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Abstract 
 

A general model for the population of Tibetan antelope is constructed. The 

present model shows that the given data is reasonably logistic. From this model the 

extinction of antelopes in China is predicted if we don’t consider the effects of 

humans on the population. Moreover, this model shows that the population is limited. 

A projected limiting number is given by this model. Some typical mathematical 

models are introduced such as exponential model and logistic model. The solutions of 

those models are analyzed. 
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Chapter 1 
Introduction 

 
Extinction has played a major role in the wildlife world. Today, species are 

currently becoming extinct at a faster rate than at any time in the past. The number of 

threatened animals and plants species has exceeded 16,000, a new environmental report 

said on May 2, 2006, [9]. Extinction of most species is due to changes in their natural 

habitat, climate changes, pollution, and other types of environmental situations which are 

difficult to determine. Tibetan Antelopes, on the verge of extinction, are still threatened 

by poaching and habitat damage despite the progress in anti-poaching campaigns in 

China, according to Chinese wild animal protection authorities, [8]. 

 
Over the past few years, a group of Chinese and American scientists researching 

the antelope's birthing and breeding behaviors have discovered that the stability of the 

Tibetan Antelope population has been seriously undermined as many adult female 

antelopes have been killed. Pregnant antelopes run a higher risk of being hunted because 

they travel in large groups along routine paths to give birth in certain areas each year, 

thus becoming easy targets for poachers.  

 
The researchers found in the 1998-1999 time periods, when the poaching was 

rampant, that the percentage of pregnant females dropped dramatically. At the same time 

an average of 20,000 antelopes, [6], or more than 30 percent of the estimated total, were 

slaughtered annually. Tibetan Antelopes are long-term residents on the Tibet-Qinghai 

Plateau in the west of China. The population has dropped from several million to below 
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70,000 in the past two decades due to extensive poaching and the damage of the animals' 

habitat in the wake of a gold rush, [9]. 

 
Population dynamics, especially the equilibrium states and their stability, have 

traditionally been analyzed using mathematical models, [1]. Some models are difference 

equation models and some are differential equation models. Of interest in both the 

continuous and discrete models are the equilibrium states and convergence toward these 

states. In such cases, an interesting question to ask is how fast the population will 

approach the equilibrium state. To make a mathematical model useful in practice we need 

to use quantitative methods that allow us to forecast a population’s future and express the 

numerical results, [3]. The need to make forecasts leads to the development of models. A 

model is a mathematical description of changes in population magnitude. The model may 

be as simple as an equation with only one variable or as complex as a computer program 

with thousands of lines. One of the difficulties of building a mathematical model is that 

we need to consider the particular situation. For example, we need to incorporate some 

details about the concerned species into the model. 

 
In this paper I will review some simple mathematical models. In particular, I will 

focus on the logistic growth model. From that we can see the limitations for the 

population of Tibetan Antelope in China. Based on it, a general model is constructed. It 

may either show the time until extinction or until the population has either decreased or 

increase to reach an equilibrium level.  
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Chapter 2 
Basic Mathematical Techniques 

 
2.1 A Standard Equation for General Population Growth 
 

General population models can always be written in the form of a standard 

equation. It looks like the following: 

 
   (Rate of change in quantity) = (Number of births) – (Number of deaths)                 (2.1.1) 
 
where the quantity is related to the number of members of given population. Let ( )P t  

represent the amount of the species of interest present at that time t. So (2.1.1) can be 

written as the following: 

'( )P t = Changes due to birth - Changes due to Death                                      (2.1.2) 
 
Suppose that B represents the birth rate and D represents the death rate. Then, equation 

(2.1.2) is equivalent to the following: 

                                       '( ) ( ) ( )P t BP t DP t= −                                                             (2.1.3) 
 
 The above equation can be written as the following:  

                                  
                                       '( ) ( ) ( )P t B D P t= −                                                                (2.1.4) 
 
Note that B and D could be functions of time t or they could be related to the population. 

It depends on particular species and environment conditions. Base on above equation, 

let’s make some additional assumptions.  

 
2.2 Model 1. Both B and D are constants  

Suppose that r B D= − , then  r is a constant. Equation (2.1.4) becomes 

 
                                            '( ) ( )P t rP t=                                                                      (2.2.1) 
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In this simplest model, r  tells us how fast the population is changing at any given 

population level. It could be positive or negative. If r  is positive, it means the population 

is increasing. If r  is negative, it means the population is decreasing. So we can call r the 

rate of growth of the population or the rate of decrease of the population. And this model 

is called the exponential model. 

