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Abstract 
Morphological and molecular analyses of the blacknose dace species 

complex (Genus Rhinichthys) in a large zone of contact in West Virginia 
Geoffrey D. Smith 

 
 
The blacknose dace species complex (Rhinichthys atratulus, Rhinichthys obtusus obtusus, 
and Rhinichthys obtusus meleagris) are among the most common freshwater fishes in 
eastern North American.  Despite this fact, the taxonomy of this group is still in question.  
This study focuses on the relationship of the members of this species complex along an 
unusually large zone of contact in the high Appalachian Mountains of West Virginia.  
Morphological, distributional, and molecular analysis of the relationships of this complex 
were conducted in this area to try to shed light on the systematics of this group.  
Morphological analysis of coloration patterns of nuptual males displayed a strong 
division between the different forms and suggested that width of coloration of the side of 
the body, coloration of lateral line stripe, coloration below Lateral Line Stripe, and 
pectoral fin nuptual pad coloration were the strongest characters in determining the 
assignment of the individuals to the respective subspecies.  Analysis of the distribution of 
the subspecies revealed a large number were found in drainages outside of their predicted 
range and in three instances, more than one form existed in a single waterbody.  When 
the pre-Pleistocene distribution was applied to the present drainage, nearly all instances 
of anomalous distribution or the presence of multiple forms were explained.  Molecular 
analysis of mitochondrial cytochrome b gene revealed a strong division between the 
eastern and western forms and showed evidence of an intermediate form from streams 
that were subject to stream capture events.  Use of coloration patterns proved effective 
for differentiating between the subspecies and agreed with mitochondrial DNA based 
clusters, in West Virginia populations but caution must be used in areas where stream 
capture or interbasin transfer may have occurred. 
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Chapter 1: Introduction 
 
 The taxonomy of the blacknose dace species complex (family Cyprinidae, genus 

Rhinichthys) has been an area of disagreement for more than 25 years.  Several studies 

have analyzed the morphology, morphometrics, meristics, and breeding behaviors of the 

members of this species complex in various populations in eastern North America 

without resolution.  Despite the lack of agreement on solid, discriminatory characteristics, 

reclassification of the members of this species complex has taken place.  This study will 

focus on accepted morphological identifiers for separating the members of the species 

complex, literature suggested distribution patterns, and then compare them with novel 

molecular data to try resolve the relationships between the members of this interesting 

species complex. 

 In 1982, Matthews et al. published a study from Meadow Creek, James River 

drainage near the Virginia/West Virginia border where the eastern blacknose dace 

(Rhinichthys atratulus atratulus) and southern blacknose dace (Rhinichthys atratulus 

obtusus) were sympatric with little overlap.   The presence of both subspecies in a single 

water body while still displaying little overlap in range raised questions as to the 

relationship of the two members of the species complex.  Analysis of the allopatric 

populations showed several characters to be different between the subspecies but no 

single morphometric or meristic character reported that complete separation.  Differences 

were observed in scale count across the back, lateral line scale count, and caudal 

peduncle scale count but none were statistically significant.  When sympatric populations 

were analyzed, most fish had characters intermediate between the subspecies found in the 

allopatric populations, suggesting that hybridization or introgression was occurring.  

Based on their findings, it appeared that some of the fish present were individuals that 

were not first generation offspring (F1) of the two subspecies, suggesting that the two 

populations (i.e. subspecies) were not reproductively isolated.  Analysis of these 

characters was also not bimodal in distribution.   Instead they found them to rather evenly 

distributed across the range of characters, suggesting that this population had undergone 

several successful breeding events as well as repeated introduction of new genetic 

material from both outside populations.  Based on their findings, Matthews et al. (1982) 
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suggested that the three morphological types remain as subspecies .  Although evidence 

suggested that the differences were distinct enough to allow species designation, there 

was also much evidence to refute this elevation, suggesting that a more robust study of 

the species complex across its entire range was needed before this question could be 

answered. 

 Smith (1985) examined the eastern blacknose dace and western blacknose dace 

(Rhinichthys atratulus meleagris) in an area where they were syntopic in New York, and 

reported little evidence of sympatry and intergradation.  Smith stated that the ranges of 

the two subspecies overlap little, if any, and that the males (presumed nuptial males) of 

the two forms were distinct.  Smith suggested that in order to best understand the 

relationship of the two forms, it is crucial to keep information separate and that giving 

separate species status to these two subspecies would be the best way to go about this 

until they can be more thoroughly studied.   

 In order to elevate the western blacknose dace to separate species status as 

suggested by Smith (1985), the consubspecific form, R. atratulus obtusus, designated by 

Matthews et al.(1982) would also have to be elevated.  Based on previous revisorship by 

Jordan and Gilbert (Jenkins and Burkhead, 1994), the nominal species would become 

Rhinichthys obtusus.  With this elevation, the type subspecies and Rhinichthys obtusus 

meleagris would fall under this new species designation. 

 In a review of the Inland Fishes of New York (Smith, 1985), Jenkins (1988) 

commented on the depth and breadth of the material used for the suggested 

reclassification.  Jenkins suggests that not enough material was presented to warrant the 

type of action that was called for by Smith.   

 In Freshwater Fishes of Virginia (Jenkins and Burkhead, 1994), the authors 

restate that, based on information in Matthews et al.(1982), these forms of the species 

complex all retain subspecies status.  Although the suggestions of Smith (1985) are 

addressed, there is no comment on the validity of this elevation, only the complexities 

that would arise with the reclassifications based upon previous revisorship stated earlier.  

Throughout the species description, Jenkins and Burkhead continue to refer to all forms 

as subspecies under Rhinichthys atratulus and comment on studies (Matthews et al., 
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1982; Adkins et al., 1985) of possible zones of contact that might “markedly improve” 

the understanding of the relationship of this species group. 

 In the Common and Scientific Names of Freshwater Fishes of the United States, 

Canada, and Mexico (2004), the status of the subspecies is changed to reflect the 

recommendations of Smith (1985).  This publication accepted the elevation and created 

the eastern blacknose dace (Rhinichthys atratulus Herman, 1804) and western blacknose 

dace (Rhinichthys obtusus Agassiz, 1854).  The cited references for the change in 

classification are Smith, 1985; Jenkins and Burkhead, 1994; and Matthews et al., 1982.  

No description of the decision making criteria were presented in this text and no further 

definitive studies were presented other than those previously mentioned.  

 Following the reclassification, a study of Canadian populations of eastern and 

western blacknose dace (Fraser et al., 2005) showed that there were no significant 

differential characters found to separate the two species.  The study focused on both 

allopatric and sympatric populations using characters described in Matthews et al.(1982) 

and Smith (1985) and found no morphological feature consistently distinguishing 

between the forms.  Based on these findings they refute the elevation of the species 

elevation and suggest the need for a further ranging study in terms of distribution and the 

addition of genetic analysis as the given traits are insufficient or are not feasible other 

than during limited time frames throughout the year (i.e. coloration patterns in breeding 

males). 

 Between ca 1988 and 2004, little, if any, published literature pertains to the 

systematics of the blacknose dace species complex yet the most significant decisions 

regarding their classification occurred during this time.  All of the studies previously 

conducted identify the need for further study of this species complex but list various foci 

as important in resolving the issue. Several of the publications identify the need of 

molecular analysis of the species complex (Matthews et al., 1982; Adkins et al., 1985; 

Jenkins and Burkhead, 1994; Fraser et al., 2005) yet it appears that no such analysis has 

been published to date.  The history of contradictory conclusions from these studies 

suggests that further review of physical characteristics be conducted to identify 

appropriate taxonomical tools for separation of the members of this species complex 

(Matthews et al., 2005; Jenkins and Burkhead, 1994; Fraser et al., 2005). The inclusion 
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of a comparison of genetic data with more standard morphological practices for aid in 

determining appropriate characters would help resolve their taxonomy (Fraser et al., 

2005).  A few studies suggest that zones of contact are important areas to study the 

relationships (Matthew et al., 1982; Adkins et al., 1985; Jenkins and Burkhead, 1994) 

while others call for more widespread studies of the entire distribution of the species 

complex (Jenkins, 1988; Fraser et al., 2005).  Regardless of means and direction, all 

studies identify the need for further research before any resolution can be brought to the 

issue of classification of the blacknose dace species complex. 

