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ABSTRACT 
 

Pseudomonas aeruginosa (P.a.) is a major threat to the health and well being of a person 

living with cystic fibrosis (CF).  P.a. is capable of conversion to mucoidy or alginate 

overproducing phenotype.  Mucoidy facilitates the chronic infection of P.a. infection in 

the CF lung.  Mutations in the anti-sigma factor mucA, result in activation of the sigma 

factor AlgU which promotes expression of alginate through the alginate biosynthetic 

operon.  However, P.a. can produce alginate independent of mucA mutation via a 

mechanism known as regulated proteolysis.  Proteases AlgW and MucP can degrade 

MucA to liberate and activate AlgU.  In this dissertation, two pathways to alginate 

production will be characterized through investigation of two negative regulators of 

alginate production:  KinB and MucD.  KinB is a histidine kinase which controls alginate 

production through two transcription factors: AlgB and RpoN along with the MucA 

protease AlgW.  In the absence of KinB, the degradation rate of MucA is elevated which 

results in alginate production.  MucD is a periplasmic protease that is presumed to 

degrade protein signals in the periplasm.  It is hypothesized that if MucD does not 

degrade certain protein signals then they will accumulate and activate alginate production.  

Here, it is presented that in the absence of MucD, the intramembrane protease MucP 

activates degradation of MucA.  To further characterize MucD, the roles of the PDZ 

domains in suppression of alginate production were probed.  PDZ domains are conserved 

protein domains that function in protein to protein interaction.  The PDZ domains of 

MucD were found to be dispensable for suppression of alginate production but required 

for the stability of MucD.  When regulated proteolysis is activated, AlgU promotes 

expression of many genes.  One such gene is LptF or Lipotoxin F.  Here it is shown that 

in the absence of kinB, LptF is highly expressed.  LptF was shown to be an outer 

membrane protein, but it is not involved in production of alginate.  However, LptF 

mediates adhesion to lung epithelia and resistance to reactive oxygen species.  P.a. is 

capable of activating AlgU through MucA proteolysis by several mechanisms that are 

characterized in this dissertation.  Through elucidation of these pathways, we will be 

more prepared to combat alginate production and P.a. infection of the CF lung.   
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CHAPTER 1: GENERAL INTRODUCTION 

Introduction 

 Pseudomonas aeruginosa (P.a.) is a gram negative bacterium regarded as both an 

environmental organism and an opportunistic pathogen.  HIV, burn or other patients with 

compromised immune systems are susceptible to infection by P.a.  In particular, humans 

with the genetic disease cystic fibrosis (CF) are highly susceptible to lung infections.  

Due to the intrinsic antibiotic resistance of P.a., these infections cannot be effectively 

controlled and ultimately lead to the decreased lifespan of CF patients. 

P.a. is easily recognized by its characteristic blue-green pigment due to 

production of two virulence factors known as pyocyanin and pyoverdin.  P.a. also has a 

characteristic smell of grapes.  P.a. has one of the largest bacterial genomes. Within the 

P.a genome, numerous secreted virulence factors are coded such as elastase, proteases, 

phospholipase C, enzymes for hydrogen cyanide production and exotoxins.  Each of these 

secreted virulence factors has been recognized to be involved in P.a. pathogenesis in CF.  

Also, P.a. can communicate through quorum-sensing via small molecules and coordinate 

gene expression of virulence factors.  To persist in the CF lung, P.a. overproduces and 

secretes an exopolysaccaride known as alginate (Fig. 1).  High alginate production 

provides the organism with a protective coating, resulting in a phenotype referred to as 

mucoidy.  The morbidity and mortality of a CF individual is directly correlated with the 

time at which mucoid P.a. emerges.  Therefore, knowledge of how P.a. regulates alginate 

production is of critical importance.  Even though the initial mechanism of alginate 

production due to mutation of a P.a. gene known as mucA was elucidated in 1993,    
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Figure 1. Alginate overproduction and mucoid phenotype.  Panel A shows a 
Pseudomonas isolation agar (PIA) plate with a mucoid mucA mutant cultured for 48 hrs 
at 37° C.  Of note droplets of alginate and cells have fallen from the agar on to the lid of 
the plate due to the hyper alginate production.  Panel B indicates a mucoid strain PAO579 
with both nonmucoid (left) and mucoid phenotype (right) due to expression of an alginate 
regulatory gene.  In Panel C mucoid strain VE2 is shown on PIA supplemented with 
Congo red for staining the exopolysaccaride.  In Panel D alginate production in VE2 has 
been abolished by the inactivation of algB, a transcriptional regulator of the alginate 
biosynthetic operon.      
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 recent data have shown P.a. is capable of alginate production independently of classical 

mucA mutations (30).  Furthermore, data suggests alginate production occurs in the lung 

before mucA mutations are selected (6).  Collectively, these data indicate alginate 

production can be modulated by P.a.  The hypothesis of this dissertation states that P.a. 

utilizes signal transduction pathways which activate regulated proteolysis of MucA to 

regulate and control the activity of AlgU, the master regulator of alginate production.  

The goal of this work was to use genetic, molecular and biochemical techniques to 

describe how alginate production by P.a. is modulated through transcriptional and post-

translational modifications. 

Cystic Fibrosis 

CF is the most common inherited lethal disorder in the Caucasian population.  

The reason why CF individuals are susceptible to chronic P.a. lung infection is due to the 

compromised lung functions caused by recessive mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR).  Individuals homozygous for mutant 

CFTR have severe defects in chloride ion transport.  When the concentration of these 

ions are not properly modulated then abnormalities in fluid secretion occurs and 

dehydrated mucus buildup results.  The major organs affected by CF mutations include 

sweat glands, exocrine glands, pancreas, and the intestines.  Eventually 95% of all CF 

patients die from P.a. lung infections due to defective mucociliary clearance.    

CF was appreciated as a disease in the 1930-1940’s, and before antibiotic 

therapies were available most CF individuals did not survive beyond infancy.  Today, 

most CF individuals survive into adulthood mainly due to improved antibiotic and 

nutritional therapy.  However, chronic lung infection by P.a. dictates the life expectancy 
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of those with CF.  The characteristic thick mucosal secretions of the CF lung trap 

microorganisms, such as P.a., which facilitates establishment of infection (11).  

Emergence of alginate overproducing or mucoid P.a. signifies chronic infection and a 

poor prognosis for the patient.  Furthermore, rigorous antibiotic treatment is ineffective 

and once chronic infection has been established, these infections will ultimately lead to 

the death of the CF patient (19).  Therefore, elucidation of the molecular modulation of 

alginate production by P.a. is of paramount importance to the control or eradication of 

P.a. infection of the CF lung.     

LITERATURE REVIEW 

Pseudomonas aeruginosa and mucoidy 

 In 1927, mucoid strains were first isolated from a patient with an abscess in the 

gallbladder (35).  However, the correlation of mucoid P.a. strains and chronic pulmonary 

disease was not described until the 1960’s (19).  As lung disease progresses, the 

emergence of alginate producing colonies is considered the onset of chronic infection (11, 

19).  The visual phenotype of alginate producing colonies is referred to as mucoid 

(Fig.1C).  High transcription of the first gene of the alginate biosynthetic operon, algD 

(Fig. 2), leads to mucoidy (10).  The algD biosynthetic operon codes for the enzymes and 

machinery for manufacture and secretion of alginate.  The first mechanism elucidated for 

conversion to mucoidy was through mutation of the mucA gene (25).  MucA is the anti-

sigma factor  
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Figure 2 Regulators and mechanisms of alginate production.  Alginate production is 
controlled by an array of operons and proteins.  Panel A indicates the genes that code for 
alginate regulatory proteins.  Above each genetic element, the genes are classified as 
positive and negative based on their effect on AlgU activity.  The algU promoters control 
an operon of algU, mucA, mucB, mucC and mucD.  Promoters 1 and 3 are dependent upon 
AlgU.  Therefore, AlgU regulates its own expression.  MucA is the direct negative 
regulator of AlgU.  If the mucA gene is mutated then AlgU activity is not repressed and 
causes alginate overproduction as shown in panel B.  MucB is another principal negative 
regulator of AlgU.  MucB binds the C-terminus of MucA and protects it from proteolytic 
cleavage.  mucC has not been demonstrated to code for a protein, however a promoter is 
located in the mucC open reading frame that drives mucD expression.  MucD is the third 
known negative regulator of alginate production.  MucD is a serine protease that likely 
performs quality control in the periplasm.  mucE codes for a small periplasmic protein that 
has been shown to activate proteolysis of MucA by the serine protease AlgW.  When 
activated, AlgW can degrade the C-terminus of MucA.  Another periplasmic protease 
known as Prc, or tail specific protease, has been suggested to facilitate proteolysis of 
truncated MucA proteins such as those that result from mutated mucA genes.  Once AlgW 
degrades the C-terminal of MucA, then MucP has been suggested to facilitate degradation 
of MucA at its transmembrane domain.  AlgW, Prc, and MucP are the three known 
periplasmic proteases that act upon MucA (B).  After MucA has been cleaved by the 
periplasmic proteases then ClpXP facilitates degradation of the remainder of MucA.  Once 
all MucA has been degraded, then AlgU is active and can drive transcription at its target 
promoters.  AlgU has been shown to drive transcription of several transcriptional 
regulators of the algD alginate biosynthetic operon.  AlgB, AlgR, and AmrZ have been 
shown to regulate expression of algD.  The alginate biosynetic operon codes for all the 
machinery and enzymes necessary for production and secretion of alginate.  AlgB is coded 
in an operon with a histidine kinase known as KinB.  KinB has been previously shown to 
be not required for alginate production in mucA mutants.  Alginate production is controlled 
by AlgU-MucA interactions.  When AlgU is not repressed by MucA then alginate 
production occurs.            
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that sequesters the alternative sigma factor AlgU (also called AlgT) (Fig. 2) (19, 31). 

Increased transcription directed by AlgU at the algD promoter (PalgD) activates alginate 

biosynthesis (24) (42).  

AlgU is the gateway to alginate production and MucA is the primary negative 

regulator (Fig. 2).  Analysis of transcription has revealed that algU is expressed from 

multiple promoters (33), two of which being AlgU-dependent (12, 33) (Fig. 2).  

Therefore, mutations in mucA lead to derepression of AlgU-MucA, interactions which 

then causes up-regulated levels of AlgU due to the fact two of the PalgU promoters are 

AlgU-dependent.  The periplasmic protease, known as Prc, has been shown to be required 

for mucoidy of mucA mutant strains (32).  Prc is thought to degrade mutant forms of 

mucA which will facilitate AlgU activation in a mucA mutant strain (Fig. 2).  Loss of 

repression of AlgU causes increased transcription of AlgU-dependent promoters such as 

the algD promoter (25).  Even though AlgU directs transcription at PalgD, several other 

factors also participate in transcriptional activation as well.  Significant research has 

focused on the alginate regulators that enhance the transcriptional activity at PalgD.  The 

two component response regulators, AlgB and AlgR, along with the DNA binding protein, 

AmrZ, promote AlgU-dependent PalgD activity (Fig. 2) (3, 41).  Another transcriptional 

activator, AlgR, binds to the far upstream region of algD to activate the alginate 

overproduction (26).  Also at PalgD, the alternative sigma factor RpoN has dual roles as 

both a positive and a negative regulator (5).  Conversion to mucoidy by mucA mutations 

in P.a. has been well characterized.  However the mechanisms of alginate production in 

wild type mucA strains are not fully understood.    
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   The strains that initially colonize the CF lung most resemble environmental 

strains due to their nonmucoid phenotype (19).  One study has shown 97.5% of children 

with CF had evidence of P.a. infection by age 3 (7).  The majority of these strains from 

early infection displayed non-mucoid phenotype and were antibiotic susceptible.  In a CF 

mouse model, it has been shown that algD is required for respiratory colonization (9). 

Taken together these data suggest, even though early colonizing P.a. are non-mucoid, 

alginate production may be critical in establishing these infections.  Recently, nonmucoid 

P.a. has been shown to express alginate in both murine lungs and in CF patient sputum 

samples (6).  The study also found that alginate genes were increased in anaerobic 

conditions.  CF sputum contains enough nitrate to support growth of P.a. anaerobically 

(28).  Collectively evidence from the literature indicates conditions in the CF lung are 

favorable for alginate production by P.a. and that alginate production provides a selective 

advantage for infection.   

    Only limited research has shed light on alginate production by wild type mucA 

strains.  In wild type mucA strains, MucB cooperates with MucA-AlgU sequestering 

presumably by protecting the periplasmic portion of MucA from degradation by 

proteases and thus stabilizing MucA-AlgU interaction (Fig. 2) (34).  Derepression of 

AlgU-MucA interactions has recently been the focus of P.a. alginate regulation research.  

Cell wall synthesis inhibitory antibiotics such as D-cycloserine have been shown to up-

regulate the alginate biosynthetic operon (38).  Also our group has shown that 

overexpression of the small periplasmic protein, MucE, causes mucoidy mediated by the 

protease AlgW (30).  E. coli possesses a homologue to AlgW known as DegS.  It has 

been shown that in E. coli the interaction of the anti-sigma factor RseA and σE  can be 
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derepressed by DegS and RseP in response to high expression of mis-folded periplasmic 

and outer membrane proteins  (2, 30).  The DegS-like AlgW has been shown to be 

required for mucoidy when MucE is overexpressed (30) or for activation of PalgD in the 

presence of D-cycloserine (38).  This conserved signal transduction pathway through 

DegS in E. coli or AlgW in P.a. is referred to as regulated intramembrane proteolysis 

(RIP) (Fig. 2B) (1).  In E. coli, post proteolysis by DegS and RseP, released σE still has 

residual RseA peptide that must be degraded before σE can interact with RNA 

polymerase for transcription.  The N-terminus of RseA is then bound by ClpP (17) and 

finally degraded by the ClpXP protease complex (8).  P.a. has three clp family genes 

(clpP, clpX, clpP2) which are required for mucoidy in a mucA-25 mutant (Fig. 2B) (29).  

Together, these recent findings show that P.a. harbors the machinery to activate alginate 

production via regulated proteolysis of the anti-sigma factor MucA.   

AlgB-KinB two-component signal transduction system. 

Bacteria can control signal transduction through two-component systems.  Two-

component systems are comprised of a transcription factor known as a response regulator 

and a histidine kinase.  Classically, when the response regulator is phosphorylated by the 

sensor (histidine kinase) then transcription at target promoters will be activated (Fig. 3).  

Before regulated proteolysis was described as a mechanism of alginate regulation, a 

transcriptional regulator known as AlgB was shown to be required for alginate production 

in the classical mucA mutant strains (42). AlgB is an response regulator homologous to E. 

coli nitrogen fixation regulator NtrC (41) (18).  The primary role of AlgB elucidated thus 

far has been to affect the transcriptional activation of PalgD (Fig. 2) (21).  The cognate 

sensor kinase of AlgB is (23) an inner membrane protein known as KinB (23).  KinB is  
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Figure 3. Two-component system dogma.  Bacteria utilize two-component systems for 
signal transduction.  A two-component system is comprised of a histidine kinase (sensor) 
and a transcription factor (response regulator).  When input signals activate the histidine 
kinase then autophosphorylation occurs followed by transfer of the phosphate to the 
transcription factor.  Typically phosphorylation of the transcription factor causes 
activation of gene expression at target promoters.   
 

 

capable of autophosphorylation and transfer of the phosphate to AlgB (23).  Interestingly, 

phosphorylation of AlgB is not required for alginate biosynthesis in a clinical mucoid 

isolate that carries mucA22 mutation (22).  It has been shown AlgB can bind upstream of 

the PalgD (21).  Bioinformatic data shows AlgB has an interacting domain for the 

alternative σ54 (RpoN).  RpoN is required for mucoidy in the prototype strain that carries 

an undefined mutation, muc-23 (5).  However rpoN is not required for alginate synthesis 

in the mucA mutant strains with the mucA22 allele (5) or the mucA2 allele (26, 27).  AlgB 

and RpoN have been demonstrated to have independent functions in alginate synthesis 

and regulation of transcriptional activation at PalgD.  AlgB has been characterized as a 

positive regulator (18), however RpoN has been shown to be either a positive or a 

negative regulator (5).  The AlgB-KinB two-component system has been studied; 
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however it is clear that it does not follow the established dogma.  In this dissertation, the 

role of KinB in alginate production will be probed in Chapter 3.      

Negative regulation of alginate production by MucD. 

Another negative regulator of AlgU is MucD.  MucD is homologous to heat shock 

protein HtrA (also known as DegP or Do) of E. coli which is a protease that degrades 

unfolded proteins in the periplasm (20) and also functions as a chaperone (36).  MucD is 

a serine protease and has been characterized as a negative regulator of alginate 

production (4).  MucD was shown to have a role in modulating heat shock and reactive 

oxygen intermediates (4) and has also been implicated in pathogenesis (43).  It has been 

proposed that MucD may facilitate folding and chaperoning of virulence factors such as 

toxins (43).  When MucD was classified as a negative regulator, no clear mechanism was 

evident showing how MucD would regulate alginate production.  In Chapter 4 of this 

dissertation, the roles of MucD are investigated and a novel pathway of regulated 

proteolysis of MucA is proposed.      

Virulence factors co-expressed with alginate overproduction 

 Several studies have shown that when AlgU is activated a global change in gene 

expression occurs (13-16, 21, 37, 39, 40).  Interestingly, it seems AlgU controls many 

other genes in addition to alginate genes.  Microarray analysis has revealed that AlgU 

controls a whole class of lipoproteins (13-16).  These lipoproteins were shown to cause 

inflammation in epithelial cells and were designated as lipotoxins (14, 15).  Interestingly, 

most of the lipotoxins are membrane associated lipoproteins, however one lipotoxin 

known as Lipotoxin F or LptF is a predicted outer membrane protein (15).  LptF shares a 

high amount of homology with the major outer membrane porin OprF of P.a.  In Chapter 
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5, LptF is further characterized and is implicated in resistance to oxidative stress and 

adhesion.              

DISSERTATION INTRODUCTION 

 From the literature that was detailed above, it is clear alginate production and 

regulation of AlgU in P.a. have been extensively investigated.  While several 

mechanisms of alginate production have been described, it is still not clear how P.a. 

senses its environment and produces alginate.  This dissertation details a series of studies 

aimed at addressing both long-standing questions about regulation of alginate production 

as well as descriptions of novel pathways.  Molecular biology is built upon the design and 

construction of novel tools.  Since regulatory genes are tightly regulated there is a need 

for expression systems that can be controlled to test hypotheses regarding gene 

expression.  Therefore, Chapter 2 of this dissertation details the construction and 

validation of the pHERD series of vectors.  These vectors allow for controlled expression 

from the arabinose-inducible PBAD promoter.  These vectors were essential for the 

research detailed in all of the remaining chapters.  In Chapter 3, characterization of 

inactivation of the histidine kinase KinB is detailed.  As previously described, KinB was 

originally characterized as nonessential for alginate production, however in this work 

KinB is described as a negative regulator of alginate production and a novel pathway of 

alginate regulation is proposed.  MucD is yet another negative regulator of alginate 

production; and in Chapter 4, a MucP pathway by which MucD regulates alginate 

production is described.  Chapters 3 and 4 both show how AlgU is regulated by post-

translation modifications to MucA, and from this data it is also clear that multiple 

pathways to activation of AlgU exist.  Once AlgU is activated due to derepression of 
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MucA, then many genes are co-expressed with the alginate genes (13-16, 21, 37, 39, 40).  

In Chapter 5, a novel outer membrane protein known as lipotoxin F was identified up-

regulated and implicated in resistance to oxidative stress and adhesion.  Collectively, 

these Chapters of this dissertation describe two novel pathways of alginate production as 

well as an important co-expressed factor.  However, these data propose more novel 

questions that will be discussed in Chapter 6.  Furthermore, this dissertation indicates that 

regulation of alginate production is complex and continues to require investigation in 

order to understand how this virulence factor is regulated in hopes we can someday 

combat P.a. colonization especially in CF more effectively.         
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CHAPTER 2:  A series of PBAD-based shuttle vectors for functional analysis of 

toxic and highly-regulated genes in Pseudomonas and Burkholderia spp. and 

other bacteria 
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ABSTRACT  
 
We report the construction of a series of Escherichia-Pseudomonas broad-host-range expression 

vectors, utilizing the PBAD promoter and the araC regulator for routine cloning, conditional 

expression, and analysis of tightly-controlled and/or toxic genes in pseudomonads.     
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Gene cloning, disruption, deletion, complementation analysis, and allelic exchange are 

central to prokaryotic molecular genetics.  In P. aeruginosa, Schweizer and colleagues 

developed the pUCP family of general-purpose cloning/expression vectors (25, 30), based on the 

well-characterized pUC18/19 vectors (32) and the cryptic mini-plasmid pRO1614 (19).  

However other promoters are also in routine use such as the tac (4, 6), T7 (29), and araBAD 

promoter -based (8, 11) vectors for regulated expression in Escherichia coli and many other 

bacterial species (e.g., (2, 18, 26)).  In E. coli AraC, the product of the constitutively expressed 

araC represses the araBAD promoter (PBAD), and the expression of a cloned gene is induced by 

the addition of L-arabinose.  Pseudomonas researchers have utilized the inducible properties of 

the araC regulator and the PBAD promoter cassette for the controlled gene expression by 

integrating the araC-PBAD-specific transcription fusion into the chromosome using a suicide 

vector or an integration-proficient vector (1, 3, 13, 17, 31).  In the present study, we modified the 

four existing Escherichia-Pseudomonas shuttle vectors pUCP20T/26/28T/30T by replacing the 

lac-promoter with the araC-PBAD cassette to achieve highly-controlled and inducible expression 

in the pseudomonads and other bacteria, e.g. Burkholderia spp. 