 
For the differential equation (2.2.1), we can find the solution easily with the 

known initial data. Note, r can be positive or negative. It depends on which  rate term is 

dominant. To solve this differential equation, we want to review the definition of the 

solution of such an equation.  

Definition 2.1 [4] (Solution of a first order initial value problem): Let 

0 0( , ) ( , ) ( , )t x a b c d∈ × and assume f  is continuous on ( , ) ( , )a b c d× . We say that the 

function x  is a solution of the initial value problem (IVP) 

' ( , ),x f t x=  0 0( )x t x=  

on an interval ( , )I a b⊂  provided 0t I∈  ,  ( )x t is a solution of the IVP on I , and  

0 0( )x t x= . 

 

Note, for example, that if ( , ) ( , ) ( , )a b c d× ⊂ −∞ ∞ , then the function m  defined by 

( ) 500 ktm t e−= , 

( , )t ∈ −∞ ∞  is a solution of the IVP 

' ,m km= −  (0) 500m =  

on the interval ( , )I ⊂ −∞ ∞ .  
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  From the above definition, the differential equation (2.2.1) is easily solved as a 

first order differential equation, leading to a general solution of the following term: 

                                                      0( ) rtP t P e=                                                              (2.2.2) 

where 0P  represents the initial population size. 

 
Mathematically, differential equation (2.2.1) can be described as the change in P  

over time is proportional to the size of the population present. This model presents 

exponential growth without limit. However, in our real world, this case does not happen, 

because we need to consider the environmental  factors, including weather, food, disease, 

illegal hunting etc. So why do I choose to present this model? I would like to start from 

the simplest model and then based on it try to involve some factors step by step coming 

closer to describing the actual situation and approaching the goal. 

 
2.3 Model 2. Either birth rate or death rate is a constant. 

Assume that death rate is a constant. Most populations are limited by some factors. 

For example, it may be restricted by physical space, food supplies, and competition with 

other species and so on. The instability of the environment is one of the main factors that 

make the birthrate decrease. For example, if there is no water because of a drought and 

the grass is gone. If the population needs the grass for food, they have to move to a new 

place where there is grass. Otherwise, the population will face extinction.  Another reason 

that may cause a decreasing birthrate year by year can be the decrease in the reproductive 

ability of the species. Perhaps the decrease was due to their biologically changes or other 

genetic problems as well. 
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In this case, we can construct it a simple mathematical model where birth rate is a 

linearly decreasing function of the population size. In other words, the birth rate is of the 

form, 

0 1 ( )B B B P t= −  

where 0B  and 1B  are constants.  

How can we control the birth rate?  

 Since B is the birth rate, it should be between 0 to 1. That is, 

                                                     0 10 1B B P≤ − ≤                                                        (2.3.1) 

where 0B is the initial rate, and also P  is the  population at that time t. If we want to 

control the value of B , we need to find the range of 1B . Let’s rewrite (2.3.1) as the 

following equations: 

It is easily seen that  

0 10 1B B P≤ − ≤  

implies 

                                                             0 0
1

1B BB
P P
−

≤ ≤    .                                          (2.3.2) 

since 0P > . 

That is to say, the value 1B  is between 0 1B
P
− and 0B

P
. 

Let 0D  represent the initial death rate at that time, then the population equation 

(2.1.1) becomes: 

            2 2
0 1 0 0 1 0 0 0 1'( ) ( ) ( )P t B B P D P B P B P D P B D P B P= − − = − − = − −                   (2.3.3) 

To simplify this expression a little, we define two new terms, 
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1k B=  and 0 0

1

( )B DM
B
−

=  

With above definitions, we can rewrite the differential equation (2.3.3) as: 

2'( )P t kMP kP= −  

= (1 )kPkMP
kM

−  

= (1 )PkMP
M

−  ( 0)k ≠                                (2.3.4)  

 

Equation (2.3.4) describes logistic growth. In order to analyze the model and find 

out the solution, we need to review the Verhulst Equation, [1]. The logistic law of 

population growth is described by the first order differential equation,   

' (1 )NN rN
K

= − , 

where N is the number of individuals in the population, and r is the intrinsic rate of 

change in population, and K  is carrying capacity of the environment.  

First notice that the derivative will be zero at N = 0 and N = K.  Also notice that 

these are in fact solutions to the differential equation.  These two values are called 

equilibrium solutions. 