 For this study, I chose to look at the morphological, distributional, and molecular 

relationships of the members of this species complex as they exist in a zone of contact in 

Appalachian Mountains of West Virginia.  All three forms are known to exist in a rather 

large zone of contact in this area (M. Little, Personal Communication) and based on 

suggestions of previous studies regarding the importance of these contact areas 

(Matthews et al., 1982; Adkins et al., 1985; Jenkins and Burkhead; 1994) this is an 

appropriate area to study these relationships.  By coupling molecular and morphological 

analyses along with analysis of distribution patterns in this zone, I hope to shed some 

light on the relationships of the members of this species complex and lay the groundwork 

to developing the tools necessary to start resolving the morphological taxonomy 

questions at hand.    
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Chapter 2: Background 
 

An extensive review of the ecology, life history, and systematics of the blacknose 

dace species complex was completed by Matthews et al. (1982) and will be used as the 

basis for the information in this chapter.  All information not explicity cited can be 

credited to that work.  For the purpose of this chapter, I am going to focus on the areas of 

this review that are directly pertinent to systematics or are conducive to reproductive 

isolation and subsequently, speciation. 

 

Distribution 

The distribution of the three forms of the blacknose dace species complex; 

Rhinichthys atratulus, Rhinichthys obtusus obtusus, and Rhinichthys obtusus meleagris 

are largely allopatric with few instances of sympatry.  The eastern form, Rhinichthys 

atratulus, is largely confined to the Atlantic drainage and Lake Ontario of the Laurentian 

drainage (Jenkins and Burkhead, 1994).  The southern form, Rhinichthys obtusus obtusus, 

is distributed across the southern portion of the Ohio River Basin and some areas in the 

southeast on the Atlantic portion of the continental divide (Jenkins and Burkhead, 1994).  

The western or central form, Rhinichthys obtusus meleagris, is distributed over the upper 

Mississippi and Great Lakes drainages (Jenkins and Burkhead, 1994).  Collectively, the 

latter two forms are referred to as the western blacknose dace, Rhinichthys obtusus 

Aggasiz (Nelson et al., 2004) and are loosely described as inhabiting the Upper 

Mississippi, Ohio, and Great Lakes drainages.  Although not explicitly stated, distribution 

of these forms follows the Mississipian and Atlantic refugium models (Chapleau and 

Pageau, 1985; Mandrak and Crossman, 1992) and Pliocene flow patterns (Fraser et al., 

2005)    

 

Breeding Behavior 

One of the primary ways in which the members of the blacknose dace species 

complex were believed to differ was in the breeding behaviors displayed among the 

subspecies.  Comparison of documented breeding behaviors in the eastern blacknose dace 

in New York, Virginia, and Maine however showed reproductive behaviors to be highly 
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variable within the subspecies. Many of the behaviors such as site selection, male 

grouping, territoriality, aggressiveness, and courtship appear to be more indicative of 

populations and show high levels of local variability therefore indication as strict, 

selective breeding behaviors is questionable, especially concerning potential source of 

reproductive isolation (Matthews et al., 1982). 

Comparison of the behaviors of the western blacknose dace by Raney (1940) were 

found to greatly differ from the eastern blacknose dace documented by Traver (1929) in 

the New York populations. Raney reported that repeated spawning events created nest-

like depressions in the substrate but actual construction of the depressions was never 

seen.  Based on Raney’s observations, Schwartz (1958) stated that the western form, after 

witnessing the reproductive behaviors of the southern form, was the only form that 

actually conducted nest building when in fact his interpretation of Raney’s comments 

may have been in error.  Bartnick (1970) witnessed a breeding behavior conducted by R. 

o. meleagris in which females pushed snouts into substrate and rooted, possibly, 

signaling readiness to breed.  This may have caused the disturbances documented by 

Raney and consequently misinterpreted by Schwartz (Matthews et al., 1982).    

The reproductive behaviors of southern blacknose dace were also found to be 

different between populations.  Schwartz (1958) documented behaviors of R. obtusus 

obtusus in West Virginia populations and found them to be highly different than both the 

other forms.  Males of these populations would lead females to their respective territories 

to breed.  This breeding would take place high in the water column, much different than 

the other two forms which bred in contact with the substrate (Schwartz, 1958).  Jenkins 

found that small depressions 1-3 cm in depth and 5-10 cm in width that were probably the 

result of repeated breeding events by R. obtusus obtusus in Virginia populations.  Jenkins 

also found that males had established territories and did actively defend those territories.  

Virginia populations did not lead females to a mating area, instead females chose areas 

and then were bred by the male who held that territory.  The Virginia populations of the 

southern form shared many of the traits of the other two forms and were quite consistent 

with the habits displayed by the western form, R. o. meleagris (Matthews et al., 1982).  

Because of these findings, it was recommended that the breeding habits of all three forms 

were more population dependent than subspecies specific and were not adequate for 
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separating the forms.  The similarities of the southern and western forms in terms of 

breeding behavior were strong and “did not differ trenchantly” (Matthews et al., 1982). 

Collective review by Matthews et al. (1982) and later by Jenkins and Burkhead 

(1994) suggest that breeding behavior among populations was highly variable.  No single 

suitable characteristic of the breeding behavior was exclusive to any one of the forms of 

this species complex.   

 

Nuptual Coloration Patterns 

Male nuptual coloration is by consensus the most distinguishing feature 

separating the three separate forms of the blacknose dace species complex.  Despite being 

the most predictive means of identifying the different forms, there still are discrepancies 

in the literature regarding the specific traits.   

Pectoral fin and nuptual pad coloration are described by Matthews et al. (1982) 

and Jenkins and Burkhead (1994) as the most accurate characters for distinguishing 

between Rhinichthys atratulus and the two forms of Rhinichthys obtusus.  Nuptual males 

of R. atratulus possess either bright orange to red fins with bright orange to red nuptual 

pads or yellow to clear fins with bright orange to red nuptual pads.  Regardless of fin 

coloration, the nuptual pad is a brilliant orange to red on virtually all individuals sampled.  

The other forms of the species complex are said to possess olive-yellow to yellow, little 

or no color, or at least less orange than the eastern form.  More variability has been 

documented in these forms of this species complex.  Several studies cite the presence of 

yellow, orange, or red pectoral fin colorations on the western and southern forms of the 

blacknose species complex as well (Bartnik, 1970; Tarter, 1969; Clay, 1975; Forbes and 

Richardson, 1920; Trautman, 1957).  Matthews et al. (1982) state that reported variation 

may, in fact, be due to the physiology of the breeding act or possibly even to subjectivity 

in descriptions of colors.  They did however state that, although important in their study 

area (Virginia), this may not be the case everywhere as referenced by the number of 

independent appearances in the literature.   

Coloration patterns are reported to be indicative of the forms of the blacknose 

dace species complex; at least for separating Rhinichthys atratulus from the two forms of 

Rhinichthys obtusus.  The dark lateral line stripe in the eastern form is said to be suffused 
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with or masked by cinnamon brown, rust, orange, brick, or red.  This coloration pattern is 

also said to be mainly restricted to the area immediately around the stripe.  The coloration 

of the areas ventral to the lateral line stripe are either silver- or creamy-white to pale 

gold-yellow occasionally with a pale green tint, including the operculum and cheek.   

Matthews et al. (1982) state that the yellow displayed by the eastern form does not appear 

to be an ‘incipient stage’ of the orange coloration seen in the other forms and therefore is 

an indicative coloration trait for distinguishing the eastern form from the western and 

southern form.   The coloration patterns listed from the other two forms seem to be more 

variable and more interchangeable than is either with the eastern form.   

Rhinichthys obtusus obtusus, as described by Matthew et al.(1982) and Jenkins 

and Burkhead (1994) has a brighter lateral line stripe than Rhinichthys atratulus, being 

brighter or more pure orange to red-orange but varied with size of individual and 

nearness to spawning.  In the areas ventral to the lateral line stripe in R. o. obtusus, there 

is a second center of development which they identify as midlateral (the more common 

lateral line stripe) and a submidlateral center of coloration, which may or may not be 

separated by an area of white, which they feel is dependent on the fish’s stage of 

breeding.  The orange coloration is also found on the operculum and chin of these fish.  