Construction and features of pHERD vectors.  Functional genetic analysis requires vectors 

capable of conditional expression.  The PBAD promoter has been used for gene expression 

extensively in E. coli and some in P.aeruginosa and Burkholderia spp (12, 28).  We first 

constructed three shuttle vectors, pHERD20T/28T/30T (Fig. 1), based on the Escherichia-

Pseudomonas shuttle vectors pUCP20T, pUCP28T, and pUCP30T (30), and the commercial 

expression vector, pBAD/Thio-TOPO® (Invitrogen).  The 368 bp fragment of the pUCP vectors 

spanning two restriction sites AflII and EcoRI was replaced with the araC-PBAD 
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Table 1. Bacterial strains and plasmids used in this study 
Bacterial strains Genotype, phenotype and primer sequences a Source 
P. aeruginosa 
PAO1 

 
Algwt Prototroph 

 
P. Phibbs 

PAO1VE2ΔalgW Alg+, PAO1 mucE+oe (himar1GmR::PGM::mucE) ΔalgW (21) 
P. fluorescens 
Pf-5 

 
Algwt, Prototroph 

 
ATCC 

E. coli  
DH5α 

 

F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rk-, mk+), phoA, 

supE44, λ-, thi-1, gyrA96, relA1 

 
 
Lab strain 

B. pseudomallei 
Bp50 

 

Δ(amrRAB-oprA) derivative of wild-type strain 1026b 

 
(5) 

Plasmids 
pUCP20T 

 

Escherichia-Pseudomonas shuttle vector, Plac, ApR, oripBR322, oripRO1600, oriT 

 
(30)  

pUCP30T Escherichia-Pseudomonas shuttle vector, Plac, GmR, oripBR322, oripRO1600, oriT (30)  
pUCP28T Escherichia-Pseudomonas shuttle vector, Plac, TpR, oripBR322, oripRO1600, oriT (30)  
pUCP26T Escherichia-Pseudomonas shuttle vector, Plac, TetR, oripBR322, oripRO1600 (30)  
pBAD/Thio-TOPO® 4,454 bp, araC-PBAD, oripUC, ApR Invitrogen 
pHERD20T pUCP20T Plac replaced by 1.3 kb AflII-EcoRI fragment of araC-PBAD cassette  This study 
pHERD30T pUCP30T Plac replaced by 1.3 kb AflII-EcoRI fragment of araC-PBAD cassette This study 
pHERD26T pUCP26 Plac replaced by 2.4 kb AdhI-EcoRI fragment of araC-PBAD cassette and oriT  This study 
pHERD28T pUCP28T Plac replaced by 1.3 kb AflII-EcoRI fragment of the araC-PBAD cassette This study 

pHERD20T-mucE mucE in pHERD20T EcoRI/HindIII This study 
pHERD28T-mucE mucE in pHERD28T EcoRI/HindIII This study 
pHERD30T-mucE mucE in pHERD30T EcoRI/HindIII This study 
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pHERD20T-algU algU in pHERD20T EcoRI/HindIII This study 
pHERD20T-oprF oprF (PA1777) in pHERD20T EcoRI/HindIII This study 
pHERD20T-oprF-WVF oprF allele encoding OprF ending with the WVF motif cloned in pHERD20T 

EcoRI/HindIII 
This study 

Primers 
pBAD-F 
pBAD-R 
pHERD-SF 
pHERD-SR 
algU-F 
algU-R 
algW-F 
algW-R 
mucE-F 
mucE-R 
oprF-F 
oprF-R 
oprF-WVF-R 
lacZ-RT-For2 
lacZ-RT-Rev2 
Bp23S_F 
Bp23S_R 

 
AGTATACCTTAAGGAATCCCCAAATTATGACAACTTGACGGCTACATCAT 
AGGATCCCCGGGTACCGAGCTCGAATTCTTATCAGATCCCATGGGTATGTATA 
ATCGCAACTCTCTACTGTTTCT 
TGCAAGGCGATTAAGTTGGGT 
AGAATTCGATGCTAACCCAGGAACAGGA 
CAAGCTTTCAGGCTTCTCGCAACAAAGGCTGCA 
AGAATTCGATGCCCAAGGCCCTGCGTTTCCT 
TGCCAAGCTTTCACTCGCCGCCGTCCTGTTT 
AGAATTCGATGGGTTTCCGGCCAGTTA 
GAAGCTTCAAAACACCCAGCGCAACTCGTC 
AGAATTCGATGAAACTGAAGAACACCTTA 
CAAGCTTTTACTTGGCTTCAGCTTCTACTTCGGCT 
AAGCTTAAAACACCCAGCGCTTGGCTTCAGCTTCTACTTCGGCT 
GTCGTGACTGGGAAAACC 
GCCTCTTCGCTATTACGC 
GTAGACCCGAAACCAGGTGA 
CACCCCTATCCACAGCTCAT 

 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 

a Algwt, wild-type non-mucoid phenotype. Alg-, non-mucoid phenotype. Alg+, mucoid phenotype. Primers used for cloning purposes 
carried a built-in restriction sites (underlined) with F denoting forward and R reverse primers, respectively. 
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fragment (1.3 kb), produced via PCR using pBAD/Thio-TOPO® as the template and primers 

pBAD-F and pBAD-R (Table 1).  The PCR product was purified and directly digested with AflII 

and EcoRI, and the two fragments were ligated into the pUCP vectors, creating pHERD20T 

(Figure 1; CbR, 5,087bp), pHERD28T (TpR, 4,993bp), and pHERD30T (GmR, 5,216bp).  The 

EcoRI/AflII regions of these vectors were sequenced to confirm that no mutations were 

introduced during the cloning process.  We next transferred the 2.4 kb AdhI-EcoRI fragment 

from pHERD20T to pUCP26, generating pHERD26T (TetR, 6,166 bp) which includes the araC-

PBAD cassette and the oriT sequence.  The GenBank accession numbers for the nucleotide 

sequences of the Escherichia-Pseudomonas shuttle vectors, pHERD20T, 26T, 28T 30T are 

EU603324, EU603327, EU603325, EU603326, respectively.  

 The pHERD vectors have the features of the pUCP vector family, including the pBR322 

origin, four different antibiotic resistance markers, the oriT region for conjugation-mediated 

plasmid transfer (24), ori1600, and the rep gene encoding the replication-controlling protein (25, 

30).  However, the main advantage for cloning into the pHERD vectors is low expression occurs 

from the PBAD promoter when it is not induced.  α-complementation is inducible for blue-white 

screening which facilitates identification of recombinants on an X-gal-containing plate 

supplemented with arabinose (0.01%).  The PBAD promoter responds in a dose dependent manner 

(Fig. 2).  Two sequencing and PCR primers were designed that anneal to regions on both sides of 

the MCS, pHERD-SF 78 bp upstream of EcoRI and pHERD-SR 49 up downstream of HindIII.  

If a gene is cloned in-frame into the EcoRI site, a fusion protein with an additional seven NH2-

terminal amino acids (MGSDKNS) derived from thioredoxin of the pBAD-TOPO/Thio will 

result.  Thioredoxin acts as a translation leader to facilitate high-level expression and, in some 

cases, increase solubility in E. coli (9)  These amino acids at the  
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Figure 1. Construction of an Escherichia-Pseudomonas shuttle vector, pHERD20T, an 
arabinose-inducible expression vector.  pHERD20T is a pUCP20T-based, conjugatable vector 
with pBR322 and pRO1600 derived replicons which support replication in E. coli, and P. 
aeruginosa and other bacteria, respectively.  The PBAD promoter was derived from the expression 
vector, pBAD/Thio-TOPO (Invitrogen).  The Plac promoter in pUCP20T was replaced by the 
PBAD promoter containing segment with an EcoRI-AflII fragment generated via PCR containg the 
araC gene and PBAD.  Black arrows indicate the region transferred from pBAD/Thio-TOPO into 
pUCP20T.  pHERD20T contains a multiple cloning site within lacZα encoding the β-
galactosidase α peptide. 
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Figure 2.  Arabinose-regulated lacZα expression in B. pseudomallei.  RNA was extracted 
from log phase B. pseudomallei Bp50 and P. aeruginosa PAO1 cells harboring pHERD30T that 
either had no arabinose added (None) or were induced for 2 h by addition of the indicated 
amounts of L-arabinose.  Quantitative real-time PCR was performed using lacZα specific 
primers.  Data were normalized using the 23S rRNA gene as the housekeeping control. 
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NH2-terminus of the target protein may also serve as an epitope tag for protein analysis.  pHERD 

vectors can be readily transferred from E. coli into Pseudomonas species and other bacteria via 

triparental conjugation (7) or by electroporation.  It has been shown that the progenitor plasmid 

pRO1614 could replicate in a series of bacterial species, including P. aeruginosa, P. putida, P. 

fluorescens, Klebsiella pneumoniae (19) and Burkholderia spp. (5, 27).  Therefore, the pHERD 

vectors are most likely functional in these bacteria. Another feature of the PBAD promoter is 

catabolite repression of expression in the presence of glucose in the growth medium, which 

reduces intracellular cAMP concentrations in E. coli cells, preventing transcriptional activation 

of many genes by the cAMP-binding protein (8). 

 We have observed pHERD vectors can be used for the high-fidelity cloning of toxic and 

essential genes due to the low level of the PBAD transcription in the absence of L-arabinose (10).  

Initial attempts to clone the P. aeruginosa alternative sigma factor algU into pUCP20T were not 

successful.  All algU alleles cloned were not functional and sequence analysis showed only 

mutant algU alleles were cloned into pUCP20T.  This was consistent with the previous 

observations that algU/T can not be cloned into the common expression vectors (16, 22).  

However, the algU gene was readily cloned into pHERD20T.  Upon expression of algU from 

PBAD on pHERD20T, we observed dose-dependent alginate production in P.aeruginosa strain 

PAO1 in response to arabinose in the growth media (Figure 3). 

Validation of pHERD20T in P. aeruginosa by modulating alginate production.   

Overexpression of the small peptide encoded by mucE, activates AlgW inducing alginate 

production in P. aeruginosa PAO1 and PA14 (20).  Overexpression of mucE caused mucoidy in 

P.aeruginosa and PAO1 and P.fluoresences Pf-5 (Table 2).  The C-terminal WVF signal coded 

by mucE is required for activation of AlgW.  The outermembrane protein OprF does not 
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Figure 3. Arabinose-dependent induction of alginate production in P. aeruginosa PAO1 
carrying pHERD20T-algU.  PAO1 with pHERD20T-algU was grown at 37˚C for 24 h on PIA 
and LB plates supplemented with carbenicillin and 0%, 0.1% and 1.0% of arabinose, 
respectively.  The empty pHERD20T vector was used as the control (open box).  Bars indicate 
means with standard error. OD, optical density. 
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Figure 4. Regulated Alginate Production in P. aeruginosa. Regulation of alginate production 
in P.aeruginosa involves many genes coding for products of many different functions.  Mucoidy 
or alginate production is directed by the alternative σ22, AlgU (14).  MucA is the cognate anti-
sigma factor that negatively regulates AlgU activity by sequestering AlgU to the inner membrane 
(23).  Sequestering of AlgU by MucA can be relieved by either mutation of mucA (15) or by 
proteolytic degradation of MucA by the intramembrane protease AlgW (21).  Derepression of 
MucA causes AlgU activation and alginate production. 
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Table 2. Modulation of mucoidy in P. aeruginosa and P. fluorescens by pHERD20T-borne alginate regulators.  M indicates 
mucoid and NM indicates nonmucoid phenotypes. 

 
   

Colony morphology with plasmid 

Strain (genotype) 
Colony  

morphology 
 

Plasmid 
 

1% gluc 
 

0% ara 
 

0.1% ara 
 

1% ara 
 

2.5% ara 
 
P.aeruginosa 
 

       

PAO1 NM pHERD20T-algU NM NM M M NM 
  pHERD30T-mucE NM NM M M M 
  pHERD20T-oprF  NM NM   
  pHERD20T-oprF-WVF  NM M   
        
PAO1VE2ΔalgW  
(PGm-mucE ΔalgW) 

 
NM 

 
pHERD20T-algW 

 
NM 

 
M 

 
M 

 
NM 

 
NM 

        
 
P.fluorescens 
 

       

Pf-5 NM pHERD30T-mucE  NM M   
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activate alginate production (Figure 4), however addition of the MucE WVF signal motif to the 

C-terminal of OprF did cause alginate production (Table 2).  Some genes are not highly 

expressed and therefore expression in trans for complementation needs to be conditional.  

Expression of algW from PBAD can complement an algW mutant back to alginate due to titratable 

expression (Table 2). 

 In summary, we constructed a series of small Escherichia-Pseudomonas shuttle vectors 

with the E. coli araC and PBAD promoter for highly-regulated expression of cloned genes in 

Pseudomonas species and other bacteria and demonstrated their utility by modulation of alginate 

production.  These results demonstrate that pHERD vectors are useful tools for bacterial 

physiological research and gene function studies in the pseudomonads, as well as other bacteria, 

including medically significant Burkholderia spp. 
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ABSTRACT  

Mucoidy or overproduction of the exopolysaccharide known as alginate in Pseudomonas 

aeruginosa is a poor prognosticator for lung infections in cystic fibrosis.  Mutation of the anti-σ 

factor MucA is a well-accepted mechanism for mucoid conversion.  However, certain clinical 

mucoid strains of P. aeruginosa have a wild-type (wt) mucA.  Here, we describe a loss-of-

function mutation in kinB that causes overproduction of alginate in the wt mucA strain PAO1.  

KinB is the cognate histidine kinase for the transcriptional activator AlgB.  Increased alginate 

production due to inactivation of kinB was correlated with the high expression at the alginate-

related promoters PalgU and PalgD.  Deletion of alternative σ factor RpoN (σ54) or the response 

regulator AlgB in kinB mutants decreases alginate production to wt nonmucoid levels.  Mucoidy 

was restored in the kinB algB double mutant by expression of wt AlgB or phosphorylation 

defective AlgB.D59N, indicating that phosphorylation of AlgB was not required for alginate 

overproduction when kinB was inactivated.  The inactivation of the DegS-like protease algW in 

the kinB mutant caused loss of alginate production and an accumulation of the hemagglutinin 

(HA)-tagged MucA.  Furthermore, we observed the kinB mutation increased the rate of HA-

MucA degradation.  Our results also indicate AlgW-mediated MucA degradation requires algB 

and rpoN in the kinB mutant.  Collectively, these studies indicate KinB is a negative regulator of 

alginate production in wt mucA strain PAO1.  
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INTRODUCTION 

 Cystic fibrosis (CF) patients are predisposed to bacterial respiratory infections due to the 

mucus buildup in their airways (17).  Mutation of the chloride ion transporter called CFTR 

creates a hospitable environment for the opportunistic pathogen Pseudomonas aeruginosa (27).  

The emergence of mucoid or alginate-overproducing strains marks the beginning of chronic 

infection by P. aeruginosa (13).  The presence of mucoid strains causes significant deterioration 

of lung function (40).  Mucoid strains produce alginate by increasing transcription of the algD 

promoter of the alginate biosynthetic operon (Fig. 1) (11).  The first molecular mechanism for 

the conversion to mucoidy elucidated was mutation of the mucA gene (32).  MucA is the anti-σ 

factor that sequesters the alternative sigma factor AlgU (also called AlgT or σ22) (Fig. 1) (33, 46).  

When MucA is not functional due to mutation, increased transcription directed by AlgU at the 

algD promoter (PalgD) activates alginate biosynthesis (Fig. 1) (57).    

 Activation of alginate production by AlgU is controlled at transcriptional and post-

translational levels (Fig. 1).  Transcription of algU occurs from multiple promoters two of which 

are AlgU-dependent (12, 45) therefore AlgU autoregulates its expression.  Alginate production is 

also negatively controlled by MucB and MucD which are coded downstream of algU and mucA.  

MucB cooperates with MucA-AlgU sequestering presumably by protecting the periplasmic 

portion of MucA from degradation thus stabilizing MucA-AlgU interaction (46).  Inactivation of 

mucB in wt mucA strain causes elevated alginate production (31).  MucD is homologous to DegP 

of E. coli which degrades unfolded proteins in the periplasm (22) and also functions as a 

chaperone (49).  In P. aeruginosa, mucD inactivation causes alginate overproduction and 

sensitivity to H202 and heat (6). 
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Figure 1. MucA-AlgU is the central regulatory pathway controlling the expression of 
mucoid phenotype in P. aeruginosa.  In mucA mutants, AlgU is not repressed (32) and activates 
transcription of downstream promoters.  The algU gene is transcribed by 5 promoters two of 
which (P1 and P3) are dependent on AlgU (46).  AlgU activates transcription of algB, algR, and 
amrZ whose gene products participate in transcriptional activation of PalgD (4, 38, 56).  In a muc-
23 mucoid mutant RpoN has also been shown to bind to PalgD and activate or repress 
transcription during certain environmental conditions (7).  AlgU also activates transcription of 
PalgD (57).  Activation of transcription at PalgD results in alginate overproduction and mucoid 
phenotype.  MucA is the anti-σ-factor that sequesters AlgU(T) (46).  The predicted protease 
AlgW can cleave MucA which results in derepression of AlgU.  Overexpression of the 
periplasmic peptide, MucE, results in mucoidy due to activation of AlgW (43) which leads to 
degradation of MucA.  Cell wall inhibitors such as D-cycloserine have been shown to up-
regulate AlgW-dependent transcription at PalgD (54).   
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 There is a high level of conservation between E. coli σE-RseA and P. aeruginosa AlgU-

MucA.  Activation of σE occurs after sequential proteolytic cleavage of the anti-σ factor, RseA, 

first by activated DegS and finally by RseP proteases (3).  DegS is a serine protease that is 

activated in response to unfolded proteins via a conserved C-terminal sequence (51, 52).  This 

conserved signal transduction pathway is referred to as regulated intramembrane proteolysis (1).  

In P. aeruginosa, AlgU is associated with the inner membrane and MucA in wild type, non-

mucoid strains (44).  Recently, the P. aeruginosa DegS homologue, AlgW, has been shown to 

activate alginate production through regulated proteolysis of MucA in response to increased 

expression of mucE  (Fig. 1)(43).  Also, the cell wall inhibitor, D-cycloserine can activate the 

AlgU-stress response in P. aeruginosa dependent upon AlgW (Fig. 1) (54).  

 When MucA does not repress AlgU, transcriptional activation at PalgD and alginate 

overproduction occurs.  Significant research has focused on the multitude of regulators that bind 

and or regulate transcriptional activity at PalgD.  Most PalgD transcriptional regulators are AlgU-

dependent such as AlgR, AmrZ, and AlgB (Fig. 1).  The response regulator AlgR, binds multiple 

sites within PalgD and is required for PalgD expression (21, 38).  Additionally, the alginate and 

motility regulator Z (AmrZ) also promotes activity at PalgD (5, 50).  The NtrC-family response 

regulator AlgB has recently been shown to bind at PalgD and cause transcriptional activation (26).  

Beyond AlgU and the AlgU-dependent transcription factors, a second alternative sigma factor, 

RpoN, has been suggested to have dual roles as both a positive and a negative regulator at PalgD 

(Fig. 1) (7). 

 The PalgD transcriptional regulator, AlgB (15, 26, 56) is a response regulator of a two-

component signal transduction system.  Typically two-component signal transduction systems 

are comprised of a response regulator and a sensor kinase.  Upon phosphorylation of the 
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response regulator by the sensor kinase, the response regulator binds specific DNA sequences 

near a promoter and modulates transcription.  The E. coli homologue of AlgB, known as NtrC, 

activates phosphorylation-dependent transcription at target promoters with the σ54-holoenzyme 

(24).  σ54 (RpoN) is required for mucoidy in a P. aeruginosa prototype strain (muc23) (7), but 

rpoN is not required for alginate synthesis in several different mucA mutant strains (7, 37, 38).  

AlgB is a NtrC-family response regulator that mediates alginate biosynthesis in mucA mutants 

(16).  The primary role of AlgB that has been elucidated thus far has been transcriptional 

activation of PalgD (26).  KinB is the cognate sensor kinase of AlgB (29) and furthermore KinB is 

capable of autophosphorylation and transfer of phosphate to AlgB (29).  Interestingly, 

phosphorylation of AlgB is not required for PalgD activation (28).  Unlike algB, kinB is not 

required for alginate production in a mucA22 mutant (28).   

Previous extensive research has focused on regulation of alginate production in mucA 

mutant strains.  However, recent data shows algD expression can occur independent of mucA 

mutations by regulated proteolysis of MucA (43, 54).  Studies have shown expression of algD is 

increased in anaerobic conditions (9, 19) which may occur in the CF lung (39).  Given the data 

that P. aeruginosa can produce alginate irrespective of mucA mutation, we sought to further 

characterize mucoidy in wild type mucA strain PAO1.  In this report, we present data that shows 

inactivation of kinB in nonmucoid P. aeruginosa strain PAO1 results in alginate overproduction 

that requires the predicted protease AlgW.  We observed that algB and rpoN are also required in 

kinB mutants for alginate production and high PalgU and PalgD expression.  We also show evidence 

of regulated MucA degradation in P. aeruginosa.  A novel role for AlgB and RpoN is proposed 

in signal transduction of regulated proteolysis to release AlgU from sequestering by MucA in the 
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kinB mutant background.  Our results support a model that KinB negatively regulates the AlgU-

signal transduction pathway in P. aeruginosa strain PAO1.  

 

MATERIALS AND METHODS 

Bacterial strains, plasmids, transposons, growth conditions and oligonucleotides.  Bacterial 

strains, plasmids, and transposon used in this study are indicated in Table 1.   P. aeruginosa 

strains were grown at 37° C in Lennox broth (LB), on LB agar or Pseudomonas isolation agar 

plates (PIA; Difco, Sparks, MD).  PIA plates were prepared containing 20 ml of glycerol per liter 

as recommended by the manufacturer.  When necessary, PIA media was supplemented with 

carbenicillin, tetracycline, or gentamicin at a concentration of 300μg/ml.  The sequences of the 

primers used in this study are available upon request.   

Transposon mutagenesis.  The mariner transposon-containing plasmid pFAC (53) was 

introduced into PAO1 by biparental conjugations. The locations of the transposon insertion of 

the mucoid mutants were determined by inverse PCR (42, 43).  The chromosomal DNA of these 

strains were digested with SalI and ligated to generate circular closed DNA molecules (Fast-Link 

DNA ligation kit; Epicentre, Madison, WI). The ligated DNA was then used as the template for 

inverse PCR using primers (Gm3OUT and Gm5OUT) as previously described (42) that anneal to 

the gentamicin resistance gene (Gmr).  The resulting amplicons were sequenced by Marshall 

University Genomics Core Facility. 

Mutant strain construction.  For in-frame deletion of specific genes (algU, algB, algB-kinB, 

algW, kinB, rpoN), the upstream and downstream sequence fragments (500-1,000bp) flanking 

the target gene were PCR amplified and fused by using the cross-over PCR method. The PCR 

products with the in-frame deletion of target gene were digested and ligated into pEX100T-NotI 
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vector.  A two-step allelic exchange procedure was employed with the pEX100T constructs for 

in-frame deletion. The single cross-over merodiploid exconjugants were selected based on 

carbenicillin resistance and for sensitivity on PIA supplemented with 10% (w/v) sucrose (sacB).  

After incubation of the merodiploids in LB broth at 37°C, the double cross-over recombinants 

were isolated on PIA 10% sucrose.  The in-frame deletion of the target gene was confirmed by 

antibiotics-resistance assays and then PCR amplification of the flanking region of target gene 

with multiple sets of primers, and amplicon sequencing. 

Plasmid construction and complementation analyses.  Alleles were cloned into the shuttle 

vector pHERD20T (41) for complementation with gene expression driven by PBAD arabinose-

inducible promoter.  For lacZ reporter analysis, algU and algD promoters were fused with lacZ 

in miniCTX-lacZ (20) (Fig. 3A and 3C respectively).  All plasmid constructs containing PCR 

products were sequenced and confirmed that no mutations occurred. 

Alginate assay.  P. aeruginosa strains were grown at 37˚C on PIA plates supplemented with 

carbenicillin and 0.1% w/v arabinose for 24hr.  Bacterial growth was removed from plates with 

PBS and suspended in 50ml of PBS per plate.  The optical density at OD600 of bacterial 

suspension in PBS was measured and adjusted.  Cell suspensions containing bacterial alginates 

were used for assay of the amounts of the uronic acid using a standard curve made with D-

mannuronic acid lactone (Sigma-Aldrich, St. Louis, MO) in the range of 0-100µg/ml as 

described (23). 

β-galactosidase activity assay.  The promoter fusion constructs miniCTX-PalgU-lacZ and 

miniCTX-PalgD-lacZ  were integrated onto the P. aeruginosa chromosome at the CTX phage att 

site  (20).  β-galactosidase activity assay was based on the method as originally described by 

Miller (36) with the following modification. The cells were grown on PIA plates in triplicate for 
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24hr at 37° C and harvested in PBS.  The β-galactosidase activity was assayed after toluene 

permeabilization of the cells.  The reported values represent the average in triplicate of three 

independent experiments.  The values displayed are normalized to PAO1 pHERD20T for each 

respective promoter fusion. 

Western blot analysis.  Cell lysates were prepared with Ready-Preps (Epicentre, Madison, WI) 

by manufacturer’s protocol.  Cell lysates were quantified by DC assay (BIO-RAD, Hercules, CA).  

40μg of protein was boiled in SDS-loading buffer.  The samples were electrophoresed on 12% 

polyacrylamide gels or 15% ProteaGel (Protea Morgantown, WV) SDS-PAGE polyacrylamide 

and then electroblotted (Trans-Blott Cell, BIO-RAD, Hercules, CA) on to 0.45μm nitrocellulose.  

The membrane was blocked with 3% non-fat dry milk in PBS (pH 7.4).  Primary antibodies were 

diluted 1:1000 in 3% non-fat dry milk in PBS.  The membranes were probed with mouse 

monoclonal antibodies against AlgU (46), RpoN (Neoclone, Madison, WI),  alpha RNA subunit 

polymerase subunit (Neoclone), rabbit polyclonal antibody against AlgB (28) or rat monoclonal 

antibody against HA (Roche, Mannheim, Germany) overnight at 4°C with shaking.  HRP-labeled 

goat anti-mouse IgG or HRP-labeled anti-rabbit IgG were diluted 1:5000 in 3% non-fat dry milk 

in PBS and used as the secondary antibodies. Advanced ECL or ECL chemiluminescence 

(Amersham Biosciences, Piscataway, NJ) was used for detecting HRP-labeled goat anti-mouse 

IgG or anti-rabbit IgG (Roche) by the manufacturer’s procedure.  The signals were detected with 

an EC3 Imaging System (UVP, Upland, CA) by capturing with a BioChemi HR camera.  For re-

probing, membranes were stripped with 62.5 mM Tris-HCl pH 6.8, 2% SDS, 100 mM β-

mercaptoethanol for 15 min at 50°C and then washed in PBS. 