If we start with a population of zero, there is no growth and the population stays 

at zero. If we start with a population in the range 0< N < K, then from our differential 

equation we know that ' 0N >  and hence N is increasing. If we start at N=K, the 

population stays at this level. Similarly, if start with N > K, then we have ' 0N <  and 

hence N is decreasing. Using our analysis we construct the following phase line diagram 

shown in Figure 1. 
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Figure 1 
 

From that phase line diagram, we see that solutions tend toward the equilibrium at 

K  and hence the solution N=K is stable while the equilibrium at 0 is unstable. According 

to this model, if the population is above 0, it will go to the carrying capacity K  

eventually. 

 Let’s return to our Model 2, differential equation (2.3.5).  

We rewrite it as, 

(1 )dP PkMP
dt M

= −  

Separating variables in this equation we obtain  

( )
M dP kMdt

P M P
=

−
 

Using the separation of variable methods we can get the general solution for the 

differential equation (2.3.5), [10], that is: 

( )
kMt

kMt c

e MP t
e e

=
−

 

   

where c can be calculated from given initial conditions.  

Dividing numerators and denominators by kMte , we get: 

( )
1

c

kMt

MP t
e

e

=
−

. 

N 
0 K 
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Simplifying the solution, we can get the following result: 

( ) 11 kMt c

MP t

e −

=
−

. 

where 0 0

1

( )B DM
B
−

= and 1k B= , and 0B  and 1B  are positive constants, and c is a 

constant.  

Let’s analyze this solution. We see that as time increases, the size of population reaches a 

finite limit. Mathematically, 

( )P t M→ , as t → ∞  

The value M is defined in terms of the birth rate and death rate expressions and is 

referred to as the limitation of the population. This result was expected in the real world. 

 

2.4 Model 3. Either birth rate or death rate is a constant. 

If B is a constant, let’s suppose that the death rate is a linearly increasing function of the 

population size.  

It follows that 

0 1D D D P= +  

where 0D  and 1D  are positive constants. 

 

The differential equation becomes, 

2
0 0 1 0 0 1'( ) ( ) ( )P t B D D P P B D P D P= − − = − −  

Similarly, we define two terms, 
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1k D=  and 0 0

1

( )B DM
D
−

=  

Then the differential equation becomes, 

'( ) (1 )PP t kMP
M

= −  

 We can see that it has the same form as the Model 2, which is differential 

equation (2.3.5). So we can assume that the solution of the above differential equation 

has the same form as the solution of differential equation (2.3.5). That is to say, the size 

of population goes to a finite number as time goes on. Also the finite value is related to 

the initial data, including the birth rate, death rate and so on. 

Therefore, for this model the result is expected in the real world. 

2.5 Using the discrete system to describe the logistic model 

Sometimes it is difficult to find a value of the population, P , at any given time; 

It’s hard to find continuous data for various seasons. For example, the female is not 

fertile in winter. Thus our data is discrete.  

 The simple logistic equation is a formula for describing the evolution of an 

animal population over time. Many animal species are fertile only during the specific 

time of the year. And also some young are born in a particular season. Since not every 

existing animal will reproduce, not every female will be fertile. For that reason, the 

system might be better described by a discrete equation than a continuous differential 

equation.  

 A difference equation is an equation involving differences. If nN  is the number of 

animals this year and 1nN +  is the number next year, then the simplest first order model is  

1n nN rN+ =  
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where r  is the growth rate. This model will approximate the evolution of the population. 

And this exponential population grows without limit. Since every population is bound by 

the physical limitations of it’s surrounding. Then the logistic equation becomes 

1 (1 )n n nN rN N+ = −  

 A solution of a difference equation is an expression (or formula) that makes the 

difference equation true for all values of the integer variable n . The nature of a difference 

equation allows the solution to be calculated recursively. It is easier to see the solution of 

the difference equation through algebraic equations. 
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Chapter 3 
Problem Description 

  

3.1 Introduction of Tibetan Antelope 

 The Tibetan Antelope is a remarkable runner. Despite the thin atmosphere on the 

high level, it can run as fast as 50 mile per hour. This is not only because it is so light and 

nimble, but also because its muzzle is particularly swollen and it has many air sacs in its 

nostrils, aiding its breathing.  