Some populations may lack the lower center of color (Matthews et al., 1982; M. Little, 

personal communication).  Jenkins and Burkhead (1994) do not weight this character as 

heavily and state that there is a faint to translucent orange coloration on the sides of the 

body.  Shontz (1962) reported that nuptual male R. o. meleagris differed from R. o. 

obtusus in that the coloration was confined to the immeadiate area of the dark midlateral 

stripe and does not extend to the origin of the pectoral fins.  Several other studies refute 

this claim and state that nuptual male R. o. meleagris possess coloration over large 

portion of the side of the body (Bartnick, 1970; Forbes and Richardson, 1920; M. Little, 

personal communication).  Based on the variability the coloration patterns of nuptual 

males, Matthews et al. (1982) states that the coloration patterns of the areas ventral to the 

lateral line stripe are good characters for separating the eastern from the western and 

southern forms but are not conducive to accurately distinguishing between the western 

and southern forms. 
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Morphology and Meristics 

Traditional morphological and meristic analyses of this species complex have yielded 

little in the way of a definitive answer in systematically differentiating between the 

different forms.  Analysis of Meadow Creek (Virginia) populations of R. atratulus and R. 

o. obtusus in a zone of syntopy by Matthews et al. (1982) found the only significant 

difference to be that scale count indices (lateral line scales + scales across back) which 

were higher in R. o. obtusus than in R. atratulus.  However they caution that the reference 

condition for the R. o. obtusus was found at a much higher elevation than the R. atratulus 

reference, a common factor that has been found to influence scale size and number 

(Matthews et al., 1982).  The values generated from this index were not completely 

separated between these two forms although significantly different.  Individuals from the 

overlap zone displayed characters intermediate of the two reference forms.  A robust 

study of both morphological and merisitic characters of allopatric and sympatric 

populations of R. atratulus and R. o. meleagris conducted in Canada found that 

populations of these two forms were indistinguishable using these characters (Fraser et 

al., 2005).  Characters of the allopatric populations of the two forms were found not to 

differ significantly nor did the variability of these characters differ between allopatric and 

sympatric populations.    

Careful analysis of these factors shows a great deal of variability both among and 

within populations of each of these forms.  There is little or no agreement between the 

interested parties as to the systematic status of this species complex.  Not least of which 

was the relatively unsubstantiated elevation of two forms of this species complex to a 

new species, the western blacknose dace Rhinichthys obtusus Aggasiz (this includes the 

type subspecies and R. o. meleagris).  Lacking from the published studies was a study of 

the genetic relationships of these forms.  Preliminary molecular analysis of West Virginia 

populations began to show some interesting relationships between the forms but was 

never published (M. Little, personal communication).  Matthews et al.(1982) and Jenkins 

and Burkhead(1994) state that more careful analysis along zones of contact, presumably 

using molecular and more common morphological methods, will give the greatest insight 

into the relationships of this group. 
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 Based on these recommendations, this study aimed to focus on the relationships 

of these members of the three forms of the blacknose dace in a zone of contact in the 

Appalachian Mountains of West Virginia.  Important in this study were the areas of 

known stream capture events, anomalous distributions, and areas along the present day 

Eastern Continental Divide that separates the Atlantic from the Ohio River drainages, the 

major factor in the separation of the newly defined species status.  By focusing on this 

region and using both described character traits (nuptual male coloration patterns) and 

previously unpublished molecular relationships, I hope to shed some light on the 

relationships of this species complex along this uniquely large zone of contact.    
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Chapter 3: Methods 
 
Specimen Collection 

 All specimens were collected by use of backpack electrofishing using a Coffelt 

Manufacturing Mark 10 Backpack Electrofisher.  Candidate stream reaches were 

electrofished based on likelihood of containing specimens determined by appearance.  

Only male Rhinichthys atratulus and Rhinichthys obtusus specimens in full nuptual 

coloration were collected.  Due to the close association of the adult males in nuptual 

coloration with cover objects, electrofishing practices had to be modified to include the 

flipping or disturbing of cover objects to allow efficient capture of adequate quality and 

number of specimens.  Following capture, specimens were labeled with an arbitrary 

numeric code (MU_BND_XXX).  All individuals were digitally imaged in a 

photographic aquarium on site to ensure maximum coloration expression in specimens.  

Following imaging and data collection, samples were placed in mylar foil pouches and 

preserved in dry ice to maintain integrity of DNA.  Mylar pouches we used as opposed to 

plastic as the then to hold up better than plastics at -80oC. 

 

Morphological Data Collection 

 All specimens were identified in the field to subspecies level using characteristics 

identified as the most predictive characters for taxonomy of the members of this species 

complex (Matthews et al., 1982; Jenkins and Burkhead, 1994; M. Little, personal 

communication). Table 1 lists all characters used for morphological portions of this 

project.  Characters were taken with live specimens in the field as well as from digital 

images.  Preference was given to field records as photographs tended to not fully 

represent some of the lighter colors (e.g. “wash-out” and glare).  As there has been little 

agreement on the relatedness and importance of each of these characters to the taxonomy 

of each of these subspecies, a substantial portion of this project was to blindly group the 

individuals based on character combinations and then weight which of these characters 

best predicted the identity of that cluster.  Previous studies have analyzed these 

relationships using morphometric and meristic characters using multivariate statistic 

methods (Matthews et al., 1982, Fraser et al., 12005) but none have analyzed the nuptual 
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male coloration patterns as described as the consensus most suitable traits for 

discrimination, probably because of the subjectivity and categorical nature of these data.  

Heirarchal and Two-step cluster analyses were performed on this data using SPSS for 

Windows (SPSS Inc., Chicago, IL, 2002).  These analyses were used to arrange clusters 

based on the categorical nuptual male coloration pattern data and then rate these variables 

in terms of the importance on the association with the derived clusters, respectively.  By 

rating the importance of the variables, it will be possible to start suggesting best 

characters and conditions of those characters for field identification of subspecies based 

on nuptual male coloration patterns. 
Table 1: Characters and conditions used to analyze morphological associations of the blacknose dace 
species complex 

Character Option 1 Option 2 Option 3 Option 4 
Lateral Line Stripe Color Cinnamon Rust  Orange Scarlet 
Lateral Line Stripe Width Confined Wide Double   
Color below Lateral Line Stripe Yellow Orange White   
Pectoral Fin Color Orange Yellow  Clear   
Nuptual Pad Color Orange Opaque Yellow   
Melanophore Presence Present Absent     
Melanophore Density Few Many Very Many   
Chin Color Yellow Orange White   
Opercle/ Cheek Color Yellow Orange White   
*Obliterated Lateral Line Stripe Not obliterated Obliterated     
*Amount of Obliteration  No obliteration Complete Partial   

*The term "obliteration" was used to refer to condition in which dark lateral line 
stripe was replaced by nuptual color 

 
  

   
Molecular Analysis 
 A subset of specimens were selected for molecular analysis based on the 

representativeness of described subspecies coloration patterns and area of capture.  In 

order to get the best analysis of the depth and breadth of genetic variation encountered in 

the study area, individuals that displayed the best traits of each of the subspecies, 

individuals that appeared to be either introgressed or hybridized from two or more 

subspecies, and at least one individual from each of the watersheds sampled as part of the 

morphological analysis.  A total of 16 individuals were included in the molecular 

analysis.  Table 2 lists the fish included in the molecular analysis, their location of their 
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capture, and the subspecies-level taxonomic identification given to them from field and 

photograph interpretation. 

 
Table 2: Fish included in molecular analysis of the blacknose dace species complex. 
 

Fish ID Subspecies Waterbody Drainage Major Drainage 
MU_BND_001 R. obtusus meleagris Johnnys Run Greenbrier River Ohio (Lower) 
MU_BND_005 R. obtusus meleagris W. Fk. Greenbrier River Greenbrier River Ohio Lower 
MU_BND_006 R. obtusus obtusus Files Creek Monongahela River Ohio (Upper) 
MU_BND_016 R. obtusus meleagris UNT W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_017 R. atratulus atratulus UNT Youghiogheny River Monongahela River Ohio (Upper) 
MU_BND_035 R. obtusus meleagris W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_036 R. atratulus atratulus UNT Youghiogheny River Monongahela River Ohio (Upper) 
MU_BND_043 R. obtusus meleagris W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_045 R. obtusus meleagris UNT W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_047 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic 
MU_BND_054 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic 
MU_BND_056 R. obtusus meleagris W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_077 R. obtusus meleagris W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_086 R. obtusus meleagris W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_088 R. obtusus meleagris W. Fk. Greenbrier River Greenbrier River Ohio (Lower) 
MU_BND_132 R. obtusus meleagris Laurel Fork Cheat River Monongahela River Ohio (Upper) 

 
 Based on recommendations made in Pfrender et al. (2004), a 677 base pair (bp) 

segment of the mitochondrial cytochrome b gene was analyzed for sequence variation 

among populations of blacknose dace species complex.  Pfrender et al.(2004) studied 

within and among population genetic variability of a congener of the blacknose dace 

species complex, the speckled dace (Rhinichthys osculus Girard), in the Oregon and 

found these methods to be adequate for analyzing these relationships.  Similarly, other 

studies have focused on this gene when analyzing relationships among cyprinid fishes 

(Raley and Wood, 2001; Mesquita et al., 2001; Dowling et al., 2002; Kotlik and Berrebi, 

2002; Cunha et al., 2004; Perdices et al., 2005; Girard and Angers, 2006).  Whole fish 

sections weighing between 100 and 300 mg were manually cut and chopped to begin to 

break tissue down for DNA extraction.  Once well masticated, material was placed in a 2 

mL screw top microfuge tube with 700 μL of sterile salt homogenizing buffer and 

approximately 500 μL of 0.1 mm Zicronium beads and beat at 3300 rpm for 1 minute to 

further break down tissue.  Samples were iced for 2 minutes and beat again for 1 minute 

at 3300 rpms.  Following the second beating session, liquid was allowed to settle and 500 

μL of tissue and liquid mixture was taken and transferred to a new tube containing 20% 

SDS and proteinase-K for digestion overnight.  Following digestion, protein was 
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precipitated using 100 μL 6M NaCl and centrifugation at 10,000 x g for 30 minutes at 

4oC.  Following centrifugation, 750 μL of supernatant was removed and transferred to 

sterile tube at which time an equal volume of 100% isopronol was added, contents mixed 

and chilled for 60 minutes at -20oC.  Following chilling, the sample was centrifuged at 

14,000 x g for 20 minutes at 4oC to precipitate DNA.   Supernatant was removed and the 

precipitated DNA pellet was resuspended in 100 μL sterile deionized water.  