HA-MucA steady state and kinetic concentration Western blots analysis.  To assay the HA-

MucA degradation profile after 48 hours of growth at 37° C, HA-MucA was expressed in trans 
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in mucoid and nonmucoid strains from pHERD20T with 0.1% arabinose on PIA carbenicillin 

plates.  Cells were scraped from the plate suspended in PBS pH 7.4 and pelleted by 

centrifugation.  Proteins were isolated and prepared as described for Western blot analysis. 

 To observe the rate of degradation of HA-MucA in PAO1 and PAO1kinB::aacC1 we 

analyzed cell lysates over a time course.  We utilized the conditional expression of HA-MucA 

from pHERD20T to compare the rate of degradation.  Cultures of PAO1 and PAO1kinB::aacC1 

were incubated overnight at 37° C in LB carbenicillin 100 μg/ml.  The cultures were OD 

matched and equal number cells were inoculated into 500ml of LB carbenicillin (100 μg/ml) 

supplemented with 1% w/v arabinose to induce expression of HA-mucA.  At OD600 of 0.2 the 

cells were harvested by centrifugation at 7000 x g for 10min.  The cells were then resuspended in 

500ml of M9 broth with 0.4% glucose supplemented with 100 μg/ml carbenicillin. Samples were 

taken at ten min intervals by harvesting 50ml of culture at 4000 x g at 4° for 10min.  Pellets were 

immediately stored at -80° until proteins were prepared with Ready-Preps (Epicentre, Madison, 

WI) by manufacturer’s protocol and submitted to Western blot analysis with anti-HA and anti-

alpha RNA polymerase subunit antibodies. 
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Table 1. Bacterial strains and plasmids used in this study 

Bacterial strains Phenotype, genotype, and description a Source 

P. aeruginosa 

PAO1 

 

Alg- Prototroph 

 

P. Phibbs 

PAO1ΔalgB Alg-, PAO1 in-frame deletion of algB (PA5483) This study 

PAO1ΔalgU Alg-, PAO1 in-frame deletion of algU (PA0762) This study 

PAO1ΔkinB Alg+, PAO1 in-frame deletion of kinB (PA5484) This study 

PAO1ΔrpoN Alg-, PAO1 in-frame deletion of rpoN (PA4462) This study 

PAO1kinB::aacC1 Alg+, PAO1 kinB:: Gmr This study 

PAO1kinB::aacC1ΔalgU Alg- , PAO1kinB::aacC1 in-frame deletion of algU (PA0762) This study 

PAO1ΔalgBΔkinB Alg- , PAO1 in-frame deletion of algB (PA5483) and kinB (PA5484) This study 

PAO1kinB::aacC1ΔalgW Alg-, PAO1kinB::aacC1 in-frame deletion of algW (PA4446) This study 

PAO1kinB::aacC1ΔrpoN Alg- , PAO1kinB::aacC1 in-frame deletion of rpoN (PA4462) This study 

E. coli  

DH5α 

 

F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rk-, 

mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1 

 

Lab strain 

TOP10 DH5α derivative Invitrogen 

SM10/λpir thi recA thr leu tonA lacY supE RP4-2-Tc: Mu 1::pir Kmr Lab strain 

Plasmids 

pRK2013 

 

Kmr Tra Mob ColE1 

 

(14) 

pFAC Mini-himar1 mariner transpson in Pseudomonas suicide plasmid; Apr Gmr (53) 

pCR4-TOPO TA cloning vector; 3.9 kb; Apr Kmr Invitrogen 
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pUS56 algB45 in pTrcHisA BamH1-EcoRI (28) 

pHERD20T pUCP20T Plac replaced by 1.3 kb AflII-EcoRI fragment of araC-PBAD 

cassette  

(41) 

pHERD20T-algU algU (PA0762) from PAO1 in pHERD20T EcoRI/HindIII This study 

pHERD20T-algB algB from PAO1in pHERD20T EcoRI/HindIII This study 

pHERD20T-algB45 algB45 from pUS56 in pHERD20T EcoRI/HindIII This study 

pHERD20T-algW algW (PA4446) from PAO1in pHERD20T EcoRI/HindIII This study 

pHERD20T-MPDZalgW algW with partial PDZ domain in pHERD20T EcoRI/HindIII This study 

pHERD20T-ΔPDZalgW algW with complete deletion of PDZ domain in pHERD20T EcoRI/HindIII This study 

pHERD20T-kinB kinB from PAO1 in pHERD20T KpnI/HindIII This study 

pHERD20T-HA-mucA N-terminal tagged HA-mucA in pHERD20T  EcoRI/HindIII This study 

pUCP20T-PBAD-rpoN araC- PBAD-rpoN fusion in pUCP20 XbaI/HindIII This study 

miniCTX-lacZ Gene delivery vector for inserting genes at the CTX phage att site on the P. 

aeruginosa chromosome; Tcr 

(20) 

miniCTX-PalgU-lacZ Complete PalgU promoter (541 bp upstream of ATG EcoRI/HindIII fused 

with lacZ for integration at the CTX phage att site in P. aeruginosa 

This study 

miniCTX-PalgD-lacZ Complete PalgD promoter (1,525 bp upstream of ATG) HindIII/BamH1 fused 

with lacZ for integration at the CTX phage att site in P. aeruginosa  

This study 

pEX100T Pseudomonas suicide vector, sacB, oriT, Cbr  (47) 

pEX100T-NotI Pseudomonas suicide vector with NotI restriction site fused into SmaI of 

pEX100T, sacB, oriT, Cbr 

This study 

pEX100T-ΔalgU A 2.5-kb fragment flanking algU gene fused with pEX100T-NotI with in- This study 
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frame deletion of algU with only 24 bp left coding for 8 amino acids of 

algU. 

pEX100T-ΔalgB A 1.5-kb fragment flanking algB gene fused with pEX100T-NotI with in-

frame deletion of algB 

This study 

pEX100T-ΔalgBΔkinB A 1.5-kb fragment flanking algB gene fused with pEX100T-NotI with in-

frame deletion of algB and kinB 

This study 

pEX100T-ΔalgW A 1.4-kb fragment flanking algW gene fused with pEX100T-NotI with in-

frame deletion of algW 

(43) 

pEX100T-ΔkinB A 2.5-kb fragment flanking kinB gene fused with pEX100T-NotI with in-

frame deletion of kinB 

This study 

pEX100T-ΔrpoN A 1.9-kb fragment flanking rpoN gene fused with pEX100T-NotI with in-

frame deletion of rpoN 

This study 

a  Alg-, non-mucoid phenotype and Alg+, mucoid phenotype 
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RESULTS 

Inactivation of kinB in P. aeruginosa strain PAO1 results in alginate overproduction.  To 

discover novel negative regulators of alginate biosynthesis, the standard genetic strain PAO1 was 

subjected to mariner transposon mutagenesis (53).  Stable mucoid gentamicin-resistant mutants 

were isolated.  Mucoid mutants were verified for single transposon insertions by Southern 

hybridization (data not shown) and the pFAC transposon insertions were mapped by inverse 

PCR and sequencing as previously described (42, 43).  Numerous mucoid mutants were 

identified with insertions into the well characterized negative regulators, mucA, mucB, and mucD.  

Interestingly, an insertion into kinB converted PAO1 to mucoid phenotype (GenBank accession 

for the kinB insertion in PAO1: FJ209363) (Fig. 2A).  To show mucoidy due to kinB inactivation 

was not caused by polar effects on nearby genes, we constructed an in-frame deletion of kinB in 

PAO1.  Alginate overproduction results when kinB is deleted (Fig. 2A).  However, PAO1ΔkinB 

produced less alginate at 62 ± 4 μg/ml/OD600 vs. 103 ± 10 of PAO1kinB::aacC1 (Fig 2A).  The 

mucoid phenotypes of PAO1kinB::aacC1 and PAO1ΔkinB were complemented by conditional 

expression of kinB (Fig. 2A).  Expression of kinB in trans in PAO1kinB::aacC1 and PAO1ΔkinB 

decreased alginate production to wt PAO1 levels as expected (Fig. 2A).  Furthermore, 

sequencing analysis confirmed the mucA of PAO1kinB::aacC1 did not harbor mutations 

(GenBank accession: FJ209362).  Thus, inactivation or deletion of kinB in wt mucA background 

causes alginate overproduction.  This suggests that KinB is a negative regulator of alginate in P. 

aeruginosa strain PAO1. 

Alginate production in kinB mutants requires algB and rpoN.  Alginate overproduction in 

mucA mutants, requires AlgB, an NtrC type of transcriptional activator (56).  The algB gene is 

located immediately upstream of kinB in the genome.  The kinB gene encodes the cognate kinase 
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Figure 2. Mutation of kinB in PAO1 results in mucoid phenotype dependent upon algB, rpoN, and algW.  2A. Colony 
morphologies of P. aeruginosa PAO1, and mucoid kinB mutants with or without kinB expressed in trans.  For complementation, kinB 
was expressed from the PBAD promoter of pHERD20T.  Strains were grown on a PIA carbenicillin plate supplemented with 0.1% 
arabinose at 37° C for 24hr and room temperature for 24hr.  Alginate production was assayed by the carbazole assay (23) after 24hr at 
37° C.  The amount of alginate is indicated as μg/ml/OD600.  Values are expressed as mean ± SD from three independent experiments.  
2B. kinB mutants require algB, rpoN, and algW for alginate overproduction.  Each mutant strain was assayed for alginate production 
with vector control (pHERD20T) or with the gene indicated in trans expressed from the PBAD promoter of pHERD20T.  The strains 
were grown for 24hr at 37°C on PIA supplemented with carbenicillin and 0.1% arabinose.    
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that has been shown to phosphorylate AlgB (29).  Deletion of both algB and kinB together, 

results in wt nonmucoid alginate production (Fig. 2B column 1).  Alginate production was 

restored in the PAO1ΔalgBΔkinB double mutant by expression of algB in trans (Fig. 2B column 

1).  Since rpoN has been shown to be required for alginate production in a mucoid strain with an 

undefined muc23 mutation (7), we examined if rpoN is required in PAO1kinB::aacC1.   Deletion 

of rpoN from PAO1kinB::aacC1 resulted in loss of mucoidy and could be complemented with 

rpoN expressed in trans (Figure 2B column 2). 

Alginate production in kinB mutants requires algW. Since the mucA gene is not mutated 

in PAO1kinB::aacC1, one possible explanation for the mucoid phenotype is that MucA is being 

degraded.  AlgW has been shown to be required for activation of the alginate biosynthetic operon 

by D-cycloserine (54) and AlgW mediates regulated proteolysis of MucA during overexpression 

of mucE (43).  We next tested whether mucoidy due to loss of kinB is dependent upon AlgW-

regulated proteolysis.  Deletion of algW from PAO1kinB::aacC1 resulted in nonmucoid 

phenotype and lowered alginate production (Fig. 2B column 3).  Expression of algW in trans 

restored alginate production (Fig. 2B column 3).    The PDZ domain of AlgW is required for 

MucE-mediated signal transduction (43).  Therefore, to show PAO1kinB::aacC1 utilizes 

activated AlgW for derepression of MucA, we introduced an algW allele with the PDZ domain 

truncated and an algW allele with the PDZ domain completely deleted.  When these mutant algW 

alleles were expressed in trans in the double mutant PAO1kinB::aacC1ΔalgW alginate 

overproduction was not restored (Figure 2B column 3).  These data suggest activation of AlgW 

is required for alginate overproduction in PAO1kinB::aacC1. 

In the absence of kinB, phosphorylation of AlgB at D59 is not required for alginate 

production.  KinB has been shown to effectively phosphorylate AlgB in vitro (29).  However 
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AlgB derivatives such as AlgB.D59N, which cannot be phosphorylated by KinB, still promote 

alginate production in mucA mutants (28).  The algB45 allele encodes AlgB.D59N where the 

phosphorylation site (D59) has been mutated to asparagine (N) (28)  We presumed that AlgB 

was not phosphorylated in the absence of the cognate histidine kinase KinB.  To confirm 

phosphorylation of AlgB at position 59 was not required for alginate production in the absence 

of KinB, we cloned the algB45 allele into pHERD20T for conditional expression.  The algB45 

gene was PCR amplified from pUS56 (28) and directionally cloned.  The construct was 

sequenced to observe the expected D59N mutation and to ensure no other mutations resulted.  

Expression of algB45 from the PBAD promoter in the presence of arabinose complemented the 

PAO581algB::aacC1 (mucA25 algB::Gmr) mutant (Table 2) (42)which is consistent with the 

previous finding that algB45 allele can still promote alginate production in a mucA22 mutant 

(28).  Since the construct was functional, we introduced algB45 into PAO1ΔalgBΔkinB.  

Alginate overproduction occurred when algB45 was expressed in PAO1ΔalgBΔkinB (Table 2).  

This data suggests that in the absence of KinB, phosphorylation of AlgB at position 59 was not 

required for mucoidy.  Interestingly when we overexpressed algB or algB45 in wt PAO1 and 

PAO1ΔalgB we did not observe an increase in alginate production even when cultured on 1% 

arabinose (data not shown).  It seems deletion of kinB affects alginate production independent of 

the phosphorylation status of AlgB.  Similar to mucA mutants, phosphorylation of AlgB is not 

required for alginate overproduction in the kinB mutant with the wt mucA background. 

PalgU and PalgD activity in kinB null mutants are dependent on algU, algB, rpoN and algW.  

To examine the effect of the kinB mutation on the alginate-related promoters, PalgU and PalgD, we 

integrated a single copy of the entire algU or algD promoter region (Fig. 3A and 3C respectively) 

fused with lacZ onto the chromosome of PAO1 and PAO1kinB::aacC1 as well as kinB/algU, 
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Table 2.  Complementation of alginate production by algB mutants with wt algB and 

phosphorylation defective algB45   

Strain (Genotype) Plasmid  Arabinosea Phenotypeb Alginate 
(μg/ml/OD600) 

PAO581algB::aacCC1 
(mucA25 algB::Gmr) 
 

pHERD20T-
algB 
 

0% 
1%  

NM 
M 

  49.0 ± 7.3 
285.7 ± 12.9 

 
 

pHERD20T-
algB45 
 

0% 
1% 

NM 
M 

  51.9 ±  3.0 
228.2 ± 21.0 

PAO1ΔalgBΔkinB pHERD20T-
algB 
 

0% 
1% 

NM 
M 

  64.7 ± 10.9 
215.7 ± 13.5 

 
 

pHERD20T-
algB45 
 

0% 
1% 

NM 
M 

  49.5 ± 2.9 
263.8 ± 2.5 

a Strains were cultured for 24 hr at 37 °C on Pseudomonas Isolation Agar (PIA) supplemented 
with carbenicillin and arabinose concentration indicated (w/v). 
b NM and M indicate nonmucoid and mucoid phenotype respectively.   
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Figure 3.  Loss of kinB causes upregulation of both PalgU and PalgD.  β-galactosidase activity 
from PalgU-lacZ and PalgD-lacZ reporters on the chromosome of PAO1, PAO1kinB::aacC1, and 
PAO1kinB::aacC1 isogenic mutants.  PalgU-lacZ and PalgD-lacZ reporter constructs were 
integrated into the chromosome of the strains indicated.  Genes indicated were expressed in trans 
from the PBAD promoter of pHERD20T.  β-galactosidase activities were determined after 24hr 
growth on PIA with 0.1% arabinose.  Values were normalized to PAO1 pHERD20T (empty 
vector) reporter expression and indicated as mean ± SD from three independent experiments.  A 
student’s t test was performed for comparison of activity of the strain with vector only or with 
complementing gene in trans.  Asterisks indicate significant differences (*** p<0.0001).  Strain 
PAO1kinB::aacC1 is indicated as PAO1kinB.  Note expression of algU in PAO1 is a positive 
control for the analysis due to the AlgU-dependent nature of both PalgU and PalgD.  3A. A 
schematic of the entire PalgU promoter region with the relative positions of the five promoters that 
were utilized for the lacZ promoter fusion.  3B. The PalgU activity in PAO1, PAO1 kinB::aacC1 
and strains isogenic to PAO1 kinB::aacC1.  High PalgU activity in PAO1 kinB::aacC1 and 
PAO1ΔkinB mutants requires algU, algB, rpoN, and algW.  Note kinB expression significantly 
lowers PalgU activity.  3C.  A schematic of the entire PalgD promoter region that was for the lacZ 
promoter fusion.  The relative binding sites of the PalgD transcriptional activators are indicated.  
3D. The PalgD activity in PAO1, PAO1 kinB::aacC1 and strains isogenic to PAO1 kinB::aacC1.  
High PalgD activity in PAO1 kinB::aacC1 and PAO1ΔkinB requires algU, algB, rpoN, and algW.  
Note kinB expression significantly lowers PalgD activity.  
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kinB/algB, kinB/rpoN, and kinB/algW double mutants.  The effect of each deletion or inactivated 

gene on the expression of the promoter fusions in the PAO1 and kinB backgrounds were assessed 

by complementation.  The β-galactosidase activity was measured with vector alone (pHERD20T) 

and compared to when the mutation was complemented with expression of the gene from the 

PBAD promoter of pHERD20T (41)in the presence of 0.1% arabinose.  As a control for these 

experiments, PalgU and PalgD expression were measured when algU was overexpressed (Fig. 3B 

column 1 and 3D column 1 respectively).   

 Previously studies have shown only small changes in PalgU expression are required for 

mucoidy (33).  Inactivation of kinB in PAO1kinB::aacC1 caused significantly increased PalgU 

expression compared to parent strain PAO1 (Fig. 3B column 2).  The high PalgU expression of 

PAO1kinB::aacC1 can be reduced with kinB expressed in trans (Fig. 3B column 2).  Deletion of 

algU eliminated detectible PalgU expression in PAO1kinB::aacC1 (Fig. 3B column 3).  Since 

algB was observed to be required for alginate production in kinB mutants, we next examined if 

algB was required for high levels of expression of PalgU.  The high level of PalgU expression in the 

absence of kinB requires algB (Fig. 3B column 4).  AlgB has been established as a transcriptional 

activator at PalgD in mucA22 mutant FRD-1 (56). Here we show a possible new role for AlgB 

above PalgD.  We also observed that rpoN has a role influencing high expression of PalgU (Fig. 3B 

column 5) that can be restored with rpoN expressed in trans.  This information shows a possible 

role of rpoN outside of characterized interactions at PalgD (7).  As expected, PalgU expression is 

also influenced by the serine protease AlgW in PAO1kinB::aacC1 (Fig. 3B column 6).  However, 

the level of expression of PalgU with algW in trans exceeded the PalgU expression level in 

PAO1kinB::aacC1.  A possible explanation for this is algW expression from the arabinose 
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promoter in the presence of 0.1% on a multi-copy vector, may exceed endogenous expression 

levels of algW in vivo. 

 The PalgD expression was measured with the same strategy utilized for PalgU.  Unlike PalgU 

activity, PalgD activity was minimally detectable in PAO1 (Fig. 3D column 1).  The elevated level 

of PalgD expression in PAO1kinB::aacC1 is significantly reduced when kinB was expressed in 

trans (Fig. 3D column 2).  The elevated level of PalgD in kinB mutants requires algU, algB, rpoN, 

and algW which correlates with the observations of PalgU expression.  The kinB mutants with 

deletions of algU, algB, rpoN, and algW had minimally detectable of PalgD (Fig. 3D columns 3-6).  

When algU, algB, algW and rpoN were expressed in trans to complement their respective gene 

deletions in kinB mutants, elevated PalgD expression was returned.  Collectively these promoter 

fusions in the PAO1 and kinB backgrounds show algU, algB, algW, and rpoN influence the PalgU 

and PalgD activity which correlates with alginate production (Fig. 2B).   

AlgU and AlgB expression are increased in PAO1kinB::aacC1.  Next we measured the 

expression of AlgU and AlgB in the whole cell lysates of PAO1kinB::aacC1 (Fig. 4A).  To 

control for cross-reactivity of anti-AlgU and anti-AlgB, total lysates of PAO1ΔalgU and 

PAO1ΔalgB were blotted and very low cross-reactivity was noted (Fig. 4A lanes 1 and 5 

respectively).  Western blot analysis revealed that AlgU was up-regulated 2.6 ± 0.8 fold in 

PAO1kinB::aacC1 compared to PAO1 (Fig. 4A lanes 2 and 3).  AlgB expression was also 

increased in PAO1kinB::aacC1 which is consistent with a previous observation that algB 

transcription requires algT/U (57).  Interestingly, AlgB was detected in PAO1ΔalgU cell lysate 

which suggests AlgB expression may also be controlled by another σ factor in addition to AlgU 

(Fig. 4A lane 1). 
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Figure 4.  PAO1 kinB::aacC1 exhibits elevated levels of AlgB and AlgU.  HA-MucA degradation in PAO1kinB::aacC1 requires 
algW, algB and rpoN.  Shown are representative panels of blots from three independent experiments with 40μg of total lysate.  4A. 
Western blot of total cell lysate of PAO1kinB::aacC1 shows elevated levels of AlgB and AlgU.  Western blots of cell lysates were 
prepared from cells after 24 hr growth on PIA.  The membranes were probed with anti-AlgU, anti-AlgB, and anti-alpha subunit of 
RNAP antibodies (loading control).  Levels of each protein were adjusted for loading and then normalized to PAO1 levels and 
expressed as mean ± SD.  Note that deletion of algU did not abolish AlgB expression.  4B. Western blot analysis of N-terminal HA-
tagged MucA in PAO1 and PAO1 kinB::aacC1 isogenic backgrounds.  Cell lysates were prepared from 48 hr growth on PIA 
carbenicillin plates supplemented with 0.1% arabinose.  The membranes were immunoblotted with Rat anti-HA diluted 1:1000 
(Roche).  Lane 2 PAO1 pHERD20T-mucA is a negative control for background and cross-reactivity.  Lanes 1, 3-7 express HA-mucA 
in trans from pHERD20T.  Levels of each protein were adjusted for loading and then normalized to PAO1 pHERD20T-HA-mucA 
levels and expressed as mean ± SD.  Positions of apparent molecular masses are depicted.  NM and M indicate nonmucoid and mucoid 
phenotypes respectively. 
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Figure 5. Kinetic comparison of HA-MucA degradation in PAO1 and PAO1kinB::aacC1.  
5A. Schematic diagram of HA-MucA.  Indicated are the N-terminal HA tag, the transmembrane 
domain, and the relative cleavage sites resulting in the truncated HA-MucA peptides observed by 
Western blotting.  5B. Western blotting analysis of a time course of HA-MucA degradation.  
PAO1 and PAO1kinB::aacC1 expressing HA-mucA from pHERD20T were grown at 37 °C with 
shaking in LB supplemented with carbenicillin and arabinose till OD600 0.2.  Cells were 
harvested and resuspended in M9 broth supplemented with 0.4% glucose.  Glucose enhances 
repression of the PBAD promoter.  During the time course the OD600 was monitored and remained 
stable throughout.  Equal numbers of cells were extracted at 10 min intervals and harvested at 
4°C and pellets were frozen at -80°C till cell lysates were prepared.  Shown is a representative 
panel of blots with 40μg of total lysate transferred and blotted with anti-HA from three 
independent experiments.  Positions of apparent molecular masses are indicated.  5C. 
Quantitative measurement of wt HA-MucA in PAO1 and PAO1 kinB::aacC1 during t = 0 min to 
t = 30 min.  Levels of each protein were adjusted for loading and then normalized to PAO1 
pHERD20T-HA-mucA or PAO1 kinB::aacC1 pHERD20T-HA-mucA levels and expressed as 
mean ± SD from three independent experiment (* indicates p<0.01). 
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MucA proteolytic degradation facilitates alginate overproduction in PAO1kinB::aacC1.  