 Since the thin atmosphere on the high level, there is few animal or human living 

in that area. That’s why it’s hard to obtain research for the Tibetan Antelope. Due to the 

geographic distribution of Tibetan Antelope and the circumstance of Chinese government, 

the outcome of statistical analysis of Tibetan Antelope still remains unsolved before the 

1950. There are some reasons for that. 

 First, Tibetan Antelopes are distributed extensively in China. Tibet currently has 

approximately 149,930 Tibetan Antelopes in a 698,000-sq-km area across 103 villages 

and 18 towns, [6]. And also there are many Tibetan Antelopes distributed in area of very 

high elevations where the air is thin and no humans inhabit the regions, so performing the 

censuses are very difficult, and nothing can be done for the statistic analysis of the 

wildlife populations. Secondly, the Chinese government was established in 1949. At that 

time the Chinese government had limited funds. Tibet theoretically belongs to China, but 

objectively, Tibet still intends to be independent. Therefore, the people who live in Tibet 

have a lot of conflicts with the Chinese government, constantly armed clashes and other 

acts of violence takes place. In this kind of situation, almost no one cares about the 

statistical work for the Tibetan Antelope. There were only few research papers regarding 
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Tibetan Antelope that were written by American scientists, but there was no official 

statistical data that can be investigated or verified. 

 The official data being used in this paper was initially collected after 1950. 

Because of the special habitat environment of Tibetan Antelopes, we can surmise that 

from 1900 to 1970’s the change in quantities of Tibetan Antelopes depended on the 

habitat.  In other words, the influence that humans might have on to the habitat 

environment of Tibetan Antelopes has been minimal and almost can be neglected. We 

can assume in that period the changes in quantities of the Tibetan Antelopes was 

completely based on in the system of Tibetan Antelopes the Tibetan Antelopes and their 

environment . Therefore, this model is created based on the assumption according to this 

analysis. 

 According to statistics, the quantity of Tibetan Antelopes is 650,000 in 1974, [7]. 

After that, in very short 15 years, the quantity of Tibetan Antelopes was enormously 

reduced to 50,000 in 1989. There are many reasons for that outcome, for example, in 

1975, China was a very poor country. The people living in the villages had nothing to eat, 

hence they hunted for the wildlife for their hunger, and as it had always happened in the 

past. Moreover, at that time there was no law to prevent and disallow people to hunt or to 

kill the Tibetan Antelopes. Moreover, the very important reason is, at the beginning of 

80's, the luxurious custom very popular in Europe and America of wearing, to wear the 

animal furs was the symbol of prestige and high classes. Hence, the people did not 

hesitate to purchase the expensive furs. The furs of the Tibetan Antelopes are very soft 

and  some of the warmest wools in the world, and the production process of the furs was 

very simple and easy. Therefore, the Tibetan Antelopes became the sacrifice animal for 
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the luxuriously dressed. The furs of an adult Tibetan Antelope sold for $8000. Since 1979, 

the animal has been recognized as an endangered species and protected under the 

Convention on the International Trade in Endangered Species, [9]. Although there is a 

policy for protection, the population of the antelopes still was shrinking sharply because 

of the hunting. I think that is the major reason for the decreasing sharply population for 

Tibetan Antelope.  

3.2 Data for Tibetan Antelope 

According to the IUCN (International Union for Conservation of Nature and 

Natural resources), [5], population estimate between 1950 and 1960 ranged from 500,000 

to 1,000,000. The following Table 1 shows the available data about Tibetan Antelope 

between 1950 and 1960. 

 

Date (Years) Population 
(Million) 

1950 0.500 

1951 0.550 

1952 0.601 

1953 0.645 

1954 0.695 

1955 0.75 

1956 0.816 

1957 0.890 

1958 0.958 

1959 1.041 

1960 1.130 

 
Table 1 
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Chapter 4 
Modeling The Logistic Model 

 

4.1 Graph the Data 

Considering the population sizes for Tibetan Antelope for the years between 1950 

and 1960, we will derive a mathematical model for the Tibetan Antelope. 

Using these data, we can plot the graph. It is the following Figure 2. 
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 16 

4.2 The Mathematical Model  

Let’s consider that the logistic growth model with form: 

                                       ' (1 )PP rP
K

= −                                                          (4.2.1) 

In order to show model (4.2.1) is logistic, we need to focus on the following questions: 

• How to tell whether a given set of data is reasonably logistic? 

• What parameters r and K  will be good fit? 

 

 

4.3 Logistic model for the given data 

Since we have discrete data, then we describe the model using a difference equation. 