Mitochondrial DNA (mtDNA) was extracted using phenol/ chloroform and centrifugation 

and separation by specific gravity using wax emulsion in microfuge tubes.  Remaining 

mtDNA was ethanol precipitated using 100% ethanol and centrifuged at 14,000 x g for 

30 minutes at 4oC.  Ethanol was pipetted off using transfer pipettes and a second 500 μL 

volume of 70% ethanol was added, to remove left over salt, and centrifuged a second 

time for 14,000g for 20 minutes.  Ethanol solution was then pipetted off and pellet was 

allowed to completely dry.  Purified mtDNA was then resuspended in 100 μL 4% IDTE.  

The presence of DNA was verified by gel electrofloresis using 1% agarose gels.  Purified 

DNA was stored at -20oC.   

DNA was amplified using polymerase chain reaction as described by Pfrender et 

al. (2004).  Purified DNA was amplified in 50 μL reactions containing 5 μL of 50pM 

DNA and 45 μL of master mix containing nucleotides, 25 mM MgCl, 10 x Buffer, 50 pM 

Primer L15162 (5’-TTCTTCCATGAGGACAAATAT-3’), 50 pM Primer H15915A 

(5’- CCTCCGTCTTCCGGATTACAAGAC-3’), rTaq polymerase (Takara Bio, Inc., 

Shiga, Japan), and sterile deionized water.  Although all reactions were conducted with 

primer concentrations of 50 pM, less concentrated primer solutions may be beneficial in 

future studies.  Reactions worked best with rTaq polymerase when compared to all other 

Taq polymerases tried.  Table 3 lists detailed amounts and concentration of reagents for 

all master mixes for polymerase chain reactions.  

PCR products were then cleaned for sequencing using Pall Nanosep 30K 

microfuge spin columns (Pall Corporation, East Hills, NY) to limit interference of primer 

in sequencing process.  Samples were consolidated and centrifuged at 5,000 rpm for 4 

minutes as per manufacturer recommendations.  Cleaned PCR products were then placed 

in labeled, bar-coded 2-D tubes for sequencing.  Samples were sequenced in both 

directions using QuickLane® DNA sequencing process (Agencourt Bioscience 
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Corporation, Beverly, MA).  Results were received via secure FTP site in .ab1 file 

format.  Fragments were assembled using VectorNTI Configexpress (Invitrogen 

Corporation, Carlsbad, CA) and unknown regions verified and low quality sequence 

regions trimmed to reduce noise caused by questionable data from areas outside of 

particular region of interest.  Sequences were then transferred to FASTA format and 

aligned using Clustal W.  Aligned sequences were then analyzed for sequence variation 

analysis using PAUP v4.0b10. 

 
Table 3: Reagents and their respective concentrations and volumes for PCR master mixes 
 

  Total No. of PCRs 1 = X 

Reagent 

Concentration 
of Stock 
Solution 

Volume in μl 1 
sample 

Volume X 
samples Final 

Buffer, no Mg* 10x 5 5   
Nucleotides 10 μM 1 1   

MgCl2* 25mM 3 3   
Primer L15162 50 pM* 0.2 0.2   

Primer H15915A 50 pM* 0.2 0.2   
Taq 5 μg/μl 0.5 0.5   
 H2O   35.1 35.1   

  45 45  
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Chapter 4: Results 
 
A total of 84 nuptual male blacknose dace of 3 subspecies were captured from 14 

different waterbodies in 11 drainages.  Table 4 is a list of the all individuals captured as 

part of this project, subspecies identity and stream where captured. 

 

Distributional Analysis 

A total of 54 of the 84 nuptual male blacknose dace captured were located in drainages 

other than those suggested for that particular subspecies in Matthews et al. (1982).   

Three of the waterbodies sampled contained more than one form of blacknose dace based 

upon nuptual coloration patterns.  Files Creek contained both Rhinichthys obtusus 

obtusus and Rhinichthys obtusus meleagris, Laurel Fork contained both Rhinichthys 

atratulus and Rhinichthys obtusus meleagris, and Pheasant Run contained all three forms 

(see Table 4) 

 

Morphological Analysis 

The hierarchal cluster analysis yielded a total of three clusters based on the coloration 

characters of nuptual male blacknose dace.  Clustering of individuals strongly resembled 

the subspecies level identities.  Figure 1 is a dendrogram generated using hierarchal 

cluster analysis based on nuptual coloration patterns in male blacknose dace.  The two-

step cluster analysis also yielded three distinct clusters based on the nuptual coloration 

characters analyzed for each of the individuals.  A total of 8 of the 12 characters had chi 

square values for at least two the clusters above the set Bonferroni-adjusted critical value 

(CL=95%).  Figures 2-13 are histograms depicting frequency of each condition as it 

applied to each cluster for the two-stage cluster analysis.  Figures 14-25 are chi-square 

test results as they relate to each cluster for each of the 12 characters analyzed for the 

two-stage cluster analysis. 

 

Molecular Analysis 

Multiple sequence alignment indicated non-identical sequences among the fish analyzed.  

Although differences were present, there were a large number of individuals that were 
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remarkably similar (< 0.001 % difference). Table 5 is a multiple sequence alignment 

generated in Clustal W (v1.83) for all individuals included in this analysis.  Table 6 is a 

Tamura-Nei matrix displaying the comparative differences by multiple sequence 

alignment between the individuals as generated by PAUP v4.0b10.  In this analysis, a 3:1 

weight was applied to transversions versus transitions.  All analyses were rooted using 

the outgroup specimen of the longnose dace (Rhinichthys cataractae) from NCBI 

Genbank.  Sequence was trimmed from submitted complete cytochrome b sequence  of 

specimen  DQ990251 (Dowling et al., 2006).  A total of 1, 000 bootstrap replicates were 

conducted for each analyslis.   Figure 26 is a neighbor-joining phylogram  displaying 

differences as branch length.  Figure 27 is a neighbor-joining rectangular cladogram 

displaying clustering of individuals. Figure 28 is a Tamura-Nei phylogram displaying 

differences as branch length.  Figure 29 is a strict consensus rectangular cladogram 

displaying consensus clustering of individuals. 
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Chapter 5: Discussion 
 
Taxonomy and Physical Characters of Nuptual Males 

As described by previous researchers, I found the taxonomy of the members of 

the blacknose dace species complex to be highly variable and convoluted.  A synthesis of 

the existing data pertaining to the status of each of the subspecies in regards to coloration 

patterns in nuptual males led to much confusion.  Spatial comparisons of accounts of the 

same subspecies would yield highly variable results.  Also comparisons of different 

subspecies from different areas would be highly similar.  These accounts are directly 

attributable to the ongoing confusion around proper taxonomy and systematics of this 

ubiquitous species complex.  Analysis of West Virginia populations found them to be no 

different in regards to the complexity concerning taxonomy. 

In this study, a set of key characters were selected for primary identification of the 

subspecies consistent with literature; primarily what is described in Matthews et al. 

(1982).  The eastern form, Rhinichthys atratulus atratulus, was the easiest of the 3 

members of this species complex to distinguish from the others.  This form has a dark 

cinnamon lateral line stripe that is mostly confined to the immediate area of the normally 

dark lateral line stripe.  It appears to have an orange tint to it compared to its usual 

chestnut brown to black coloration.  When in peak breeding coloration, the lateral line 

stripe appears to have a slight “halo” of lighter orange around the lateral line stripe.  This 

coloration only barely extends outside the confines of the normally present lateral line 

stripe.  The other primary characters used to distinguish this subspecies from the others 

was the presence of deep orange to red nuptual pads on the pectoral fins and a yellow, in 

some cases, almost chartreuse tint to the area below the lateral line stripe.  The southern 

(Rhinichthys obtusus obtusus) and western (Rhinichthys obtusus meleagris) were slightly 

harder to distinguish from one another based on the literature.  Our diagnostic characters 

for the southern form varied slightly from those described in Matthews et al. (1982).  