Since mucA is wt in PAO1kinB::aacC1, MucA repression of AlgU must be relieved for 

activation of AlgU and alginate production.  Based on the fact that alginate overproduction by 

PAO1kinB::aacC1 requires AlgW, our hypothesis is alginate production in the kinB mutant 

occurs by regulated proteolysis of MucA.  To test this model we needed to observe MucA 

degradation.  N-terminal haemagglutinin (HA)-tagged MucA expressed from pHERD20T-HA-

mucA under induction of arabinose into nonmucoid and mucoid PAO1-deriviative strains.  Wild 

type mucA without HA was expressed in trans as the negative control.  Western blotting of 

PAO1 without HA-tagged mucA showed no background or cross-reactivity with other proteins 

(Fig. 4B lane 2).  In PAO1, full length HA-MucA exists as well as other truncated degradation 

products (Fig. 4B lane 1).  HA-MucA degradation in PAO1 is consistent with degradation of 

RseA in E. coli which occurs in the absence of stress signals (2).  Also PIA contains triclosan 

which has been shown to activate PalgD activity (54) suggesting regulated proteolysis occurs in 

the presence of cell wall inhibitory antibiotics.  In PAO1ΔalgW, full length HA-MucA is 2.4 ± 

0.3 fold increased relative to PAO1 HA-MucA level (Fig. 4B lanes 1 and 3).  This implies HA-

MucA is not as rapidly degraded in PAO1ΔalgW compared to PAO1.  However, PAO1ΔalgW 

also exhibits a truncated HA-MucA with an apparent molecular mass of 19 kDa (Fig. 4B lane 3).  

The absence of this band in PAO1 suggests deletion of algW inhibited efficient proteolysis of 

HA-MucA resulting in accumulation of two major fragments of HA-MucA.  Mucoid 

PAO1kinB::aacC1 lacks the secondary truncated peptide of HA-MucA (Fig. 4B, lane 4) and the 

concentration of HA-MucA full length is lower than in PAO1kinB::aacC1ΔalgW (Fig. 4B lane 

5).  Interestingly, smaller degradation intermediates ~15 kDa of HA-MucA are still observed 

when algW is deleted in PAO1 and PAO1kinB::aacC1 (Fig. 4B lanes 3 and 5).  These data 
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suggest that regulated proteolysis of MucA may occur independent of AlgW as has been shown 

when PAO1algW::Tcr converts to mucoidy in the presence of the reactive oxygen-producing 

paraquat (6).  The presence of the truncated HA-MucA is apparent upon deletion of algW, algB, 

and rpoN in PAO1 kinB mutants (Fig. 4B lanes 5, 6 and 7).  Taken together these observations 

suggest that algB, algW and rpoN influence HA-MucA degradation and derepression of AlgU in 

PAO1kinB::aacC1. 

 In order to better measure the differences in HA-MucA degradation between PAO1 and 

PAO1kinB::aacC1 a time course was conducted to show in vivo depletion of HA-MucA in 

PAO1 and PAO1kinB::aacC1.  To quantify the degradation of HA-MucA, cells were grown in 

LB broth containing arabinose to express HA-MucA and then transferred to M9 minimal 

medium supplemented with 0.4% glucose lacking arabinose.  The OD600 remained stable during 

the time course.  Therefore, depletion of HA-MucA was due to in vivo proteolytic degradation 

and not division of the cells.  Samples were taken every 10 min for the cell lysis and Western 

blotting.  We also performed the time course with 30 min intervals but found degradation of HA-

MucA even in PAO1 was rapid indicating shorter time points needed to be taken (data not 

shown).  The HA-MucA levels were assayed by Western blotting of 40 μg of total cell lysate 

(Fig. 5B).  The rate of HA-MucA degradation in PAO1kinB::aacC1 is 2.6-fold greater than that 

of PAO1 from 0 to 10 min (Fig. 5C).  However, after 10 min the amounts of HA-MucA levels 

off and are not significantly different between PAO1 and PAO1kinB::aacC1 (Fig. 5C).  

Assuming the mobility of HA-MucA peptide 1 is not aberrant, it appears there is a cleavage site 

between the transmembrane domain and the C-terminus of MucA (Fig. 5A).  The smaller major 

truncated MucA peptide recognized with a HA epitope (HA-MucA peptide 2) is likely created by 

cleavage near the transmembrane domain.  This study indicates HA-MucA degradation is rapid 
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even in PAO1, however inactivation of kinB causes an increased rate of degradation.  The 

increased HA-MucA degradation likely contributes to the mucoid phenotype of kinB mutants.   

 

DISCUSSION 

 We discovered mutation of kinB in PAO1 results in overproduction of alginate (Fig. 2A).  

Alginate regulation in mucA mutant strains was the first characterized mode of conversion to 

mucoidy and is the best elucidated (32).  However, recently studies have shown regulated 

proteolysis mediated by AlgW is a mechanism for alginate production in P. aeruginosa (43, 54).  

Here we have presented data that inactivation of kinB causes mucoidy and is dependent upon 

algB, algW, and rpoN (Fig. 2B).  We also observed through complementation analysis that 

phosphorylation of AlgB at the confirmed phosphorylation site is not required for alginate 

production in the kinB mutant.  Our data suggests the kinB mutation increases the rate of 

degradation of MucA by regulated proteolysis which causes the mucoid phenotype of kinB 

mutants. 

 KinB is the cognate kinase of the alginate regulator AlgB (29),  and alginate biosynthesis 

occurs independent of phosphorylation of AlgB (28).  However the role of kinB in alginate 

production has only been examined in mucoid mucA22 mutant strains such as FRD-1 (28).  In 

mucA mutants, the requirement for regulated proteolysis to activate AlgU would likely be 

bypassed due to the mucA mutation.  We observed that in kinB mutants, algB and rpoN are both 

required for alginate production (Fig. 2B) and increased PalgU and PalgD promoter activity (Fig. 

3B and 3D, respectively).  Previously both rpoN (7) and algB (26) have been shown to affect 

transcription at PalgD.  Conversely, our data shows that these regulators, AlgB and RpoN, also 

affect PalgU transcription.  Only relatively small changes in PalgU expression are required for 
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mucoidy (33) however, PAO1kinB::aacC1 exhibits significantly elevated expression of both 

PalgU and PalgD (Fig. 3B and 3D respectively).  We also noted deletion of algU from 

PAO1kinB::aacC1 resulted in complete loss of detectable PalgU-lacZ activity as measured by β-

galactosidase assay (Fig. 3B column 3).  This has also been observed when algU is deleted from 

PAO1 (data not shown).  Two of the algU promoters are AlgU-dependent (12, 45), however it is 

not clear which σ factors the other promoters depend upon.  Therefore it is possible that in vivo 

AlgU contributes the bulk of transcriptional activation of the AlgU promoters that is detectable 

by our reporter assay, but further analysis is required to fully understand the algU promoters. 

 Based on our data, we propose two alternative models for activation of alginate 

production through regulated proteolysis in kinB mutants (Fig. 6).  In both models, regulated 

proteolysis of MucA occurs by AlgW but the cause of the increased concentration of activating 

signals differs.  The first model suggests mutation of kinB affected expression of a protease or 

chaperone responsible for removal of misfolded proteins (Fig. 6).  Mutation of an 

aminopeptidase, phpA, has been shown to cause increased PalgD activity and mucoidy (55).  The 

second model proposed is that algB and rpoN directly control expression of peptide signals in the 

absence of kinB that activate AlgW and therefore increase proteolytic degradation of MucA (Fig. 

6).  Deletion of algB and rpoN in kinB mutants caused an accumulation of the major HA-MucA 

truncation product that was also observed in when algW was deleted in PAO1 or 

PAO1kinB::aacC1 (Fig. 4B).  We have also observed algB and rpoN are not required for algW 

expression (data not shown) which suggested loss of algB or rpoN may affect the proteolytic 

activity of AlgW.  From this information we hypothesize that algB and rpoN may be required for 

expression of signals that activate AlgW and regulated proteolysis.  Our data suggests increased 
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Figure 6. Proposed models of negative regulation of alginate production by KinB in P. 
aeruginosa.  Mutation of kinB in wt mucA strain PAO1 caused alginate overproduction.  
Alginate overproduction of kinB mutants requires algB and rpoN.  We propose in model 1, 
mutation of kinB causes loss of expression of a periplasmic protease(s) which leads to 
accumulation of AlgW-activating factors.  In model 2, we propose algB and rpoN control 
expression of factors which can activate the AlgW protease to release repression of MucA by 
proteolytic degradation and activate AlgU.  In either case, derepression of MucA by regulated 
proteolysis causes AlgU activation which facilitates algU expression resulting in mucoidy by up-
regulating the alginate biosynthetic operon.  OM and IM indicate outermembrane and 
innermembrane respectively.   
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regulated proteolysis occurs in kinB mutants of PAO1 (Fig. 4B, 5B, 5C).  In E. coli, many outer-

membrane and periplasmic proteins have been shown to activate DegS protease activity through 

interaction with the PDZ domain (18).  Interestingly in E. coli, inactivation of the two-

component histidine kinase EnvZ causes upregulation of the porin OmpC (48).  Porins such as 

OmpC can activate regulated proteolysis (18).  Analysis of the P. aeruginosa genome shows no 

significant homologs to the DegS-activating peptides such as OmpC of E. coli.  This is 

conceivable because P. aeruginosa and E. coli reside in different habitats, therefore it is likely 

activation of AlgU and σE require different types of signals.  However, proteins with probable 

activating sequences are coded throughout the P.aeruginosa genome (43).  Thus, P. aeruginosa 

likely has novel proteins that could potentially activate AlgW degradation of MucA.  It is 

possible that RpoN, in tandem with response regulators such as AlgB, control numerous genes of 

various functions which may be involved in signal transduction of the AlgU stress response. 

 AlgB and or RpoN could drive both algU and algD transcription.  This is an alternative 

hypothesis to the models already described.  Both AlgB and RpoN have been shown to bind at 

PalgD and are required for algD expression (7, 26).   It has been suggested that AlgB may interact 

with other σ factors than RpoN (26).  We have attempted to show AlgB binding with PalgU using 

gel shift assay however interaction has not been observed (data not shown).  Recent studies have 

employed special conditions to detect AlgB DNA binding at PalgD (26.).  Since exhaustive studies 

have not been performed, we cannot dismiss the possibility that AlgB and or RpoN may initiate 

transcription at PalgU.  Based on our data, both the PalgU and the PalgD promoters are highly 

upregulated in kinB mutants (Fig. 3B and 3D).  Therefore it is possible in the absence of kinB, 

AlgB could activate transcription of the both the PalgU and PalgD promoters.   
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 Do P. aeruginosa CF isolates have kinB mutations?  Most clinical observations have 

focused on surveying mucA, mucB, and mucD (8, 10, 32).  Therefore, large scale surveys have 

not been performed looking for kinB mutants.  However, one recently sequenced epidemic CF 

isolate, C3719, does have a mutation that truncates the KinB protein to 526 aa instead of the wt 

595 aa PAO1 KinB (http://www.broad.mit.edu).  Therefore a CF isolate has been shown to have 

a kinB mutation but C3719 is apparently nonmucoid (34).  This suggests either the mutation is 

not completely detrimental to KinB regulation or C3719 may have additional suppressor 

mutations in either known or novel alginate regulators.  PAO579 is another strain that requires 

rpoN for mucoidy (7), however the mucoid phenotype cannot be suppressed by complementation 

with kinB (data not shown).  We are currently surveying for wt mucA CF isolates for kinB 

mutations.  Many two-component signal systems can be activated by environmental conditions.  

The PhoP-PhoQ (30) and PmrA-PmrB (35) systems of P. aeruginosa are activated by low Mg2+ 

whereas the conserved PhoB-PhoR system is activated by low phosphate (25).  Therefore, 

elucidation of the environmental signals that relieve the negative regulation of KinB on alginate 

overproduction will be as interesting as finding kinB mutant CF isolates. 

 In this report we have characterized KinB as a negative regulator of alginate production 

and proposed novel regulation of AlgW-dependent MucA derepression that is mediated by AlgB 

and RpoN.  These data are a step closer towards understanding the molecular events leading to 

alginate production which preclude the classically described mucA mutations in P. aeruginosa.  

It will be interesting to further elucidate the unknown genes that may be under the negative 

control of the sensor kinase KinB and determine the environmental stimulus that affects KinB 

regulation in P. aeruginosa 

 

http://www.broad.mit.edu/
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CHAPTER 4: Characterization of the serine protease MucD PDZ domains of 

Pseudomonas aeruginosa reveals autocleavage and MucP-dependent MucA 

proteolysis 
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ABSTRACT 

P. aeruginosa alginate overproduction or mucoidy is a marker for chronic respiratory infection in 

cystic fibrosis.  AlgU(T), an extracytoplasmic function (ECF) σ factor, is the master regulator of 

alginate production.  In nonmucoid cells, most AlgU is repressed by anti-sigma factor MucA. 

When mucA is inactivated, or MucA is proteolytically degraded, AlgU will be released to 

activate alginate overproduction.  MucD (DegP/HtrA family serine protease) is also a negative 

regulator of alginate production and is presumed to control the protein quality of the envelope.  

Fluctuations in the envelope can initiate pathways of stress responses such as alginate 

overproduction.  Here we report that the PDZ domains of MucD were dispensable for 

suppression of alginate production. However, MucD without both PDZ domains was unstable 

and rapidly degraded in vivo, suggesting the PDZ domains have roles in the regulation of 

autocleavage.  Next, we probed how the loss of MucD quality control affected proteolysis of 

MucA activating alginate production.  Inactivation of mucD resulted in proteolysis of HA 

tagged-MucA mediated by the intramembrane RseP-like protease MucP, but not the DegS-like 

protease AlgW.  Overexpression of algW decreased alginate production in the mucD mutant, 

indicating AlgW can also function as a negative alginate regulator.  Analysis of mucoidy-

associated gene expression further supports the model indicating that the activation of AlgU in 

the absence of MucD was via MucP but not AlgW.  Finally, we observed MucD can recognize 

divergent signals that activate AlgW-dependent and -independent (MucP) proteolysis of MucA, 

however, KinB-mediated signals were not regulated by MucD.  Collectively, these data indicate 

the PDZ domains of MucD are not necessary in alginate regulation, but function in the control of 

autocleavage.  Furthermore, when MucD quality control was absent, alginate production occurs 

through derepression of MucA dependent upon MucP. 
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INTRODUCTION 

Alginate production by P.aeruginosa is a critical virulence phenotype that directly 

contributes to the morbidity and mortality of individuals with cystic fibrosis (CF) (15). Alginate 

overproduction, phenotypically termed mucoidy, facilitates survival of P. aeruginosa within the 

viscous mucosa found in the CF lung (24).  Expression of the alginate biosynthetic operon results 

in production and secretion of alginate (9).  Activation of transcription of the alginate 

biosynthetic operon at the PalgD promoter is dependent upon the ECF sigma factor AlgU(T) (42).  

AlgU is under negative regulation of the anti-sigma factor MucA (27).  MucA sequesters AlgU 

to the inner membrane (28, 33, 35).  Mutations in mucA result in a loss of AlgU repression (27).   

Downstream of mucA, two more negative regulators are encoded by the genes mucB (26) 

and mucD (3).  MucB is a periplasmic protein (35) that protects the C-terminal of MucA from 

proteolytic degradation (4).  MucD is a member of the HtrA/DegP family of endoserine 

proteases (3).  Expression of MucD can suppress PalgD expression (3).  Inactivation of mucD or 

mutation of the proteolytic domain of mucD both result in alginate production (3, 40, 43).  

Recently, it has also been shown that inactivation of MucD decreases stability of C-terminal 

tagged MucA (41).  MucD expression is both AlgU-dependent and independent with one 

promoter initiated from within the mucC ORF (40).  Some of mucD expression occurs via the 

upstream AlgU-dependent P3 and P1 promoters of algU however some mucD expression occurs 

via a promoter in mucC   Bioinformatic analysis shows MucD is the homolog of E. coli DegP 

(HtrA) (Fig. 1), which has three functionally-distinct domains, the protease domain (residues 

100-258) and two PDZ domains, PDZ1 (residues 260-349) and PDZ2 (residues 380-460).  PDZ 

domains are conserved protein-protien interacting domains.  In E. coli DegP, PDZ2 domain has 
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roles in oligomerization (18) and PDZ1 is required for substrate recognition (17).  The role of 

PDZ domains in suppression of alginate production in P. aeruginosa has not been investigated.    

In addition to MucD, another serine protease, AlgW, has been shown to play roles in 

alginate production.  AlgW was first identified for its ability to suppress mucoidy in mucA 

mutants (3).  AlgW is homologous to E. coli DegS, which activates derepression of the anti-

sigma factor RseA in response to the accumulation of envelope proteins with specific C-terminal 

residues (1).  Recently, AlgW has been shown to positively regulate alginate production when 

mucE is overexpressed or in the presence of certain cell wall inhibitory antibiotics (31, 39).  

Through in vitro experiments, MucE peptide has been shown to bind directly to AlgW and 

activate cleavage of the periplasmic portion of MucA (4).  AlgW has also been shown to activate 

degradation of MucA when the histidine kinase KinB is inactivated (7).  

A recent model suggests that AlgW is activated in the absence of MucD (41) in a manner 

similar to the dogma that has been described in E. coli with degradation of RseA first by DegS 

and then by YaeL/RseP (MucP homologue) (1).  However, AlgW has also been observed to be 

not required for alginate production in the absence of MucD (31).  In a mucD mutant strain, the 

intramembrane protease MucP is essential for alginate production (31).  Interestingly, alginate 

production can occur independent of AlgW in the presence of paraquat, a redox cycling 

compound that induces intracellular levels of superoxide (3).  This supports the notion that 

MucA can be proteolytically degraded independent of AlgW. 

In this study we sought to define which domains of MucD are critical for negative 

regulation of alginate production and to elucidate the activation pathway of AlgU in the absence 

of MucD.  In this study, we that report the PDZ domains of MucD have a minimal role in 

suppression of alginate production but the PDZ domains are critical for in vivo stability of MucD.  
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Our data also suggests that MucD undergoes autocleavage in a similar manner to DegP.  Here we 

also suggest a model by which MucD regulates protein signals that cause the proteolysis of 

MucA (Fig. 1A).  When quality control of periplasmic proteins is lost due to inactivation of 

mucD, MucA degradation occurs which is dependent upon MucP but not AlgW.  Also, MucD 

can suppress signals that activate AlgW-dependent or -independent MucA proteolysis.  Our data 

indicate MucD negatively regulates alginate production by repressing the signals that activate 

MucA degradation through intramembrane proteolysis. 

 

MATERIALS AND METHODS 

Bacterial strains, growth conditions, plasmids and oligonucleotides.  Bacterial strains and 

plasmids used in this study are shown in Table 1.   P. aeruginosa strains were grown at 37°C in 

Lennox broth (LB; Difco, Sparks, MD), on LB agar or Pseudomonas isolation agar plates (PIA; 

Difco, Sparks, MD). Whenever necessary, the PIA plates were supplemented with carbenicillin, 

tetracycline, or gentamicin at a concentration of 300 μg/ml.  E. coli strains were grown in LB or 

on LB agar and when necessary supplemented with carbenicillin at a concentration of 100 μg/ml.  

Transfer of plasmids from E. coli to P. aeruginosa strains was performed by pRK2013 (11) 

mediated triparental conjuation.  The sequences of the oligonucleotides used in this study are 

indicated in Table 1.   

Plasmid construction and complementation analyses.  PCR amplicons with restriction 

endonuclease tails were cloned into pCR4-TOPO and then digested for ligation into pHERD20T  

(30).  All plasmid constructs containing PCR products were sequenced to confirm that no 

mutations occurred.   Amplicon sequencing was performed by the Marshall University Genomics 

Core Facility. 
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Alginate assay.  P. aeruginosa strains were grown in triplicate at 37˚C on PIA supplemented 

with carbenicillin for selection of the complementation vector and arabinose as indicated.  

Alginate was measured as previously described (7).  

Western blot analysis.  Cell lysates were prepared with ProteaPrep Bacterial cell lysis (Protea 

Morgantown, WV) by the manufacturer’s protocol.  Cell lysates were quantified by DC assay 

(BIO-RAD, Hercules, CA).  50 μg of protein was boiled in SDS-loading buffer and loaded on 

each gel.  The samples were electrophoresed on 15% ProteaGel (Protea Morgantown, WV) 

polyacrylamide gels (SDS-PAGE) and then electroblotted (Trans-Blott Cell, BIO-RAD, 

Hercules, CA) onto 0.2μm or 0.45μm nitrocellulose.  The membranes were blocked with 3% 

non-fat dry milk in PBS (pH 7.4).  Primary antibodies were diluted 1:1,000 - 1:4,000 in 3% non-

fat dry milk in PBS.  The membranes were probed with all or some of these antibodies: mouse 

monoclonal antibodies against AlgU (35), AlgB (25), alpha subunit of RNA polymerase subunit 

(Neoclone), or rat monoclonal antibody against HA (Roche, Mannheim, Germany) overnight at 

4°C with shaking.  HRP-labeled goat anti-mouse IgG or HRP-labeled anti-rabbit IgG were 

diluted 1:5,000 - 1:20,000 in 3% non-fat dry milk in PBS and used as the secondary antibodies. 

Advanced ECL or ECL chemiluminescence (Amersham Biosciences, Piscataway, NJ) was used 

for detecting HRP-labeled goat anti-mouse IgG or anti-rabbit IgG (Roche) by the manufacturer’s 

procedure.  The signals were detected with an EC3 Imaging System (UVP, Upland, CA) by 

capturing with a BioChemi HR camera.  For re-probing, membranes were stripped with 62.5 mM 

Tris-HCl pH 6.8, 2% SDS, 100 mM β-mercaptoethanol for 15 min at 50°C and then washed in 

PBS and reanalyzed.   
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Table 1. Bacterial strains, oligonucleotides, and plasmids used in this study 

Bacterial strains Genotype, phenotype or sequence a b Source 

P. aeruginosa 

PAO1 

 

Prototroph, NM 

 

P. Phibbs 

PAO1mucD PAO1 mucD::Gmr, M (31) 

PAO1mucD / algW PAO1 mucD::Gmr  algW::Tcr, M (31) 

PAO1mucD / mucP PAO1 mucD::Gmr  mucP::Tcr, NM (31) 

PAO1kinB PAO1 kinB::Gmr, M (7) 

PAO1 (PGm::mucE) PAO1 with chromosomal fusion of PGm-aacC1-mucE, M (31) 

E. coli  

DH5α 

 

F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, 

endA1, hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, 

relA1 

 

Lab strain 

TOP10 DH5α derivative Invitrogen 

BL21(DE3)pLysS F–, ompT, hsdSB (rB–, mB–), dcm, gal, λ(DE3), pLysS, 

Cmr 

(37) 
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Oligonucelotides 

ecoR1-mucD-F 

 

AGAATTCGATGCATACCCTAAAACGCTGTAT 

 

This study 

hindIII-HA-mucD-R TGCCAAGCTTTTAAGCGTAATCTGGAACATCGTA 
TGGGTATTCGGCCAGCTTGAAGGTAATGAAGCT 

This study 

hindIII- HA-ΔPDZ2-R TGCCAAGCTTTTAAGCGTAATCTGGAACATCGTA 
TGGGTACTCGTCGTCGTCCGGAAGGCTGCCT 

This study 

hindIII- HA vΔPDZ1 ΔPDZ2-R TGCCAAGCTTTTAAGCGTAATCTGGAACATCGTA 
TGGGTAGCGACTGACCTTGCCGGCTTTCTTCA 

This study 

Plasmids 

pCR4-TOPO 

 

TA cloning vector; 3.9 kb; Apr Kmr 

 

Invitrogen 

pRK2013 Kmr Tra Mob ColE1 (11) 

pUCP20T Escherichia-Pseudomonas shuttle vector, Plac, Apr, 

oripBR322, oripRO1600, oriT 

(38) 

pUCP20T-mucP mucP (PA3649) from PAO1 in pUCP20T BamH1/HindIII (31) 

pHERD20T pUCP20T Plac replaced by 1.3 kb AflII-EcoRI fragment of 

araC-PBAD cassette  

(30) 

pHERD20T-mucD-HA C-terminal HA-tagged mucD (PA0766) from PAO1 in 

pHERD20T EcoRI/HindIII 

This study 
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pHERD20T-mucD-ΔPDZ2-HA C-terminal HA-tagged mucD (PA0766) without PDZ2 

domain in pHERD20T EcoRI/HindIII 

This study 

pHERD20T-mucD-ΔPDZ1-ΔPDZ2-HA C-terminal HA-tagged mucD (PA0766) without PDZ2 or 

PDZ1 domains in pHERD20T EcoRI/HindIII 

This study 

pHERD20T-algW algW (PA4446) from PAO1 in pHERD20T EcoRI/HindIII (7) 

pHERD20T-HA-mucA N-terminal tagged HA-mucA in pHERD20T EcoRI/HindIII (7) 

   

a  NM, non-mucoid phenotype;  M, mucoid phenotype. 

b Underline indicates the restriction site utilized for the cloning 
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Release of periplasmic proteins by chloroform shock.  To observe periplasmic protein profiles 

of P. aeruginosa strains, an assay based on the method as described by Ames et al (2) was used 

with the following modifications.  Cells were cultured on PIA supplemented with carbenicillin 

and 0.1% arabinose for 24 hrs at 37°C.  The cells were scraped off the agar plates into 6 ml of 

PBS (pH 7.4) for harvesting by centrifugation.  The supernatant fluid was decanted and the 

resulting pellet was vortexed to suspend in residual buffer.  40μl of chloroform (Fisher Scientific) 

was added to the cell suspension.  After 15 min incubation at room temperature, 100 μl of tris 

buffered saline (pH 7.6) was added to the cell suspension and mixed before the cells were 

pelleted.  The supernatant contained the periplasmic proteins of the cells that were released by 

chloroform shock.  The protein preparations were quantified by DC assay (BIO-RAD) and 

separated on SDS-PAGE.  Periplasmic protein profiles were visualized by silver staining (Bio-

Rad Silver Stain Plus) by the manufacturer’s protocol. 