We use previous values from the systems to calculate the new ones.  The equation (4.2.1) 

can be expressed by the difference equation version as the following equation: 

( 1) ( ) (1 )PP t P t rP
K

+ − = −  

It can be rewritten as: 

                                                 (1 )P Pr
P K

∆
= −                                                             (4.3.1) 

 

The equation says that the ratio of P∆  to P is a linear function of P .  

Now we have testing of logistic behavior for our model: 

First of all, let’s consider the left hand side (LHS) of equation (4.3.1). We 

calculate the difference of the populations for two consecutive years, and then use those 

differences against the corresponding function values.  

Next, we plot the ratios and the corresponding function values.  
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At last, if we can show that the plots are approximately linear, then the model 

equation (4.3.1) is reasonable. That is to say, the model has the form (4.2.1) and it is 

logistic.   

Calculating the ratios on the left hand side of (4.3.1) yields: 

1. 1
(1951) (1950) 0.55 0.5 0.1

(1950) 0.5
P Pa

P
− −

= = =  ; 

2. 2
(1952) (1951) 0.601 0.55 0.0927

(1951) 0.55
P Pa

P
− −

= = ≈ ; 

3. 3
(1953) (1952) 0.645 0.601 0.0732

(1952) 0.601
P Pa

P
− −

= = ≈  ; 

4. 4
(1954) (1953) 0.695 0.645 0.0775

(1953) 0.645
P Pa

P
− −

= = ≈ ; 

5. 5
(1955) (1954) 0.755 0.695 0.0863

(1954) 0.695
P Pa

P
− −

= = ≈ ; 

6. 6
(1956) (1955) 0.816 0.755 0.0807

(1955) 0.755
P Pa

P
− −

= = ≈ ; 

7. 7
(1957) (1956) 0.890 0.816 0.0906

(1956) 0.816
P Pa

P
− −

= = ≈ ; 

8. 8
(1958) (1957) 0.958 0.890 0.0764

(1957) 0.890
P Pa

P
− −

= = ≈ ; 

9. 9
(1959) (1958) 1.041 0.958 0.0866

(1958) 0.958
P Pa

P
− −

= = ≈ ; 

10. 10
(1960) (1959) 1.13 1.041 0.0854

(1959) 1.041
P Pa

P
− −

= = ≈ . 

Thus, we have the following list of data: 
 

 
 



 18 

a  ( )P t  
0.1 0.500 

0.0927 0.550 

0.0732 0.601 

0.0863 0.695 

0.0807 0.755 

0.0906 0.816 

0.0764 0.890 

0.0866 0.958 

0.0854 1.041 

 
Table 2 

 
Plotting the Least Square Approximation graph by using the data from Table 2, we obtain 
following graph: 
 
 

Linear Function of  P

y = -0.0145x + 0.0967

0

0.02
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a

 
Figure 3 
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As you can see in Figure 3, at various population plotted levels ( )P t at time t, we 

can calculate corresponding ratios a . Based on these points, we plot Least Square 

Approximation graph.  

Looking at the graph, we can see that most of our data points are close to this line. 

The overall resulting plot is approximately linear. Therefore, our assumption for the 

equation (4.2.1) is reasonable. That is the present model (4.2.1) shows that the given data 

is logistic.  

4.4 Determining the values of r  and  K   

In the Least Square Approximation graph (Figure 3), we know the equation for 

the line, which is, 

0.0145 0.0967y x= − +  

Substituting the point P(1950) into this equation, we obtain, 

1 0.0145*(0.5) 0.0967 0.08945y = − + =  

Similarly, substituting P(1951) into it, we obtain, 

2 0.0145*(0.55) 0.0967 0.0887y = − + =  

That is to say, we can get values of the ratio, a, where y=a. Then we have, 

1 0.08945y =  and 2 0.0887y =  

Substituting the data of 1950, 1951 and 1952 to the equation (4.3.1). We have the 

following two equations: 

                                                       0.5(1 ) 0.08945r
K

− =                                               (4.4.1) 

                                                       0.55(1 ) 0.0887r
K

− =                                               (4.4.2) 
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Suppose that , 0r K ≠ ，and divide (4.4.1) by (4.4.2), we can get that: 

0.51 0.08945
0.55 0.08871
K

K

−
=

−
. 

