 

Kanawah River Summer Relative IS90
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APPENDIX I 
 

 Mainstem comparison of relative impact scores for the 90th percentile at KR50-KR00 for 
spring and summer. 
 

 

Kanawha River KR50 - KR00 Spring & Summer 
Relative IS90
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APPENDIX J 
 

Tributary comparisons of relative impact scores for the 90th percentile during spring and 
summer. 
 

Kanawha River Tributary IS90
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APPENDIX K 
 

Spring vs. Summer Impact Scores (range -4 to 4) using the 90th Percentile (IS90).  
 

River Mile 
or Tributary 

a Site Designation 
b, c Spring 

IS90 
b, c Summer 

 IS90 

New  T -3 -3 
Gauley T -1 -1 

95 U 0 0 
90 U -2 0 
85 U 0 0 
80 U -1 0 
75 U 0 1 
70 U -1 0 
65 U 0 0 
60 U 0 0 
Elk T 0 4 
55 U 0 3 
50 L 2 0 

Coal T 0 1 
45 L 1 2 

Pocatalico T 3 0 
40 L 0 1 
35 L 0 -1 
30 L -1 -1 
25 L 1 0 
20 L 1 -2 
15 L 0 -2 
10 L 0 -2 
5 L 0 0 
0 L 0 -2 

 
 
 
a Designation of U (Upper Kanawha), L (Lower Kanawha), or T (Tributary) indicates the 
region of the River or Tributary entering the river..  
b Fields highlighted in red indicates an impacted area. 
c Fields highlighted in blue indicates less impact. 
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APPENDIX L 
 

  1. Mainstem relative impact scores for spring using the 85th percentile. 
 

Kanawha River Spring Relative IS85
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2. Mainstem relative impact scores for summer using the 85th percentile. 
 

Kanawha River Summer Relative IS85
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APPENDIX M 
 

Main stem comparison of relative impact scores for the 85th percentile at KR50-KR00 for 
spring and summer. 
 

Kanawha River KR50 - KR00 Spring & Summer Relative 
IS85
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APPENDIX N 
 
Tributary comparison of relative impact scores for the 85th percentile during spring and 
summer. 
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APPENDIX O 
 

Spring Microbiological Data including average fecal coliforms, ciprofloxacin, erythromycin, 
and tetracycline counts. 
 

 
 
 
 
 
 
 
 
 
 

Spring 

River Mile 
Average CFU/ml 
Total Cultivable  

Average CFU/ml 
ciprofloxacin  

Average CFU/ml 
erythromycin  

Average CFU/ml 
tetracycline  

Average CFU/100ml 
Fecal Coliforms 

95 159667 357 1087 147 300 
90 208000 387 1127 87 90 
85 175000 443 1140 147 80 
80 175667 497 853 70 120 
75 138000 373 990 103 110 
70 131000 353 877 127 110 
65 157333 377 923 113 100 
60 137333 617 893 117 150 
55 141667 455 817 160 100 
50 118667 1103 840 197 460 
45 109000 1107 1027 150 150 
40 112333 510 993 107 210 
35 86333 497 823 133 200 
30 93667 577 827 100 100 
25 81000 483 1237 150 110 
20 75500 707 1227 137 100 
15 57667 393 620 220 140 
10 55000 497 920 153 270 
5 11500 553 890 150 130 
0 15000 1033 597 640 170 

coal 37000 763 1067 197 200 
poca 95000 1353 1133 407 420 
gau 32333 440 850 183 60 
new 162667 347 760 117 90 
elk 53667 563 780 123 100 
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APPENDIX P 

 
Summer Microbiological Data including average fecal coliforms, ciprofloxacin, 
erythromycin, and tetracycline counts. 
 
 
Summer 

River Mile 
Average CFU/ml 
Total Cultivable  

Average CFU/ml 
ciprofloxacin  

Average CFU/ml 
erythromycin  

Average CFU/ml 
tetracycline  

Average CFU/100ml 
Fecal Coliforms 

95 20000 1123 1710 443 270 
90 10000 2330 2785 667 110 
85 14333 1180 1673 690 100 
80 12333 1795 2633 485 410 
75 11000 1850 1850 503 2100 
70 15667 1520 2653 510 100 
65 6667 1667 1403 947 260 
60 8667 990 1690 423 230 
55 38333 6167 7827 4400 2000 
50 14667 1010 2923 1480 130 
45 40667 1617 9200 6227 80 
40 47333 1737 5275 5047 40 
35 23333 2353 2577 1123 10 
30 50333 1937 1887 563 10 
25 30667 1660 1525 600 10 
20 168000 1370 813 763 0 
15 31667 1590 1070 677 10 
10 20000 940 1013 423 40 
5 53000 1433 2593 1377 130 
0 19000 1107 1170 370 90 

coal 77000 3560 2273 1015 100 
poca 64000 2213 3237 690 30 
gau 28000 963 2750 117 260 
new 13333 670 1300 170 130 
elk 52333 9120 6460 5097 760 

 
 
 
 
 
 
 
 
 



116 

 
APPENDIX Q 

 

Water chemistry for main stem (KR00- KR50). 