Isolation of RNA and RT-PCR.  P.aeruginosa strains were cultured on PIA for 12 hrs at 37°C.  

The cells were scraped from the PIA plates and resuspended in PBS.  RNA was isolated using 

Qiagen RNeasy spin columns (Qiagen, Valencia, CA) processed by the manufacturer’s protocol.  

To remove potential contaiminating genomic DNA, the eluted RNA was treated with DNase 

(Qiagen).  The DNase treated RNA was cleaned up by adding the solution to another RNeasy 

column with subsequent wash steps followed by elution.  The DNA-free RNA was quantified 

and aliquoted for analysis to prevent freeze-thaw degradation.  100ng of RNA from each strain 

was submitted to one-step RT-PCR (Qiagen) with gene specific primers (algU, algD, lptF, 16S 

rDNA).  The PCR amplification protocol utilized was the standard protocol suggested by the 

manufacturer with an annealing temperature of 58°C.  Three independent experiments were 

performed along with no RT controls (data not shown).  RT-PCR amplicons were analyzed by 
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1% argarose gel electrophoresis with ethidium bromide for visualization.  The amplicons were 

detected with an EC3 Imaging System (UVP, Upland, CA) by capturing with a BioChemi HR 

camera.             

 

RESULTS 

Construction and expression of HA-tagged wild type and truncated MucD.  To investigate 

the roles of the MucD PDZ domains in the suppression of alginate production, we cloned C-

terminal HA-tagged mucD genes (Fig. 1B).  Wild type mucD, mucDΔPDZ1-ΔPDZ2 and 

mucDΔPDZ2 were fused into the pHERD20T vector (30) for conditional expression from the 

PBAD promoter.  The constructs were sequenced and expressed in E. coli strain BL21.  Western 

blot analysis shows the size of each of the MucD-HA proteins (Fig. 2A).  The proteins migrated 

to their predicted sizes on SDS-PAGE.  However, two peptides were detected when PDZ2 

domain was deleted from MucD (Fig. 2 lane 3).  Since the MucDΔPDZ2-HA is C-terminal 

tagged, the truncated protein would have resulted from N-terminal cleavage.  Furthermore, the 

concentration of MucDΔPDZ1-PDZ2-HA was notably lower than that of the MucD-HA or 

MucDΔPDZ2-HA when expressed in E. coli (Fig. 2A lanes 2-4).   

Effect on alginate production due to expression of HA-tagged MucD in PAO1mucD mutant.  

With mucD inactivated, alginate production was elevated in PAO1 (Fig. 2B lane 1) as
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Figure 1. Hypothetical model of MucD regulation of alginate production and the HA-
tagged mucD constructs utilized for this study.  In the absence of mucD, alginate production 
occurs  (3).  This hypothetical model proposes that MucD regulates proteins which activate 
proteolysis of the AlgU anti-sigma factor, MucA.  A.  In the presence of MucD, such as in lab 
strain PAO1, low AlgU activity and nonmucoid phenotype are observed.  However, in the 
absence of MucD, peptides which activate regulated proteolysis accumulate which results in high 
AlgU activity and mucoidy.  B.  MucD contains three domains: a serine protease domain and two 
PDZ domains (PDZ1 and PDZ2).  The amino acid positions of the serine protease, PDZ1 and 
PDZ2 domains, and HA epitope tags are indicated.   
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Figure 2.  Western blot analysis of C-terminal HA-tagged MucD in BL21 and PAO1mucD strains.  Shown are a representative 
panels (from three experiments) with 50 μg of total protein blotted and probed with Rat anti-HA and anti-Alpha subunit RNA 
polymerase (loading control) from three independent experiments.  Positions of apparent molecular masses are indicated.   A.  Cell 
lysates were prepared from E. coli BL21 strains harboring C-terminal HA-tagged mucD constructs.  The constructs used are indicated 
on the above the blot.  Cells with the mucD constructs were grown in LB supplemented with carbenicillin.    B.  Cell lysates were 
prepared from P. aeruginosa strain PAO1mucD harboring C-terminal HA-tagged mucD constructs.  The percent arabinose used to 
drive expression of the HA-tagged MucD constructs is indicated along with the amount of alginate produced by each strain (indicated 
as μg/ml/OD600).  Of note the bands in lane 7 are not due to carryover from nearby lanes (data not shown). 
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previously reported (3) .  Under basal expression (in the absence of arabinose) of MucD-HA, 

alginate production decreased to nonmucoid levels (Fig. 2B lanes 1 and 2).  Interestingly, when 

the PDZ2 domain was absent, a similar suppression of alginate production was observed (Fig. 2B 

lanes 1-3).  Since PDZ2 in E.coli DegP is critical for oligomer formation (17), this data suggests 

that monomers of MucD without the PDZ2 domain may be capable of processing the signals 

which would activate alginate production.  Of note, a second band of lower molecular mass was 

detected in both E. coli and P. aeruginosa (Fig 2A lane 3 and Fig. 2B lane 3).  When MucD 

lacking both PDZ domains was expressed under basal conditions in the mucD mutant, alginate 

production persisted (Fig. 2B lane 4).  Interestingly, at basal expression the MucDΔPDZ1-

ΔPDZ2-HA peptide was not detected (Fig. 2B lane 4).  This suggests that deletion of both PDZ 

domains resulted in a highly unstable protein (Fig. 2B lane 4). 

When MucD-HA was expressed at an elevated level (0.1% arabinose), alginate 

production decreased more than that observed with basal expression (Fig. 2B lanes 2 and 5).  

Lower molecular mass HA-tagged peptides were observed when MucD-HA expression was 

elevated (Fig. 2B lane 5).  These truncations would occur at the N-terminus because MucD-HA 

was C-terminal tagged.  Recently DegP/HtrA has been shown to autocleave as a mechanism to 

eliminate excess DegP/HtrA once stress conditions cease (20).  It is likely that due to the 

elevated expression of MucD-HA, we were able to visualize these autocleavage peptide products 

of MucD.  When PDZ2 was absent from MucD, even more truncation products at higher 

concentrations were detected (Fig. 2B lane 6).  Interestingly a HA peptide near 100 kDa was 

detected which has higher molecular mass than what was predicted for MucDΔPDZ2-HA (Fig. 

2B lane 6).  DegP is capable of forming trimers with the protease domains interacting to each 

other and PDZ1 and PDZ2 deletion mutants of DegP have been shown to elute as trimers (19).  It 



 

Page  84 

is possible deletion of PDZ2 causes a structural change resulting in tight association of the 

MucDΔPDZ2-HA monomers into a trimer structure that could not be dissociated by denaturing 

conditions of SDS-PAGE.  Alternatively, it is also possible the MucDΔPDZ2-HA is linked with 

a larger unknown molecule. 

Under basal expression, MucDΔPDZ1-ΔPDZ2-HA could not suppress alginate 

production (Fig. 2B lane 4).  However, under elevated expression (0.1% arabinose) 

MucDΔPDZ1-ΔPDZ2-HA suppressed alginate production to the same level as wild type MucD-

HA (Fig. 2B lanes 5 and 7), indicating that protease domain alone of MucD was sufficient for 

suppression of alginate production.  Interestingly, several bands of higher molecular mass were 

observed when MucDΔPDZ1-ΔPDZ2-HA was expressed under arabinose induction (Fig. 2B 

lane 7).  Since these bands appeared to correspond to the major products in lane 6, we performed 

a separate experiment where only the MucDΔPDZ1-ΔPDZ2-HA total proteins were separated by 

SDS-PAGE alongside molecular mass markers.  HA-peptides corresponding to the products as in 

Fig. 2B lane 7 were detected which concluded carryover from nearby wells did not occur (data 

not shown).  By measuring alginate and detecting expression of truncated MucD via the HA 

epitope tag, it is clear that both PDZ domains are dispensable for the control of alginate 

production, but are important for the in vivo stability of MucD.  

Release of periplasmic proteins suggests deletion of PDZ2 causes loss of oligomerization 

and deletion of both PDZ domains decreases stability of the MucD peptide.  DegP is a 

periplasmic protein; however, the cellular localization of MucD had not previously been 

confirmed.  DegP has recently been shown to be tightly associated with lipid membranes as 

bowl-shaped oligomeric structures (36).  We sought to detect HA-tagged MucD in periplasmic 

fractions produced by chloroform shock (2).  We reasoned that chloroform shock may allow the 
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Figure 3.  Western blot analysis of released periplasmic proteins of PAO1mucD harboring C-terminal HA-tagged MucD 
constructs.   Periplasmic proteins were released by chloroform shock (2) with slight modifications (see Materials and Methods).  The 
strains were cultured for 24 hrs on PIA supplemented with carbenicillin and 0.1% arabinose to express the constructs from the PBAD 
promoter of pHERD20T.   
A.  Silver stained SDS-PAGE analysis shows the profile of periplasmic proteins (50 μg) released by chloroform shock of PAO1mucD 
harboring the plasmids indicated.   
B.  On the same SDS-PAGE gel that was submitted to silver staining, a duplicate set of proteins (50 μg) were transferred to 
nitrocellulose and blotted with anti-HA.  The positions of the apparent molecular masses are indicated.  Of note a light band of 
approximately 20 kDa is present in lane 2.  Shown is a representative of three independent experiments. 
C. The preparations are enriched for periplasmic proteins, the same membrane that was probed with anti-HA was stripped and 
reprobed with anti-Alpha (for the alpha subunit of RNA polymerase).  Of note the signal visualized was achieved with long exposure 
with high sensitivity chemiluminescent substrate (Amersham ECL™ Advance).  
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release of MucD and its derivatives from the envelope.  Periplasmic fractions were prepared and 

duplicate sets of proteins were separated by SDS-PAGE.  One set of samples was silver stained 

to show proteins released and the other set was Western blotted to visualize HA-tagged MucD.  

The periplasmic fraction profile of each of the strains with truncated MucD constructs were 

similar (Fig. 3A).  However, we did not detect a monomer of MucD-HA in the Western blot of 

the periplasmic fraction (Fig. 3B lane 2).  It is possible the large MucD oligomer could not be 

released to the extracellular milieu under the conditions of chloroform shock.  Of note, a peptide 

of approximately 20 kDa could be visualized (Fig. 3B lane 2).  When PDZ2 was absent from 

MucD-HA, several distinct HA-peptides were detected (Fig. 3B lane 3).  This suggests that 

MucDΔPDZ2-HA can be released from the periplasm by chloroform shock and without PDZ2 

the large oligomer formation would not occur.  When both PDZ domains were absent, no HA 

peptides could be detected in the periplasmic fraction (Fig. 3B lane 4).  This shows that loss of 

both PDZ domains results in a peptide that can be released by chloroform shock.  To show the 

periplasmic fractions were enriched for periplasmic proteins with minimal cytoplasmic proteins, 

we blotted for alpha subunit of RNA polymerase subunit (Fig. 3C).  Only a small amount of 

alpha RNA polymerase was detected (Fig. 3C) which suggests periplasmic fractions released by 

chloroform shock had minimal contamination with cytoplasmic proteins. 

Inactivation of MucD causes instability of MucA dependent upon MucP.  In the absence of 

MucD, alginate production occurs (3); therefore we speculated that inactivation of mucD causes 

loss of quality control in the envelope.  Quality control imbalance in the envelope activates 

intramembrane proteases that act upon MucA resulting in release of AlgU.  AlgW and MucP are 

two intramembrane proteases that have been shown to have a role in degradation of MucA (31, 

39).  In E. coli, degradation of RseA occurs first by DegS and then by YaeL/RseP (MucP 
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homologue) (1).  In P. aeruginosa, when AlgW is activated by MucE, AlgW degrades the 

periplasmic C-terminal tail of MucA (4).  We previously reported that PAO1 mucD / algW was 

mucoid (31) (Fig. 4C) and that PAO1 mucD / mucP was nonmucoid (Fig. 4C).  To observe 

proteolysis of MucA in these strains, we utilized conditional expression of N-terminal HA-

tagged MucA driven from the PBAD promoter of pHERD20T (7).  The PBAD promoter has low 

(basal) expression even in the absence of arabinose (30).  The HA-MucA degradation profiles 

were first observed with basal expression (Fig. 4A).  Unlike MucD-HA peptides described above, 

these peptides detected are derivatives of N-terminal HA-tagged MucA due to C-terminal 

truncations.  Inactivation of mucD caused decreased full length HA-MucA and truncated HA-

MucA Peptide 1 (Fig. 4A lanes 2 and 3), which suggested MucA undergoes degradation in the 

absence of MucD, as expected. A similar level of HA-MucA and Peptide 1 were observed in 

both PAO1 mucD and PAO1 mucD/algW mutants (Fig. 4A lanes 3 and 4).  This data suggested 

that MucA degradation in the absence of MucD quality control is not dependent solely upon 

AlgW.  In the PAO1 mucD / mucP double mutant, there was an accumulation of a 10 kDa HA-

MucA peptide (Peptide 3), suggesting incomplete proteolysis occurs when mucP is inactivated 

(Fig. 4A lane 5).  Peptide 3 is likely lacking the periplasmic domain of HA-MucA due to C-

terminal truncations.  If MucP does not cleave at the MucA transmembrane domain, complete 

proteolysis of MucA is blocked. 

 To observe if differences in HA-MucA degradation exist between PAO1mucD and 

PAO1mucD/algW, HA-MucA was overexpressed (Fig. 4B).  Under these conditions, four major 

HA-tagged peptides were detected in PAO1 (Fig. 4B lane 2).  PAO1 mucD and 

PAO1mucD/algW HA-MucA degradation profiles were distinctive when HA-MucA was 
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Figure 4.  Degradation of HA-tagged MucA indicates MucD regulates MucP-dependent proteolysis of MucA.  Western blotting 
analysis of HA-MucA in different P. aeruginosa strains. Cell lysates were prepared after 24 hrs of growth at 37 °C on PIA supplemented 
with carbenicillin. The relative positions of the peptides visualized are aligned with the predicted regions of HA-MucA.  As a control for 
cross-reactivity, total protein samples lacking HA-tagged peptides were analyzed and indicated the HA antibody was specific for the HA-
tagged peptides (Fig. 4A lane 1 or Fig. 4B lane 1).  A.  The profile of HA-MucA when it is expressed from the PBAD promoter of 
pHERD20T without arabinose.  The highly regulated PBAD promoter allows basal expression in the absence of arabinose (30).  
Degradation of HA-MucA occurs in PAO1mucD and PAO1mucD/algW, however inactivation of mucP causes incomplete proteolysis of 
HA-MucA.  B.  The profile of HA-MucA when it is overexpressed from the PBAD promoter of pHERD20T with 0.1% arabinose.  
Inactivation of algW in PAO1mucD causes accumulation of full length HA-MucA; however, this strain is mucoid.  When mucP was 
inactivated, peptide 3 was accumulated, which corresponds to approximately the transmembrane region which MucP probably recognizes.  
C.  The visual phenotypes of PAO1, mucD, mucD/algW and mucD/mucP are shown when cultured on PIA for 24hrs at 37°C.         
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overexpressed (Fig. 4B lanes 3 and 4) indicating proteolysis of MucA was affected by loss of 

AlgW.  Interestingly C-terminal truncation of HA-MucA occurred independent of AlgW (Fig. 

4AB lane 4).  Since in the absence of MucD quality control alginate production is not dependent 

upon algW (31), these data suggest that AlgW acts upon MucA in the absence of MucD; 

however in the absence of AlgW, MucP-dependent MucA proteolysis controls alginate 

production.   

Negative regulation of alginate production by AlgW.  We next used the PAO1 mucD/algW 

double mutant to investigate the relationship between AlgW and MucD.  Interestingly the visual 

phenotype of PAO1mucD/algW was stable and different than the PAO1 mucD parent strain (Fig. 

4C).  This suggested AlgW may somewhat inhibit alginate production in the absence of MucD.  

When algW was overexpressed in PAO1mucD/algW mutant, alginate production was suppressed 

(Table 2).  This indicated that AlgW may have a role in negatively regulating alginate production 

under certain conditions.  This is consistent with the role of AlgW that was originally identified 

to suppress alginate production in mucA mutants (3).  To further test the hypothesis of negative 

regulation of AlgW, we measured alginate production in PAO1mucD with overexpression of 

algW in trans (Table 2).  Overexpression of algW in PAO1 mucD resulted in nonmucoidy and 

lower alginate production (Table 2).  These data suggest that while AlgW may positively 

regulate alginate production, it can also act as a negative regulator. 

AlgU accumulates when either mucP or algW are inactivated in PAO1 mucD.  When MucA 

is proteolytically degraded, AlgU is free to activate transcription at target promoters such as the 

auto-regulated algU promoters (10) as well as the algD biosynthetic operon (42).  The mucoid 

phenotypes of PAO1mucD and PAO1mucD/algW would predict an increase in free AlgU 

concentration.  To test this, Western blot analysis was utilized to check AlgU concentration in 
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Table 2.  Complementation of genes affecting alginate production when mucD is inactivated. 

 
Strain a  

 
Plasmid  

 
Phenotypeb 

Alginate 
(μg/ml/OD600) 

PAO1mucD  / algW pHERD20T 
pHERD20T-algW 
 

M 
NM 

141±3 
58±2 

PAO1mucD 
 

pHERD20T-algW 
 

NM 65±8 

PAO1mucD / mucP 
 

pUCP20T 
pUCP20T-mucP 

NM 
M 

27±3 
80±18 

a Strains were cultured for 24 hrs at 37 °C on Pseudomonas Isolation Agar (PIA) supplemented 
with carbenicillin and 0.1% arabinose (w/v). 
b NM and M indicate nonmucoid and mucoid phenotype respectively. 
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PAO1mucD and the isogenic derivatives.  PAO1 and PAO1mucD displayed similar levels of 

AlgU (Fig. 5A lanes 1 and 2).  However, inactivation of mucP and algW in PAO1mucD caused 

elevated levels of AlgU over their parent strain (Fig. 5A lanes 3 and 4).  The PAO1mucD/algW 

strain was expected to have increased AlgU because it is mucoid.  However, since mucD/mucP 

was nonmucoid, this data was unexpected.  The HA-MucA profile of the mucD/mucP double 

mutant suggested incomplete degradation (Fig. 4AB lane 5).  It is likely the 10 kDa HA-MucA is 

a C-terminal truncated MucA (Peptide 3) protein still capable of sequestering AlgU.   

AlgU activity as measured by AlgB expression is low in mucD/mucP but upregulated in 

mucD/algW double mutants.  Experiments above suggested concentration of AlgU does not 

necessarily reflect the activity of AlgU, since PAO1 mucD/mucP is nonmucoid (Table 2 and  

(Fig. 4C)) but has a high amount of AlgU (Fig. 5A lane 3).  To ascertain the activity of AlgU in 

the mucD, mucD/algW, and mucD/mucP mutants, we examined the expression of the AlgU-

dependent alginate response regulator AlgB (42).  AlgB is upregulated in mucoid strains with 

mutations in AlgU negative regulators such as mucA and kinB mutants (7, 14).  Therefore, 

expression of AlgB is a better indicator of AlgU activity than AlgU expression alone.  We 

observed inactivation of mucD caused a slight increase in AlgB expression (Fig. 5A lanes 1 and 

2).  However, low AlgB expression was detected in nonmucoid PAO1mucD/mucP (Fig. 5A lane 

3).  Furthermore, AlgB expression did not require algW in the absence of MucD (Fig. 5 lane 4), 

which is consistent with mucoidy of PAO1mucD/algW (Fig. 4C).  These data suggest AlgU 

activity in the absence of MucD requires MucP but not AlgW.   

AlgU activity assayed by expression of algU, algD, and lptF shows MucP is required for 

activation of AlgU.  To further determine the activity status of AlgU in each of the strains, we 

performed semi-quantitative RT-PCR analysis of algU dependent genes algD, algU, and lptF.  
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Figure 5.  AlgW is not required for activation of AlgU when MucD is absent; however, MucP is required.   
A.  Western blot analysis reveals inactivation of algW and mucP increases AlgU concentration, Cell lysates from strains PAO1, 
PAO1mucD, mucD/mucP, mucD/algW were probed with anti-AlgU, anti-AlgB and anti-alpha RNAP antibodies.  Shown is a 
representative panel of blots of 50μg of total protein from three independent experiments.  The relative levels of AlgU and AlgB are 
indicated.   
B.  In the absence of MucD, AlgU activation requires MucP.  Agarose gel analysis of semi-quantitative RT-PCR was performed on 
the strains indicated with algU, algD, lptF, and 16S rDNA gene specific primers.  RNA was isolated from strains cultured on PIA for 
12 hrs.  Expression of algD (42) and lptF (Lipotoxin F) (6) are dependent upon activation of AlgU.  Two of the five algU promoters 
are dependent upon algU and the other three are unknown (34). In the mucD/mucP double mutant, expression of algD and lptF is 
decreased.  Mucoid strains PAO1mucD and PAO1mucD/algW both have high expression of algD.     
C.  In the absence of MucD, derepression of MucA or activation of AlgU requires MucP protease and not AlgW.  Based on data 
presented here when mucD is inactivated then increased activation of AlgU occurs.  MucP is required to release MucA from AlgU; 
however, AlgW is not required for MucA degradation in the absence of MucD.   
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There was a small amount of algD expression in nonmucoid PAO1; however, high expression of 

algD was observed in the mucoid PAO1mucD and PAO1mucD/algW strains (Fig. 5 lanes 1-3).  

Furthermore, algU expression was elevated in PAO1mucD/algW (Fig. 5B lane 3) consistent with 

mucoidy (Fig. 4C) and increased algD transcription in this mutant.  Interestingly, algU 

expression was not blocked in the PAO1 mucD/mucP mutant (Fig. 5B lane 4).  This can be 

explained by the fact that only two of the algU promoters are AlgU-dependent (P1 and P3) while 

it is unknown which σ factor(s) drive expression from the other algU promoters (P2, P4, P5) (34).  

The algD expression was detected in PAO1mucD/mucP at a level even lower than PAO1 (Fig. 

4B lanes 1 and 4), consistent with nonmucoidy in PAO1mucD/mucP mutant.  To further support 

the notion that mucP is required for AlgU activation, we measured lptF expression. The lptF 

gene encodes lipotoxin F which is an AlgU-dependent lipoprotein (6, 12, 13, 39).  The lptF gene 

was observed to be expressed in PAO1, PAO1mucD, and PAO1mucD/algW (Fig. 5 lanes 1-3).  

However, inactivation of mucP also decreased lptF expression dramatically (Fig. 5 lane 4).  In 

the PAO1mucD/mucP double mutant, AlgU is not active because it is expected to still be 

sequestered by MucA.   

