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Abstract 
  

 When considering the limit of a sequence of functions, some properties still hold under 

the limit, but some do not. Unfortunately, the integration is among those not holding. There are 

only certain classes of functions that still hold the integrability, and the values of the integrals 

under the limiting process. Starting with Riemann integrals, the limiting integrations are 

restricted not only on the class of functions, but also on the set on which the integral is taken. By 

redefining the integration process, Lebesgue integrals successfully and significantly extend both 

the class of the functions integrated and the sets on which the integral is taken. But the Lebesgue 

integral still does not hold under the limit even with some simply defined functions. We will 

attempt to solve this problem by defining a special type of measure to handle the limiting case 

and introducing an extension the set of real numbers. 
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Introduction 
   

The problem of measuring (or computing) some quantitative properties such as length, 

area, and volume of geometrical objects has been around for thousands of years. Over two 

thousand years ago, ancient Greek mathematicians, scientists and philosophers came up with 

some special ways or formulas to calculate these quantitative areas and volumes of some 

geometrical objects such as cones, sphere,… But there was still the need of a general concept and 

method to understand these quantitative properties and to extend the class of computable 

geometric objects. 

 About three hundred years ago, Newton and Leibnitz formulated calculus, creating the 

first mechanism on the way to finding a general solution for this problem. Their idea of 

infinitesimal calculus, dividing an object into infinitely many well-behaved or nearly well-

behaved pieces, had a big impact on the other mathematicians at the time. Since then, more 

detailed and rigorous mathematical concepts and methods have been developed in this field. 

 In the middle of the 19th century, Bernhard Riemann, a German mathematician, 

rigorously formulated general solution to this problem; the concept of Riemann integration. It is 

still so useful and is widely accepted as one of the fundamental concepts of calculus mentioned 

in most calculus books now. 

 During one of the most active periods of mathematics around 19th and 20th centuries, 

many restrains of Riemann’s method were recognized, and many attempts were made to extend 

Riemann integration. One of the most successful extensions of Riemann integration is due to 
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Henri Lebesgue. Lebesgue’s attempt, which includes measure theory, has significantly removed 

the restrains of Riemann integration. 

 Lebesgue’s measure and integration theory generalized the notion of “length,” “area”, 

and “volume” by generalizing the concept of integration over more complex domains rather than 

a simple interval. This approach successfully generalized the Riemann integration and extended 

the class of integrable (or solvable) functions. But there are still some situations (or functions 

when dealing with taking then limit) which suggests the need to develop more general ways to 

integrate a function than Lebesgue integration. 

 In Chapter 1, we will briefly discuss the Riemann integral, and some of its properties 

including the process of taking the limit. Concepts of measure and measurability of sets and 

functions are presented in Chapter 2. The Lebesgue integral is discussed in Chapter 3. Finally in 

Chapter 4, we will present some extreme cases, and some ideas for extending the system of real 

numbers. 
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Chapter 1  
The Riemann Integrals 
 

 

 Since any geometrical object can be placed in a coordinate system and then described 

using functions and/or equations, the problem of finding its area or volume can be reduced to the 

problem of calculating the area or the volume under the graph of a function. The formulation of 

the problem finding the area under the graph of a bounded function in the Cartesian coordinate 

system is presented below using the concept of Riemann integral. 

 

1.1 Riemann Sums and Riemann Integrals 

 Let f be a bounded real-valued function which is defined on the closed interval [a, b]. By 

a subdivision Δ of [a, b], we mean a finite set Δ ൌ ሼݔሽୀ  for some natural number n such that: 

ܽ ൌ ݔ ൏ ଵݔ ൏ ڮ ൏ ݔ ൌ ܾ. 

 Let yi be any number between xi-1 and xi, then we define a Riemann sum S of f over Δ by: 

ܵ ൌݒሺݔ െ ିଵሻݔ


ୀଵ

 with ݒ ൌ ݂ሺݕሻ. 

Since f is bounded on [a, b], it is bounded above and bounded below on each subinterval 

of [a, b]. Then for each subinterval [xi, xi+1], if we choose vi to be the supremum (infimum) of f 

over that subinterval, and take the Riemann sum over Δ, we get the upper Riemann sum (lower 

Riemann sum) over [a, b]. Let UΔ(f) and LΔ(f) be the upper and lower Riemann sums of f over 

[a, b]. That is, 
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ઢሺ݂ሻࢁ ൌܯሺݔ െ ିଵሻݔ


ୀଵ

 with ܯ ൌ sup
௬אሾ௫షభ,௫ሿ

݂ሺݕሻ 

and 

ઢሺ݂ሻࡸ ൌ݉ሺݔ െ ିଵሻݔ


ୀଵ

 with ݉ ൌ inf
௬אሾ௫షభ,௫ሿ

݂ሺݕሻ 

    

Fig 1.1 - Example of lower Riemann sum and upper Riemann sum 

The upper Riemann integral of f over [a, b] is defined as the infimum of the 

corresponding upper Riemann sums over all possible subdivisions of Δ of [a, b], that is 

തܴ න ݂ሺݔሻ݀ݔ



ൌ inf


 ઢሺ݂ሻࢁ

Similarly, we define the lower Riemann integral of f over [a, b] as 

ܴන ݂ሺݔሻ݀ݔ



ൌ sup


 ઢሺ݂ሻࡸ

If ݂ሺݔሻ  0 on [a, b], for every subdivision Δ, it is clear that the upper Riemann sum is 

always greater than or equal to the area under the curve, while the lower Riemann sum is always 

less than or equal to that area (Apostol [4]). Therefore, we have that: 
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ܴන ݂ሺݔሻ݀ݔ



ൌ sup

Δ
ઢሺ݂ሻࡸ  the area under the graph  തܴ න ݂ሺݔሻ݀ݔ




ൌ inf

Δ
 ઢሺ݂ሻࢁ

If upper and lower Riemann integrals are equal, we say that the function is Riemann 

integrable, and the common value of those two integrals is called the Riemann integral of f 

over [a, b] and is denoted by: 

ܴන ݂ሺݔሻ݀ݔ



. 

 If ݂ሺݔሻ  0 on [a, b], the Riemann integral of f over [a, b] is equal to the area under the 

graph of f over [a, b]. But in general, the function f has both positive and negative values over its 

domain, and then the Riemann integral is equal to the signed area of the function; that is the area 

above the horizontal axis minus the area below the horizontal axis. 
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1.2 Properties of Riemann Integrals 

 The following properties of the Riemann integral can be easily obtained from the 

definition: 

Proposition 1.2.1 (Linearity) If f and g are two Riemann integrable functions on a closed 

interval [a, b], and c and d are two real numbers, then: 

ܴන ሾ݂ܿሺݔሻ  ݀݃ሺݔሻሿ݀ݔ



ൌ ܿ · ܴන ݂ሺݔሻ݀ݔ




 ݀ · ܴන ݃ሺݔሻ݀ݔ




 

 This proposition is useful to calculate the areas or volumes of the objects when we could 

add or divide the objects into others such that it is easier to solve. 

Proposition 1.2.2 If f is a Riemann integrable function on a closed interval [a, c], and b is 

real number between a and c, then 

ܴන ݂ሺݔሻ݀ݔ



 ܴන ݂ሺݔሻ݀ݔ




ൌ ܴන ݂ሺݔሻ݀ݔ




 

Lemma 1.2.3 If f is some Riemann integrable function on [a, b] then 

ܴන ݂ሺݔሻ݀ݔ



ൌ 0 

It is fact when the length of [a, a] equals 0. 

Proposition 1.2.4 If f and g are two Riemann integrable functions on [a, b], and ݂  ݃, i.e. 

for any x in [a, b], ݂ሺݔሻ  ݃ሺݔሻ, then 

ܴන ݂ሺݔሻ݀ݔ



 ܴන ݃ሺݔሻ݀ݔ
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1.3 Class of Riemann integrable Functions 

We have to remind that not all functions are Riemann integrable (Mattuck [5]). We can 

see it through the following example (example 1.3.1) 

Example 1.3.1 Consider the Dirichlet function defined on [a, b] as below: 

݂ሺݔሻ ൌ ൜1 if x is rational   
0 if x is irrational 

Since there are always at least one rational number and one irrational number between any two 

real numbers a and b, a < b, it can easily be shown that ࢁઢሺ݂ሻ ൌ 1, and ࡸઢሺ݂ሻ ൌ 0 for any 

subdivision Δ of [a, b]. This implies  

തܴ න ݂ሺݔሻ݀ݔ



ൌ 1 ് 0 ൌ ܴන ݂ሺݔሻ݀ݔ




 

Thus, the Dirichlet function is not Riemann integrable on any closed interval [a, b]■ 

So, it is important to determine which functions are Riemann integrable and which are 

not, and most importantly, how “large” the class of Riemann integrable functions is. The 

following results are well-known: 

Theorem 1.3.2 If a function f is continuous on a closed interval [a, b], then f is Riemann 

integrable on [a, b]. 

Theorem 1.3.3 A function f defined on a closed interval [a, b] is Riemann integrable if 

and only if it is discontinuous at at most finitely many points. 
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Corollary 1.3.4 Let f be a Riemann integrable on [a, b], and let g be a real-valued function 

defined on the same interval such that the set ሼݔ: ݂ሺݔሻ ് ݃ሺݔሻሽ is finite, then g is also Riemann 

integrable, and 

න ݃ሺݔሻ݀ݔ



ൌ න ݂ሺݔሻ݀ݔ




. 
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1.4 Convergence of Riemann Integrals  

 The Riemann integral provides a solution to the problem of finding the area under the 

graph of a function. Intuitively, we can ask the question that if a sequence of functions ۃ ݂ۄ 

converges to a function f, then will the areas under the graphs of ۃ ݂ۄ also converge to the area 

under the graph of f ? Unfortunately, this convergence property does not hold for the class of 

Riemann integrable functions in general. 