These authors describe bright orange on the side of the body with two centers of 

coloration on the sides of the body, a midlateral point of origin and a submidlateral 

origin.  Jenkins and Burkhead (1994) however comment on this subspecies as having a 

bright translucent orange to red lateral line stripe and, if present, a lighter translucent 
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orange below the lateral line stripe.  Both authors comment that this lower area of 

coloration may or may not be present.  The description of these characters as observed in 

West Virginia populations given by M. Little (personal communication) are consistent 

with those described in Jenkins and Burkhead (1994) and was the primary reason for 

selection as suitable characters for this analysis.  A similar condition exists with 

description of these same characters in the western form.  Matthews et al. (1982) states 

that the colorations on the sides of the body in R. o. meleagris was more confined to the 

lateral line stripe region and the lower body and venter usually lacked color.  It is stated 

that other populations, however, have been known to have nearly the entire side of the 

body exhibiting bright colorations.  Studies conducted by D. Tarter and M. Little (M. 

Little, personal communication) found West Virginia populations to be more consistent 

with the latter description and therefore were used in this study.  These characters were 

used for preliminary field identification of the subspecies, however, these identifications 

were kept independent of the character matrix for cluster analysis of physical characters.  

Table 7 is a list of all fish included in this analysis and their respective conditions for 

each of the characters. 

Heirarchal Cluster Analysis of the 11 coloration variables resulted in strong 

separation along the subspecies lines.  Figure 1 is the hierarchal cluster analysis 

dendogram for all fish analyzed.  In initiating the hierarchal cluster analysis, the threshold 

for clustering was set to allow the maximum number of data derived clusters (n=15) as to 

not bias or limit results.  Based on the data at hand, a total of three distinct clusters were 

formed.  When subspecies identities were placed on all individuals included in the 

analysis, this model clustered the fish strongly along lines as described in the previous 

methods.  A few individuals did separate quickly to group together under another cluster. 

These individuals did appear to have traits that were intermediate between subspecies and 

were found in waterbodies that contained more than one form of this species complex.  

These cases will be covered more in depth in the following section.  The strength of the 

results of this analysis suggests that a combination of the characters of nuptual males is 

useful in differentiating between the three subspecies in at least West Virginia 

populations.  
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A Two-Step Cluster Analysis was conducted with the same data to determine 

which of the variables included played the strongest role in determining the creation of 

the clusters and subsequently could be used as the most reliable characters for taxonomic 

identification of the members of this species complex.  Similar to what was expected, 

width of coloration of the side of the body (LLBandWidth), coloration of lateral line 

stripe (LLColor), coloration below Lateral Line Stripe (ColorBelowLateral), and pectoral 

fin nuptual pad coloration (NuptualPadColor) were the strongest characters in 

determining the assignment of the individuals to the respective clusters.  Coloration of the 

operculum/suboperculum (CheekColor), coloration of the chin area (ChinColor), 

disappearance of the dark lateral line stripe and replacement with nuptual coloration 

(ObliterationLatLineStripe), and the degree to which the lateral line stripe was replaced 

by nuptual coloration (AmtObliteration) had less substantial roles in determining 

associations but these conditions were useful for distinguishing between two separate 

clusters and subsequently, between species or between subspecies. 

Interestingly, three of the more cited characters used in analyses of this species 

complex; fin color, dark melanophore presence, and dark melanophore density, were not 

strong identifiers of subspecific identity in West Virginia populations.  Fin color, 

although cited frequently as yellow, orange, or red, did not appear to differ much from 

normal coloration in West Virginia populations.  It could be quite possible that nuptual 

pad coloration may have been documented as fin coloration in most studies but upon 

close examination of the pectoral fins, there were areas where membrane was not covered 

by nuptual tubercles (i.e. nuptual pad) and lack of coloration was evident and led to my 

distinguishing of these two characters at the recommendation of Matthews et al. (1982) 

and Jenkins and Burkhead (1994).  Melanophore presence and density was highly 

variable both within and among populations and did not appear to follow any patterns and 

was found to be not discriminating between subspecies of West Virginia populations. 

   

Distribution of the forms within the large zone of contact  

Collection of the fish immediately yielded some interesting answers regarding 

distribution of each of the forms when compared to literature suggested distributions.  A 

total of 54 of the 84 adult male blacknose dace collected were found in waterbodies 
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outside of their literature suggested ranges.  Three of the waterbodies sampled were 

found to contain more than one form of blacknose dace.  Table 4 lists all fish collected 

and their putative subspecies and stream of capture.  Figure 30 is a map of collection sites 

and the subspecies composition of that site. Figure 31 is a map of locations were correct 

and erroneous distribution of the subspecies occurred  

Review of the available literature also suggests that this is the case in other 

waterbodies in the same area.  Schwartz (1958) published the breeding behavior of R. 

obtusus obtusus from tributaries of the Cheat River in the same relative area as was 

focused upon in this study.  Based on the suggestions in other papers, this waterbody, as a 

tributary to the Monongahela River should contain the western form, R. o. meleagris.  

Similar to Schwartz’s (1958) findings, R. o. obtusus was found in Pheasant Run, a 

tributary to Shavers Fork, just downstream of Rattlesnake Run which was included in the 

study conducted by Schwartz.  The collections at Pheasant Run yielded all three forms. 

Consequently, the form which was native to that stream could not be determined.  

Collections in Files Creek in the Tygart Valley River drainage, which abuts Shavers 

Fork, also largely contained R. o. obtusus.   The Tygart Valley River is also a tributary to 

the Monongahela River and should contain R. o. meleagris based upon literature 

recommendations.  One individual was however recorded as R. o. meleagris from Files 

Creek but the taxonomy of that individual is questionable based upon review of the image 

of that individual.   

The anomalies in distribution were not only limited to those waterbodies and 

subspecies.  Horseshoe Run, a tributary in the lower reaches of the Cheat, Dry Fork Cheat 

River, and Laurel Fork Cheat River all contained populations the eastern form, R. 

atratulus atratulus.  These streams are spatially removed from the Atlantic drainage and 

the presence of this form in these waters is perplexing.  The Laurel Fork Cheat River also 

contained populations of R. o. meleagris and several individuals captured appeared to be 

intermediate in identity between these two forms.  Hendrik et al. (1979) documented the 

presence of R. a. atratulus in the Youghiogheny River system, a tributary to the 

Monogahela River.  Collections conducted as part of this study also verified the presence 

of this form in the upper reaches of the Youghiogheny River.   Collections made in the 

East and West Forks of the Greenbrier River yielded exclusively R. o. meleagris.  Based 
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on its status as a tributary of the New River, it would be expected that this stream would 

contain R. o. obtusus, but I did not find that to be the case in the areas sampled as part of 

this study. 

One possible explanation for the anomalies in distribution is stream capture 

events.  Hendrik et al.’s (1979) documentation of R. a. atratulus in the Youghiogheny 

system was directly attributed to a stream capture event.  Jenkins and Burkhead (1994) 

identify another stream capture in the upper Youghiogheny near our collection site (see 

Figure 30).  These records give a possible explanation of the mechanism that resulted in 

the transfer of this subspecies between drainages.  Similarly, Hocutt et al. (1978) 

document that the upper Greenbrier River captured the East and West Fork Greenbrier 

Rivers from the Cheat River system, providing a possible explanation for the presence of 

the western form in this area.  Jenkins and Burkhead (1994) also document a capture 

event that has the upper Cheat River (vicinity of Dry Fork) capturing a portion of the 

South Branch Potomac River drainage, a possible explanation of the presence of R. a. 

atratulus in the upper reaches of the Cheat.  When the distribution of the subspecies is 

compared with the known stream capture records, a large proportion of all erroneous 

records are explained, including possibly the presence of both the eastern and western 

forms in the Laurel Fork Cheat River.   

The distribution of the subspecies in these areas appears to be more consistent 

with pre-Pleistocene drainage patterns than present day drainage patterns (Figure 32).   

Even though this seems like a convenient and logical answer to the problems regarding 

distribution, more simple explanations such as bait bucket introduction could be the 

culprit.  These fish are popular baitfish and the area of focus for this study is an area with 

high frequency of recreational fishing.  The true source of the dispersal of these 

subspecies to areas outside of their known distribution will likely go unknown but there is 

strong evidence to suggest that stream capture events were potential major mechanisms 

for the dispersal of the forms to areas outside of their suggested distributions. 

 

 

 

 



23 

Molecular Analysis 

Molecular analysis of the blacknose dace species complex in this zone of contact 

demonstrated interesting relationships among the members and the waterbodies.  When 

these populations were compared based on cytochrome b sequence analysis, the 

associations did not always match the phenotypic identify of the fish.  I believe that this 

is due, at least in part, to the incidence of stream capture mentioned previously and the 

syntopy that it is observed in a number of the study sites.    Figures 26 – 29 are the 

various phylograms and cladograms created by PAUP (v4.0b10) based on the 

mitochondrial associations by multiple sequence alignment. 