MucD suppresses alginate production by mediating signals that activate both AlgW-

dependent and -independent pathways.  Since AlgW is not required for regulated proteolysis 

of MucA in the absence of MucD, it can be suggested that MucP may be directly activated by 

signals mediated by MucD.  We have also previously reported that expression of MucD can 

suppress MucE-AlgW mediated mucoid phenotype (31).  Here we show that when MucD-HA 

was expressed from pHERD20T, overexpression (1% arabinose) was required for suppression of 

the MucE-mucoid phenotype (Table 3).  Recently, we have reported that inactivation of sensor 

kinase kinB causes AlgW-dependent MucA proteolysis (7).  We hypothesized that MucD could 
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Table 3. Suppression of alginate production of AlgW-mediated mucoid strains by MucD 

 
Strain a 

 
Plasmid  

 
Alginate Production b (Phenotype c) 

   
0% d 

 
1% 

 
PAO1 (PGm::mucE) 

 
pHERD20T-mucD-HA 

 
188±6 (M) 

 
65±16  (NM) 

 
PAO1kinB 

 
pHERD20T-mucD-HA 

 
155±16  (M) 

 
147±20  (M) 

    
a Strains were cultured for 24 hr at 37 °C on Pseudomonas Isolation Agar (PIA) supplemented 
with carbenicillin and arabinose concentration indicated (w/v). 
b Alginate production is indicated as μg/ml/OD600 
c NM and M indicate nonmucoid and mucoid phenotype respectively.   
d The percent of arabinose utilized to express mucD-HA from the PBAD promoter of 
pHERD20T. 
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suppress this alginate production pathway as well.  However, alginate production was not 

suppressed by MucD overexpression in the absence of kinB (Table 3).   Collectively our data 

indicate that MucD can mediate signals that activate AlgW-independent proteolysis, MucE-

mediated AlgW proteolysis, but MucD does not mediate the unknown signals that activate AlgW 

proteolysis of MucA in PAO1kinB. 

 

DISCUSSION 

Nonmucoid P. aeruginosa strains with wild type mucA initially colonize the CF lung.  

Lab strains with inactivated mucD have been shown to convert to mucoidy (3, 26), and CF 

isolates have also been reported with mucD mutations (5).  Since MucD mediates alginate 

production, virulence, as well as other factors (43), it is important to better understand the 

multiple facets of this dynamic protein in P. aeruginosa.  We hypothesized that without MucD 

alginate production occurs because the protein signals activate regulated proteolysis of MucA.  

We also tested the roles of the PDZ domains in modulation of alginate production.       

Previous reports have shown that the mucD217 allele encoding a defective protease 

domain could suppress mucoidy when overexpressed (40).  These data suggest that MucD likely 

performs both proteolytic and chaperone functions in P. aeruginosa homologous to the roles of 

DegP in E. coli (21).  It is clear that the protease domain of MucD is critical for the control of 

alginate production (40).  However, since PDZ domains of DegP have roles in the formation of 

“giant” oligomers like molecular “death stars” (18, 22, 23), we would not have predicted the 

PDZ domains of MucD are dispensable for suppression of alginate production.  Interestingly, CF 

isolates with mutations in PDZ1 and PDZ2 are still nonmucoid; however, a mucD null mutant 

(CF172 stop codon residue 41) is mucoid (5).   
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Recent reports have shown that DegP undergoes autocleavage to eliminate excess DegP 

(20).  Here we observed the same phenomenom in vivo; however, in the absence of PDZ2 or 

both PDZ2 and PDZ1, MucD becomes unstable (Fig. 2B and Fig. 3B). In fact, loss of both PDZ 

domains have resulted in a highly unstable peptide (Fig 2B lanes 4 and 7).  This is an interesting 

observation may add to the E. coli DegP/HtrA autocleavage model.  When DegP hydrolyzes 

protein substrates and relaxes back into a hexameric cage (6-mer), then autocleavage occurs (20).  

With our in vivo analysis of MucD-HA peptides, we have observed that increased autocleavage 

occurs more when both PDZ domains are missing or when MucD molecules are in an elevated 

concentration (Fig. 2 and 3).  Therefore, our data suggest that the PDZ domains may play a 

negative role in the autocleavage events to eliminate excess MucD. 

In the absence of MucD alginate production occurs.  We observed that the PDZ domains 

do not seem to be involved in the regulation of alginate production.  Our hypothesis was that 

without MucD, regulated proteolysis of MucA occurs do to the accumulation of proteins that 

MucD would have recognized for degradation or re-folding.  Our data suggests that MucA 

degradation occurs independent of AlgW but dependent upon MucP.    Recently another study 

demonstrated that AlgW has a role in a PAO1 mucD mutant (41).  Using C-terminal tagged 

MucA, inactivation of AlgW caused an accumulation of MucA in a PAO1mucD mutant (41).  In 

our report, during overexpression of HA-MucA, accumulation of full length peptide was also 

observed in PAO1mucD/algW (Fig. 4B lane 4).  Since the HA-MucA degradation profiles differ 

under basal and overexpression, our data also suggests AlgW could act upon MucA.  However, 

AlgU-dependent genes are expressed in mucoid PAO1mucD/algW (Fig. 5), indicating that 

activation of AlgU could occur in the absence of AlgW.  Furthermore we show that MucD 
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mediates AlgW-signals such as MucE as well as signals that don’t require AlgW for MucA 

proteolysis.  In addition it appears KinB-mediated signals are not modulated by MucD (Table 3).        

AlgW and MucD can be aligned and show high homology (3).  Originally it was shown 

that AlgW expression could decrease alginate production (3).  Therefore it could be possible that 

AlgW acts as a protease on not just MucA.  Since AlgW can suppress alginate production in 

mucA mutants (3), it is possible AlgW suppresses signals which could activate MucP.  Some 

mutant MucA proteins such as MucA22 protein would still have a transmembrane domain which 

MucP could act upon.  Another interesting point is that in the absence of AlgW, a C-terminal 

truncated MucA peptide is detected (Fig. 4A lane 4 and 4B lane 4).  From this data we wonder if 

a protease other than AlgW can act on the C-terminus of MucA.  Prc protease has been suggested 

to interact with mutant MucA (32).  However we did not observe loss of either peptide when prc 

is inactivated in PAO1 (data not shown).  

What are the signals that activate AlgW-independent (MucP) mucoidy?  Recently 

mutations have been characterized in RseP that revealed a ligand-binding cleft in the PDZ 

domain of RseP (16).  However, protein substrates have not been identified that interact with 

RseP.  Interestingly, acid stress activates the σE stress response in Salmonella enterica serovar 

Typhimurium in an RseP-dependent manner, which does not require DegS (29).  Our study and 

the aforementioned study are the first reports detailing activation of σE / AlgU stress response 

independent of DegS/AlgW.  Our data also show that MucD can mediate both AlgW-dependent 

and -independent pathways.  

MucD is a dynamic protein that regulates protein quality control in the periplasm of P. 

aeruginosa.  Our data suggest that if proteins that are recognized by MucD accumulate, some 
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Figure 6.  Regulation of alginate production by MucD.  In wild type mucA strains, MucA 
must be proteolytically degraded to release AlgU for alginate production.  1.  Environmental 
stress can activate expression of mucE (8) which is a periplasmic protein signal that has been 
shown to activate the AlgW pathway of MucA degradation.  2.  If mucE expression is high 
enough MucD can not negatively regulate and AlgW activation will occur.  3.  Other stress 
response proteins could also be unregulated.  However some proteins such as those upregulated 
when kinB is inactivated are not suppressed by MucD and can activate AlgW.  Other proteins 
regulated by MucD can activate MucP independent of AlgW activation.  4.  Our data suggest 
MucD undergoes autocleavage in a similar fashion to DegP/HtrA of E. coli.  Additionally it 
seems the PDZ domains of MucD influence the stability of the protein.  The PDZ domains are 
not required for suppression of alginate production.  We propose when environmental conditions 
exceed the capacity of MucD regulation, the AlgU pathway will be induced through MucP or 
AlgW regulated proteolysis.      
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will activate AlgW-dependent alginate production (such as MucE) and others may activate MucP 

directly.  However, there are signals such as those controlled by KinB that are not mediated by 

MucD (Fig. 6).  Furthermore, it appears MucD is capable of autocleavage in the same fashion as 

DegP/HtrA.  Our data presented here suggest the PDZ domains of MucD negatively regulate 

autocleavage and that neither PDZ domain is required for suppression of alginate production, 

Our data also indicate MucP mediates regulated proteolysis and activation of AlgU in the 

absence of MucD quality control of the periplasm in P.aeruginosa.  Potentially, conditions that 

inhibit MucD activity, such as the extreme environment of the CF lung, could activate the AlgW-

independent pathway of alginate production directly through MucP.   
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SUMMARY 

Chronic lung infection with P. aeruginosa and excessive neutrophil-associated inflammation are 

major causes of morbidity and mortality in patients with cystic fibrosis (CF).  Overproduction of 

an exopolysaccharide known as alginate leads to the formation of mucoid biofilms that are 

resistant to antibiotics and host defenses.  Alginate overproduction or mucoidy is controlled by a 

stress-related ECF sigma factor AlgU/T.  Mutation in the anti-sigma factor MucA is a known 

mechanism for conversion to mucoidy.  Recently, we identified inactivation of a kinase (KinB) 

in nonmucoid strain PAO1 results in overproduction of alginate.  Here we report the initial 

characterization of lipotoxin F (LptF, PA3692), an OmpA-like outer-membrane protein, that 

exhibited increased expression in the mucoid PAO1kinB mutant.  The lipotoxin family of 

proteins was previously characterized to induce inflammation in lung epithelia which may play a 

role in CF disease progression.  Expression of LptF was observed to be AlgU-dependent and 

upregulated in CF isolates.  Deletion of lptF from the kinB mutant had no effect on alginate 

production.  Deletion of lptF from PAO1 caused a differential susceptibility to oxidants that can 

be generated by phagocytes.  The lptF and algU mutants were more sensitive to hypochlorite 

than PAO1.  However, the lptF mutant displayed increased resistance to hydrogen peroxide.  

LptF also contributed to adhesion with A549 human lung epithelial cells.  Our data suggests 

LptF is an outer-membrane protein that may be important for P. aeruginosa survival in harsh 

environments including lung colonization in CF. 
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INTRODUCTION 

 Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause 

cystic fibrosis (CF) which affects the normal respiratory, gastrointestinal and nutritional 

functions of the body (25).  In CF patients, the respiratory tract system is not only impaired by 

defective CFTR but also by microbial infections with a variety of pathogens such as P. 

aeruginosa due to decreased mucociliary clearance (14).  Chronic lung infection with P. 

aeruginosa leads to increased morbidity and mortality in CF (25).  Biofilm formation in CF 

lungs by P. aeruginosa facilitates survival through resistance to host immune responses and 

increased antibiotic resistance (14).  Biofilm formation in the CF lungs is also dependent upon 

bacterial communication or quorum sensing (QS) (38).  

 Conversion of P. aeruginosa to mucoid phenotype or overproduction of 

exopolysaccharide alginate has clearly been shown to be protective for survival (14).  MucA is a 

negative regulator of alginate production that sequesters the alginate master regulator, ECF 

sigma factor AlgU (35), to the inner membrane (33).  Mutations in mucA, cause constitutive 

production of alginate (28) due to loss of MucA repression of AlgU.  AlgU activates 

transcription of the algD biosynthetic operon (7) which then leads to alginate production (46).  

Alginate production can also occur independent of mucA mutations through proteolytic 

derepression of MucA by the protease AlgW (32).   

 The two component response regulator AlgB (PA5483) controls alginate production at the 

algD promoter (46).  AlgB and KinB (PA5484) are encoded on the chromosome in an operon 

and KinB has been shown to phosphorylate AlgB (27). However phosphorylation of AlgB is not 

required for alginate production (26).  AlgB is required for mucoidy (13) and transcriptional 

activation of the algD  biosynthetic operon (23).  Recently we have observed inactivation of kinB 
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caused strain PAO1 to produce copious amounts of alginate (Fig. 1) (5).  Inactivation of kinB  

causes loss of repression by MucA and alginate production that is dependent upon AlgW, AlgB, 

and the alternative sigma RpoN (σ54) (5).  Alginate production provides protection for P. 

aeruginosa, however alginate-independent, AlgU-dependent gene products, are responsible for 

the detrimental inflammation (12).  Of the 5,567 proteins encoded in the PAO1 genome there are 

113-186 predicted lipoproteins (1).  In mucoid strains, 70% of genes with a >30-fold increase in 

expression encode lipoproteins (12).  AlgU dependent lipoproteins or lipotoxins cause activation 

of NF-κB in human lung epithelial cells through Toll-like receptor 2 (12).  Lipotoxins have been 

shown to stimulate inflammatory response (10, 12).  However, physiological roles of theses 

lipotoxins have not been characterized.   

 Here we report inactivation of kinB causes upregulation of an outer-membrane protein 

known as lipotoxin F or LptF (PA3692).  The lptEF promoter is highly upregulated in mucoid 

lab strains and CF isolates, and is controlled by AlgU.  However lptF has no effect on alginate 

production in the kinB mutant. We deleted lptF from PAO1 and observed increased resistance to 

hydrogen peroxide, however increased susceptibility to killing by hypochlorite.  Both nonmucoid 

and mucoid isolates from CF have increased lptF promoter expression.  Also, PAO1ΔlptF 

exhibits decreased adherence to A549 human lung epithelial cells.  The studies presented here 

suggest LptF in P. aeruginosa may be an important survival factor. 
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METHODS 

Bacterial strains, growth conditions, sequencing and oligonucleotides.  Bacterial strains and 

plasmids used in this study are shown in Table 1.   E. coli strains were grown at 37°C in Lennox 

broth (LB) or LB agar supplemented, when necessary, with carbenicillin or tetracycline at a 

concentration of 100 μg/ml and 20 μg/ml respectively.  P. aeruginosa strains were grown at 

37°C in LB or on Pseudomonas isolation agar plates (PIA; Difco, Sparks, MD). When necessary, 

the PIA plates were supplemented with carbenicillin or tetracycline at a concentration of 300 

μg/ml and 200 μg/ml respectively.  Amplicon sequencing of plasmids and gene deletions were 

performed by the Marshall University Genomics Core Facility.    

Multidimensional Protein Identification Technology (MudPIT) analysis.  To identify the 

proteins present in P. aeruginosa total cell lysates, MudPIT with tandem MALDI-TOF mass 

spectrometry was employed.  Strains were streaked on PIA and cultured for 24 hr at 37° C.  Cells 

were harvested and total protein samples were prepared by processing cell lysates with Epicentre 

Ready preps (Epicentre, Madison, WI).  Total protein samples (50 μg) were desalted using C4 

ProteaTip SpinTips (Protea Biosciences, Morgantown, WV) by manufacturer’s protocol.  The 

collected samples were lyophilized and dissolved in 100 µl of 50 mM ammonium bicarbonate in 

20% acetonitrile for tryptic digestion.  The samples were then reduced and alkylated with 10µL 

of 250mM DTT (60 min/55°C),  and 10 µl of 625 mM iodoacetamide (60 min/room 

temperature/in the dark).  Proteolytic digestion was performed in 50 mM ammonium bicarbonate 
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Table 1. Bacterial strains and plasmids used in this study 
Bacterial strains Phenotype, genotype, and description a Source 
P. aeruginosa 
PAO1 

 
Alg- Prototroph 

 
P. Phibbs 

PAO1ΔalgU Alg-, PAO1 in-frame deletion of algU (PA0762) (5) 
PAO1ΔlptF Alg-, PAO1 in-frame deletion of lptF (PA3692) This study 
PAO1ΔrpoN Alg- , PAO1 in-frame deletion of rpoN (PA4462); nonmotile (5) 
PAO1kinB::aacC1 Alg+, PAO1 kinB:: GmR (5) 
PAO1kinB::aacC1ΔalgW Alg-, PAO1kinB::aacC1 in-frame deletion of algW (PA4446) (5) 
PAO1kinB::aacC1ΔalgU Alg-, PAO1kinB::aacC1 in-frame deletion of algU (PA0762) (5) 
PAO1kinB::aacC1ΔlptF Alg+, PAO1kinB::aacC1 in-frame deletion of lptF (PA3692) This study 
PAO1kinB::aacC1ΔrpoN Alg- , PAO1kinB::aacC1 in-frame deletion of rpoN (PA4462); 

nonmotile 
(5) 

383 Nonmucoid CF isolate from the sputum of a patient at Children’s 
Hospital, Boston, MA, USA, on 16 June 1980 

J. Goldberg (15) 

2192 Mucoid CF isolate from the sputum of a patient at Children’s 
Hospital, Boston, MA, USA, on 18 June 1980, isogenic to 383 

J. Goldberg  (15) 

CF149 Alg+ mucA mutant, algU suppressor mutant G. Pier (17) 
CFO42 Alg+ mucoid isolate (1978) D. Speert (17) 
CFO23o Alg+ mucoid isolate from same sputum sample (1998) as CFO23s 

and CFO23s 
D. Speert  (17) 

CFO23s Alg+  mucoid isolate from same sputum sample as CFO23o and 
CFO23w 

D. Speert  (17) 

CFO23w Alg+ mucoid isolate from same sputum sample as CFO23o and 
CFO23s 

D. Speert (17) 

   
E. coli  
DH5α 

 
F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, 
hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1 

 
Lab strain 

TOP10 DH5α derivative Invitrogen 
Plasmids 
pRK2013 

 
Tra Mob ColE1 KmR 

 
(9) 
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pCR4-TOPO TA cloning vector; 3.9 kb; ApR KmR Invitrogen 
pHERD20T-lptF lptF (PA3692) from PAO1 in pHERD20T EcoRI/HindIII This study 
pEX100T Pseudomonas suicide vector, sacB, oriT, CbR  (37) 
pEX100T-NotI Pseudomonas suicide vector with NotI restriction site fused into 

SmaI of pEX100T, sacB, oriT, Cbr 
(32) 

pEX100T-ΔlptF A 1.8-kb fragment flanking lptF gene fused with pEX100T-NotI 
with in-frame deletion of lptF 

This study 

miniCTX-lacZ Gene delivery vector for inserting genes at the CTX phage att site 

on the P. aeruginosa chromosome; TcR 

(18) 

miniCTX-PlptEF-lacZ Complete PlptEF promoter (949 bp upstream of ATG of lptF) fused 

HindIII/EcoRI with lacZ for integration at the CTX phage att site on 

the P. aeruginosa chromosome; TcR 

This study 

pMRPQ-1 GFP expression plasmid CbR (6) 
a  Alg-, non-mucoid phenotype and Alg+, mucoid phenotype. 

b The P. aeruginosa isolates used in this study were obtained from the following individuals: P.Phibbs, East Carolina University 

Genetic Stock Center, Greenville, NC.; J. Goldberg, University of Virginia, Charlottesville, VA; G.Pier, Harvard Medical School, 

Boston, MA.; D. Speert, University of British Columbia, British Columbia, Canada. 
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buffer using a trypsin to protein ratio of 1:100.  The digestion was carried out overnight at 37oC.  

The digests were cleaned by repeated lyophilizing and reconstituting in a 0.1M acetic acid 

solution.  After final lyophilization, the digests were reconstituted in a strong cation exchange 

loading buffer (5 mM ammonium formate in 20% acetonitrile, pH 3.0) to be fractionated with 

ProteaTip spin tips per manufacturer’s protocol.  The SpinTip was transferred to a new 

centrifuge tube to collect the sample during elution with 200 µL of elution solution. Eight 

different elution solutions were used fractionate the peptides (20, 60, 100, 150, 200, 250, 400, 

500mM ammonium formate in 20% acetonitrile) in a step-wise manner.  The collected fractions 

were cleaned by repeated lyophilization and reconstitution in a 0.1 M acetic acid solution.  After 

the final lyophilization, the digests were reconstituted in LC run buffer.  The fractions were then 

submitted to LC MALDI spotting and MALDI TOF/TOF spectral analysis as detailed previously 

to survey the proteome of the P. aeruginosa strains. The relative quantity of the protein within 

the sample was calculated by comparison of number of amino acids identified by MS compared 

to corresponding to the full length peptide.  The ratio of the identified peptides within the sample 

was also normalized against the various lengths of the expected lengths of the peptides and 

displayed as relative percent of peptides identified within the sample.  

SDS-PAGE, total protein preparation and peptide mass spectrometric sequencing.  Total 

protein preparations were obtained by processing cell lysates with Epicentre Ready preps 

(Epicentre, Madison, WI).  Protein concentrations were determined using Bio-Rad DC Protein 

Assay.    SDS-PAGE (14% polyacrylamide) was performed to separate total cell lysates for 

staining with R250 Coomassie stain.  Selected up-regulated protein bands were excised from the 

gel for direct mass spectrometric sequencing.  Gel pieces were destained with Protea Silver 

destaining solution (Protea Biosciences, Morgantown, WV).  The pieces were dehydrated and 



 

Page 113 

 

then rehydrated with acetonitrile and 50 mM ammonium bicarbonate, respectively.  Proteins in 

the gel pieces were reduced and alkylated with 250 mM DTT (60 min/55°C) and 650mM 

iodoacetamide (60min / room temperature / in the dark), respectively.  Digestion was performed 

with 625 ng trypsin in 50 mM ammonium bicarbonate buffer overnight.  Extraction of peptides 

was performed using 5% formic acid in 50% acetonitrile and with 50 mM ammonium 

bicarbonate.  Three cycles of dehydration, rehydration, and supernatant collection were 

performed and the recovered peptides were dried down in lyophilizer to be purified with an 

acetic acid rinse in addition to a final lyophilization. 

 The LC-MALDI mass spectrometry system utilized was an ABI Tempo LC MALDI 

spotter with Tempo LC MALDI v.2.00.09 data acquisition and processing software.  

Lyophilized-digested samples were reconstituted and 5 µl was injected onto a Chromolith 

CapRod monolith column 150 x 0.1 mm (Merck).  The peptides were eluted from the column 

using an acetonitrile/trifluoroacetic acid gradient (2-72% acetonitrile in 25 min) and spotted 

directly onto a MALDI plate.  The MALDI spots were analyzed using an ABI 4800 MALDI 

TOF/TOF analyzer operated with 4000 Series Explorer software.  The MS acquisition was in 

reflector mode positive ion mode with 400 laser shots per spectrum performed.  The 15 strongest 

precursors were chosen for MS/MS and the MALDI spot was interrogated until at least 4 peaks 

in the MS/MS spectra achieved a signal/noise ≥ 70.  The resulting MS/MS spectra were analyzed 

using ABI Protein ProteinPilot software 2.0.  The spectral data was compared with the 

Pseudomonas Genome Project Version 2 database for identification of the peptides and 

corresponding proteins. 

Analysis of outer-membrane proteins.  P. aeruginosa strains were streaked on PIA and 

cultured for 24 hr at 37 ° C.  The cells were scraped from the plates and suspended in PBS.  The 
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cells were harvested by centrifugation at 7000 x g.  The cell pellet was suspended in 2% sarkosyl 

with 2 mM PMSF protease inhibitor (phenylmethylsulfonyl fluoride) in PBS.  The cells were 

lysed by sonication for 1 min on ice.  The lysate was clearified by low speed centrifugation.  The 

supernatant was taken then centrifuged at 40000 x g for 1 hr.  The resulting pellet containing 

outer-membrane proteins was resuspended in TBS.  The protein concentration was determined 

with the  Bio-Rad DC protein assay.  The preparations were separated by SDS-PAGE (14% 

polyacrylamide) and visualized by silver staining with Bio-Rad Silver Stain Plus.   

β-galactosidase activity assay of PlpteEF-lacZ promoter fusion.  The miniCTX-lacZ (18) 

integration gene delivery vector was used for inserting promoter fusions to the CTX phage attB 

site on the P. aeruginosa chromosome.  949 bp upstream of the lptF start site was cloned into the 

HindIII-EcoRI sites of MiniCTX-lacZ. The construct was sequenced to show no mutations had 

occurred during the cloning.  MiniCTX-PlptEF-lacZ was transferred to recipient strains by 

pRK2013-conjugation.  Strains with integration into the attB site were selected on PIA 

supplemented with tetracycline (200μg/ml) and were passed through three isolations.  The β-

galactosidase activity was assayed based on the method as originally described by Miller (29) 

with the following modification. The cells were grown on PIA with antibiotics for selection in 

triplicate for 24 h at 37°C and harvested in PBS.  Cell density was measured by OD600.  The β-

galactosidase activity was assayed after toluene permeabilization of the cells.  The reported 

values represent the averages of samples in triplicate of three independent experiments with 

standard error indicated.   