Example 1.4.1 Since the set of rational numbers is countable, let {rn} be an enumeration 

of the set of rational numbers in [0, 1]. Consider the sequence of functions ۃ ݂ۄ defined on [0, 1] 

as follows: 

݂ሺݔሻ ൌ ൜1  if ݔ א ሼݎሽୀଵ


0  elsewhere    
 

Then we can see that the limit function of this sequence is the Dirichlet function: 

݂ሺݔሻ ൌ lim
՜ஶ ݂ሺݔሻ ൌ ൜1 if x is rational   

0 if x is irrational 

For each natural number n, the function fn has finitely many points of discontinuities, then by 

Theorem 1.3.3, it is Riemann integrable. And moreover, it can easily be shown that 

ܴ  ݂ሺݔሻ݀ݔ
ଵ
 ൌ 0 . But as we saw in Example 1.3.1 that the Dirichlet function ݂ሺݔሻ ൌ

lim՜ஶ ݂ሺݔሻ is not integrable, therefore the class of Riemann integrable functions is not closed 

under taking limit. 

 Indeed, for the Riemann integrable functions, in order for the convergence property to be 

held, we need some extra assumptions, which mean that it holds for a smaller class of functions. 
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Theorem 1.4.2 Let ۃ ݂ۄ  be a sequence of Riemann integrable functions on [a, b] that 

uniformly converges to a function f, ݂ሺݔሻ ൌ lim՜ஶ ݂ሺݔሻ ݔ ݈݈ܽ ݎ݂  א ሾܽ, ܾሿ, then f is Riemann 

integrable, and 

lim
՜ஶ

ܴන ݂ሺݔሻ݀ݔ



ൌ ܴන ݂ሺݔሻ݀ݔ




 

Proof: 

 Since  ۃ ݂ۄ uniformly converges to f, for any Ԗ > 0, there exists ܰ א Գ, such that for every 

n > N, | ݂ሺݔሻ െ ݂ሺݔሻ| ൏ ߳ for all  x in [a, b]. 

 Let ߳ ൌ sup௫אሾ,ሿ| ݂ሺݔሻ െ ݂ሺݔሻ|, then ߳ۃۄ is a decreasing sequence and lim՜ஶ ߳ ൌ

0, and for every n, ݂ሺݔሻ െ ߳ ൏ ݂ሺݔሻ ൏ ݂ሺݔሻ  ߳ for all x in [a, b]. Taking the upper and 

lower Riemann integrals, we have that: 

ܴන ሾ ݂ሺݔሻ െ ߳ሿ݀ݔ



 ܴන ݂ሺݔሻ݀ݔ




 തܴ න ݂ሺݔሻ݀ݔ




 തܴ න ሾ ݂ሺݔሻ  ߳ሿ݀ݔ




 

 Since fn’s are Riemann integrable,( fn േ Ԗn )’s are also Riemann integrable, then the 

previous inequalities become: 

ܴන ሾ ݂ሺݔሻ െ ߳ሿ݀ݔ



 ܴන ݂ሺݔሻ݀ݔ




 തܴ න ݂ሺݔሻ݀ݔ




 ܴන ሾ ݂ሺݔሻ  ߳ሿ݀ݔ




 

 By Proposition 1.2.1, it follows that: 

ܴන ݂ሺݔሻ݀ݔ



െ ߳ · ܴන ݔ݀




 ܴන ݂ሺݔሻ݀ݔ




 തܴ න ݂ሺݔሻ݀ݔ




 ܴන ݂ሺݔሻ݀ݔ




 ߳ · ܴන ݔ݀
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֜ ܴන ݂ሺݔሻ݀ݔ



െ ߳ · ሺܾ െ ܽሻ  ܴන ݂ሺݔሻ݀ݔ




 തܴ න ݂ሺݔሻ݀ݔ




 ܴන ݂ሺݔሻ݀ݔ




 ߳ · ሺܾ െ ܽሻ 

֜ 0  തܴ න ݂ሺݔሻ݀ݔ



െ ܴන ݂ሺݔሻ݀ݔ






 ቈܴන ݂ሺݔሻ݀ݔ



 ߳ · ሺܾ െ ܽሻ െ ቈܴන ݂ሺݔሻ݀ݔ




െ ߳ · ሺܾ െ ܽሻ 

That implies 

0  തܴ න ݂ሺݔሻ݀ݔ



െ ܴන ݂ሺݔሻ݀ݔ




 2߳ሺܾ െ ܽሻ ሺ1ሻ 

 Since (1) holds for all n, by taking the limit as n approaches to infinity, we have that: 

0  തܴ න ݂ሺݔሻ݀ݔ



െ ܴන ݂ሺݔሻ݀ݔ




 lim

՜ஶ
2߳ሺܾ െ ܽሻ ൌ 0 

  So, തܴ  ݂ሺݔሻ݀ݔ
 ൌ ܴ  ݂ሺݔሻ݀ݔ

 , or f is Riemann integrable, and 

lim
՜ஶ

ቈܴන ݂ሺݔሻ݀ݔ



െ ߳ · ሺܾ െ ܽሻ  ܴන ݂ሺݔሻ݀ݔ




 lim

՜ஶ
ቈܴන ݂ሺݔሻ݀ݔ




 ߳ · ሺܾ െ ܽሻ, 

or  

lim
՜ஶ

ܴන ݂ሺݔሻ݀ݔ



ൌ ܴන ݂ሺݔሻ݀ݔ




 

 Besides taking the limit of a sequence of functions, it can also be problematic when the 

domain is infinitely large, i.e. when we take the limit of the domain, the Riemann integral can 

become unstable most of the time. A further example for this will be shown in Chapter 4. 
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1.5 Riemann’s and Lebesgue’s ways of computing areas 

 When developing the idea of dividing the total area into small pieces, Riemann divided 

the domain into finitely many intervals (Burrill, Knudsen [3]). Then the area of each piece is 

bounded above by the upper rectangle in the upper Riemann sum, and is bounded below by the 

lower rectangle in the lower Riemann sum. 

 

Fig 1.2 - Riemann sums divide the domain into small pieces 

 Dividing the domain into smaller and smaller subintervals works well if the function is 

well-behaved in the neighborhoods of each point in the domain. Differentiable functions and 

continuous functions belong to this category. But many of the functions that we encounter do not 

always behave nicely. Therefore, the class of Riemann integrable functions is restricted and 

needs to be extended. 

 Henri Lebesgue introduced a new attempt to calculate the area under a function in his 

dissertation in 1902. Instead of subdividing the domain, Lebesgue partitioned the range of the 

function. And for each interval of the partition, he determined how much of the domain is 

mapped by the function into this interval. Then using the same idea of Riemann integral, the area 

under graph of the function is bounded above by the sum of the products of the greater bound of 
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each subinterval and the portion of the domain mapped by the function to that subinterval. 

Similarly for the lower bound. Finally, by taking the infimum of the sum of the upper bounds, or 

taking the supremum of the lower bounds over all the partitions of the range, we will have the 

Lebesgue Integral, if they are equal (Burrill, Knudsen [3]). 

 

Fig 1.3 – Lebesgue’s idea of partitioning the range 

 The tricky part of this method is to determine how much of the domain contributes to 

each interval of the subdivision of the range. For this problem, Lebesgue introduced another 

concept, measure theory. It turns out that with measure theory, the class of integrable functions is 

larger, and the process of taking the integral is generalized. 
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Chapter 2  
Measure Theory 
 

 

 The core of Lebesgue’s idea is measure theory. It gives a general understanding of the 

“length” of an arbitrary set. Measure theory is a rich subject, related to other areas of 

mathematics such as set theory, topology, probability theory, and, of course, calculus. 

 

2.1 Algebra of Sets 

 Given a non-empty set X, let P(X) denote the collection of all subsets of X, which is 

called the power set of X. As mentioned above, one of the difficulties of Lebesgue’s approach is 

how to decide how much of the domain mapped by the function to an interval of the range. That 

means measuring some subset of the domain. Ideally, we would like to be able to measure any 

subset of the domain. But, it is impossible to construct a measure that satisfies all of our ideal 

properties for all the subsets of a non-empty set in general (Royden [1]). Let’s identify some 

characteristics required of a structure on which we can define a measure. 

 By an algebra on X, we mean a non-empty collection of subsets of X, which is closed 

under finite union and complement (Royden [1]). If ࣛ is an algebra, A and B are two subsets of 

X, then we have that: 

i) ܣ,  ܤ א ࣛ ֜ ܣ  ܤ א ࣛ 

ii) ܣ א ࣛ ֜ ሚܣ א ࣛ,with ܣሚ represents the complement of ܣ 

 Then it can easily be shown the following properties of an algebra ࣛ on X: 
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i) ܣ,  ܤ א ࣛ ֜ ܣ ת ܤ א ࣛ 

ii)  א ࣛ,ܺ א ࣛ  

Example 2.1.1 i) The collection of open and closed sets of the real numbers is an algebra. 

   ii) The power set of X is an algebra on X. 

The following useful proposition shows that in an algebra, every countable union can be 

expressed as a countable union of disjoint sets in the algebra. 