The strongest associations generated were in the group of fish from waterbodies 

that were subject to stream capture events or contained syntopic forms of the blacknose 

dace species complex.  The distance length neighbor-joining phylogram (Fig. 26) and the 

Tamura-Nei phlyogram (Fig. 28) both had these relationships with an indiscernible 

genetic distance between them (< 0.001 %).  Interestingly, this cluster was not built out of 

a single subspecies.  This cluster contained both R. a. atratulus from and UNT 

Youghiogheny River (1), R. o. meleagris from the upper Greenbrier River (11), and R. o. 

meleagris from the Laurel Fork Cheat River (1).  Only narrowly separated from this 

cluster is a single R. a. atratulus from UNT Youghiogheny River.  The cladograms also 

indicate similar results (Fig. 27 and Fig. 29).  The non-distance based methods also 

displayed grouping of individuals within specific drainages and strengthened my 

confidence in the analysis.  Based on the waterbodies that this association included, it 

appears that this group is indicative of an intermediate form and is potentially 

characteristic of this phenomena and not necessarily characteristic of the R. o. meleagris 

that it is largely comprised of.  This group would however all contain some level of 

genetic material that is representative of R. o. meleagris because of either their present or 

past association with the distribution of that form.  

All phylograms and cladograms (Fig. 26-29) created displayed a substantial 

difference between R. o. obtusus (MU_BND_006) and the previously described cluster as 

was expected (diff.= 0.04).  Although this individual shared the same major drainage 

(Monongahela River) as many of this other fish analyzed, this individual separated from 

the others indicating that this form is mitochondrially unique.  Although no strong 
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assumptions can be made based on the condition of all the R. o. meleagris analyzed, it 

does appear that this individual was not far removed from that group (fig. 26 and fig. 28).  

Matthews et al. (1982) suggested that these two forms were consubspecific and based on 

its association with the intermediate forms in this study it appears that this may be true.  

Similar to the treatment of R. o. obtusus, all of the trees removed the two R. a. 

atratulus analyzed and displayed a substantial difference between these and the other 

forms.  These individuals were prime specimens both in appearance and based on their 

location (Abernathy Run) as not ever being subject to a drainage pattern other than the 

Potomac River.  These individuals exhibited substantial distance separation in both 

distance length phylograms (fig. 26 and 28).  This separation was farther from R. o. 

obtusus than was R. o. obtusus was from the intermediate form (diff.= 0.07 – 0.09, 

compared to 0.04).  This is not that surprising when both past and present drainage 

patterns are considered.  This form, at no time in its history, has ever been in a drainage 

pattern other than the Atlantic while the other two forms have the present Ohio River 

drainage pattern in common.  It is somewhat troubling however that these two individuals 

(MU_BND_054 and MU_BND_047) expressed such difference between (0.04) them 

when far less (<0.001) was shown between either the subspecies (MU_BND_036 and 

MU_BND_035) or drainages (MU_BND_001 and MU_BND_016). 
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Chapter 6: Conclusion 
 
 Despite being a common fish in freshwaters, the members of the blacknose dace 

species complex have a long history of unclear taxonomy.  The relationship among the 

different forms and their distribution is an intriguing issue.  The various studies that have 

been conducted arrive at many different results and the authors have drastically different 

stances on the placement of the members of this complex systematically.  Once this study 

began I began to see the reason for the large scale disagreement and the confusion that 

follows this group. 

 The most suitable characters for distinguishing between the members of this 

species complex, nuputal coloration in males, still yielded high levels of variability and 

uncertainty when arriving at a taxonomic identification.  Upon careful review of all 

available literature, some the traits I chose, as documented earlier, proved to be sufficient 

for distinguishing between West Virginia populations.  By using coloration patterns such 

as width of coloration of the side of the body, coloration of lateral line stripe, coloration 

below lateral line stripe, and pectoral fin nuptual pad coloration, it should be possible to 

identify the members of this complex in West Virginia populations to subspecies level.  

Other characters such as coloration of the operculum/suboperculum, coloration of the 

chin area, disappearance of the dark lateral line stripe and replacement with nuptual 

coloration, and the degree to which the lateral line stripe was replaced by nuptual 

coloration also are suitable traits for distinguishing between the subspecies.  It is 

uncertain whether these traits will work outside of the immediate area, as shown by the 

variability of the traits as documented in the literature.  These traits are limited in their 

usage as the breeding period for this species complex covers only roughly one month so 

other suitable characters will have to be determined, possibly using populations identified 

in this study. 

 There is a caveat, however, in distinguishing between the members of this 

complex; drainage pattern.  Stream capture and drainage played a large role in the 

condition of these coloration patterns and the presence of the forms in the various 

waterbodies.  Most of the individuals captured were found outside of their predicted 

range including the presence of more than one form in a number of different waterbodies.  
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This influence was at times evident in the creation of an intermediate color form but most 

commonly these individuals displayed the coloration pattern consistent with their pre-

Pleistocene drainage pattern.  This factor could play an even larger influence outside of 

the breeding season were species or subspecies can be determined solely by drainage.  As 

was the case in the areas where stream capture occurred between Atlantic and Ohio 

Drainage streams, the primary means for separating Rhinichthys atratulus from 

Rhinichthys obtusus.  In these areas, care must be use in conducting the taxonomy of 

these species.  Whether working with West Virginia populations or in areas near the 

continental divide where stream capture may have occurred, strict understanding of the 

geologic history in regards in drainage patterns would help greatly in identifying these 

fishes.  

 Molecular analysis of the West Virginia populations of this species complex did, 

however, shed some light on the relationships among its members.  As described by 

Matthews et al. (1982), Jenkins and Burkhead (1994), and ultimately stated with a 

reclassification in Nelson et al. (2004), there does appear to be a larger difference 

mitochondrially between R. atratulus and R. obtusus than there does between R. obtusus 

obtusus and R. obtusus meleagris.  Unfortunately the R. meleagris populations sampled 

as part of this study appeared to be of an intermediate form so this can not be determined 

definitively.  A more robust sample of all fishes from areas well within their predicted 

ranges would be much better served to draw conclusions regarding molecular 

relationships than this study with such a narrow focus and variable geologic history. 

 This common freshwater fish and the relationships among the members of the 

complex are quite unique.  The disagreement between the breeding behaviors, coloration 

patterns, morphometry, meristics, and distribution of this species complex has made it 

fascinating to study and it is a great model for research in speciation and problems in 

systematics.  More in-depth and robust studies of many of the variables listed above may 

lead to a better understanding of the relationships among this group and the mechanisms 

for its distribution.  Hopefully someday the systematics of this interesting group of fishes 

will be clarified. 
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Table 4: All blacknose dace captured, their subspecies identification, and location of capture 

Fish Code Subspecies Stream Name Drainage Major Drainage 

MU_BND_001 R. obtusus meleagris Johnnys Run/ Johns Run 
E. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_002 R. obtusus meleagris Johnnys Run/ Johns Run 
E. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_003 R. obtusus meleagris Cove Run 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_005 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_006 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_008 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_009 R. atratulus atratulus Horseshoe Run Cheat River 
Ohio River 

(Upper) 

MU_BND_010 R. obtusus meleagris Pheasant Run/ Pleasant Run Shavers Fork 
Ohio River 

(Upper) 

MU_BND_011 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_016 R. obtusus meleagris 
UNT to West Fork Greenbrier 

River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_017 R. atratulus atratulus UNT to Youghiogheny River Youghiogheny River 
Ohio River 

(Upper) 

MU_BND_019 R. atratulus atratulus Pheasant Run/ Pleasant Run Shavers Fork 
Ohio River 

(Upper) 

MU_BND_021 R. obtusus obtusus Otter Lick Run Elk River 
Ohio River 

(Lower) 

MU_BND_023 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_027 R. atratulus atratulus Horseshoe Run Cheat River 
Ohio River 

(Upper) 

MU_BND_028 R. obtusus meleagris Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_029 R. obtusus obtusus Otter Lick Run Elk River 
Ohio River 

(Lower) 

MU_BND_030 R. atratulus atratulus UNT to Youghiogheny River Youghiogheny River 
Ohio River 

(Upper) 

MU_BND_031 R. atratulus atratulus Pheasant Run/ Pleasant Run Shavers Fork 
Ohio River 

(Upper) 

MU_BND_032 R. obtusus obtusus Otter Lick Run Elk River 
Ohio River 

(Lower) 