Mutant strain construction.  For in-frame deletion of lptF, the upstream and downstream 

sequence fragments (1 kb) flanking lptF were PCR amplified and fused via the cross-over PCR 

method. The PCR products with the in-frame deletion of target gene were the cloned into pCR4-
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TOPO.  The subcloned in-frame deletion fragment was then digested and ligated into pEX100T-

NotI vector.  The resulting vectors were sequenced to show no mutations had occurred outside of 

the intended specific gene deletion.  A two-step allelic exchange procedure was employed with 

the pEX100T constructs for gene disruption or in-frame deletion. The single cross-over 

merodiploid exconjugants were selected based on carbenicillin resistance and for sensitivity on 

10% sucrose (sacB).  After incubation of the merodiploids in the LB broth, the double cross-over 

recombinants were isolated from the PIA plates supplemented with 10% (wt/vol) sucrose.  The 

disruption or in-frame deletion of target gene was confirmed by antibiotics-resistance assays, 

PCR amplification of the flanking region of target gene with multiple sets of primers, and 

amplicon sequencing. 

Analysis of alginate production.  P. aeruginosa strains were grown at 37˚C on PIA plates in 

triplicate for 24 hr.  The resulting bacterial growth was removed from plates and suspended in 

PBS.  The optical density at OD600 of the suspension in PBS was measured.  The suspensions 

were assayed for amount of uronic acid comparison with a standard curve made with D-

mannuronic acid lactone (Sigma-Aldrich, St. Louis, MO) as previously described (5).  

Susceptibility to killing by hydrogen peroxide and hypochloride.  Sensitivity to H2O2 and 

NaOCl was determined by measuring the radius of the zone of killing surrounding disks (6mm 

diameter; BBL). 25 ml of LB agar was poured into 100x15 mm plates.  Overnight cultures were 

diluted with LB, and 100 μl of OD600 0.1 culture was added to 3 ml of molten 0.6% soft agar and 

gently mixed.  The culture-soft agar suspension was then overlaid on the 25ml of LB agar.  Discs 

were soaked with 10 ul of fresh stock solutions of 10% H2O2 or 6% NaOCl.  The discs were then 

applied to the soft agar containing plate.  The zone of killing was scored after 24 hr incubation at 

37° C by measuring the radius.   
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Cell culture methods. A549 lung epithelial cells (ATCC cat. # CCL-185) were purchased from 

ATCC. The cells were cultivated in F-12K medium supplemented with 10% fetal bovine serum 

(ATCC) and antibiotics (pen-strep, MP Biomedicals) in 100x20 mm tissue culture treated dishes 

(Greiner bio-one) and subcultured every 2-3 days. One day prior to experimental use, they were 

grown to 80-90% confluency and split at a ratio of 1:1.  

A549 epithelial cell adherence assay.  Adherence was measured by incubation of A549 cells 

with GFP-tagged P.aeruginosa harboring pMRPQ-1 (6).   A549 cells were harvested by 

treatment with 1 mL trypsin (0.25%, Hyclone) for 10 minutes followed by gentle pipetting to 

remove any adherent cells.  Live harvested cells were quantified by using erythrosin B (10% in 

PBS, Fisher) exclusion dye and counted on a hemocytometer. 1.5 x 105 A549 cells were 

resuspended in 300 μl of F-12K medium plus 10% fetal bovine serum.  GFP-tagged P. 

aeruginosa was added to the cells at a multiplicity of (100:1) and rotated end over end at room 

temperature in a 1.5 ml microcentrifuge tube for 15 min.  The cells were washed twice with 500 

ul of FACS buffer (3% BSA, 0.02% sodium azide, 1 mM EDTA in PBS) and analyzed for GFP 

fluorescence using a Becton Dickinson FACSAria. Ten thousand cells were counted in each 

sample. Data was analyzed using Flowjo software 8.8.2.  Threshold gates were drawn based on a 

no bacteria control. Results reported as a percentage of PAO1 treated cells. All experiments were 

conducted in triplicate with three independent trials. Within each trial, data was normalized to 

the average adherence percentage of PAO1. The average normalized percentage of each trial was 

then calculated and used in statistical analysis. Student’s t-tests were performed to determine 

reported P-values.  
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RESULTS 

MudPIT detection of peptides in PAO1 kinB mutant and PAO1 kinB/rpoN double mutant.  

KinB is a histidine kinase of a two-component signal transduction system with the alginate 

response regulator AlgB (27).  In our previous studies, we observed inactivation of alginate 

regulator kinB in PAO1 caused alginate overproduction (Fig. 1) (5).  This suggested KinB is a 

negative regulator of alginate production in wild type mucA strain PAO1.  Since inactivation of 

kinB causes mucoidy (PAO1kinB::aacC1), we hypothesized AlgU dependent gene products, as 

well as genes controlled by KinB-AlgB, would be upregulated.  We sought to identify proteins 

upregulated in the kinB mutant to discover members of the KinB regulon.  To do so, we 

subjected total protein extracts to Multidimensional Protein Identification Technology (MudPIT) 

analysis.  MudPIT analysis utilizes two liquid column chromatographic separations and tandem 

MALDI TOF-MS peptide fingerprinting to identify peptides in a complex sample.  Conditions of 

these experiments allowed survey of the peptides present in the highest concentrations in the 

proteomes analyzed.   

 Alginate production by the kinB mutant requires rpoN (5).  Therefore we compared the 

proteomes of kinB mutant and the nonmucoid kinB/rpoN double mutant.  MudPIT analysis 

shows peptides in a complex sample that are in the highest concentration.  In mucoid 

PAO1kinB::aacC1, AlgD was present but absent in the kinB/rpoN double mutant (Table 2).  

AlgD, or GDP-mannose 6-dehydrognease, is responsible for the initial enzymatic steps 
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Figure 1.  Colony morphologies of P. aeruginosa PAO1 and isogenic mucoid variant 
PAO1kinB::aacC1.  Inactivation of kinB in PAO1 causes alginate overproduction (5). 
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Table 2.  Proteins identified in total protein lysates of mucoid strain PAO1kinB::aacC1 and nonmucoid strain 
PAO1kinB::aacC1ΔrpoN as determined by LC-MALDI TOF-TOF mass spectrometry.  
 
 
Strain locus (protein 

name) 

relative % of 
identified 
peptides 
within sample Description (functional class) 

PAO1kinB::aacC1   
 PA4739* 16.6 hypothetical protein (unknown) 
 PA0594 (SurA) 14.1 peptidyl-prolyl cis-trans isomerase (chaperones & heat shock proteins) 
 PA2518 (XylX) 10.7 toluate 1,2-dioxygenase alpha subunit (carbon compound catabolism) 
 PA0041*  8.8 probable hemagglutinin (toxins, enzymes, alginate) 
 PA3540 (AlgD) 8.6 GDP-mannose 6-dehydrogenase (toxins, enzymes, alginate) 
 PA2412 8.3 hypothetical protein (unknown) 
 PA2687 (PfeS) 7.8 two-component sensor histidine kinase (regulatory systems) 
 PA4385 (GroEL) 7.2 GroEL protein (chaperones & heat shock proteins) 
 PA2169* 5.5 hypothetical protein (unknown) 
 PA3692 (LptF) * 5.5 outer membrane protein (membrane proteins) 
 PA4277 (TufB) 5.5 elongation factor Tu (post-translational modification) 
 PA4922 (Azu)* 1.5 azurin precursor (energy metabolism) 
    
PAO1kinB::aacC1ΔrpoN   
 PA4922 (Azu) * 15.4 azurin precursor (energy metabolism) 
 PA1754 (CysB) 14.0 transcriptional regulator (amino acid biosynthesis and metabolism) 
 PA1337 (AnsB) 13.2 glutaminase-asparaginase (amino acid biosynthesis and metabolism) 
 PA5339 9.5 hypothetical protein (unknown) 
 PA5242 (Ppk) 7.4 polyphosphate kinase (nucleotide biosynthesis and metabolism) 
 PA4336 7.3 hypothetical protein (unknown) 
 PA4385 (GroEL) 6.3 GroEL protein (chaperones & heat shock proteins) 
 PA2952 (EtfB) 5.5 electron transfer flavoprotein beta-subunit (energy metabolism) 
 PA4244 (RplO) 3.8 ribosomal protein L15 (post-translational modification) 
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 PA3686 (Adk) 3.3 adenylate kinase (nucleotide biosynthesis and metabolism) 
 PA0962 2.8 probable DNA-binding stress protein (adaptation) 
 PA3611 2.3 hypothetical protein (unknown) 
 PA0888 (AotJ) 2.0 arginine/ornithine binding protein (transport of small molecules) 
 PA3021 1.4 hypothetical protein (unknown) 
 PA0329 0.8 hypothetical protein (unknown) 
 PA2743 (InfC) 0.8 translation initiation factor IF-3 (post-translational modification) 
 PA0456  0.6 probable cold-shock protein (adaptation) 
 PA0981 0.6 hypothetical protein (unknown) 

 PA1804 (HupB) 0.5 
DNA-binding protein HU (replication, recombination, modification, and 
repair) 

 PA1852 0.2 hypothetical protein (unknown) 
 PA2622 (CspD) 0.6 cold-shock protein (adaptation) 
 PA2966 (AcpP) 0.6 acyl carrier protein (Fatty acid and phospholipid metabolism) 
 PA3031 0.5 hypothetical protein (unknown) 
 PA3745 (RpsP) 0.6 ribosomal protein S16 (replication, recombination, modification, and repair)
 
* Indicates protein has been shown to be regulated by quorum sensing. 
a PA loci number designations are according to the Pseudomonas Genome Project http://www.pseudomonas.com.   
b This value refers to the relative quantity of the protein within the sample.  The value is calculated by comparison of number of amino 
acids identified corresponding to the full length peptide.  The ratio of the identified peptides within the sample was also normalized 
against the various lengths of the expected lengths of the peptides and displayed as percent of peptides identified within the sample. 
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leading to alginate production in P. aeruginosa.    Another differentially expressed peptide 

observed between the two proteomes of the kinB and the kinB/rpoN double mutant was azurin 

(PA4922) (Table 2).  Azurin is a quorum sensing (QS) regulated redox protein that is located in 

the periplasm (30, 41).  Azurin is secreted by P. aeruginosa in response to eukaryotic proteins 

and induces apoptosis of macrophages (47).  In the kinB mutant, azurin comprised 1.5% of 

peptides identified; however, in the kinB/rpoN mutant, azurin represented 15.4% of peptides 

identified.   

 Five of the twelve peptides identified in the kinB mutant have been implicated to be 

controlled by QS (Table 2).  QS regulated proteins were observed in the kinB mutant but only 

one (azurin) in the kinB/rpoN double mutant.  PA4739 is a small periplasmic hypothetical 

protein that has been shown to be upregulated in response to QS signals (36) and hydrogen 

peroxide (34).  PA0041 is similar to Bordetella pertussis haemagglutinin exoprotein (20).  

PA0041 was detected in the kinB mutant but not the kinB/rpoN double mutant (Table 2).  Since 

PA0041 is a secreted protein, it may be a component of the exopolysaccharide matrix of the kinB 

mutant (Fig. 1).  

Identification of mucoidy-coupled lipotoxin F.  The periplasmic chaperone, SurA, was 

identified in the kinB mutant (Table 2).  SurA has been shown to assist in folding of outer 

membrane proteins OmpA, OmpF and LamB in E. coli (21).  In our analysis, only one potential 

outer-membrane protein was observed, PA3692 or LptF (12).  Many lipoproteins or lipotoxins 

have been shown upregulated in mucoid mucA mutants (12) and in the presence of the cell wall 

inhibitor D-cycloserine (44).  According to the Pseudomonas Genome Database V2 

(http://www.pseudomonas.com) LptF (PA3692) is a conserved OmpA-like lipoprotein.  The C-

terminal 110 residues are 49% identical to P. aeruginosa major porin OprF.  We observed LptF 

http://www.pseudomonas.com/
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was upregulated in the kinB mutant however absent from the kinB/rpoN double mutant (Table 2).  

To validate the observations from the MudPIT analysis, total protein extracts of PAO1 and 

PAO1kinB::aacC1 were separated on SDS-PAGE and visualized by Coomassie staining (data 

not shown).  A significantly up-regulated protein was observed in PAO1kinB::aacC1 total 

protein extracts with an apparent mass of 27 kDa (Fig. 2 Lane 2).  The protein was identified as 

LptF (PA3692) by direct peptide fingerprint analysis.    

LptF is an outer-membrane protein.  Computation analysis of the P. aeruginosa genome 

shows LptF has a predicted type II signal peptide for export (24).  To confirm LptF is in fact an 

outer-membrane protein, outer-membrane proteins from PAO1 and PAO1kinB::aacC1 were 

prepared by the sarkosyl method.  Total protein extracts and sarkosyl insoluble proteins were 

separated and visualized by silver staining (Fig. 2).  LptF is upregulated in the outer-membrane 

protein fraction of PAO1kinB::aacC1 however it is also present in PAO1 (Fig. 2 Lanes 3 and 4).  

Lipotoxins have been shown to activate the host inflammatory response (12) however their 

physiological functions have not been investigated, and therefore we further characaterized 

lipotoxin F.    

Expression of PlptEF is AlgU-dependent and up-regulated in CF isolates. We reasoned that 

since LptF was up-regulated in mucA mutants (12) and in the mucoid kinB mutant, it was likely 

AlgU-dependent.  LptE and LptF are encoded in the genome as an operon (12).  Interestingly, 

the lptEF promoter does not contain an AlgU consensus sequence (12).  A lacZ fusion with the 

lptEF promoter was constructed and integrated into the P.aeruginosa chromosome to compare 

expression of PlptEF in various strains.  PlptEF was active in nonmucoid strains PAO1 and PA14 

(Fig. 3).  PlptEF expression was observed  
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Figure 2.  SDS-PAGE of total and outer-membrane proteins from P. aeruginosa strains PAO1 
and PAO1kinB::aacC1 reveals LptF is an outer-membrane protein.  Outer-membrane proteins 
(OMP) were isolated from total protein lysates by precipitation in 2% sarkosyl.  60 μg of protein 
preparation was separated and submitted to silver staining.  The apparent molecular masses are 
indicated based on comparison of protein ladder standards (10-250 kDa).  The arrow indicates 
the position of LptF in the separations.
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to be AlgU-dependent and can be restored upon expression of AlgU in trans (Fig. 3).  Also 

deletion of algU from PAO1kinB::aacC1 caused complete loss of detectable PlptEF (Fig. 3).   

 Since it was clear lptEF expression was AlgU-dependent from previous research and data 

observed in this study, we hypothesized mucoid CF isolates would have increased expression of 

the lptEF promoter.  Strain 383 is a nonmucoid CF isolate (15) and strain 2192 is an isogenic 

strain to 383 with a mucA mutation (15).  Interestingly, PlptEF was upregulated in both nonmucoid 

CF isolate 383 and mucoid CF isolate 2192 (Fig. 3) compared to lab strain PAO1 (Fig. 3).  

However, no PlptEF expression was detected in nonmucoid CF149.  This infers that CF149 may 

harbor an algU mutation.  When we sequenced algU and mucA in CF149, we found this strain 

carries both algU and mucA mutations. The algU gene of CF149 has a missense mutation (C182 to 

T182) resulting in amino acid change from Ala61 to Val61.  The mucA mutation is deletion of a C 

at 374 which causes a frameshift with the formation of a premature stop at TGA386 (GenBank 

accession FJ649224).  This further suggests PlptEF expression is AlgU-dependent.  Several other 

CF isolates showed high lptEF expression (Fig. 3).  Even within one CF sputum sample several 

morphologies were observed and each exhibited a different level of lptEF expression (Fig. 3 

strains CFO23o,s,w).  These results show the lptEF promoter is AlgU-dependent and 

upregulated in CF isolates. 

LptF is not required for alginate production.  Envelope proteins such as MucE can activate 

alginate overproduction in P. aeruginosa through regulated proteolysis of MucA by the serine 

protease AlgW (32).  Since LptF was highly upregulated in the mucoid kinB mutant, we 

examined if LptF expression plays a role in the signal transduction which leads to AlgW-

dependent alginate production of this strain (5).  To test this, lptF was deleted from 

PAO1kinB::aacC1.  However, both the kinB mutant and the kinB/lptF double mutant 
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Figure 3. The  β-galactosidase activity from PlptEF-lacZ reporters constructs integrated to the chromosome at the attB site (18) in 
laboratory and cystic fibrosis isolates.  Note expression of the lptEF promoter requires AlgU and lptEF expression is upregulated in 
CF isolates.  NM indicates the strain is nonmucoid and M indicates the strain is mucoid.  
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produced approximately 100 μg/ml/OD600 of alginate.  Furthermore, overexpression of lptF in 

PAO1 from the PBAD promoter of pHERD20T did not stimulate alginate production above the 

normal nonmucoid level (30 μg/ml/OD600).  These results suggested LptF does not activate 

alginate production.  Therefore we concluded that LptF is likely co-expressed with alginate and 

is not involved in the signaling pathway leading to alginate production.    

Deletion of lptF caused increased resistance to hydrogen peroxide in PAO1, but increased 

susceptibility to hypochlorite.  In the cystic fibrosis lung, P. aeruginosa produces alginate for 

protection (14).  Since LptF is up-regulated along with alginate production, we hypothesized 

LptF may serve as a protective factor.    We first generated a PAO1 lptF deletion mutant and 

observed no changes in growth rate compared to PAO1 showing lptF is not an essential gene 

(data not shown).  We next examined if LptF has a protective role against hydrogen peroxide and 

hypochlorite.  To test the role of lptF regarding cell membrane integrity, susceptibility assays 

were performed with hydrogen peroxide and hypochlorite (Table 3).  Interestingly, PAO1ΔlptF 

was more resistant to hydrogen peroxide than PAO1 (Table 3).  However, deletion of algU did 

not result in the same level of resistance to hydrogen peroxide.  Deletion of lptF caused 

significantly increased susceptibility to NaOCl (Table 3).  Neutrophils utilize generation of 

oxidants to kill microbes and  mucoid mutants are more resistant hypochlorite killing (22).  

Deletion of algU and lptF caused increased susceptibility to NaOCl (Table 3).  This data 

suggests the AlgU-dependent proteins such as LptF may protect P. aeruginosa from NaOCl 

killing.   

Deletion of rpoN or lptF decreases adhesion to A549 lung epithelial cells.  Most lipotoxins are 

small lipoproteins that are likely housed in the inner-leaflet or periplasm.  However LptF is an 

outer-membrane protein (Fig. 2).  E. coli OmpA can participate in adhesion to surfaces and 
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Table 3. Altered sensitivity of P. aeruginosa strains to hydrogen peroxide and hypochlorite. 
   

Growth inhibition zone 
(mean radius [mm]  ± SE)b 

 
Strain a 

 
10% H2O2 
 

 
 6% NaOCl 
 

Lab strain 
 
PAO1  9.7  ± 0.3   8.2 ± 0.4 
PAO1ΔlptF   7.8 ± 0.2c   10.7 ± 0.3d 
PAO1ΔalgU 12.0 ± 0.8   12.2 ± 0.2d 
 

a PAO1 is wild-type nonmucoid P. aeruginosa strain.  For statistical analysis isogenic strains 
were compared to PAO1.  
b Sensitivity to killing hydrogen peroxide and hypochlorite is expressed as zones of inhibited 
growth around filter disks impregnated with 10μl of solution indicated.  Zones were measured 
after 24 h at 37oC and are the means of three experiments.  
c Indicates the strain was more resistant to killing than PAO1. Students unpaired t-test; two 
tailed.(p<0.05). 
d Indicates the strain was more susceptible to killing that PAO1. Students unpaired t-test; two 
tailed (p<0.05) 
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interactions with cells (40), therefore we were interested to see if LptF also has a role in adhesion.  

To test this hypothesis, we performed adherence assays with A549 lung epithelial cells. A 

constitutively GFP-expressing plasmid pMRPQ-1 (6) was conjugated into PAO1, PAO1ΔrpoN, 

PAO1ΔlptF and mucoid strain PAO1kinB::aacC1. Pili and flagella expression are controlled by 

rpoN (19, 43).  TRL5, which is expressed on A549 cells, recognizes flagellin and promotes 

adherence of bacteria to cell surfaces (16). Thus, PAO1ΔrpoN serves as a negative control for 

adhesion for our experiments. Epithelial cells were incubated with indicated bacteria strains for 

15 minutes at room temperature. The cells were then washed twice and analyzed immediately by 

flow cytometry. Threshold gating was used to determine the percentage of GFP positive cells 

(Fig. 4A), which is indicative of the adherence of the bacteria to the A549 cells.  PAO1 readily 

adhered to A549 cells, and as expected, deletion of rpoN substantially decreased adhesion (Fig. 

4B and 4C).  In the absence of lptF, adhesion to A549 cells decreased to 71.5% ± 7.9 compared 

to PAO1 (Fig. 4B).  This data suggests that lptF is required in PAO1 for maximal adhesion to 

A549 cells.  LptF is highly upregulated in PAO1kinB::aacC1, which produces copious amounts 

of alginate (Fig. 1).  However, PAO1kinB::aacC1 adherence is reduced compared to PAO1 (Fig. 

4B).   

  

DISCUSSION 

 P. aeruginosa pulmonary infections cause detrimental and irreversible damage to the CF 

patient.  Alginate overproduction by P. aeruginosa occurs in response to the conditions of the CF 

lung.  Lipotoxins are co-expressed with alginate genes.  We observed LptF was the only 
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Figure 4. Adherence of P. aeruginosa to A549 lung epithelial cells.  4A. Flow cytometry threshold gating of GFP positive A549 cells.  
GFP positive A549 cells were determined by threshold gating based on A549 cells without GFP-tagged P. aeruginosa cells.  55.8 % 
of A549 cells were positive for GFP-tagged PAO1. 4B. Relative percent adhesion of GFP-tagged P. aeruginosa strains to A549 cells.  
Values were normalized to the observed amount of GFP-tagged PAO1 adhesion to A549 cells.  Experiments were performed in 
triplicate with three independent studies.  A student’s t test was performed for comparison of each of the isogenic mutants to PAO1.  
Asterisks indicate significant differences (*** p<0.00001; *p<0.001).  4C. A549 lung epithelial cell with adherent GFP-tagged 
(pMRPQ-1) PAO1 cells. 
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lipotoxin identified in MudPIT proteome analysis of the mucoid kinB strain.  We also confirmed 

LptF is an outer-membrane protein (Fig. 2).  LptF upregulation in mucoid cells (10-12, 44) 

suggests that LptF may have roles in establishment of mucoid biofilms.  Collectively this data 

warranted that further investigation was necessary.   

We first examined lptF expression and confirmed lptF expression is controlled by AlgU.  

(Fig. 3).  PlptEF expression is upregulated in both nonmucoid and mucoid CF isolates (Fig. 3).  

Since lptF expression is dependent upon AlgU and the lptEF promoter does not have an AlgU 

consensus sequence, there are two possible mechanisms for AlgU expression of lptF.  Either 

AlgU drives transcription of LptF directly or indirectly through expression of another 

transcription factor.  Ultimately, LptF expression depends on the master regulator of alginate, 

AlgU.  

To further characterize LptF, we generated an unmarked deletion mutant for downstream 

analysis.  PAO1ΔlptF was assayed for survival against killing by hydrogen peroxide and 

hypochlorite.  Our data suggests that LptF has a role in resistance against hypochlorite; however, 

the deletion of lptF causes increased resistance to hydrogen peroxide.  This differential suggests 

LptF protection may be specific for certain niches or environments.  In the CF lung P. 

aeruginosa forms biofilms (38) and colonization of the CF lung occurs first by nonmucoid 

strains (3).  These early colonizing strains then establish an immunostimulatory phase of 

infection (8) resulting in increased inflammation.  Mucoid biofilm conversion occurs due to 

mutations in the anti-sigma factor mucA (28).  Furthermore, with conversion to mucoidy comes 

upregulation of the stimulatory lipotoxins.  Lipotoxins, like LptF stimulate inflammatory 

responses through TRL2 (12).  Motile strains with flagella activate TRL5 recognition (48).  

Therefore, immune responses due to the presence of P. aeruginosa occurs starting with the initial 
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infection and continues through the rest of the CF patient life due to inability to eradicate P. 

aeruginosa from the CF lung (4).   