Proposition 2.1.2 Let ࣛ be an algebra on X, and ܣۃۄ be a sequence of sets in ࣛ, then there 

is a sequence ܤۃۄ of sets in ࣛ such that ܤ ת ܤ ൌ ݊ for  ് ݉, and 

ራܤ

ஶ

ୀଵ

ൌራܣ

ஶ

ୀଵ

 

 An algebra ࣛ on X is called a σ-algebra, if it is closed under countable union; that is, if 

ڂ is a sequence of sets in ࣛ, then ۄܣۃ ஶܣ
ୀଵ א ࣛ. De Morgan’s laws imply that a σ-algebra is 

also closed under countable intersection. 

Example 2.1.3 i) The collection of open and closed sets of the real numbers is not a σ-

algebra. 

   ii) The power set of X is a σ-algebra on X. 
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2.2 Measurable Spaces 

 We are now ready to define the concept of a measure. 

 A measurable space is defined as a pair (X, ࣜ), in which X is a non-empty set, and ࣜ is a 

σ-algebra of subsets of X. Each subset of X in ࣜ is called a measurable set. By a set function, 

we mean a function which assigns to some subsets of X an extended real number.  

 A non-negative set function µ is called a measure on a measurable space (X, ࣜ), if it is 

defined for all sets of ࣜ and satisfies the following conditions: 

i) ߤሺሻ ൌ 0 

ii) Countably additive: ߤሺڂ ஶܣ
ୀଵ ሻ ൌ ∑ ሻஶܣሺߤ

ୀଵ  if ܣ ת ܣ ൌ ݅ for  ് ݆ 

 Three more useful properties of measures are given by the following propositions: 

Proposition 2.2.1 (Monotonicity) If ܣ, ܤ א ࣜ, ܣ ݀݊ܽ ؿ ,ܤ ܣߤ ݄݊݁ݐ   .ܤߤ

Proposition 2.2.2 If ܣۃۄ is a decreasing sequence in ࣜ, which means ܣ ـ  (ଵܣ)ାଵ, and µܣ

is finite, then ߤሺځ ஶܣ
ୀଵ ሻ ൌ lim՜ஶ  .ܣߤ

Proposition 2.2.3 If ܣ א ࣜ then ߤሺڂ ஶܣ
ୀଵ ሻ  ∑ ஶܣߤ

ୀଵ . 

 Below are some special types of measurable sets and measures on X.  

 A measure µ is translation invariant if for each measurable set E and for each y Ԗ X, the 

set E + y = {x + y: x Ԗ E} is also measurable and has the same measure as E 

ܧሺߤ  ሻݕ ൌ ,ܧߤ for all ܧ א ࣜ and ݕ א ܺ 
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 A subset E of X is said to be of finite measure if ܧ א ࣜ, and ܧߤ ൏ ∞. Similarly, we 

define sets of infinite measure. A subset E of X is of σ-finite measure if E is the union of a 

countable collection of measurable sets of finite measure; that is: ܧ ൌ ڂ ஶܧ
ୀଵ with ܧ א

ࣜ and ܧߤ ൏ ∞. It can easily be proved that every measurable subset of a σ-finite measure set is 

also of σ-finite measure. If every measurable set is of σ-finite measure, then µ is called σ-finite. 

 Another notion that is weaker than σ-finiteness is semi-finiteness. A measure µ is semi-

finite if every measurable set of infinite measure contains measurable sets of arbitrary large 

finite measure, which means: 

is semi‐finite ߤ  If ܧߤ ൌ ∞ then ܯ  0, ܣ ؿ ,ܧ ܣ א ࣜ, such that ܯ ൏ ܧߤ ൏ ∞.  

So, if a measure is σ-finite, then it is also semi-finite. 

 An important characteristic that needs to be mentioned is completeness. A measure space 

(X, ࣜ, µ) is said to be complete if ࣜ contains all the subsets of sets of measure zero, that is, if 

ܧ א ࣜ, ܧߤ ൌ 0, ܣ ݀݊ܽ ؿ ܣ then ܧ א ࣜ. 

 Given a measure space (X, ࣜ, µ), a subset E of X is called locally measurable if for 

every measurable set A of finite measure, ܧ ת  is measurable. Since ࣜ is a σ-algebra, every ܣ

measurable set is also locally measurable. Then one can show that the collection ࣝ of locally 

measurable sets is a σ-algebra and it contains ࣜ. A measure µ is called saturated if every locally 

measurable set is measurable, i.e. ࣝ ൌ ࣜ. It is not difficult to show that a σ-finite measure is 

saturated. 

 We will see two more special types of measures and their properties in Chapter 4. Now 

we will move on to the concept of outer measure.  
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2.3 Outer Measure 

 One of the restrictions of a measure µ on a set X is that not all subsets of X are 

measurable. In order to measure all subsets of X, we define an outer measure which bypasses this 

restriction by weakening the countable additive property of a measure. 

 By an outer measure µ*, we mean an extended real-valued set function defined on the 

power set of X, P(X), and having properties stated below: 

i) כߤ ൌ 0 

ii) ܣ ؿ ܤ ֜ ܣכߤ   ܤכߤ

iii) ܧ ؿ ڂ ஶܧ
ୀଵ ֜ ܧכߤ  ∑ ஶܧכߤ

ୀଵ  

 It follows from (i) and (ii) that µ* is non-negative. The second property is called 

monotonicity. The third property is a weakened version of countable additivity, called 

countable sub-additivity. By (ii), the third property is equivalent to: 

iv) ܧ ൌ ڂ ஶܧ
ୀଵ ,  disjointܧ ֜ ܧכߤ  ∑ ஶܧ

ୀଵ  

 An outer measure µ* is finite if µ*X < ∞. 

 To make an analogy to a measure, a subset E of X is said to be measurable with respect 

to an outer measure µ* if for every subset A of X, we have that: 

ܣכߤ ൌ ܣሺכߤ ת ሻܧ  ܣሺכߤ ת  ෨ሻܧ

Note In order to show that a subset E of X is measurable with respect to µ*, by the countable 

sub-additivity of µ* that 

ܣכߤ  ܣሺכߤ ת ሻܧ  ܣ൫כߤ ת ܣ ෨൯ sinceܧ ൌ ሺܣ ת ሻܧ  ൫ܣ ת  ෨൯ܧ
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it is only necessary to show the other direction of the inequality: 

ܣכߤ  ܣሺכߤ ת ሻܧ  ܣሺכߤ ת  ෨ሻܧ

 Moreover, this inequality is obvious when µ*A = ∞, so we need only to show it is true for 

all sets A of finite outer measure µ*A < ∞. 

 The following theorem states the relationship between outer measure and measure. 

Theorem 2.3.1 The class ࣜ of µ*-measurable sets is a σ-algebra. If µ is µ* restricted to ࣜ, 

then µ is a complete measure on ࣜ. 
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2.4 Lebesgue Measure 

 From now on, we will consider the set of real numbers Թ as our space. Let’s start with 

our “intuitive measure.” The length l(I) of an interval I is defined to be the difference of two 

endpoints of the interval. Then l(I) is a non-negative set function on Թ. Now we will extend this 

set function to construct an outer measure and a measure to measure more subsets of the real 

numbers. 

 For each set A of real numbers, consider the countable collections {In} of open intervals 

that cover A, ܣ ؿ ڂ ஶܫ
ୀଵ . The Lebesgue outer measure m* of A is defined as the infimum of 

the sum of the interval lengths of each collection over all the open covers of A: 

ܣכ݉ ൌ inf
ڂؿ ூಮ

సభ
 ݈ሺܫሻ
ஶ

ୀଵ

 

 It follows immediately from the definition of m* the first two properties of an outer 

measure: 

i)  ݉כ ൌ 0 

ii) ܣ ؿ ܤ ֜ ܣכ݉   ܤכ݉

Proposition 2.4.1 The Lebesgue outer measure of an interval is its length. 

 There is only the third property of an outer measure left to prove that Lebesgue outer 

measure m* is an outer measure. The following proposition shows that the Lebesgue outer 

measure is actually an outer measure. 

Proposition 2.4.2 Let {An} be a countable collection of sets of real numbers, then 
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כ݉ ൭ራܣ

ஶ

ୀଵ

൱  ݉ܣכ

ஶ

ୀଵ

. 

Thus, m* is an outer measure. 

Proof: 

 If one of the sets An has infinite outer measure, the right side is infinity, then the 

inequality is obvious. Let m*An be finite for any n, then given Ԗ > 0, there exists a countable 

disjoint collection of open intervals ܫۃ,ۄୀଵஶ  such that ܣ ؿ ڂ ,ஶܫ
ୀଵ ൌ   andܫ

݈ሺܫ,ሻ
ஶ

ୀଵ

൏ ܣכ݉  2ି߳ 

 Since ሼܫሽ is a countable collection and its union covers the union of {An}, 

כ݉ ൭ራܣ

ஶ

ୀଵ

൱  ݈ሺܫ,ሻ
ஶ

ୀଵ

ஶ

ୀଵ

 ሺ݉ܣכ  2ି߳ሻ
ஶ

ୀଵ

ൌ ݉ܣכ

ஶ

ୀଵ

 ߳ 

 It holds for an arbitrary positive number Ԗ, therefore 

כ݉ ൭ራܣ

ஶ

ୀଵ

൱  ݉ܣכ

ஶ

ୀଵ

 

 The following useful results can be derived easily from Proposition 2.4.2: 

Corollary 2.4.3 If A is countable then m*A = 0. 