MU_BND_033 R. obtusus meleagris 
UNT to West Fork Greenbrier 

River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_035 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_036 R. atratulus atratulus UNT to Youghiogheny River Youghiogheny River 
Ohio River 

(Upper) 
MU_BND_037 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 

MU_BND_038 R. atratulus atratulus UNT to Youghiogheny River Youghiogheny River 
Ohio River 

(Upper) 

MU_BND_039 R. atratulus atratulus UNT to Youghiogheny River Youghiogheny River 
Ohio River 

(Upper) 
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MU_BND_042 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_043 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_044 R. obtusus obtusus Birch River Elk River 
Ohio River 

(Lower) 

MU_BND_045 R. obtusus meleagris 
UNT to West Fork Greenbrier 

River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 
MU_BND_046 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 
MU_BND_047 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 
MU_BND_048 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 

MU_BND_049 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_053 R. obtusus meleagris 
UNT to West Fork Greenbrier 

River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 
MU_BND_054 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 

MU_BND_055 R. obtusus obtusus Birch River Elk River 
Ohio River 

(Lower) 

MU_BND_056 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 
MU_BND_057 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 

MU_BND_058 R. obtusus obtusus Pheasant Run/ Pleasant Run Shavers Fork 
Ohio River 

(Upper) 
MU_BND_062 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 

MU_BND_065 R. obtusus obtusus Birch River Elk River 
Ohio River 

(Lower) 

MU_BND_066 R. atratulus atratulus UNT to Youghiogheny River Youghiogheny River 
Ohio River 

(Upper) 
MU_BND_067 R. atratulus atratulus Abernathy Run S. Br. Potomac River Atlantic Ocean 

MU_BND_068 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_069 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_070 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_071 R. obtusus obtusus Back Fork Birch River Elk River 
Ohio River 

(Lower) 

MU_BND_073 R. obtusus obtusus Otter Lick Run Elk River 
Ohio River 

(Lower) 

MU_BND_074 R. obtusus meleagris Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_075 R. atratulus atratulus Pheasant Run/ Pleasant Run Shavers Fork 
Ohio River 

(Upper) 

MU_BND_076 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_077 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_078 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_079 R. obtusus meleagris Pheasant Run/ Pleasant Run Shavers Fork 
Ohio River 

(Upper) 

MU_BND_080 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 
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MU_BND_081 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_082 R. obtusus obtusus Back Fork Birch River Elk River 
Ohio River 

(Lower) 

MU_BND_083 R. atratulus atratulus UNT to Youghiogheny River Youghiogheny River 
Ohio River 

(Upper) 

MU_BND_084 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_085 R. obtusus obtusus Back Fork Birch River Elk River 
Ohio River 

(Lower) 

MU_BND_086 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_087 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_088 R. obtusus meleagris West Fork Greenbrier River 
W. Fk. Greenbrier 

River 
Ohio River 

(Lower) 

MU_BND_089 R. obtusus obtusus Pheasant Run/ Pleasant Run Shavers Fork 
Ohio River 

(Upper) 

MU_BND_090 R. obtusus obtusus Birch River Elk River 
Ohio River 

(Lower) 

MU_BND_091 R. atratulus atratulus Dry Fork Black Fork River 
Ohio River 

(Upper) 

MU_BND_128 R. obtusus meleagris Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_129 R. obtusus meleagris Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_130 R. obtusus meleagris Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_131 R. atratulus atratulus Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_132 R. obtusus meleagris Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_133 R. obtusus meleagris Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_140 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_142 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_143 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_144 R. obtusus obtusus Files Creek Tygart Valley River 
Ohio River 

(Upper) 

MU_BND_166 R. atratulus atratulus Dry Fork Black Fork River 
Ohio River 

(Upper) 

MU_BND_174 R. atratulus atratulus Dry Fork Black Fork River 
Ohio River 

(Upper) 

MU_BND_175 R. atratulus atratulus Dry Fork Black Fork River 
Ohio River 

(Upper) 

MU_BND_179 R. obtusus meleagris Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_183 R. obtusus meleagris Laurel Fork Cheat River 
Laurel Fork Cheat 

River 
Ohio River 

(Upper) 

MU_BND_184 R. atratulus atratulus Dry Fork Black Fork River 
Ohio River 

(Upper) 
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MU_BND_185 R. atratulus atratulus Dry Fork Black Fork River 
Ohio River 

(Upper) 
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Table 5: Tamura-Nei corrected distance matrix based upon multiple sequence alignment 
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Figure 1: Dendogram based upon Heirarchal Cluster Analysis of morphological traits for 84 nuptual male 
blacknose dace 
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Figure 2: Frequency histogram of each condition of Lateral Line Stripe width to each cluster in the two-
step  cluster analysis 

 
Figure 3: Frequency histogram of each condition of Lateral Line Stripe Color to each cluster in the two-
step cluster analysis 

 
Figure 4: Frequency histogram of each condition of Color Below Lateral Line Stripe to each cluster in the 
two-step cluster analysis 
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Figure 5: Frequency histogram of each condition of Fin Color to each cluster in the two-step cluster 
analysis 

 
Figure 6: Frequency histogram of each condition of Nuptual Pad Color to each cluster in the two-step 
cluster analysis 

 
Figure 7: Frequency histogram of each condition of Melanophore presence to each cluster in the two-step 
cluster analysis 
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Figure 8: Frequency histogram of each condition of Melanophore Density of less dense patterns to each 
cluster in the two-step cluster analysis  

 
Figure 9: Frequency histogram of each condition of Melanophore Density more dense patterns to each 
cluster in the two-step cluster analysis 

 
Figure 10: Frequency histogram of each condition of Chin Coloration to each cluster in the two-step 
cluster analysis 
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Figure 11: Frequency histogram of each condition of Cheek Coloration to each cluster in the two-step 
cluster analysis 

 
Figure 12: Frequency histogram of each condition of Lateral Line Stripe Obliteration to each cluster in the 
two-step cluster analysis 

 
Figure 13: Frequency histogram of each condition of the Amount of Lateral Line Stripe Obliteration to 
each cluster in the two-step cluster analysis 
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Figure 14: Chi-square analysis of Lateral Line Stripe Width as it relates to each cluster 

 
Figure 15: Chi-square analysis of Lateral Line Stripe Color as it relates to each cluster 

 
Figure 16: Chi-square analysis of Color Below Lateral Line Stripe Color as it relates to each cluster 
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Figure 17: Chi-square analysis of Fin Color as it relates to each cluster 

 
Figure 18: Chi-square analysis of Nuptual Pad Color as it relates to each cluster 

 
Figure 19: Chi-square analysis of Melanophore presence as it relates to each cluster 
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Figure 20: Chi-square analysis of Melanophore Density of Less Dense Patterns as it relates to each cluster 

 
 

Figure 21: Chi-square analysis of Melanophore Density of More Dense Patterns as it relates to each cluster 

 
Figure 22: Chi-square analysis of Chin Coloration as it relates to each cluster 
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Figure 23: Chi-square analysis of Cheek Coloration as it relates to each cluster 

 
Figure 24: Chi-square analysis of Obliteration of Lateral Line Stripe as it relates to each cluster 

 
Figure 25: Chi-square analysis of Amount of Obliteration of Lateral Line Stripe as it relates to each cluster 
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Figure 26: Neighbor-joining phylogram displaying genetic distance in branch length 
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Figure 27: Neighbor-joining rectangular cladogram displaying most likely clustering based on sequence 
alignment 
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Figure 28: Tamura-Nei phylogram displaying genetic distance in branch length 
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Figure 29: Strict consensus cladogram displaying most likely clustering based on sequence alignment 
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Table 6: Morphological characteristics of all blacknose dace sampled  
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Figure 30: Collection sites of nuptual male blacknose dace and subspecies present at each location 

 
*Shading is representative of literature suggested distribution of each subspecies.  Orange depicts range of 
R. obtusus obtusus, Green depicts R. obtusus meleagris, and Purple depicts R. atratulus atratulus .
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Figure 31: Correct and erroneous distribution of subspecies based on individuals collected with present 
flow regimes. 

 
*Shading is representative of literature suggested distribution of each subspecies.  Orange depicts range of 
R. obtusus obtusus, Green depicts R. obtusus meleagris, and Purple depicts R. atratulus atratulus 
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Figure 32: Correct and erroneous distribution of subspecies based on individuals collected when stream 
capture and pre-Pleistocene flow regimes applied 

 
 *Shading is representative of literature suggested distribution of each subspecies.  Orange depicts range of 
R. obtusus obtusus, Green depicts R. obtusus meleagris, and Purple depicts R. atratulus atratulus. 
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Appendix A:  Multiple sequence alignment of mitochondrial cytochrome b sequences of 16 blacknose dace 
from a large zone of contact in West Virginia (Clustal W v.1.83). 
 