Our data shows that deletion of rpoN, which controls expression flagella and pili (19, 43), 

severely attenuated adhesion to A549 epithelial cells.  Flagella and pili are both required for 

early biofilm formation (31). PAO1ΔlptF which is motile like PAO1 (data not shown) adheres to 

A549 cells to a lesser extent than PAO1.  This suggests LptF is likely recognized independently 

by epithelial cells which may allow P. aeruginosa to attach to the tissue surface.  Alternatively 

the loss of LptF could result in blockage of transport of extracellular factors necessary to adhere 

to epithelial cells.  PAO1kinB::aacC1 adhered to A549 cells less than PAO1.  Although 

PAO1kinB::aacC1 produces alginate there are other factors such as repression of motility factors 

by AlgU (2, 42) which could affect adherence.       

Lipotoxins such as LptF likely not only cause the inflammatory response and detrimental 

tissue damage in the CF lung, but may also protect P. aeruginosa and preserve the biofilm.  

MudPIT proteomic analysis of the mucoid kinB mutant suggests AlgU-dependent LptF is the 

major lipotoxin expressed in the mucoid strain proteome (Table 2).  Unlike most of the other 

lipotoxins, LptF is an outer-membrane protein (Fig. 2).  We also observed lptF expression was 

upregulated in CF isolates (Fig. 3), and LptF may have roles in protection (Table 3) and adhesion 

to lung epithelia (Fig. 4).  Since LptF is highly expressed in mucoid strains that cause chronic 

infection, it will be interesting to use synthetic peptides to further analyze the activation of the 

specific inflammatory response to LptF.  Recently, azithromycin has been shown to 

downregulate expression of lipotoxins LptF, LptE, LptD, SlyB, OsmE and PA1323 (39).  Also 

other macrolides have been shown to alter biofilms (45).  Therefore, therapeutic treatments with 
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azithromycin may be able to lessen the potential respiratory tract damage caused by P. 

aeruginosa  lipotoxins, such as LptF. 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS 

 It is critical to elucidate the mechanisms by which P.a. can overproduce alginate 

because this phenotype directly affects the health and mortality of CF patients.  The 

classical mechanism of conversion to mucoidy has been established; however, data 

presented here in this dissertation indicates there are other negative regulators of alginate 

production.  These negative regulators are likely part of signal transduction pathways 

which could be utilized by P.a. when infecting the CF lung.  In this chapter the data from 

this dissertation will be summarized and new lines of research will be proposed. 

 

Controllable expression vectors in Pseudomonas 

 In Chapter 2 of this dissertation, the construction and validation of a new set of 

vectors for controlled gene expression were described.  Throughout this dissertation 

pHERD vectors were extensively utilized in a number of experiments.  In Chapter three, 

pHERD-based vectors were used for complementation studies such as gene expression to 

examine the effect on mucoid phenotype (Chapter 3, Fig. 2), and for analysis of promoter 

strength through a reporter assay (Chapter 3, Fig. 3).  Next, pHERD vectors were utilized 

for conditional expression of an HA-eptiope-tagged MucA (Chapter 3, Fig. 4B).  By 

tagging the gene, a commercial antibody could be utilized for detection of the peptide 

though Western Blot analysis.  However, one pitfall to these experiments is that the data 

is merely an average of all degradation events of the HA-tagged peptide and thus do not 

provide kinetic data describing the actual degradation.  To eliminate this downfall, a 

novel method for kinetic analysis was developed and performed.  Addition of arabinose 

causes the AraC transcriptional regulator of the PBAD promoter to be deactivated and 
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allows transcriptional initiation of the PBAD promoter.  Furthermore, glucose has been 

shown to repress PBAD promoter expression due to the catabolite repression.  This was 

utilized to reduce leaky expression of the PBAD promoter, allowing more accurate 

measurement the amount of HA-tagged MucA over time to determine the rate of 

degradation (Chapter 3, Fig. 5).  Conditional expression of the target gene via the PBAD 

promoter allowed these experiments to provide useful data.  In Chapter 4 the pHERD 

vectors were used for truncation analysis of MucD to determine the roles of the PDZ 

domains in suppression of alginate production (Chapter 4, Figs. 1, 2 and 3).  Since the 

pHERD vectors replicate in E. coli, Western blot analysis of the pHERD-mucD 

constructs could be performed in E. coli as well as P.a. (Chapter 4, Fig. 2A).  Each of the 

pHERD-mucD constructs were then used for complementation analysis in tandem with 

Western blotting (Chapter 4, Fig. 2B).  This analysis provided an interesting observation 

regarding the stability of the truncated MucD proteins, which will be discussed in detail 

later in this chapter.  In Chapter 5 of this dissertation LptF was overexpressed to test the 

hypothesis that it was responsible for the high alginate production in the kinB mutant.  

Overexpression of LptF did not affect alginate production, and therefore showed it was a 

co-expressed factor that was later shown to be controlled by AlgU.  Collectively, the data 

described in these chapters shows the high utility of the pHERD vectors in P.a.  However, 

modification of these vectors would increase their usefulness; therefore, potential 

modifications to pHERD will be discussed. 

 pHERD vectors carry bla (pHERD20T), aacC1 (pHERD30T), tet (pHERD26T), 

and dfRII (pHERD28T), which encode antibiotic resistance genes for ampicillin, 

gentamicin, tetracyline, or trimethoprim, respectively.  Many genetically altered strains 
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are produced via transposon insertions.  Therefore it would be useful to have pHERD 

vectors with other antibiotic markers for compatability.  Recently a new antibiotic 

resistance marker has been characterized for resistance to Zeocin, which is a member of 

the bleomycin family of antibiotics isolated from Streptomyces.  The pHERD series of 

vectors could be expanded by insertion of the Sh ble gene from Streptoalloteichus 

hindustanus.  With this marker Zeocin could be used to select for pHERD.  The addition 

of a new marker to the pHERD series would be beneficial; however, addition of other 

selection markers could also improve their usefulness. 

 The Bacillus subtilis gene sacB encodes levansucrase.  Levansucrase hydrolyzes 

sucrose and synthesizes levans, which are high molecular weight fructose polymers. In 

most gram negative bacteria, expression of sacB in the presence of sucrose kills the 

organism.  This counter-selection marker is especially useful for curing or removing 

plasmids.  To cure a plasmid, the strain is maintained in media lacking antibiotic 

selection corresponding to the plasmid.  Then isolates from the culture are screened for 

sensitivity to the antibiotic due to the loss of the plasmid.  However, most plasmids are 

maintained as multicopy within bacteria; therefore, it is routine to screen hundreds to 

thousands of isolates to cure a muticopy plasmid.  Addition of a sacB gene to the pHERD 

vectors would allow easy curing by selecting isolates that are resistant to sacB and 

therefore have lost the plasmid.   

In some instances the fact that pHERD vectors are multicopy is not optimal due to 

the fact that some experiments require low expression of the modulated genes.  Single or 

low copy pHERD vectors would also improve their utility.  The data presented in this 

dissertation shows that the PBAD promoter is useful in P.a.; however, a decrease in copy 
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number would better simulate gene expression conditions in vivo (Chapter 2).  Direct 

integration of the PBAD promoter and the araC gene onto the chromosome of P.a,  

would also improve the series.  The PBAD promoter and araC gene could be fused onto 

a chromosomal shuttle vector such as miniCTX and integrated onto the chromosome.  

Then the tet resistance gene from miniCTX could be removed via FLP recombinase 

(encoded on pFLP2) (3, 4).  PBAD promoter expression from a single copy would be 

very useful for expression of highly regulated toxic genes that even pHERD vectors 

cannot express.  Also, the fact that the expression system is integrated into the 

chromosome give the geneticist another antibiotic marker for selection.                     

 Throughout this dissertation the hemagglutin (HA) tag has been used for eptitope 

tagging of proteins expressed from pHERD vectors.  By incorporating the coding 

sequence of HA into the flanking PCR primers the HA tag can be put on either the N- or 

C-terminus or internally through crossover PCR techniques.    In data not shown here, we 

have also utilized other tags such as the 6X histidine tag which have been useful for 

purification of proteins by affinity chromatography.  Pseudomonas species have a high 

amount of histidine-rich proteins.  Therefore proteins are not effectively isolated with the 

use of nickel affinity for 6XHis-tagged proteins.  Therefore, a translation fusion of a 

maltose-binding protein would be an improvement for isolation and purification.  To 

isolate small proteins, a translational fusion of maltose binding protein (MBP) could be 

added in front of the multiple cloning site of pHERD vectors.  MBP will bind amylose, 

which would allow for affinity chromatography purification.   Since MBP contains a 

protease site on its C-terminus, the fusion could be cleaved and thus release the protein of 

interest. 
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 pHERD vectors have been utilized throughout this dissertation and in other 

publications (8, 9).  However, here several improvements have been suggested to these 

vectors to better arm the Pseudomonas geneticist for testing hypotheses. 

 

Negative regulation of Alginate biosynthesis by KinB and MucD 

   From the data presented in Chapters 3 and 4 of this dissertation, it was clear that 

the histidine kinase KinB and the serine protease MucD are both negative regulators of 

alginate biosynthesis.  Both KinB and MucD affect AlgU activity; however, it is evident 

that they utilize divergent pathways.  In this section, the similarities and differences will 

be discussed and future lines of research will be proposed.   

The kinB gene was first identified and characterized before the P.a. strain PAO1 

genome was completely sequenced (7).  kinB is encoded in an operon with algB (7).  

Based on its homology with Bacillus subtilis PhoR, KinB was characterized as a histidine 

kinase (7).  Since most two-component systems such as NtrBC use phosphorylation of 

the response regulator by the histidine kinase to activate specific gene expression, it 

would have been expected that KinB phosphorylation of AlgB activates alginate 

production.  However, inactivation of kinB in mucoid mucA mutant FRD1 does not block 

alginate production (6).  It is clear KinB can phosphorylate AlgB (7); however, 

phosphorylation of AlgB is not required for alginate production (6).  Collectively, these 

studies suggested that KinB does not play a positive role in alginate production.  In 

Chapter 3 of this dissertation, nonmucoid strain PAO1 was mutagenized with the mariner 

family transposon pFac (11).  Inactivation of kinB, as well as an in-frame deletion of kinB 

caused alginate production (Chapter 3, Fig. 1).  These data reclassify KinB as a negative 
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regulator of alginate production.  Therefore, in the absence of KinB, alginate production 

goes uncontrolled. 

Since KinB has been shown to phosphorylate AlgB, it was hypothesized that algB 

would be required for alginate production.  Alginate production was dependent upon 

algB (Chapter 3, Fig. 1).  However, when an AlgB that carried a mutation of the 

predicted phosphorylation site from an aspartic acid to an asparagine (D59N) was 

expressed, alginate production could continue to occur (Chapter 3, Table 2).  Since AlgB 

is a NtrC-family response regulator it harbors a σ54 interacting domain 

(http://www.pseudomonas.com/getAnnotation.do?locusID=PA5483).  Deletion of rpoN 

(σ54) from the kinB mutant also blocks alginate production.  Since P.a. strain PAO1 has a 

wild-type mucA gene, it could be postulated that one of three main mechanisms could 

occur and cause alginate production independent of the classical mucA mutation.  The 

first possibility is that PalgD transcription could be directly activated by RpoN; however, 

no data supports this possibility since all mucoid strains characterized require algU.  The 

second possibility is that PalgU transcription could occur and result in a high amount of 

AlgU in the cells.  In data not presented here, it was observed that alginate production in 

the presence of high expression of AlgU can occur in PAO1ΔalgW.  Therefore, it is likely 

AlgW may not be required when an ultra-high AlgU expression is occurring.  PAO1kinB 

mucoid mutants require algW (Chapter 3 Fig. 2B) for alginate production.  This data 

strongly suggests a third possible mechanism whereby derepression of MucA is occurring 

via proteolyic degradation by the serine protease AlgW.   

 Since it seemed AlgW was responsible for the activation of AlgU, this hypothesis  

was tested by promoter-reporter fusions and complementation.  PAO1-based strains with 

http://www.pseudomonas.com/getAnnotation.do?locusID=PA5483
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primary mutations or deletions of kinB received chromosomal integrations of PalgU and 

PalgD fused with lacZ as a reporter for promoter expression.  To show the mutations were 

valid, pHERD-based constructs were introduced in trans and the mutations were 

complemented (Chapter 3, Fig. 3).  From this data, it was clear that both PalgU and PalgD 

activity in kinB mutants requires algU, algB, rpoN, and algW.  It was expected that algU 

and algW would be required for PalgU activity; however, it was unexpected that algB or 

rpoN would be required.  AlgB and RpoN, as reported in Chapter 1, have been implicated 

in control of alginate production at the level of PalgD.  Since algW, algB and rpoN were 

required for alginate production it was hypothesized that they may all contribute to 

proteolysis of MucA.  It would be expected that AlgW would play a role in MucA 

degradation.  The hypothesis that algW, algB and rpoN all affect MucA degradation was 

tested by examining degradation of a HA-tagged MucA protein expressed from pHERD-

based vectors (Chapter 3, Fig. 4).  kinB double mutant strains of algW, algB, and rpoN all 

displayed the same HA-MucA degradation profile with an accumulation of a 19 kDa 

peptide (Chapter 3, Fig. 4B).  Using pHERD conditional expression a higher rate of 

degradation of HA-MucA was observed in a kinB mutant than PAO1 (Chapter 3, Fig. 5).  

These data established that KinB controls alginate production through AlgW proteolysis; 

however, this pathway has not been completely elucidated.   

 The data from Chapter 3 proposed two main models.  In Model 1 (Chapter 3, Fig. 

6) the kinB mutation causes loss of expression of a periplasmic protease that is 

responsible for chaperoning or degrading AlgW-activating proteins.  In Model 2 

AlgB/RpoN are responsible for expression of AlgW-activating proteins when kinB is 

inactivated.  Since phosphorylation of AlgB by KinB does not seem to be required for 
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alginate production, KinB could perform phosphatase activity towards AlgB.  Thus, when 

AlgB is un-phosphorylated, AlgB is active, and together with RpoN, increase expression 

of AlgW activating proteins.  Both models indicate that AlgW activating proteins are up-

regulated to a level that allows AlgW to cleave MucA and activate alginate biosynthesis.  

In Chapter 5 proteomic analysis of the kinB mutant was performed (Chapter 5, Table 2).  

Within the list of peptides identified by mass spectrometry, there are no proteins that 

harbor C-terminal AlgW-activating sequences that have been previously identified (9).  It 

is possible the AlgW-activating protein does not have a “typical” C-terminal sequence.  

In order to probe and locate the AlgW activating protein total transcriptome analysis must 

be performed.  Transcriptome analysis has not been performed with the kinB mutant; 

however, recent data has shown that cell wall syntesis antibiotics can up-regulate an 

AlgW-dependent pathway (12).  Inhibitors of the cell wall synthesis cause activation of 

AlgU.  However, no protein capable of activating AlgW was recognized or identified 

(12).  Therefore, it is possible that the expression of AlgW activating proteins is low.  In 

this model, it would be expected that AlgW-activing proteins are expressed at a low level 

but when stress conditions arise, then these proteins could be misfolded or released from 

the outer membrane to activate AlgW and the AlgU stress response.             

The models proposed in Chapter 3 were constructed based on the absence of 

KinB.  However, since KinB is a histidine kinase it is likely that it is capable of sensing 

environmental conditions and modulating the pathway that is constitutively active.  If the 

KinB pathway is high in the chain of sensory events, then it would be expected that the 

chaperone/protease MucD could modulate the signals of the KinB pathway.  Since MucD 

is both a protease and a chaperone either of these functions may be play role.  However, 
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data presented in Chapter 4 show that the mucoidy of the kinB mutant cannot be 

complemented by over-expression of MucD (Chapter 4, Table 3).  In Chapter 4, the 

pathway modulated by the negative regulator MucD is characterized.  When mucD is 

inactivated, algW is not required for alginate production; however, mucP is required 

(Chapter 4, Table 2).  Therefore, it is clear that MucD and KinB control divergent 

pathways.  It is also known that the small periplasmic protein MucE can activate AlgW 

(9), and in Chapter 4, it was shown that overexpression of MucD can block MucE 

mucoidy (Chapter 4, Table 3).  From this data, it can be implied that the KinB pathway 

does not flow through MucE expression.  In fact, in data not shown, this was confirmed 

by inactivation of mucE in the kinB strain.  Interestingly, a periplasmic protease has been 

observed in the proteome of the kinB mutant.  In Chapter 5, Table 2, SurA, a 

chapterone/protease, was identified in the kinB mutant but not in the kinB/rpoN double 

mutant.  From this data it can be suggested that SurA may be the negative regulator of the 

KinB signals but in the absence of kinB the signals overcome the regulation of the 

protease.  The role of SurA in the kinB mutant was not further explored, however it seems 

possible that SurA could be a regulator of alginate signals.  This could further be 

investigated by expressing SurA in various mucoid strains that use regulated proteolysis.   

The main difference between the kinB mutant and the mucD mutant is that they 

utilize different proteases to cleave MucA.  When the prototype AlgW-activator MucE is 

overexpressed, then AlgW activates proteolysis, but intramembrane MucP is also 

required (9).  The requirement of mucP was not assessed in the kinB mutant.  In the 

absence of algW, alginate production still occurs in the mucD mutant (Chapter 4 ,Table 2).  

Interestingly, when algW is overexpressed in the mucD/algW strain, then alginate 
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production is lowered.  AlgW clearly affects MucA degradation in the mucD mutant; 

however, MucA degradation relies on MucP (Chapter 4 Fig. 4).  Data presented in 

Chapters 3 and 4 shows that KinB and MucD control alginate production through 

regulated proteolysis of MucA, however each pathway uses different proteases and, as of 

now, the protease-activating proteins in each of these strains have not been identified.   

The homologue of MucD in E. coli is DegP.  DegP has been extensively 

characterized by structural models.  DegP is capable of forming large oligomeric 

structures and can either chaperone and refold or degrade periplasmic peptides when 

necessary.  MucD is coded directly downstream of algU-mucA-mucB.  mucD was 

sequenced and shown to be similar to degP of E. col  (1).  In this same study it was 

shown that inactivation of mucD causes alginate production (1).  Later it was observed 

that the proteolytic domain of MucD was required for suppression of alginate production 

(13, 15).  However, these studies did not demonstrate that MucD affected MucA 

proteolysis.  Recently, through the use of C-terminal tagged MucA, it has been shown 

that inactivation of MucD destabilizes MucA (14).  Furthermore, the aforementioned 

study suggested that AlgW was responsible for degradation of MucA (14).  Here in this 

dissertation we showed that a mucD/algW double mutant performs MucA degradation, 

resulting in high alginate production (Chapter 4).   

Data in Chapter 4 shows that MucD mediates MucA degradation.  Also the roles 

of the PDZ domains of MucD in alginate production were investigated.  The hypothesis 

of this section of the study was that since MucD was likely capable of oligomer 

formation in a fashion similar to DegP, then the PDZ domains would be critical for 

alginate suppression.  However, this hypothesis was found to not be true since MucD 
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lacking each of the PDZ domains could still suppress alginate production.  PDZ2 in DegP 

is required for oligomerization; however, since MucD without PDZ2 could suppress 

alginate production (Chapter 4, Figure 2B), then it is likely oligomerization of MucD is 

not required for alginate suppression.  Interestingly MucD with only a protease domain 

could suppress alginate production (Chapter 4, Figure 2B).  However, Western blot 

analysis revealed that loss of the PDZ domains of MucD causes instability of the peptide 

(Chapter 4, Figure 2B).  The data from this study suggests the PDZ domains may inhibit 

a phenomenon known as autocleavage.  DegP has been shown to autocleave and degrade 

after its function is completed (5).  When MucD lacks either or both of the PDZ domains 

then the peptide is less stable than full length MucD.  In E. coli the role of the PDZ 

domains have not been examined in regards to autocleaveage.  Data presented here in this 

dissertation suggests autocleavage may be mediated by the PDZ domains of MucD.   

Chapters 3 and 4 of this dissertation characterized a novel negative regulator of 

alginate (KinB) and define another novel regulator (MucD).  In either model when a 

negative regulator is inactivated either genetically or potentially by environmental 

conditions, high amounts of AlgU-mediated gene expression will occur. 

 

Lipotoxin LptF in P. aeruginosa. 

 Using a mass spectrometry approach for identification of proteins highly 

expressed in a total protein sample, Lipotoxin F or LptF was identified in the proteome of 

the kinB mutant (Chapter 5, Table 2).  LptF was then characterized as an outer membrane 

protein.  Originally it was hypothesized that LptF may be causing AlgW activation in the 

kinB mutant.  To test this hypothesis, lptF was in-frame deleted from the kinB mutant and 
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no observable difference in alginate production resulted.  It was interesting that LptF was 

so highly upregulated in the mucoid mutant.  LptF shares high homology with OprF, 

which is considered the major outer membrane porin of P.a.  This opened up the question 

as to why would a protein of high similarity to the major porin be up-regulated in the 

mucoid strain.  First, LptF was confirmed to be an outer membrane protein (Chapter 5, 

Fig. 2).  It was then hypothesized that LptF would be up-regulated in other mucoid strains.  

To test this, a PlptEF-lacZ reporter fusion was constructed.  Interestingly, mucoid and 

nonmucoid CF isolates had higher PlptEF-lacZ expression than lab strains (Chapter 5, Fig. 

3).  From these reporter assays it was also clear that AlgU affected lptF expression 

(Chapter 5, Fig. 3).  The focus of the rest of the study turned to characterizing LptF in 

nonmuciod cells.  A PAO1ΔlptF strain was constructed and tested for its resistance to 

oxidants which would be present in the CF lung.  Without lptF, PAO1 is more sensitive 

to hypochlorite (bleach), but more resistant to hydrogen peroxide (Chapter 5, Table 3).  

These data suggest that LptF has a role in resistance to oxidative stress.  OmpA is the E. 

coli homologue of OprF of P.a. and OmpA has been shown to play a role in biofilm 

formation and adhesion (10).  Using a new method of flow cytometry the role of LptF in 

adhesion against human lung epithelial A549 cells was examined.  The data showed that 

deletion of lptF affected adhesion to A549 cells.  Collectively, these data suggest LptF 

may have multiple roles.  However, the question remains to why the bacteria up-regulate 

LpF as part of the AlgU-stress response associated with alginate production.   
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SUMMARY AND CONCLUSIONS 

 The hypothesis of this dissertation was: P.a. utilizes signal transduction pathways 

which activate regulated proteolysis of MucA to regulate and control the activity of AlgU, 

the master regulator of alginate production.   Chapters 3 and 4 show that MucA 

degradation is controlled by divergent pathways with common features.  Furthermore, 

our data from Chapter 5 shows that genes controlled by AlgU can alter the physiology of 

the organism.  Fig. 1 of this chapter (Page 150) summarizes the pathways elucidated in 

this dissertation.  However, several unknowns still exist and warrant future research.  The 

AlgW-activating proteins controlled by KinB and the MucP activating proteins mediated 

by MucD need to be identified.   

 Regulated proteolysis of MucA is the doorway to inducible alginate production.  

The models studied in this dissertation provide novel data concerning this dynamic 

mechanism.  Mutations in mucA will occur and mucoid cells will be selected in the CF 

lung because they are advantageous for survival in those conditions.  However, the data 

presented here suggests that regulatory networks control inducible alginate production 

independent of mutations in mucA.  It is possible that control of alginate production by 

early P.a. strains that infect the CF lung, could permit control of the organism to a point 

of prolonging the patient-detrimental selection of constitutive mucoid mucA mutants.  

Alginate production has been observed early in the infection process before mucA 

mutations (2); therefore, it is conceivable that inhibiting the alginate pathways could 

allow eradication of P.a. and prolong the life of CF patients.     
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Figure 1. Control of regulated proteolysis of MucA in P.aeruginosa.  KinB is a novel regulator of alginate production in P.a.  
Alginate production in the absence of kinB requires algB, rpoN, and algW.  Data presented here suggests AlgB and RpoN control 
transcription of factors which can activate AlgW proteolysis of MucA.  However these factors are not mediated by the chaperone 
protease MucD.  MucD mediates a divergent set of signals which seem to activate MucP proteolysis of MucA, independent of AlgW.  
When AlgU is highly upregulated due to being released from MucA, Lipotoxin F is upregulated and expressed by the mucoid cells.  
LptF was implicated in both resistance to oxidative stress as well as adhesion to lung epithelia.  P.a. controls AlgU expression by 
mediating regulated proteolysis of MucA through signal transduction networks modulated by the sensor kinase KinB and the serine 
protease MucD.   
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