Corollary 2.4.4 The set [0, 1] is uncountable. 

Proposition 2.4.5 The Lebesgue outer measure is translation invariant. 
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 Following the construction we made in the previous section, a set E of real numbers is 

said to be Lebesgue measurable if for each set A, we have that 

ܣכ݉ ൌ ܣሺכ݉ ת ሻܧ  ܣሺכ݉ ת  ෨ሻܧ

Then the theorem below follows directly Theorem 2.3.1 in the last section: 

Theorem 2.4.6 The collection ࣧ  of Lebesgue measurable sets is a σ-algebra, and the 

restriction m of m* to ࣧ is a complete measure on ࣧ, called the Lebesgue measure. 

 Thus, by the translation invariance of Lebesgue outer measure, the Lebesgue measure m 

is a complete translation invariant measure on the real numbers. Some useful results are stated 

below 

Proposition 2.4.7 Some Lebesgue measurable sets: 

i) If m*E = 0 then E is Lebesgue measurable. 

ii) If E is the interval (a, ∞) then E is Lebesgue measurable. 

iii) If E is the union or intersection of a countable collection of open and closed sets, then 

E is Lebesgue measurable. 

Proposition 2.4.8 Let E be a given set of real numbers, then the following five statements are 

equivalent: 

i) E is Lebesgue measurable. 

ii) For every Ԗ > 0, there is an open set O containing E with m*(O ~ E) < Ԗ. 

iii) For every Ԗ > 0, there is a closed set F contained in E with m*(E ~ F) < Ԗ. 
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iv) There is a set G which is a countable intersection of open sets such that G contains E 

and m*(G ~ E) = 0. 

v) There is a set F which is a countable union of closed sets such that F is contained in 

E and m*(E ~ F) = 0.  
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2.5 Measurable Functions 

 Now we are in the position to define the concept of measurable functions. Let’s start with 

an abstract definition. 

 Given two measurable spaces (X, ࣜ) and (Y, ࣝ), and let f be a function from X to Y. Then f 

is called a measurable function from X to Y if for every measurable subset E of Y, f -1(E) is 

measurable in X: 

݂ିଵሺܧሻ א ࣜ for every ܧ א ࣝ. 

 When X and Y are Lebesgue measurable sets, and ࣜ and ࣝ are σ-algebra of measurable 

sets ࣧ restricted on X and Y respectively, then f is said to be Lebesgue measurable. We will use 

the phrase measurable function for Lebesgue measurable function when there is no confusion. It 

is immediately followed from the definition that: 

 Instead of checking inverse measurability of every measurable set in the range, there is a 

more efficient way to check measurability of a function with respect to the Lebesgue measure 

(McShane, Botts [2]). 

Proposition 2.5.1 Let f be an extended real-valued function defined on a (Lebesgue) 

measurable domain, then the following statements are equivalent: 

i) For every real number c, the set {x: f(x) > c} is measurable. 

ii) For every real number c, the set {x: f(x)  c} is measurable. 

iii) For every real number c, the set {x: f(x) < c} is measurable. 

iv) For every real number c, the set {x: f(x) ≤ c} is measurable. 
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Corollary 2.5.2 A function f is Lebesgue measurable if and only if its domain is Lebesgue 

measurable, and it satisfies one of the statements of Proposition 2.5.1.  

Proposition 2.5.3 If f is a continuous function, then f is Lebesgue measurable. 

Proof: 

 f is continuous, so for every open sets in the range, the inverse image is also open. Since 

the set {x: f(x) > 0} is open, its inverse image f -1({x: f(x) > 0} is also open. So, by Proposition 

2.4.7 and Corollary 2.5.2, f is measurable  

Example 2.5.4 The Dirichlet function f is measurable. Recall that the Dirichlet function is 

݂ሺݔሻ ൌ ൜1 if x is rational   
0 if x is irrational 

Then the inverse images: 

ሼݔ: ݂ሺݔሻ  ܿሽ ൌ ൝
, ܿ  1
Է, 0  ܿ ൏ 1
Թ, ܿ ൏ 0

 

which are always measurable. So, by Corollary 2.5.2, the Dirichlet function is measurable  

 The following proposition can be proved by choosing appropriate sets: 

Proposition 2.5.5 Let c be a constant, and f and g be two (Lebesgue) measurable real-valued 

functions defined on the same domain, then the following functions f + c, cf, f + g, g – f, and fg 

are also measurable. 
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Theorem 2.5.6 Let ۃ ݂ۄ be a sequence of (Lebesgue) measurable functions defined on the 

same domain, then the following functions sup {f1,…, fn}, inf {f1,…, fn}, sup fn, inf fn, lim  ݂, and 

lim  ݂ are also measurable. 

Corollary 2.5.7 Let ۃ ݂ۄ be a sequence of (Lebesgue) measurable functions defined on the 

same domain and converges (point-wise) to a function f, then f is measurable. 

 So, by this result, we have that the class of measurable functions is closed under the 

process of taking limit (point-wise). However beside the abovementioned functions we could 

show some stronger results as follows. 

 A property is said to hold almost everywhere (abbreviated a.e.) if the set of points where 

it fails has Lebesgue measure zero.  

Proposition 2.5.8 If f is a (Lebesgue) measurable function, and f = g a.e., then g is also 

measurable. 

Corollary 2.5.9 If ۃ ݂ۄ  be a sequence of (Lebesgue) measurable defined on the same 

domain and converges to a function f a.e., then f is measurable.  
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Chapter 3  
The Lebesgue Integrals 
 

 

3.1 Lebesgue Integrals of Simple and Bounded Functions 

 Now that we have introduced the fundamental concepts of measures, measurable sets and 

functions, now we are ready to introduce the concept of the Lebesgue integral.  

 Let A be any set, the characteristic function χA of the set A is defined as: 

߯ ൌ ቄ1     if ݔ א ݔ if     0ܣ ב  ܣ

 It follows directly from the definition that the function χA is measurable if and only if A is 

measurable (Royden, [1]). 

 A real-valued function φ is called simple if it is measurable and it assumes only finitely 

many values. If φ is a simple function and has the values a1, …, an then 

߮ ൌܽ߯



ୀଵ

, where ܣ ൌ ሼݔ: ߮ሺݔሻ ൌ ܽሽ 

 Since the simple function φ is measurable, Ai must be also measurable. Another fact is 

that ai’s are distinct and nonzero values, and Ai’s are disjoint sets. 

Proposition 3.1.1 If φ and ψ are two simple functions, then φ + ψ, φ – ψ, and φ·ψ are also 

simple functions. 
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 For the simple function, it is easy to decide the portion of the domain that is mapped by 

the function into an interval of the range. So intuitively, we define the (Lebesgue) integral of the 

simple function φ that vanishes outside a set of finite measure, i.e. ݉ሼݔ: ߮ሺݔሻ ് 0ሽ ൌ 0, by: 

න߮ ൌ න߮ሺݔሻ݀ݔ ൌܽ݉ܣ



ୀଵ

, when ߮ ൌܽ߯



ୀଵ

 

 If E is a measurable set, then we define: 

න ߮
ா

ൌ න߮ · ߯ா 

Proposition 3.1.2 (Linearity) Let φ and ψ be simple functions vanishing outside a set of finite 

measure, then 

නሺܽ߮  ܾ߰ሻ ൌ ܽන߮  ܾන߰. 

Proposition 3.1.3 If φ and ψ be simple functions vanishing outside a set of finite measure 

such that ߮  ߰ a.e., then 

න߮  න߰ 

 Next we move on to more complicated functions. Let f be a bounded function vanishing 

outside a set of finite measure, then we have the following interesting result which connects 

measurability, integrals, and simple functions: 

Proposition 3.1.4 Let f be a bounded function vanishing outside a set of finite measure E, 

then 



29 
 

inf
ஸట

න ߰ሺݔሻ݀ݔ
ா

ൌ sup
ஹఝ

න ߮ሺݔሻ݀ݔ
ா

 

if and only if f is measurable. 

 Thus, we define the (Lebesgue) integral of a bounded measurable function f vanishing 

outside a set E of finite measure by 

න ݂ሺݔሻ݀ݔ
ா

ൌ inf  ቊන ߰ሺݔሻ݀ݔ
ா

: ߰ is simple and ߰  ݂ቋ. 

 We will use  ݂ா  as an abbreviation for  ݂ሺݔሻ݀ݔா . 

 It is easily to obtain the next result showing that the Lebesgue integral is in fact a 

generalization of the Riemann integral. 

Proposition 3.1.5 If a bounded function f defined on [a, b] is Riemann integrable, then it is 

measurable and 

ܴන ݂ሺݔሻ݀ݔ



ൌ න ݂ሺݔሻ݀ݔ

ሾ,ሿ
. 