MU_BND_005      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGACAAGAAGGAAGAGT 
MU_BND_056      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_077      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_132      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_043      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_088      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_086      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_045      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_036      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_035      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_016      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_001      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_017      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_006      GCTCATTTCAGTGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGGAGGAAGAGT 
MU_BND_054      GCTCATTTCAATGCTTTATTCTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
MU_BND_047      GCTCATTTCAATGCTTTATTTTCTGCCCACCCTGCGAGCGGGGCGAGAAGAAGGAAGAGT 
                ********** ********* ************************* *** ********* 
 
MU_BND_005      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_056      GCGAAGTACAGCACCGACGCGATTTGCCCGATGATGATATATGGGTCTTCTACGCCCATG 
MU_BND_077      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_132      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_043      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_088      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_086      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_045      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_036      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_035      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_016      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_001      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_017      GCGAAGTACAGCACCGACGCGATTTGGCCGATGATGATATATGGGTGTTCTACGGGCATG 
MU_BND_006      GCGAAGTATAGCACTGACGCGATTTGGCCGATGATAATATATGGGTGTTCTACGGGCATG 
MU_BND_054      GCGAAGTACAGCACCGACGCGATTTGGCCAATGACGATATATGGGTGCTCTACGGGCATG 
MU_BND_047      GCGAAGTATAGCACCGACGCGATTTGGCCAATGACGATATATGGGTGCTCTACGGGTATG 
                ******** ***** *********** ** ****  **********  ******   *** 
 
MU_BND_005      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_056      CACCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_077      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_132      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_043      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_088      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_086      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_045      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_036      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_035      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_016      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_001      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_017      CCCCCAATTCATGTCAAGATGGCTATATCTGCCACCAGGGTTCAGAACAAGAACTGAGTG 
MU_BND_006      CCCCCAATTCATGTTAAGATGGCTATATCTGCCACCAGGGTTCAGAATAAGAACTGAGTG 
MU_BND_054      CCCCCAATTCACGTCAAGATAGCCATATCTGCCACCAGGGTTCAGAACAAAAACTGAGTG 
MU_BND_047      CCTCCGATTCACGTCAAGATAGCCATATCTGCCACGAGGGTTCAGAATAAAAACTGAGTG 
                *  ** ***** ** ***** ** *********** *********** ** ********* 
 
MU_BND_005      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_056      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_077      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_132      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_043      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_088      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
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MU_BND_086      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_045      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_036      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_035      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_016      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_001      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_017      ATTGGGCGGAAGGTTAATCCACGCTGTTTTGAGGTGTGNAAGATGGGGACTACCAGTAAC 
MU_BND_006      ATTGGGCGGAAGGTTAATCCGCGTTGTTTTGATGTGTGTAAGATGGGGACTACCAGTAAC 
MU_BND_054      ATTGGGCGGAAAGTTAATCCCCGCTGCTTTGAGGTGTGCAAAATGGGGACCACCAATAAC 
MU_BND_047      ATTGGGCGGAAAGTTAGTCCCCGTTGCTTTGAGGTGTGCAAAATGGGGACCACTAATAGT 
                *********** **** *** ** ** ***** ***** ** ******** ** * **   
 
MU_BND_005      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_056      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_077      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_132      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_043      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_088      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_086      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_045      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_036      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_035      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_016      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_001      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_017      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGATCGTAGA 
MU_BND_006      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTTGGAATGGACCGTAGA 
MU_BND_054      ACCAGAATGCTAAATAACAATGCCAGGACCCCTCCTAGCTTGTTCGGAATGGATCGTAGA 
MU_BND_047      ACTAGGATGCTAAATAATAATGCCAGGACCCCTCCTAGCTTGTTCGGAATGGATCGTAGA 
                ** ** *********** ************************** ******** ****** 
 
MU_BND_005      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_056      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_077      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_132      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_043      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_088      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_086      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_045      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_036      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_035      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_016      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_001      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGTTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_017      ATGGCGTAGGCAAACAAGAAGTATCACTCTGGNTGGATGTGTGGTGGAGTAACCAGGGGG 
MU_BND_006      ATGGCGTAGGCAAACAAGAAGTATCACTCCGGTTGGATGTGTGGTGGAGTAACCAGGGGA 
MU_BND_054      ATAGCGTAGGCAAACAAGAAGTATCACTCCGGCTGGATGTGCGGTGGAGTAACCAGGGGG 
MU_BND_047      ATAGCGTAGGCAAACAAGAAGTATCACTCCGGCTGGATGTGCGGTGGAGTAACCAGGGGG 
                ** ************************** ** ******** *****************  
 
MU_BND_005      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_056      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_077      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_132      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_043      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_088      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_086      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_045      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_036      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_035      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_016      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_001      TTTGCTGGGGTAAAATTCTCTGGGTCACCTAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_017      TTTGCTGGGGTAAAATTCTCTGGGTCACCNAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
MU_BND_006      TTTGCTGGGGTGAAATTCTCTGGGTCGCCCAGAAGGGTGGGGGAGAACAACGTTAGGGCT 
MU_BND_054      TTCGCTGGGGTAAAATTCTCTGGGTCACCCAGAAGGGTGGGGGAGAACAACGTTAGGGAT 
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MU_BND_047      TTCGCTGGGGTGAAATTCTCTGGGTCACCCAGAAGGGTGGGGGAGAACAATGTTAGGGAT 
                ** ******** ************** ** ******************** ******* * 
 
MU_BND_005      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_056      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_077      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_132      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_043      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_088      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_086      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_045      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_036      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_035      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_016      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_001      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_017      GTGAGAGCTAGTAGTATTAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_006      GTGAGAGCTAGTAGTATGAGTACAAAGCCAAGGAGGTCCTTATATGAGAAGTATGGGTGG 
MU_BND_054      GTGAGAGCCAATAGTATTAGTACAAAGCCAAGGAGGTCTTTATATGAGAAGTATGGGTGG 
MU_BND_047      GTGAGAGCCAATAGTATTAGTACAAAGCCGAGGAGGTCTTTATATGAGAAGTATGGGTGG 
                ******** * ****** *********** ******** ********************* 
 
MU_BND_005      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_056      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_077      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_132      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_043      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_088      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_086      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_045      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_036      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_035      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_016      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_001      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_017      AAAGAGATTTTATCCGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_006      AAAGAGATTTTATCTGCGTCGGAGTTTAGCCCGGCAGGGTTGTTTGACCCGGTCTCGTGA 
MU_BND_054      AAAGAGATTTTATCCGCGTCGGAGTTTAACCCGGCAGGGTTATTCGACCCGGTCTCGTGA 
MU_BND_047      AAAGAGATTTTATCTGCGTCGGAGTTTAACCCGGCAGGGTTATTCGATCCGGTCTCGTGA 
                ************** ************* ************ ** ** ************ 
 
MU_BND_005      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_056      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_077      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_132      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_043      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_088      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_086      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_045      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_036      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_035      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_016      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_001      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_017      AGAAATAGTAAATGCAGGACTGTTGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_006      AGAAATAATAAATGCAGGACTGTTGCACCGGCGATAACGAACGGGAATAAGAAGTGAAAG 
MU_BND_054      AGAAATAGTAAATGCAGGACGGTCGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
MU_BND_047      AGAAATAGTAAATGGAGGACGGTCGCACCGGCGATAACGAATGGGAATAAGAAGTGAAAG 
                ******* ****** ***** ** ***************** ****************** 
 
MU_BND_005      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_056      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_077      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_132      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_043      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_088      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
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MU_BND_086      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_045      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_036      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_035      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_016      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_001      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_017      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_006      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_054      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
MU_BND_047      GCGAAGAATCGTGTTAACGTTGCGTTATCTACTGAAAAGCCACCTCAAATCCACTGGACA 
                ************************************************************ 
 
MU_BND_005      AGGGTGTCTCCCATATA 
MU_BND_056      AGGGTGTCTCCCATATA 
MU_BND_077      AGGGTGTCTCCCATATA 
MU_BND_132      AGGGTGTCTCCCATATA 
MU_BND_043      AGGGTGTCTCCCATATA 
MU_BND_088      AGGGTGTCTCCCATATA 
MU_BND_086      AGGGTGTCTCCCATATA 
MU_BND_045      AGGGTGTCTCCCATATA 
MU_BND_036      AGGGTGTCTCCCATATA 
MU_BND_035      AGGGTGTCTCCCATATA 
MU_BND_016      AGGGTGTCTCCCATATA 
MU_BND_001      AGGGTGTCTCCCATATA 
MU_BND_017      AGGGTGTCTCCCATATA 
MU_BND_006      AGGGTGTCTCCCATATA 
MU_BND_054      AGGGTGTCGCCCATATA 
MU_BND_047      AGGGTGTCGCCCATATA 

                ******** ******** 
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