Simplifying it, we have: 

6.463K =  

From (4.4.1), then we obtain the value for r , 

0.097r =  

Therefore, the model is: 

                                                     ' 0.097 (1 )
6.463

PP P= −                                             (4.4.3) 

As we know, the size of population for the logistic model tends to the carrying 

capacity K . In this case, the size is bound by 6.463 million. In another words, the limiting 

number for this population model is 6.463 million. 

 

4.5 The Solution for the Logistic Model. 

Rewriting the (4.4.3), we have, 

                                                 20.097 0.015dP P P
dt

= −                                                (4.5.1) 

Since equation (4.5.1) is one in which variables are separable, we have 

(0.097 0.015 )
dP t c

P P
= +

−∫  

Also because  

1 1 1 0.015( )
(0.097 0.015 ) 0.097 0.097 0.015P P P P

= +
− −
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the equation can be written as, 

                                           1 1 0.015( )
0.097 0.097 0.015

dP t c
P P

+ = +
−∫                             (4.5.2) 

Let t=0 corresponds to the size of population in 1950, 0.5. Then we have 

0 0.5P =  

Using the condition,  0 0.5P = at t=0, we get 

[ ]1 ln(0.5) ln(0.097 0.015 0.5) 17.736
0.097

c = − − × =  

Thus, equation (4.5.2) becomes 

1 (ln ln(0.097 0.015 )) 17.736
0.097

P P t− − = +  

Solving for P, 

                                                     0.097

6.463( )
1 11.926 tP t

e−=
+

                                            (4.5.3) 

If we take the limit of solution (4.5.3) as t → ∞， we can see that, 

( ) 6.463P t →  

This shows that there is a limit to the growth of P. The limiting number is 6.463 million. 

This conclusion is the same as the one that we discussed in the previous chapter.  

 

4.6 Comparison of the Logistic Model with Actual Data.    

To illustrate the solution (4.5.3) for the differential equation (4.4.3) related to the 

Tibetan Antelope’s data that we have from the time period 1950 to 1960, we want to plot 

the solution equation (4.5.3) and see how it matches the curve in Figure 2. 
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Since we have equation (4.5.3), we can get the population for each year. Then we 

have the following table.  

t P(t) 

0 0.5 

1 0.546623 

2 0.597157 

3 0.651849 

4 0.710943 

5 0.77468 

6 0.843293 

7 0.917003 

8 0.996014 

9 1.08051 

10 1.17063 

 

Table 3 

 

According to the Table 1 and Table 3, in order to check if the plotting of differential 

equation matches the data of Tibetan Antelope during 1950 to 1960, we plot the 

following graph. 
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Figure 4 

 

The graph of the solution (4.5.3) has the general appearance shown in the following 

graph. 

P(t)=6.463/(1+11.926e^(-0.097t))
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Figure 5 
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In order to check if the solution curve for the differential equation matches the 

data of Tibetan Antelope during 1950 to 1960( from t= 0 to t=10), we plot the actual data 

we have and the graph for the solution together. This is presented in Figure 6. 
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Figure 6 

 

In the Figure 6, we can see the data in the 10 years period which is from 1950 to 

1960 are on the plotting of the solution curve.  

It implies that the differential equation with r and K that we’ve calculated estimates 

the data for Tibetan Antelope from the time period 1950 to 1960.   
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Chapter 5 
Conclusion 

 
 A model for the population of Tibetan Antelope from the 1950 to 1960 was 

constructed. That is, the differential equation that approximately models, this population 

is  

' 0.097 (1 )
6.463

PP P= −  

Also the present model is showed to be logistic. From the model we can predict the 

population limitation of the Tibetan Antelope. The number is 66.463 10× .  

 Moreover, we find the solution for differential equation (4.4.3). Basically it 

matches the given data. It shows that the mathematical model (4.4.3) we obtain does have 

potential as a possible logistic growth. 

However, this model obviously is not suitable and accountable for the change in 

population of Tibetan Antelopes after 1960. After 1960, human interferences and 

influences played a major role in decreasing the population of Tibetan Antelopes. These 

activities include hunting and killing of Tibetan Antelopes as well as damages to the 

habitat environment of Tibetan Antelopes. In this case more factors have to be considered 

in order to create and define a proper model.  

The Tibetan Antelope is also among the five doll mascots of the 2008 Summer 

Olympics to be held in Beijing. The antelope is seen as fully reflecting the spirit of the 

Olympics.  It carries the blessing of health and the strength that comes from harmony 

with nature. 
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