Proof: 

 Since each Riemann sum is the integral of a simple function, we have that: 

ܴන ݂ሺݔሻ݀ݔ



ൌ sup

Δ
ઢሺ݂ሻࡸ  sup

ஹఝ
න ߮ሺݔሻ݀ݔ
ா

 

and 

തܴ න ݂ሺݔሻ݀ݔ



ൌ inf

Δ
ઢሺ݂ሻࢁ  inf

ஸట
න ߰ሺݔሻ݀ݔ
ா

 

So,  
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ܴන ݂ሺݔሻ݀ݔ



 sup

ஹఝ
න ߮ሺݔሻ݀ݔ
ா

 inf
ஸట

න ߰ሺݔሻ݀ݔ
ா

 തܴ න ݂ሺݔሻ݀ݔ



 

Since f is Riemann integrable,  

ܴන ݂ሺݔሻ݀ݔ



ൌ തܴ න ݂ሺݔሻ݀ݔ




ൌ ܴන ݂ሺݔሻ݀ݔ




 

Therefore 

sup
ஹఝ

න ߮ሺݔሻ݀ݔ
ா

ൌ inf
ஸట

න ߰ሺݔሻ݀ݔ
ா

 

Thus, by Proposition 3.1.4, f is measurable, and 

ܴන ݂ሺݔሻ݀ݔ



ൌ න ݂ሺݔሻ݀ݔ

ሾ,ሿ
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3.2 Lebesgue Integrals of Non-negative and General Functions 

 In order to integrate unbounded functions, by using the Riemann integrations, we usually 

integrate the function over a bounded subset of the domain, and then take the limit as the 

endpoints of the bounded subsets approach the endpoints of the domain. Lebesgue used another 

way to deal with unbounded problems, working directly with the functions after defining those 

well-behaved measurable sets and well-integrated functions.  

 Let’s start with non-negative functions. The (Lebesgue) integral of a non-negative 

measurable function f on a measurable set E is defined by 

න ݂
ா

ൌ sup  ቊන ݄
ா

: ݄ is bounded measurable on ܧ,݉ሼݔ: ݄ሺݔሻ ് 0ሽ ൏ ∞, and ݄  ݂ቋ 

 A non-negative measurable function f is called (Lebesgue) integrable over a measurable 

set E if  

න ݂
ா

൏ ∞ 

 By the positive part f + of a function f, we mean function being defined by 

݂ାሺݔሻ ൌ maxሼ݂ሺݔሻ, 0ሽ. 

 Similarly, we define the negative part f – of a function f by 

݂ିሺݔሻ ൌ maxሼെ݂ሺݔሻ, 0ሽ. 

 Then it follows from the definitions that: 

i) ݂ ൌ ݂ା െ ݂ି 
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ii) |݂| ൌ ݂ା  ݂ି 

iii) If ݂ is measurable, then ݂ା and ݂ି are also measurable. 

 If both f + and f – are (Lebesgue) integrable over a measurable set E, then f is (Lebesgue) 

integrable over E, and we define 

න ݂
ா

ൌ න ݂ା
ா

െ න ݂ି
ா
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3.3 Properties of Lebesgue Integrals 

 We will see that, as we expected of a generalization of Riemann integral, Lebesgue 

integrals still have Riemann integral’s properties. 

Proposition 3.3.1 Let f and g be integrable over E, then the followings hold 

i) (Linearity) For any real numbers a and b, the function (af + bg) is integrable over E, 

and 

න ሺ݂ܽ  ܾ݃ሻ
ா

ൌ ܽන ݂
ா

 ܾන ݃
ா

 

ii) If ݂  ݃ a.e., then 

න ݂
ா

 න ݃
ா

 

 Therefore, if f = g a.e., then 

න ݂
ா

ൌ න ݃
ா

 

iii) If A and B are two disjoint measurable subsets of E, then f is integrable over A, B, 

and A  B, and 

න ݂
  

ൌ න ݂


 න ݂


 

iv) If A is a set of measure 0 then f is integrable over A, and  

න ݂


ൌ 0 

 In the Riemann integration, if we take away finitely many points in the domain, then it is 

divided into finite number of intervals over which the total of the Riemann integrals of the 
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function on the subintervals is equal to the Riemann integral of the same function over the 

original domain.  So, in the Riemann integration, the sets of points in the domain which does not 

affect the integration when being removed are finite sets. In the Lebesgue integration, they are 

generalized to a larger class - the class of sets of measure 0, including countable sets. 

Proposition 3.3.2 If f and g are two functions such that f = g a.e., then f is (Lebesgue) 

integrable if and only if g is integrable, and then, their integrals are the same. 
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3.4 Convergence of Lebesgue Integrals 

 As being mentioned before, Lebesgue’s idea of integrating a function not only extends 

the class of integrable functions but also successfully improves the limiting process (Mattuck 

[5]). The abovementioned will be shown by the hereunder three important theorems and their 

implications. However, the Lebesgue integral seems not to be closed under limiting process. An 

example of this will be shown in the next chapter. Let’s state convergence properties of 

Lebesgue integral. The detailed proofs can be found in (Royden, [1]). 

Theorem 3.4.1 (Fatou’s Lemma) If ۃ ݂ۄ  is a sequence of non-negative measurable 

functions then 

න lim
՜ஶ

inf 
ஹ ݂

ா
 lim

՜ஶ
inf 
ஹ

න ݂
ா

 

Theorem 3.4.2 (Monotone Convergence Theorem) If ۃ ݂ۄ is an increasing sequence of 

non-negative measurable functions, and if f = lim fn a.e., then f is integrable and 

න݂ ൌ න lim
՜ஶ ݂ ൌ lim

՜ஶ
න ݂ 

Corollary 3.4.3 Let ۃ ݂ۄ be a sequence of non-negative measurable functions. Then 

න ݂

ஶ

ୀଵ

ൌ න ݂

ஶ

ୀଵ

 

Corollary 3.4.4 Let f be a non-negative measurable function and ܧۃۄ  be a disjoint 

sequence of measurable sets, then 
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න ݂
ڂ ாಮ
సభ

ൌ න ݂
ா

ஶ

ୀଵ

 

Theorem 3.4.5 (Generalized Lebesgue Convergence Theorem) Let ݃ۃۄ be a sequence of 

integrable functions that converges a.e. to an integrable function g. Let ۃ ݂ۄ be a sequence of 

measurable functions that converges to f a.e. If | ݂|  ݃ and 

න݃ ൌ න lim
՜ஶ

݃ ൌ lim
՜ஶ

න݃ 

then 

න݂ ൌ න lim
՜ஶ ݂ ൌ lim

՜ஶ
න ݂ 
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Chapter 4  
Some Limiting Cases and Extending the 
Real Number System  
 

 

 This chapter presents several examples when the convergence theorems do not hold. We 

also show how the situations can be treated by introducing some special measures. 

 

4.1 Dirac Delta Function 

Example 4.1.1 Let ۃ ݂ۄ be a sequence of functions defined on Թ by 

݂ሺݔሻ ൌ ൝݊, െ
1
2݊ ൏ ݔ ൏

1
2݊

0, ݁ݎ݄݁ݓ݁ݏ݈݁
 

 Then, fn are non-negative simple functions, and are integrable. Taking the integral of fn 

over Թ gives us 

න ݂ ൌ ݊ · ݉ െ
1
2݊ ,

1
2݊൨ ൌ ݊ ൬

1
݊൰ ൌ 1,  .݊ ݈݈ܽ ݎ݂

 By taking the limit as n tends to infinity, we will get 

݈݅݉
՜ஶ

න ݂ ൌ 1 

 Now, let f denote the point-wise limit function of ۃ ݂ۄ, that is 

݂ሺݔሻ ൌ ݈݅݉
՜ஶ ݂ሺݔሻ 
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 Since for every number non-zero x, there exists a natural number n0 such that ଵ
ଶబ

൏  .|ݔ|

That implies ଵ
ଶ
൏ ଵ

ଶబ
൏ ሻݔfor any n > n0. So, ݂ሺ |ݔ| ൌ ݈݅݉՜ஶ ݂ሺݔሻ ൌ 0 for any non-zero x. 

Since 0 ൏ ଵ
ଶ

 for any natural number n, ݂ሺ0ሻ ൌ ݊ for all n. Therefore ݂ሺ0ሻ ൌ ݈݅݉՜ஶ ݂ሺ0ሻ ൌ

݈݅݉՜ஶ ݊ ൌ ∞. 

 This shows that f = 0 a.e., so by Proposition 3.3.2, ݂ ൌ 0 ൌ 0. Thus, 

න ݈݅݉
՜ஶ ݂ ൌ න݂ ൌ 0 ് 1 ൌ ݈݅݉

՜ஶ
න ݂  ז

 The above example shows that in general the Lebesgue integration does not preserve the 

integral under limit. In order to preserve the limiting integral for such sequences of functions as 

above, the British theoretical physicist Paul Dirac introduced a mathematical concept called the 

Dirac delta function δ, defined informally as 

ሻݔሺߜ ൌ ቄ 0, ݔ ് 0
∞, ݔ ൌ 0  

with its ሺLebesgueሻ integral:  න ݔሻ݀ݔሺߜ
∞

ି∞
ൌ 1. 

 The idea of Dirac delta function is that it is zero everywhere but is so concentrated at one 

point that the area under the graph of the function (integral) is 1, not zero.  

 Since, δ  ൌ  0  a.e., it is followed from Proposition 3.3.2 that δ is not an extended real-

valued function. In the next section, we will see that indeed, δ can be considered as a measure. 