Sample 
Site Date, Time 

  

 
Water 
Temp   
(deg 
C) 

 
Turbidity 

(NTU) 

Sp. 
Conductance 
(umho/cm) 

 
Oxygen, 

Diss 
(mg/l) 

O2 Sat, 
Diss 
(%) 

 pH 
(units)

 
Alkalinity, 
Tot (mg/l) 

                    
20040406, 1330   8.9 36 168 12.3 106.44 7.9   1KR00005 
20040713, 1515   28.5 30 240 8.1 104.02 8.2 92 

                    
20040406, 1300   8.6 40 170 12.2 104.79 7.8   1KR00505 
20040713, 1445   28.2 80 228 8.1 103.5 8.1 80 

                    
20040406, 1245   8.5 31 170 12.5 107.1 7.9   1KR01005 
20040713, 1415   28.8 23 241 8.6 110.99 8.5 92 

                    
20040406, 1230   8.4 28 169 12.5 106.84 7.9   1KR01505 
20040713, 1400   28.4 13 248 9 115.38 8.6 88 

                    
20040406, 1215   8.4 26 168 12.5 106.84 7.9   1KR02005 
20040713, 1345   29.3 6 251 8.5 110.61 8.5 92 

                    
20040406, 1200   8.5 26 167 12.5 107.1 7.9   1KR02505 
20040713, 1330   28.2 7 251 8.5 108.61 8.4 84 

                    
20040406, 1200   8.4 25 166 12.7 108.55 8   1KR03005 
20040713, 1315   28.3 11 253 9.1 116.47 8.2 92 

                    
20040406, 1100   8.3 21 169 12.1 103.16 7.9   1KR03505 
20040713, 1145   28.9 8 258 9.2 118.93 8.7 84 

                    
20040406, 1045   8.2 19 178 12 102.05 8   1KR04005 
20040713, 1100   28.4 6 275 8.3 106.41 8.4 88 

                    
20040406, 1030   8.1 18 153 12.2 103.49 8   1KR04505 
20040713, 1045   29 8 232 8.6 111.36 8.5 80 
20040405, 1445   8.1 22 145 12.1 102.64 8.1   1KR05005 
20040713, 0945   28.7 8 224 8.4 108.23 8.4 72 
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APPENDIX R 

 
Water chemistry data for main stem (KR55 � KR95). 
Sample Site Date, Time  Water 

Temp   
(deg 
C) 

Turbidity 
(NTU) 

Sp. 
Conductance 
(umho/cm) 

Oxygen, 
Diss 

(mg/l) 

O2 Sat, 
Diss 
(%) 

pH 
(units) 

Alkalinity, 
Tot (mg/l) 

          
1KR05505 20040405, 1430  8.4 18 164 12 102.56 8  

 20040712, 1430  28.8 8 214 8.1 104.54 8.4 78 
 20040805, 1345  26.3 19 192 7.6 94.03 8 72 
          

1KR06005 20040405, 1400  8.4 18 169 12.3 105.13 8.3  
 20040712, 1400  28.6 8 215 7.8 100.33 8.4 80 
 20040805, 1315  26.2 23 192 7.6 93.86 8 64 
          

1KR06505 20040405, 1400  8.3 17 167 12.6 107.42 8.4  
 20040712, 1345  28.7 8 217 8 103.08 8.5 80 
 20040805, 1245  26.1 28 194 7.6 93.7 8 64 
          

1KR07005 20040405, 1230  8.1 16 159 12.5 106.04 8.4  
 20040712, 1245  29  215 8 103.59 8.6 82 
 20040805, 1215  26.5 21 178 7.7 95.59 8 72 
          

1KR07505 20040405, 1215  8 15 157 12.5 105.77 8.3  
 20040712, 1230  28.8 6 208 7.5 96.79 8.4 80 
 20040805, 1145  25.6 24 168 7.7 94.11 8 68 
          

1KR08005 20040405, 1200  7.8 15 151 12.8 107.76 8.3  
 20040712, 1200  27.4 6 200 7.6 95.81 8.3 72 
 20040805, 1115  25.9 23 167 8 98.29 8.1 60 
          

1KR08505 20040405, 1130  7.5 14 145 12.8 106.94 8.1  
 20040712, 1130  27.8  183 9.3 118.04 8.6 72 
 20040805, 1030  25.9 20 170 7.7 94.6 8.1 64 
          

1KR09005 20040405, 1045  7.4 14 156 13 108.33 8.1  
 20040712, 1100  27.2 3 177 8 100.51 8.3 80 
 20040805, 1015  25.4 16 188 8.2 99.87 8.1 80 
          

20040405, 1330  6.9 20 132   8.3  1KR09509 
20040712, 1200  27 5 182 8.8 110.19 8.1 64 
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