 Before that, let’s consider the Dirac delta function δ as a function on the extended real 

number and go over some of its properties. 
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Proposition 4.1.2 (Weisstein [6]) Let f, g be real-valued measurable functions and α, β be 

non-zero real numbers, then 

i)  ݂ሺݔሻߜሺݔሻ݀ݔஶ
ିஶ ൌ ݂ሺ0ሻ. 

ii)  ሾ݂ߙሺݔሻ  ஶݔሻ݀ݔሺߜሻሿݔሺ݃ߚ
ିஶ ൌ  ሾ݂ߙ  ஶݔሻ݀ݔሺߜሻݔሿሺ݃ߚ

ିஶ ൌ ሾ݂ߙ  ሿሺ0ሻ݃ߚ ൌ

ሺ0ሻ݂ߙ   .ሺ0ሻ݃ߚ

iii)  ݂ሺݔሻߜሺݔ െ ஶݔሻ݀ߙ
ିஶ ൌ ݂ሺߙሻ. 

iv)  ஶݔሻ݀ݔߙሺߜ
ିஶ ൌ  ሻݔߙሺߜ ௗሺఈ௫ሻ

ఈ
ஶ
ିஶ ൌ ଵ

ఈ  ஶݔሻ݀ݔሺߜ
ିஶ ൌ ଵ

ఈ
 

Example 4.1.3 Back to the example 4.1.1, if we let the limit 

݈݅݉
՜ஶ ݂ ൌ  ߜ

then, we will have that: 

݈݅݉
՜ஶ

න ݂ ൌ 1 ൌ නߜ ൌ න ݈݅݉
՜ஶ ݂ 

Now, let’s consider this integration over any set E of real numbers. In order for these 

integrals to exist, E needs to be measurable. But in fact, if the set E does not contain 0, there will 

be a natural number N such that fn vanishes in E for n ≥ N. That means  

݈݅݉
՜ஶ

න ݂
ா

ൌ 0 ൌ න ߜ
ா

ൌ න ݈݅݉
՜ஶ ݂

ா
 

Similarly, if the set E contains any neighborhood of 0, then the limit of the integrals of fn 

over E would be 1, which equals to the integral of δ over E: 
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݈݅݉
՜ஶ

න ݂
ா

ൌ 1 ൌ න ߜ
ா

ൌ න ݈݅݉
՜ஶ ݂

ா
 

So, the equality still holds for every subset of the real numbers that we integrate on, not 

restricted on just measurable sets  
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4.2 Dirac measure 

 Considering the Dirac delta function as a regular function on the real numbers will 

restrict us to Lebesgue measurable sets and measurable functions. Instead of treating the Dirac 

delta function as a regular function on the space itself, we define it as a set function or a measure 

on its power set. With this, we can extend the classes of integrable functions. 

 Let X be some non-empty set, and a is an element of X. Define a set function µa on the 

power set P(X) by 

ሻܣሺߤ ൌ ቄ1, ܽ א ܣ
0, ܽ ב ܣ  for given ܣ ؿ ܺ 

Proposition 4.2.1 The set function µa is a finite measure on the measurable space (X, P(X)). 

Proof:  

 It is followed from the definition of µa that is it non-negative, and ߤ ൌ 0. It remains to 

prove the countably additive property. 

 Let ܧۃۄ be a disjoint sequence of subsets of X. The proof will be divided into two cases: 

Case 1: If ܽ א ڂ ஶܧ
ୀଵ , then there exists an ܧ that contains a. Since ܧ’s are disjoint, ܧ does 

not contain a for ݅ ് ݇. So 

ሻܧሺߤ ൌ ൜1, ݊ ൌ ݇
0, ݊ ് ݇ 

Then 

ߤሺܧሻ
ஶ

ୀଵ

ൌ ߤሺܧሻ
ஷ

 ሻܧሺߤ ൌ 0  1 ൌ 1 ൌ ߤ ൭ራܧ

ஶ

ୀଵ

൱ 
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Case 2: If ܽ ב ڂ ஶܧ
ୀଵ , then ܽ ב   for all n. That means µa(En) = 0 for any n. Soܧ

ߤሺܧሻ
ஶ

ୀଵ

ൌ 0
ஶ

ୀଵ

ൌ 0 ൌ ߤ ൭ራܧ

ஶ

ୀଵ

൱ 

Thus, µa is a finite measure on the measurable space (X, P(X)), from the fact that ܽ א    זܺ

 The measure µa is then called a Dirac measure on X. Since the σ-algebra of measurable 

sets is P(X), all subsets of a measurable set of measure 0 is also measurable, µa is a complete and 

saturated measure. 

 A measure µ is called probability measure if  

න1݀ߤ ൌ න߯݀ߤ ൌ 1 

Hence, µa is a probability measure.  

 Let f be a real-valued function defined on X, then we define the Dirac delta integral by 

න ݂ ߤ݀
ா

ൌ ݂ሺܽሻߤሺܧሻ 

 With this definition, the following properties of this integral will hold: 

Proposition 4.2.2  

iሻ Let ۃ ݂ۄ be a sequence of real-valued functions defined on X and ܿۃۄ be a sequence of 

real numbers, then 

න ൭ܿ ݂

ஶ

ୀଵ

൱ ߤ݀
ா

ൌ ൭ܿ ݂ሺܽሻ
ஶ

ୀଵ

൱  ሻܧሺߤ
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iiሻ Let f be a real-valued function defined on X, and ܧۃۄ be a disjoint sequence of subsets 

of X, then 

න ߤ݂݀
ڂ ாಮ
సభ

ൌ ݂ሺܽሻߤሺܧሻ
ஶ

ୀଵ

 

Proof: 

i) By the definition of the Dirac delta integral,  

න ൭ܿ ݂

ஶ

ୀଵ

൱݀ߤ
ா

ൌ ൭ܿ ݂

ஶ

ୀଵ

൱ ሺܽሻߤሺܧሻ ൌ ቌܿ ݂

ஶ

ୀଵ

ሺܽሻቍߤሺܧሻ 

 

ii) Since µa is a measure on (X, P(X)), it follows directly from the definition of the Dirac 

delta integral: 

න ߤ݂݀
ڂ ாಮ
సభ

ൌ ݂ሺܽሻߤ ൭ራܧ

ஶ

ୀଵ

൱ ൌ ݂ሺܽሻߤሺܧሻ
ஶ

ୀଵ
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4.3 Discrete Measure 

 Now, let’s generalize the Dirac measure to a larger type of measures. Let (X, β, µ) be a 

measure space. Let supp µ denote the support set of measure µ, i.e. the collection of sets of 

non-zero measure in X. A set function νS on P(X) is called a discrete measure if there exists a 

countable subset S = {s1, s2,…} of X such that  

i) ሼݏሽ א supp ߥௌ, for all ݏ א ܵ 

ii) If ܣ is a subset of ܵ, then ߥௌሺܣሻ ൌ ൜ 0, ܣ ൌ 
ሽሻݏௌሺሼߥ∑ , ܣ ് , ݏ א ܣ

 

iii) ߥௌሺܧሻ ൌ ܧௌሺߥ ת ܵሻ for any subset ܧ of ܺ. 

S is called the core of νS (Terekhin [7]). 

 It is directly followed by the definition that a discrete measure is a measure. And the σ-

algebra of measurable sets is the power set P(X) of X. The following results relate the discrete 

measures and the Dirac measures mentioned before. 

Lemma 4.3.1 The Dirac measure is a discrete measure. 

Proof: 

 If we let S = {a}, then the Dirac delta measure µa clearly satisfies three conditions of a 

discrete measure with the core S  

Theorem 4.3.2 The measure νS is a discrete measure on X with the core S = {s1, s2,…} if 

and only if there is a sequence of real numbers ߙۃۄ such that 

ௌߥ ൌ ߙߤ௦

ஶ

ୀଵ

 with ߤ௦are Dirac delta measures. 
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Proposition 4.3.3 Given two countable subsets S1 and S2 of X, and two positive real numbers 

α1 and α2. If ߥௌభand ߥௌమare two discrete measures on X with the cores S1 and S2 respectively, then 

ௌభߥଵߙ  ௌమis a discrete measure on X with the core ଵܵߥଶߙ  ܵଶ. 

Proof: 

 Assume ଵܵ ൌ ሼݏଵ,ሽୀଵஶ  and ܵଶ ൌ ሼݏଶ,ሽୀଵஶ  are two countable subsets of X, and ߥௌభand 

 ௌమare two discrete measures on X with the cores S1 and S2 respectively. Let α1 and α2 are twoߥ

positive real numbers. Define the set function ν as 

ሻܧሺߥ ൌ ሻܧௌభሺߥଵߙ   ሻܧௌమሺߥଶߙ

And let ܵ ൌ ଵܵ  ܵଶ, then for any x in S, x is either in S1 or S2, that is, 

ሽሻݔௌభሺሼߥ  0 or ߥௌమሺሼݔሽሻ  0 

So,  

ሽሻݔሺሼߥ ൌ ሽሻݔௌభሺሼߥଵߙ  ሽሻݔௌమሺሼߥଶߙ  0 

or ሼݔሽ א supp ߥ.  

  

ሻሺߥ ൌ ሻௌభሺߥଵߙ  ሻௌమሺߥଶߙ ൌ 0 

 If ܣ ؿ ܵ ൌ ଵܵ  ܵଶ, then 

ሻܣሺߥ ൌ ሻܣௌభሺߥଵߙ  ሻܣௌమሺߥଶߙ ൌ ܣௌభሺߥଵߙ ת ଵܵሻ  ܣௌమሺߥଶߙ ת ܵଶሻ 

ൌ ଵߙ  ሽሻݔௌభሺሼߥ
௫אתௌభ

 ଶߙ  ሽሻݔௌమሺሼߥ
௫אתௌమ

ൌ ߙଵߥௌభሺሼݔሽሻ
௫א

ߙଶߥௌమሺሼݔሽሻ
௫א
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ൌሾߙଵߥௌభሺሼݔሽሻ  ሽሻሿݔௌమሺሼߥଶߙ
௫א

ൌ ߥሺሼݔሽሻ
௫א

 

 This proves the second property of a discrete measure. The third property is proved by 

the same argument as above. Thus,  ߥ ൌ ௌభߥଵߙ   ௌమ is a discrete measure with the coreߥଶߙ

ܵ ൌ ଵܵ  ܵଶ  
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4.4 Another Example 

 In Example 4.1.1, the Lebesgue integral does not hold under the limit when the upper 

bounds of functions approach infinity, while the measure of the support sets approach zero. In 

this section we will give another example that the sequence of functions uniformly converges to 

0 and their support sets expand to a set of infinity measure. 

 Let ۂݔہ denote the largest integer that smaller than or equal to x, called the floor function. 

Consider the sequence of function ۃ ݂ۄ defined as below 

݂ሺݔሻ ൌ ቐ
ቀ ଶ
ାہ௫ۂቁ
2ଶ

, െ݊  ݔ ൏ ݊  1

0, ݁ݎ݄݁ݓ݁ݏ݈݁
ൌ ቐ2

ିଶ ൬
2݊

݊  ۂݔہ
൰ , െ݊  ݔ ൏ ݊  1

0, ݁ݎ݄݁ݓ݁ݏ݈݁
 

Lemma 4.4.1 For any real number x, the sequence ۃ ݂ሺݔሻۄ converges. 

Proof: 

 For any real number x, there exists a positive integer n such that |ݔ|  ݊, or 

െ݊  ݔ ൏ ݊  1. So, for n large enough, we have that: 

݂ሺݔሻ ൌ 2ିଶ ൬
2݊

݊  ൰ۂݔہ ൌ
1
2ଶ ·

ሺ2݊ሻ!
ሺ݊  !ሻۂݔہ ሾ2݊ െ ሺ݊  !ሻሿۂݔہ ൌ

1
2ଶ ·

ሺ2݊ሻ!
ሺ݊  !ሻۂݔہ ሺ݊ െ  !ሻۂݔہ

 Since – ሺ݊  1ሻ ൏ െ݊  ݔ ൏ ݊  1 ൏ ሺ݊  1ሻ  1, 

݂ାଵሺݔሻ ൌ 2ିଶሺାଵሻ ൬
2ሺ݊  1ሻ

ሺ݊  1ሻ  ൰ۂݔہ ൌ
1

2ଶାଶ ·
ሺ2݊  2ሻ!

ሺ݊  1  !ሻۂݔہ ሾ2݊  2 െ ሺ݊  1  !ሻሿۂݔہ

ൌ
1

2ଶାଶ ·
ሺ2݊  2ሻ!

ሺ݊  1  !ሻۂݔہ ሺ݊  1 െ  !ሻۂݔہ

 Then the difference between fn+1(x) and fn(x) is: 
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݂ାଵሺݔሻ െ ݂ሺݔሻ ൌ
1

2ଶାଶ ·
ሺ2݊  2ሻ!

ሺ݊  1  !ሻۂݔہ ሺ݊  1 െ !ሻۂݔہ െ
1
2ଶ ·

ሺ2݊ሻ!
ሺ݊  !ሻۂݔہ ሺ݊ െ  !ሻۂݔہ

ൌ
1

2ଶାଶ ·
ሺ2݊ሻ!

ሺ݊  1  !ሻۂݔہ ሺ݊  1 െ !ሻۂݔہ
ሾሺ2݊  1ሻሺ2݊  2ሻ െ 4ሺ݊  1  ሻሺ݊ۂݔہ  1 െ  ሻሿۂݔہ

ൌ
1

2ଶାଶ ·
ሺ2݊ሻ!

ሺ݊  1  !ሻۂݔہ ሺ݊  1 െ !ሻۂݔہ ሾ4݊
ଶ  6݊  2 െ 4ሺ݊  1ሻଶ   ଶۂݔہ4

ൌ
1

2ଶାଶ ·
ሺ2݊ሻ!

ሺ݊  1  !ሻۂݔہ ሺ݊  1 െ !ሻۂݔہ ሺ4݊
ଶ  6݊  2 െ 4݊ଶ െ 8݊ െ 4   ଶۂݔہ4

ൌ
1

2ଶାଶ ·
ሺ2݊ሻ!

ሺ݊  1  !ሻۂݔہ ሺ݊  1 െ !ሻۂݔہ ሺ4
ଶۂݔہ െ 2݊ െ 2ሻ 

 For any real number x, there exist an integer n0 such that 2݊  ଶۂݔہ4 െ 2, then for 

݊  ݊, 2݊  ଶۂݔہ4 െ 2, or ݂ାଵሺݔሻ െ ݂ሺݔሻ ൏ 0 

 So, the sequence ሼ ݂ሺݔሻ|݊  ݊ሽ is monotonic decreasing, and it is bounded below by 0. 

 Therefore, the sequence ሼ ݂ሺݔሻ|݊  ݊ሽ converges, that implies the sequence ሼ ݂ሺݔሻሽ 

converges as n tends to infinity for any real number x. 

Thus, ஶ݂ ൌ lim՜ஶ ݂ is a well-defined function  

Lemma 4.4.2 For any positive integer n, 

න ݂ሺݔሻ݀ݔ
ஶ

ିஶ

ൌ 1 

Proof: 
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න ݂ሺݔሻ݀ݔ
ାଵ

ି

ൌ  න ݂ሺݔሻ݀ݔ
ାଵ





ୀି

ൌ  න 2ିଶ ൬
2݊

݊  ൰ۂݔہ ݔ݀
ାଵ





ୀି

ൌ  න 2ିଶ ൬
2݊
݊  ݅൰ ݔ݀

ାଵ





ୀି

ൌ 2ିଶ  ൬
2݊
݊  ݅൰න ݔ݀

ାଵ





ୀି

ൌ 2ିଶ  ൬
2݊
݊  ݅൰



ୀି

ൌ 2ିଶ൬
2݊
݅ ൰

ଶ

ୀ

ൌ 2ିଶ2ଶ

ൌ 1 

So, by taking the integral over the whole set of real numbers, we have that: 

න ݂ሺݔሻ݀ݔ
ஶ

ିஶ

ൌ න ݂ሺݔሻ݀ݔ
ି

ିஶ

 න ݂ሺݔሻ݀ݔ
ାଵ

ି

 න ݂ሺݔሻ݀ݔ
ஶ

ାଵ

ൌ න ݔ0݀
ି

ିஶ

 න ݂ሺݔሻ݀ݔ
ାଵ

ି

 න ݔ0݀
ஶ

ାଵ

ൌ 1  

Lemma 4.4.3 For every positive integer n: 

݂ାଵሺ0ሻ
݂ሺ0ሻ

ൌ
2݊  1
2݊  2 

Proof: 

݂ሺ0ሻ ൌ 2ିଶ ൬
2݊

݊  ൰ۂ0ہ ൌ 2ିଶ ൬
2݊
݊ ൰ ൌ 2ିଶ ·

ሺ2݊ሻ!
݊! · ݊! 

݂ାଵሺ0ሻ ൌ 2ିଶିଶ ·
ሺ2݊  2ሻ!

ሺ݊  1ሻ! · ሺ݊  1ሻ! 

 So, 

݂ାଵሺ0ሻ
݂ሺ0ሻ

ൌ
2ିଶିଶ

2ିଶ ·
ሺ2݊  2ሻ!
ሺ2݊ሻ! ·

݊! · ݊!
ሺ݊  1ሻ! · ሺ݊  1ሻ! ൌ

1
4 ·

ሺ2݊  1ሻሺ2݊  2ሻ
ሺ݊  1ሻଶ ൌ

2݊  1
2݊  2  
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Proposition 4.4.4 

ஶ݂ሺ0ሻ ൌ ݈݅݉
՜ஶ ݂ሺ0ሻ ൌ 0 

Proof: 

ଵ݂ሺ0ሻ ൌ
൫ଵଶ൯
2ଶ ൌ

2
4 ൌ

1
2 

ଶ݂ሺ0ሻ ൌ ଵ݂ሺ0ሻ ·
2 · 1  1
2 · 1  2 ൌ

1
2 ·

3
4 

 Assume that for some positive integer k: 

݂ሺ0ሻ ൌෑ
2݅ െ 1
2݅



ୀଵ

ൌ
1
2 ·

3
ڮ4

2݇ െ 1
2݇  

 Then, 

݂ାଵሺ0ሻ ൌ ݂ሺ0ሻ ·
2݇  1
2݇  2 ൌ ൭ෑ

2݅ െ 1
2݅



ୀଵ

൱ ·
2ሺ݇  1ሻ െ 1
2ሺ݇  1ሻ ൌෑ

2݅ െ 1
2݅

ାଵ

ୀଵ

 

 So, for any positive integer n, we have that: 

݂ሺ0ሻ ൌෑ
2݅ െ 1
2݅



ୀଵ

 

 Now, consider the subsequence ۃ ݂ሺ0ሻۄ, for some k, 

݂ሺ0ሻ ൌ
1
2 ·

3
ڮ4

2݇݊ െ 1
2݇݊  
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ൌ ൬
1
2 ·

3
ڮ4

2݊ െ 1
2݊ ൰ · ൬

2݊  1
2݊  ڮ2

4݊ െ 1
4݊ ൰ڮቆ

2ሺ݇݊ െ 1ሻ െ 1
2ሺ݇݊ െ 1ሻ ڮ

2݇݊ െ 1
2݇݊ ቇ 

൏ ൬
2݊ െ 1
2݊ ൰



· ൬
4݊ െ 1
4݊ ൰



൬ڮ
2݇݊ െ 1
2݇݊ ൰



ൌ ൬1 െ
1
2݊൰



· ൬1 െ
1
4݊൰



൬1ڮ െ
1
2݇݊൰



 

ൌෑ൬1 െ
1
2݅݊൰



ୀଵ

 

 As we proved above, the sequence ۃ ݂ሺݔሻۄ converges for any real number x, so the 

sequence ۃ ݂ሺ0ሻۄ and all of its subsequences ۃ ݂ሺ0ሻۄ also converge, and 

ஶ݂ሺ0ሻ ൌ ݈݅݉
՜ஶ ݂ሺ0ሻ ൌ ݈݅݉

՜ஶ ݂ሺ0ሻ  ݈݅݉
՜ஶ

൭ෑ൬1 െ
1
2݅݊൰



ୀଵ

൱ ൌෑ ݈݅݉
՜ஶ

൬1 െ
1
2݅݊൰



ୀଵ

ൌෑ݁ି
ଵ
ଶ



ୀଵ

 

ൌ ݁ି
ଵ
ଶ∑

ଵ
ൗ

ೖ
సభ  

 This holds for any positive integer k, therefore, 

0  ஶ݂ሺ0ሻ  ݂݅݊ ݁ି
ଵ
ଶ∑

ଵ
ൗ

ೖ
సభ ൌ ݁ି

ଵ
ଶ∑

ଵ
ൗ

ಮ
సభ ൌ ݁ିஶ ൌ 0 

 Thus, ஶ݂ሺ0ሻ ൌ 0  

 Since max  ൛൫ଶ൯, 0  ݉  2݊ൟ ൌ ൫ଶ ൯, ݂ሺݔሻ  ݂ሺ0ሻ for any real number x and 

positive integer n. So, the sequence ۃ ݂ۄ uniformly converges to ஶ݂ ൌ 0. It proves that 

න ݈݅݉
՜ஶ ݂ ൌ න ஶ݂ ൌ න0 ൌ 0 ് 1 ൌ ݈݅݉

՜ஶ
න ݂  ז
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4.5 Extending System of Real Numbers 

 In 4.1 and 4.2, we discussed several examples where the point-wise limit does not hold 

the integrals, even though we already extended the real numbers to infinity. It is a consequence 

of property (convention) that 0 · ∞ ൌ 0. In order to solve this problem, making the point-wise 

limit still holds the integrals, it is suggested to extend the real numbers not only to infinity-

direction, but also to 0-direction, and reconsider the limiting process in the new extended real 

numbers system. Let’s denote the extension of real numbers system by Ը with addition, 

subtraction and comparison in the sense as real numbers, and satisfying these assumptions: 

1ሻ  Թ ؿ ব  

2ሻ  The set  Ԫכ ൌ   ሼݖ א ব:െݔ  ݖ  ,ݔ ݖ ് 0, ݔ א Թାሽ  is not empty, and the positive, 

negative and the union are Ԫା ൌ   ሼݖ א ব: 0 ൏ ݖ ൏ ,ݔ ݔ א Թାሽ , Ԫି ൌ   ሼݖ א ব:െݔ ൏ ݖ ൏

0, ݔ א Թାሽ, and Ԫ ൌ   ሼݖ א ব:െݔ ൏ ݖ ൏ ,ݔ ݔ א Թାሽ ൌ Ԫכ  ሼ0ሽ ൌ Ԫା  Ԫି  ሼ0ሽ. They will 

be called the epsilums. 

3)  The set ∞ ൌ  ሼݖ א ব: ݔ ൏ ,ݖ ݔ א Թሽ is not empty, and similarly,  

െ∞ ൌ  ሼݖ א ব: ݖ ൏ ,ݔ ݔ א Թሽ  and the union ∞ ൌ ሺ∞ሻ  ሺെ∞ሻ . They will be called the 

infinitums. 

Those elements that are not in the infinitums are finite. 

4) 0 · ݖ ൌ ݖ · 0 ൌ 0 for all ݖ א ব. 

 Given two subsets A and B of Ը, and an extended real number a, let denote: 

i) ܣ  ܤ ൌ ሼݔ  :ݕ ݔ א ,ܣ ݕ א ܣ ሽ andܤ · ܤ ൌ ሼݕݔ: ݔ א ,ܣ ݕ א  ሽܤ
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ii) ܣ  ܽ ൌ ܽ  ܣ ൌ ሼݔ  ܽ: ݔ א ܣ ሽ andܣ · ܽ ൌ ܽ · ܣ ൌ ܣܽ ൌ ሼܽݔ: ݔ א  ሽܣ

 Based on these notations, the followings are properties of the epsilums and infinitums 

Theorem 4.5.1 Properties of epsilum: 

 a) Ԫേ  Ԫേ ൌ Ԫേ 

 b) ܽԪേ ൌ Ԫേ for any ܽ א Թା, and ܽԪേ ൌ Ԫט for any ܽ א Թି 

 c) Ԫേ · Ԫേ ൌ Ԫା and Ԫേ · Ԫט ൌ Ԫି 

Theorem 4.5.2 Properties of infinitums: 

 a) ሺേ∞ሻ  ݖ ൌ ݖ  ሺേ∞ሻ ൌ േ∞ for all z finite 

 b) ሺേ∞ሻ  ሺേ∞ሻ ൌ േ∞  

 c) ܽሺേ∞ሻ ൌ േ∞ for any ܽ א Թା, and ܽሺേ∞ሻ ൌ ܽ for any ∞ט א Թି 

 d) ሺേ∞ሻ · ሺേ∞ሻ ൌ ∞ and ሺേ∞ሻ · ሺט∞ሻ ൌ െ∞ 

 Next, let a be any real number, and z be any finite extended real number, then the casting 

operators are defined as: 

 ሺবሻሺܽሻ ൌ ܽ  Ԫ and 

 ሺԹሻሺݖሻ ൌ ݔ such that ݔ א Թ and ݖ א ሺবሻሺݔሻ 

Then we state the properties of casting operators as following 

Lemma 4.5.3 If z is any finite extended real number, then ሺԹሻሺݖሻ is unique. 
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Proof: 

 Assume that there exist two real number a and b such that ሺԹሻሺݖሻ ൌ ܽ and ሺԹሻሺݖሻ ൌ ܾ. 

Then by the definition of casting operator, we have that ݖ א ሺবሻሺܽሻ and ݖ א ሺবሻሺܾሻ. So there 

are ߳ଵ, ߳ଶ א Ԫ such that ܽ  ߳ଵ ൌ ݖ ൌ ܾ  ߳ଶ. Or, ܽ െ ܾ ൌ ߳ଶ െ ߳ଵ א Ԫ. By the definition of the 

infinitesimal, that means െݔ ൏ ܽ െ ܾ ൏ ݔ for any ݔ א Թା. Therefore, a – b = 0, or a = b  

 The following results follow directly from the definitions of the casting operations and 

the extension of the real number system. 

Proposition 4.5.4 Let x, y be any two finite extended real numbers, and a, b be any two real 

numbers, then 

i) ሺবሻሺ0ሻ ൌ Ԫ and ሺԹሻሺ߳ሻ ൌ 0 for any ߳ א Ԫ. 

ii) x is real if and only if ሺԹሻሺݔሻ ൌ  .ݔ

iii) If ܽ ് ܾ then ሺবሻሺܽሻ ת ሺবሻሺܾሻ ൌ  .

iv) If ݔ  ሻݔthen ሺԹሻሺ ݕ  ሺԹሻሺݕሻ. 

v) ሺবሻሺܽ  ܾሻ ൌ ሺবሻሺܽሻ  ሺবሻሺܾሻ 

ሺবሻሺܾܽሻ ൌ ሺবሻሺܽሻ · ሺবሻሺܾሻ 

vi) ሺԹሻሺݔ  ሻݕ ൌ ሺԹሻሺݔሻ  ሺԹሻሺݕሻ 

ሺԹሻሺݕݔሻ ൌ ሺԹሻሺݔሻ · ሺԹሻሺݕሻ 

Lemma 4.5.5 Ԫ is a field. 

Proposition 4.5.6 ব ൌ ሺԹ  Ԫሻ  ∞ is a field. 
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Conclusion 
 

   

 Arising from the problem of finding the area or volume as an efficient mechanism, the 

integration has been refined for over a hundred year. Among those earliest and most acceptable 

integration techniques is Riemann’s integration. Riemann integration works well with most 

functions that have such well-behaved properties as continuity, but it fails when dealing with 

functions not in that well-behaved class of functions, especially when taking the limit (Burrill, 

Knudsen [3]). Attempting to solve this problem in a different way, Lebesgue integration 

extended not only the class of integrable functions, but also the sets on which the function is 

integrated. Moreover, Lebesgue integration works better with the limiting process, resulting in 

Fatou’s lemma, Monotone Convergence Theorem, and Generalized Lebesgue Convergence 

Theorem. 

 But as we see in Chapter 4, the Lebesgue integral still fails with the limit of some easily 

defined functions. One attempt for this problem is defining a special type of function to handle 

the limit. The Dirac delta function and its extension, Dirac measure and discrete measure, are 

well-known examples. Another attempt is to extend the real number system on which the 

functions and the limit are defined on. Some ideal properties of this system are presented in 

Chapter 4. For the future work, there will be a more detailed and careful construction for this 

idea of extending the real number system and how the limiting process will be adopted to the 

new number system. 
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